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ABSTRACT
Sustaining high fidelity and high throughput of perception tasks
over vision sensor streams on edge devices remains a formida-
ble challenge, especially given the continuing increase in image
sizes (e.g., generated by 4K cameras) and complexity of DNN mod-
els. One promising approach involves criticality-aware processing,
where the computation is directed selectively to “critical" portions
of individual image frames. We introduce MOSAIC, a novel sys-
tem for such criticality-aware concurrent processing of multiple
vision sensing streams that provides a multiplicative increase in
the achievable throughput with negligible loss in perception fi-
delity. MOSAIC determines critical regions from images received
from multiple vision sensors and spatially bin-packs these regions
using a novel multi-scale Mosaic Across Scales (MoS) tiling strat-
egy into a single ‘canvas frame’, sized such that the edge device
can retain sufficiently high processing throughput. Experimental
studies using benchmark datasets for two tasks, Automatic License
Plate Recognition and Drone-based Pedestrian Detection, shows
that MOSAIC, executing on a Jetson TX2 edge device, can provide
dramatic gains in the throughput vs. fidelity tradeoff. For instance,
for drone-based pedestrian detection, for a batch size of 4, MOSAIC
can pack input frames from 6 cameras to achieve (a) 4.75× (475%)
higher throughput (23 FPS per camera, cumulatively 138FPS) with
≤ 1% accuracy loss, compared to a First Come First Serve (FCFS)
processing paradigm.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems.
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1 INTRODUCTION
A growing number of real-time applications of machine percep-
tion (e.g., 3D scene analysis for autonomous driving or vehicular
tracking by street-mounted cameras) involves the execution of
DNN-based inference overmultiple, concurrent, high-resolutionmul-
timedia sensor data streams on a resource-constrained edge device.
Real-time edge-based execution of such perception tasks remains
challenging, given the rapid increase in both DNN model complex-
ity and data size/resolution (e.g., 4K image frames). For example,
an NVIDIA Jetson TX2 [26] device can process a maximum of only
∼2 frames per second (FPS) when executing the YOLOv5L6 (191
layers, 47M parameters) object detector at FP16 precision on a
1280 × 1280 image frame. Conventional approaches for overcom-
ing this throughput/latency challenge include either (a) the use of
smaller, less accurate DNN models executing on lower resolution
data (e.g., a less complex 300 × 300 SSD model[23] can achieve a
processing throughput of 10-15 FPS on the TX2 with TensorRT
optimizations) or (b) the use of more expensive, higher-resourced
edge devices (e.g., the Jetson Xavier[26]). Such approaches impose
an unfavorable cost/complexity vs. accuracy tradeoff.

To reduce this computational overhead, recent works have pro-
posed either (a) criticality-aware processing approaches, where only
selective high-value portions of individual image frames are pro-
cessed with higher attention or fidelity [11, 34, 36] or offloaded for
DNN task inference [37] or (b) selective computation approaches,
where certain DNN layers are simplified [6] or skipped [32]. Cur-
rent approaches, however, do not consider scenarios wheremultiple
sensor streams, with dynamically varying scene characteristics (e.g.,
object sizes and speeds) share the same computational resources
on an edge device and must be processed concurrently.

To address this gap, we introduce MOSAIC, a criticality-driven
edge processing system that optimizes the edge-based execution of
DNN-based inferencing tasks overmultiple image streams. Through
this optimization, MOSAIC provides a multiplicative increase
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Figure 1: MOSAIC’s Overall Functionality: (a)
Input frames captured by cameras (b) Packing
tiles frommultiple images onto a single canvas
frame (image not to scale).

Figure 2: Motivating Application: Mul-
tiple discrete autonomous drone cam-
era streams transferred wirelessly to,
and processed by a single edge node.

Figure 3: MOSAIC System Perfor-
mance on Jetson TX2; CFPS = Cu-
mulative FPS across M cameras

in the per-stream throughput that an edge device can sustain
without sacrificing task accuracy. MOSAIC can benefit a wide
variety of applications including, but not limited to, (i) city traffic
monitoring, where multiple camera streams monitoring an inter-
section are processed on a single edge node, and (ii) urban event
monitoring, where multiple drones’ camera streams are processed
by a single handheld edge control unit, as illustrated in Figure 2.

MOSAIC’s central concept involves the notion of a Canvas, de-
fined intuitively as the maximum size of an input frame (say𝐶) that
a DNN, executing on a GPU-equipped edge device, can consume
while ensuring that the processing throughput remains above a
minimal FPS threshold. We call these reduced-resolution frames,
which the GPU can keep up with, canvas frames. The challenge
of concurrently processing multiple (say 𝑀) camera streams can
then be framed as one of spatially packing or fitting high-priority
regions from 𝑀 independent image frames into a 𝐶-sized canvas
frame. Conceptually, MOSAIC replaces the baseline mode of inde-
pendent, sequential DNN execution on each individual frame with
a spatially-multiplexed paradigm, where𝑀 frames (one from each
camera sensor) are processed concurrently.

MOSAIC’s design addresses two key challenges with this para-
digm: (a) identifying and extracting critical regions from frames
with very low overhead, so as to sustain high throughput, and (b)
allocating the shared canvas space equitably across critical regions
with dynamically varying object characteristics. To pack the can-
vas frame appropriately, MOSAIC efficiently decomposes an input
frame into multiple tiles (sub-regions), defined at different scales
or “levels of zoom" that collectively represent objects/RoI of differ-
ent sizes. The selected tiles that contain faithful representations
of the objects or Regions of Interest (RoI) are then inverse-2D bin
packed [10] onto a canvas frame, thereby providing an 𝑀 − 𝑓 𝑜𝑙𝑑

boost in processing throughput as illustrated in Figure 1(b)). MO-
SAIC’s packing is carefully designed to ensure that (a) tiles are
proportionally resized based on their criticality while ensuring that
the underlying object sizes conform to application-defined spatial
bounds, and (b) the tiling process, invoked intermittently, is very
low-overhead.

Via benchmark datasets for two distinct applications - Okutama-
Action [3] for drone-based pedestrian detection andUFPR-ALPR [18]
for license plate recognition (LPR), we demonstrate MOSAIC’s abil-
ity to significantly improve the throughput-vs.-accuracy tradeoff
for diverse machine perception tasks across diverse camera settings.
Key Contributions:We make the following key contributions:

• Criticality-Preserving Canvas-Based Processing: We develop a 3-
stage innovative pipeline, called Mosaic Across Scales (MoS),
to dynamically fit a variable number of critical regions, from
multiple camera input images, into a single canvas frame: (i)
a multi-scale tiling mechanism that uses a Min-Cost Min Set
Cover algorithm [2] to select an appropriate minimal subset of
all possible tiles, for any given camera input image, that both cap-
ture all likely objects of interest while assuring such objects the
largest area possible in the eventual canvas frame, (ii) a Min-Max
optimization technique to differentially resize such individual
selected tiles based on their computed criticality values, and (iii) a
Differential Evolution Algorithm [24] with geometric constraints
for 2D Inverse Bin Packing [10] all selected tiles (across 𝑀 dis-
tinct images) onto a canvas frame. For pedestrian detection, MoS
suffers a negligible (≤ 1%) accuracy loss when compared to the
low-throughput, sequential FCFS processing of images; it also
achieves an 8% increase in accuracy when compared to a strategy
of uniformly downsampling and packing all𝑀 = 6 images onto a
single canvas frame. For LPR, MOSAIC can pack tiles containing
vehicles differentially from𝑀 = 3 images to achieve Optical Char-
acter Recognition (OCR) Character Error Rate (CER) of <33%, far
superior to a baseline uniform resizing approach, that results in
100% CER (complete loss of readability) even when frames are
processed individually (𝑀 = 1) i.e. FCFS processing of each input
frame at the same DNN inference image size (or canvas frame
size) as MOSAIC .
• Real-timeMOSAIC Implementation and Performance Gains: We
implement MOSAIC using the NVIDIA Jetson TX2 as the edge
device. The developed MOSAIC system uses a combination of
intermittent full-frame object localization and continuous mo-
tion tracking to support low-overhead, approximate extraction
of critical regions. Table 3 details the throughput for packing
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images from𝑀 =6 cameras for pedestrian detection, and𝑀 = 3
images for LPR. For both the pedestrian detection and LPR appli-
cations, MOSAIC achieves 5x (batch size=1, 18 FPS per camera)
and 4.75x (batch size=4, 23 FPS per camera) increase in processing
throughput, compared to an FCFS baseline that processes each
input frame sequentially.

Figure 4: Accuracy vs. Grid
Size ( Uniformly Packing)

Figure 5: Object Detection Ac-
curacy vs. {Object size, Reso-
lution}

2 MOTIVATING MOSAIC
MOSAIC’s primary objective is to pack high-priority or critical
regions from𝑀 discrete camera streams onto a single canvas-frame
to increase frame processing throughput for each stream, without
sacrificing inference task accuracy. To this end, we first explore the
target applications and basic principles that underpin MOSAIC’s
key design decisions.

2.1 Target Applications
We envision a wide variety of applications that could benefit from
the increased throughput afforded by canvas-based processing–
examples include surveillance, counting or detection scenarios
where both the camera sensor and the edge node could be sta-
tionary or in motion. Consider a city traffic monitoring application
where an edge node deployed on a road-side unit processes traffic-
light camera feeds from𝑀 discrete intersections, each observing
unique traffic volumes at different times of the day. Alternatively,
consider an edge node deployed on a mobile robot or handheld
control unit that processes autonomous drone camera feeds for
aerial monitoring in search-and-rescue, wildlife poaching or ur-
ban crowd control applications. For all of these scenarios, we can
reduce infrastructure costs and shorten response timeswithout com-
promising perception fidelity by allocating computing resources
non-uniformly and selectively, to only relevant portions of the cap-
tured image frames. We assume that each camera sensor monitors
a distinct, non-overlapping physical region, although MOSAIC can
likely be further optimized to take advantage of any spatial overlaps
(Section 6).

2.2 First Principles
2.2.1 Increasing Throughput by Packing Multiple Images. We first
study the implications of spatially packing multiple input image
frames uniformly (without any criticality awareness) into an image
grid, as a means of increasing processing throughput. Figure 4

plots the object detection accuracy (computed as mAP or mean
average precision), as a function of the number of such image
frames packed, for frames from the Okutama-Action[3] that have a
native resolution of 3840× 2160. For all studies in this work, canvas
size is set as 640 × 640, adopted from reported benchmarks for
YOLOv5 [30], the model of choice in our work. As seen in Figure 4,
the higher the number of elements (distinct frames) in the grid, the
smaller the resulting region (pixels) allotted to each input frame,
and the lower the object detection accuracy. Intuitively, due to
uniform downsizing, smaller objects become progressively smaller
and less distinguishable, to the point of loss of detect-ability. There
is therefore an opportunity for the system to increase inference
accuracy by providing high-priority regions of the original frame a
larger spatial share of the canvas.

2.2.2 Factors Impacting Object Detection Confidence. To further
delve into why packing an image into a smaller sized grid (i.e.,
reducing its overall pixel count) results in lower detection accuracy,
we additionally analyze the variation in object detection accuracy
over different object sizes. We experimentally observe that object
detection accuracy values degrade either due to a reduction in an
object’s size (a natural consequence of downsizing an image frame
to fit into a smaller grid) or a loss in object resolution (greater
pixelation). As shown in Figure 5, as image sizes increase, object
detectability increases leading to an increase in average object
object detection accuracy. Overall, image downsizing has a variable
impact: small and medium sized objects stand to receive the largest
confidence boost from the increase in resolution and size, while the
detectability of large objects remains relatively robust to resolution
loss.

2.3 MOSAIC’s Design Choices
At the edge, MOSAIC dispenses with the straightforward approach
of using uniform downsizing to pack multiple image frames into
a single canvas frame. Instead, MOSAIC seeks a differential down-
sizing strategy, which seeks to reduce the disparity in pixel areas
corresponding to likely objects (varying in size and spanning mul-
tiple input images) embedded in the canvas frame prior to DNN
inference. To reduce such disparity (which improves the accuracy
for smaller objects without disproportionately penalized larger ob-
jects), MOSAIC first uses variable-sized tiles to optimally capture
pixel regions with likely objects, and then spatially resizes such
tiles within acceptable bounds to fit within the target canvas frame.

3 MOSAIC
We now describe the criticality-aware adaptive processing per-
formed by MOSAIC at the edge, as illustrated in Figure 6. MO-
SAIC alternates between two modes of operation (1) Mosaic Across
Scales (MoS) and (2) Periodic Stabilization (PS), both of which
interact with MOSAIC’s Memory Function to support MOSAIC
objectives: (i) extraction of critical regions from an input frame
and (ii) bin-packing of these critical regions into a canvas frame
for DNN inference. The Periodic Stabilization (PS) operation ini-
tialises and intermittently refreshes MOSAIC pipeline by running
full-frame batched DNN inference on all camera streams to de-
tect class-specific critical objects. For each camera, PS localises the
newly detected objects, identifies stationary objects, and updates
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Figure 6:MOSAIC Block Diagram of Sub-Components Operating at the Edge

the object tracker maintained inMOSAIC’sMemory Function to cor-
rect all tracker uncertainties accumulated from the previous round
of MoS operation. PS also promptsMOSAIC to examine the recently
observed RoI and object size distributions per camera to compute a
set of camera-specific RoI scales. These RoI scales are updated in
the Memory Function and are used to instruct the next round of
MoS operation on the sizes of expected RoI in each camera stream.
For each camera stream, the MoS operation first estimates the lo-
cations of critical RoI with motion-based background subtraction
and updates the camera-specific object tracker. MoS extends the
philosophy of criticality by tiling the input image at each identified
RoI scale, identifying the tiles that contain all the RoIs maintained
by the tracker, and resizing the tiles (and by extension the RoI con-
tained within the tile) to larger dimensions as much as possible to
boost object detection accuracy. This approach effectively “spatially
channels" the limited computation resources available at the edge
to the critical regions. Of course, such resizing is a zero-sum game
overall that should preferentially enlarge smaller, distant RoI; this
objective is complicated by the reality that a single tile in an input
frame can contain RoI of different sizes (e.g., a mix of nearer and
distant objects).

At a high-level, the MoS process must balance two conflicting
objectives: (a) the RoI should ideally consume a large-enough frac-
tion of a tile such that tile resizing does not eventually result in a
dramatically smaller object–this criterion favors smaller tiles, and
(b) the total number of tiles to be fitted into a canvas should ideally
be minimized, so as to allow each tile a larger share of the canvas–
this criterion favors larger tile sizes. MoS creates a canvas frame
through a number of innovative sequential steps, described next,
that collectively balance these two objectives by:
• First, extracting a minimal set of tiles (at each of the camera
specific RoI scales maintained in the Memory Function) within
each image frame to encompass the likely ROI maintained by the
tracker
• Then, 2-D bin “inverse" packing such multi-scale tiles (i.e., ensur-
ing all relevant tiles are packed) to construct a canvas frame as a
composite image of such tiles; this canvas frame is then sent to
the DNN model for inference.

3.1 Periodic Stabilization (PS)
The PS operation initializes and refreshes the entireMOSAIC pipeline
with class-specific objects, their locations, and object size distri-
butions evaluated through batched full-frame DNN inference on
all the incoming camera streams for the entire PS duration. The

objective of the PS operation is to address two significant challenges
faced during MoS operation. First, cameras may observe a variety
of object size distributions based on the physical installation of the
camera and the observer-object distance. For example, a camera
mounted on a lamp-post may observe a mix of large foreground and
smaller background objects of interest, whereas a camera mounted
on a drone may observe uniformly small object distributions. Object
size distributions may also be dynamic over time, for example, a
camera mounted on a drone may observe varying object sizes as it
increases/decreases its flying altitude. To best capture critical RoI of
different sizes, MoS tiles the input frame at different scales and eval-
uates which subset of tiles contain critical RoI from the input frame.
MoS relies on the object size distribution evaluated during the PS
operation to understand how many scales to use for such a tiling
step and what tiling dimensions each scale must adopt. Second, the
MoS pipeline estimates critical RoI by performing background sub-
traction, which captures the RoI where objects are likely in motion
and may miss stationary, halted, or occluded objects of interest.
MoS similarly relies on the detected object locations obtained by
the PS operation to update a camera-specific object tracker with
the locations of objects that might be missed by the background
subtraction based estimation of critical RoI in the input frame. The
periodicity and duration of PS is a configurable parameter and de-
scribes the expected average rate of change in the observed object
size distribution. However, the PS periodicity parameter and overall
MOSAIC achievable throughput is inversely related: a shorter PS
and longer MoS period provides larger throughput gain, as the PS
period effectively processes frames at full resolution (without any
spatial multiplexing gain). After completing the full frame detec-
tions for the PS duration across all camera streams, MOSAIC is
triggered to refresh the per-camera ROI scales and object tracker,
described next.
(1a) Calculate Per-Camera RoI Scales: To determine the camera-
specific RoI scales and their dimensions, this function first collects
the object size distribution observed during the PS operation and
assesses if any of the detected objects are overlapping with each
other or are in close proximity. Such objects may be detected as a
single RoI during the MoS operation so this function adds the mini-
mum enclosing rectangle for such overlapping/nearby objects to the
observed object distribution. The resulting object size distribution
is then clustered using a KNN clustering model, with an elbow-
detection method to determine the appropriate value of 𝑘 (the
number of distinct clusters). This 𝑘 value then determines the num-
ber of scales that MoS will employ for that specific camera, with the
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centroid of each of these 𝑘 clusters determining the size of the cor-
responding tile. MoS takes the larger value between each centroid’s
x and y coordinate for each scale i.e.𝑚𝑎𝑥 (𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ) as
the tiling dimension for that scale, rounded to the nearest multiple
of 32 for computational efficiency, to best represent objects whose
size falls within this cluster.

Figure 7 illustrates this process by plotting the object distribu-
tion observed over all frames by Camera 1 from theOkutama-Action
dataset; clustering identifies 3 clusterswith centroids (36, 39), (50, 54)
and (81, 44) respectively. MoS consequently determines the 2 scales
of tiles to be 64 × 64, and 96 × 96, respectively. MoS also introduces
a catch-all tile, ∼ 1.5𝑥 larger than the largest determined tile (in our
example, this results in an additional 128×128 tile), to accommodate
the possibility of subsequently observing objects/RoI larger than
anything seen during the preceding PS operation.
(1b) Identify StationaryObjects andUpdate Per-CameraTracker
in Memory Function: This function initializes and refreshes a
per-camera Kalman Filter Centroid-based tracker which maintains
the most recently observed location and state for all objects in the
camera FoV. This state refers to whether the object is “active" (i.e. in
motion) or “stationary" and is computed by observing the distance
travelled by each centroid during the entire PS duration.

3.2 Mosaic Across Scales (MoS)
MoS begins operation on the camera frames ingested immediately
after the PS operation completes. As seen in Figure 6, Steps 1
through to 4 in the MoS operation are carried out on each camera
stream in parallel until the relevant tiles containing critical RoI
from input frames across all camera streams are determined. These
relevant tiles are then bin-packed into a canvas frame for DNN
inference and post-processing.
(1) Determining Critical Regions of the Input Image: This MoS
sub-component assembles a list of mask bounding boxes where
critical RoI are estimated to be present in the input frame. To achieve
this, the ingested input frame is compared to the previous frame
for background subtraction which detects critical RoI that might
contain objects in motion. MoS updates the mask bounding boxes
and the camera object tracker with these detected RoI locations
for matching with known RoI tracks and assigns the status of the
updated tracks as “active". This method is robust to new objects
that enter or existing objects that move in the camera Field of
View (FoV). Among the tracks not updated by the RoI from the
current input frame,MoS assesses the status of each track. For tracks
marked “stationary" and missed by the background subtraction-
based motion estimation, MoS retrieves their last known locations
from the tracker memory to add to the mask bounding boxes. For
the remaining unmatched tracks, MoS assumes that the object that
was previously in motion has either come to rest, crossed paths and
jumped tracks with another object, or occluded by another object
and therefore merged with the other RoI. In all these cases, MoS
assigns the status of the track as “last-seen" and includes all the
unmatched track locations to the list of mask bounding boxes for
the current input frame. Such “last-seen" objects are maintained
in memory until they are reactivated or until the end of the MoS
operation period. This is done to avoid missing objects that might
have come to a halt at its last known location for the remaining

Figure 7: Object Size Dis-
tribution & Clusters in
Okutama-Action Drone Se-
quence 1.1.8

Figure 8: Tiles at differ-
ent scales, capturing ob-
jects with different “good-
ness"

duration of MoS operation. Lastly, in the event of detected camera
ego-motion (e.g., for a camera mounted on a moving drone), this
sub-component also performs camera motion compensation which
detects frame keypoints, matches the descriptors of the current and
previous input frame, and calculates the new location of all known
tracks in the current input frame by modelling the camera motion
as a partial 2D affine transformation.
(2) Tiling an Input Image:MoS then generates a bag of tiles, at
each scale dimension maintained by MOSAIC Memory Function
with a configurable overlap parameter that determines the tile
strides.
(3) Determining High-Priority Tiles: The generated bag of tiles
at 𝑘 different scales may have no objects/RoIs, partial views of
objects, or completely contained objects. MoS next determines the
subset of such tiles that adequately capture the critical regions,
while balancing the two conflicting objectives mentioned earlier.
MoS constructs a spatial quadtree from all the generated tiles in the
bag of tiles and then uses the assembled mask bounding boxes from
Step 1 to perform an intersecting bounding box search. All tiles that
intersect with each of the masks are then evaluated for “goodness
of fit of the mask” in the individual tile. Figure 8 illustrates such a
selection, where MoS chooses tile (A) over tile (B), as tile B only
partially captures the human object.

More formally, MoS assigns a mask to a tile if it satisfies two
distinct “goodness" criteria. First, the tile must capture a significant
portion (≥ 95%) of the mask, both in width and height; this ensures
that the object is sufficiently visible (and not unduly cropped) to
be successfully detected by the downstream object detector DNN.
Second, the mask:tile height ratio must lie in the range (0.5, 0.9)–
i.e., the object must not encompass either too small or too large a
fraction of the tile’s area. The lower bound increases the probability
that the object will retain larger dimensions after being resized and
2D bin-packed onto the canvas; masks smaller than half the tile’s
dimensions are effectively assigned to tiles of smaller scales. Con-
versely, the upper bound (0.9) ensures that relatively large-sized
objects are preferentially assigned to tiles of larger scale (which can
likely accommodate additional objects), while also minimizing the
risk of undue cropping due to an inaccurate mask. Via this process,
MoS curates a filtered bag of tiles, each containing faithful repre-
sentations of estimated objects at the appropriate scale, thereby
assuring that such objects will remain reasonably sized (with higher
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likelihood of successful DNN detection) when the canvas frame is
composed.
(4) Selecting The Best Subset of Tiles: A number of different
combinations of tiles might “cover" (in a set-theoretic sense) all
masks/objects that need to be included onto the canvas for inference.
However, to promote efficient (less-redundant) packing onto the
canvas frame, it is imperative to select only those tiles that are
not only likely to preserve object dimensions in the canvas but
also that minimize ‘wasted pixels’ (intuitively, the total number of
pixels representing the background or other irrelevant objects, as
well as objects captured in multiple tiles). This dual optimization
process can be conceptualized as bin-in-a-bin packing problem,
where MoSmust not only ensure that all objects are ‘covered’ by the
chosen tiles, but also that the chosen tiles generate the lowest count
of ‘wasted pixels’ possible. We perform such selection by using
a greedy approximation (due to the problem being intrinsically
NP-Hard) of the Min-Cost Min-Set Cover (MCMSC) Algorithm
summarized in Algorithm 1.

Algorithm 1: Greedy Min Cost Min Set Cover Algorithm
Result: Subset of chosen tiles 𝑆

1 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 =𝑚1,𝑚2, ...𝑚𝑚 Set of M masks;
2 𝑇𝑖𝑙𝑒𝑠 = 𝑡1, 𝑡2, ...𝑡𝑛 Set of N tiles that may contain one or more

assigned masks;
3 𝐶𝑜𝑠𝑡𝑠 = 𝑐1, 𝑐2, ...𝑐𝑛 Set of costs for N tiles;
4 𝑆 ← ∅;
5 while 𝑆! = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 do
6 if | 𝑡𝑖 − 𝑆 | ≥ 0 & (𝑐𝑖/| 𝑡𝑖 − 𝑆 | ) > 0 then
7 𝑆𝑢𝑏𝑠𝑒𝑡 ← min(𝑐𝑖/| 𝑡𝑖 − 𝑆 | ) ;
8 minimize the number of tiles containing the same mask

and minimize the additional cost to the canvas associated
with adding an additional tile
𝑆 ← 𝑆 ∪ 𝑆𝑢𝑏𝑠𝑒𝑡 ;

9 end
10 end

Intuitively, the MCMSC algorithm selects those tiles that to-
gether minimize the cost of wasted background/non-object pixels
appearing in the tile while ensuring that each object of interest is
part of at least one tile that satisfies the goodness criteria mentioned
earlier. To achieve this goal, MoS assembles two distinct views of
the mask-to-tile relationships in the filtered bag of tiles. In the first
view, for each mask, MoS assembles a set of acceptable tiles that
best capture that mask. To calculate the the cost of including the tile
into the canvas, the second view concurrently consolidates all the
masks assigned to an individual tile. A Min Set Cover over the first
view ensures that all masks (possible object-related pixels) are in-
cluded in the canvas, while a Min Cost over the second view selects
the minimal subset of tiles that the canvas must accommodate.

This unique formulation has several advantages. First, objects
that can feasibly be mapped to multiple tiles typically appear in
only one (or at most two) tiles in the eventual canvas, reducing
the likelihood of false positives in the post-DNN non-maximal
suppression (NMS) based inference step. Second, multiple objects
that occur in close spatial proximity are usually represented by a
single larger-scale tile (with reduced wasted pixels), instead of being

represented by multiple individual smaller-scale tiles. In particular,
the min set cover step (line 7) in the optimization chooses the tile
containing the most number of masks not already present in the
canvas, while the min cost step (also in line 7) takes into account
the cardinality or the unique number of masks added to the canvas
by a single tile and the associated cost of including the tile in the
canvas. At the end of this step, MoS computes the final, optimal
subset of tiles for each individual camera sensor frame. For each
tile in the chosen subset, MoS also computes a spatial sizing bound
and an elasticity factor (based on the combination of object/tile’s
scale and application requirements), as the range and amount of
resize that can be tolerated during canvas frame construction. We
empirically observe that this size bound is scale-dependent: tiles
of different scales can tolerate different ranges of resizing, outside
of which objects either become intolerably small or suffer from
excessive pixellation on enlargement, severely impacting DNN
inference accuracy. Small objects are, in fact, especially sensitive to
drastic differences in spatial resizing.
(5) Constructing a Canvas Frame: After the previous step, MoS
has effectively curated a set of tiles, their spatial sizing bounds,
and elasticity factor, say ST 𝑖 , with heterogeneous dimensions for
each input image frame (𝐹𝑖 ). To now pack sensor data frommultiple
image sensors onto a canvas frame of a given dimension, MoS needs
to determine the modified dimensions of all tiles across all of these
𝑀 subsets–i.e., ∀ tile 𝑡 : such that 𝑡 ∈ ⋃𝑀

𝑘=1 ST𝑘 such that they
can be packed onto a single canvas frame with defined dimensions.
This can be generalised as an Inverse Bin Packing Problem [10]
where given a defined set of items and bins, the algorithm must
converge on the minimum perturbation to the item-size vector such
that all the items can be packed into the prescribed number of bins.

MoS approximates such an optimization by using a computationally-
fast Differential Evolution Algorithm [24] (a form of meta-heuristic
optimization) with a Min-Max Optimization objective function that
minimises the largest dimensions obtainable within its defined
bounds such that the combined area of all included tiles is less than
the canvas frame area. The optimizer also takes in the elasticity
factor as the tile weight, and spatial sizing bounds limiting the size
of each individual tile. The Differential Evolution Algorithm also
takes an Equality Penalty function which monitors if the number
of packed tiles is lower than the number selected for packing by
MoS. If so, the next generation of tiles is required to monotonically
decrease or “squeeze" the size of each tile (based on the elasticity
factor) to pack all the tiles onto the canvas frame, while ensuring
that the amount of “squeeze" does not violate the tile’s defined
lower spatial bounds. In essence, the solver maximises each tile’s
size within its acceptable bound, while attempting to 2D bin pack
all the tiles onto the canvas frame. In the event that all tiles are
“squeezed" to their individual minimum permissible size, MoS re-
laxes the lower bound and notifies the user of a possible loss of
accuracy with the advice to assign fewer camera streams to the
edge node (a form of “admission control"). Upon solver conver-
gence, MoS obtains not only the resized dimensions for each tile,
but also the canvas position where it must be packed for optimal fit.
(6) Postprocessing: As mentioned earlier, the DNN then executes
the inference task on the resulting canvas frame, consisting of the re-
packed, re-positioned tiles. Finally, MoS also maintains the tile→bin
spatial mapping for each input image included in the canvas, and
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uses this to perform post-inference coordinate translation of all
detected objects (and their locations) back to the original input
frame. After translation, MoS also executes a general Non-Maximal
Suppression (NMS) step on the translated boxes for each original
input frame to remove any double-counting for objects that might
have appeared more than once (inside tiles of different scales) on
the canvas. Any other downstream vision processing pipeline is
applied thereafter on the post-processed objects.

4 SYSTEM & EVALUATION DESIGN
We deploy the PS and MoS pipelines at the edge, as visualised in
Figure 6. During the PS operation, input frames from 𝑀 cameras
are batched and directly sent for DNN inference. By default, MO-
SAIC executes the PS operation over 10 frames, with a a periodicity
of 30 seconds. This setting (see Section 5.2.2 for a deeper analy-
sis) adequately balances the need for sufficient frames to detect
and classify stationary vs. moving objects with the desire to min-
imally impact MOSAIC’s overall achievable throughput. During
the MoS operation, input frames from𝑀 cameras are received and
concurrently evaluated by the MoS pipeline to construct a canvas
frame, as visualised in Figure 9. MoS receives the 𝑖𝑡ℎ input frames,
𝑓 𝑖𝑚∀𝑚 ∈ 𝑀 cameras, and constructs a canvas frame 𝐶𝑖 from the
chosen subset of tiles across all𝑀 frames. The DNN inference task
is configured for a batch size of 𝑏 which allows the pipelined canvas
construction of the next 𝑏 frames (𝑓𝑖 , . . . , 𝑓𝑖+𝑏 ) onto canvas frames
(𝐶𝐼 , . . . ,𝐶𝑖+𝑏 ) during DNN inference on the previous batch. The
achievable throughput on MOSAIC is thus a function of both the
PS and MoS modes of operation. We empirically establish that on a
Jetson TX2, a TensorRT-optimised YOLOv5s model achieves reason-
able accuracy and inference latency of ∼ 170msec on 640×640-sized
canvas frames with batch size=4 (thereby achieving ≈ 6FPS per cam-
era or cumulatively 24 FPS). MOSAIC adopts this configuration and
determines the maximum value of𝑀 or the maximum number of
cameras that can be supported at a single edge device for a cho-
sen application and set of camera streams for the MoS operation.
This value of 𝑀 is constrained by two key factors: (i) the canvas
construction time for 𝑏 canvas frames from𝑀 camera input frames
must not exceed the DNN inference time (∼≤ 170𝑚𝑠) to allow seam-
less pipelined execution, and (ii) all chosen tiles from𝑀 cameras
must not violate their application-dependent and scale-dependent
spatial sizing bounds when packed onto the canvas frame.MOSAIC
adheres to both constraints to choose the most appropriate value
to𝑀 for the application to ensure that MOSAIC always achieves 24
FPS for all 𝑀 camera input streams during the MoS phase. How-
ever,MOSAIC’s overall achievable throughput is reduced due to the
periodic PS operation that processes all incoming camera frames
sequentially and without modification. With a batch size 𝑏 = 4,
the PS operation adds a delay of 10 ×𝑀/24 seconds for processing
10 stabilization frames across 𝑀 camera input frames under these
default settings. For example, for𝑀 = 6 camera streams, batch size
𝑏 = 4, the PS operation adds an overall processing latency of ∼2.5
seconds, resulting in an overall achievable MOSAIC throughput of
23 FPS across both PS and MoS phases.
Evaluation Platform:We evaluateMOSAIC on the NVIDIA Jetson
TX2 [25], a representative edge device equipped with a 256 CUDA-
core PASCAL GPU, and an ARMv8 multi-processor architecture

Figure 9: Conceptual design ofMOSAIC’sMoS pipeline at the
Jetson TX2 Edge Node

supporting both a dual-core NVIDIA Denver 2 CPU and a quad-core
ARM Cortex A57 MPCore CPU.
Benchmark Datasets: We evaluate MOSAIC using two bench-
mark datasets for two distinct applications - Okutama-Action [3]
for drone-based pedestrian detection and UFPR-ALPR [18] for li-
cense plate recognition. The Okutama-Action dataset comprises 43
drone sequences at 4K (3840 × 2160) resolution encoded at 30FPS,
yielding 54664 and 14210 images for training and testing respec-
tively. The UFPR-ALPR dataset similarly comprises 90 video se-
quences at 1920 × 1080 resolution encoded at 30FPS, yielding 3600
and 1800 frames for training and testing respectively. We consider
each video sequence as a distinct camera and use combinations of
𝑀 cameras without duplication of camera input streams for fair
comparisons. MOSAIC constructs canvas frames with “person" ob-
jects for the Okutama-Action dataset and vehicle objects of classes
{car, motorcycle, bus} for the UFPR-ALPR dataset; for UFPR-ALPR,
the downstream OCR pipeline then performs LPR on the detected
license plate bounding boxes.
Evaluation Model: For object detection on the canvas frames, we
employ a TensorRT-optimised YOLOv5s model, an edge-compatible
pretrained model with 7.2M parameters and 16.5 GFLOPs. It is pre-
trained using the MS COCO dataset [20] and fine-tuned on the
selected datasets for greater sensitivity to occluded, unseen, and
small-sized low-resolution objects.
Evaluation Metrics: To evaluate possible gains in perception
accuracy in the pedestrian detection application, we report the
mean average precision of the model at an IoU threshold of 0.5
–i.e. mAP@0.5, and report the inference latency i.e. 𝐹𝑃𝑆𝐶 and
Cumulative-FPS CFPS =𝑀 × 𝐹𝑃𝑆𝐶 ×𝑏, where 𝐹𝑃𝑆𝐶 is the through-
put achieved for canvas frames of size 𝐶 , with batch size 𝑏, and𝑀
cameras per canvas frame. For the license plate detection applica-
tion, we evaluate the downstream Optical Character Recognition
(OCR) quality through Character Error Rate (CER) metric. CER
employs the Levenshtein distance metric to calculate the minimum
number of single-character changes (i.e. insertions, deletions, or
substitutions) required to change the predicted string of characters
to the groundtruth, averaged by the number of characters in the
groundtruth. The lower the CER rate, the better the OCR perfor-
mance, with 0 indicating perfect recognition.
EvaluationBaselines:We compareMOSAIC’s performance against
two baselines:
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Figure 10: MOSAIC’s Performance (Pedestrian Detection on
Okutama-Action) Figure 11:MOSAIC’s Performance (LPR on UFPR-ALPR)

1. FCFS: Received frames resized to the canvas frame dimensions
and sent for batch DNN inference without any spatial modification–
in effect, this is identical toMOSAIC’s behavior during the PS phase.
2. Uniform-𝑀 : Denoted as Uni-𝑀 where𝑀 signifies the number
of images packed onto a single canvas frame. Uniform-𝑀 divides a
canvas into equal number of grid rows and columns and assigns
each input image to a single cell in the grid. Uniform-𝑀 also de-
termines which methodology among grid, horizontal, or vertical
stacking of𝑀 input images creates the best grid structure such that
each cell affords its corresponding input frame the lowest possible
downsize ratio when compared to its original dimensions.

5 EVALUATION
We first evaluate the validity of our fundamental hypotheses, that
criticality-aware processing of multiple input frames with our MoS
methodology helps improve the throughput vs. accuracy tradeoff
for diverse object distributions, camera settings, and applications.
We also compare canvas-based processing employed by MoS with
batched inferencing methods employed by recent works. For deeper
insights into the benefits of MoS, we also conduct ablation studies
on how MOSAIC performs varies with different parameter settings.

5.1 MOSAIC System Performance
In general, we expect throughput and accuracy to be inversely
related: increasing 𝑀 (the number of camera frames being packed
into a single canvas frame) should provide an 𝑀-fold increase in
throughput but result in lower mean object detection accuracy.
Figures 10 & 11 plot this accuracy vs. throughput, for different
MOSAIC configurations and baseline approaches, for 𝑀 varying
between {1,. . .,6} for Okutama-Action and {1,. . .,3} for UPFR-ALPR,
respectively on a canvas frame size 𝐶 of 640 × 640; the throughput
is plotted per camera by dividing the overall processing throughput
(i.e. CFPS) by 𝑀 . As detailed in Section 4, the maximum number
of cameras𝑀 that can be packed onto a canvas frame depends on
the canvas construction time, object sizes/scales, and spatial sizing
bounds of the resulting subset of tiles. As the objective in UFPR is
to eventually perform OCR on the detected license plate objects,
it imposes stricter spatial sizing bounds for each tile which limits
the number of cameras for this dataset to𝑀 = 3. This is unlike the

pedestrian detection application of Okutama-Action which permits
more relaxed spatial sizing bounds (even though it contains smaller
(∼ 64 × 64) person class objects), allowing 𝑀 = 6 cameras to be
successfully packed onto a canvas frame. For batch size 𝑏 = 1,
MOSAIC takes on average ∼ 9𝑚𝑠 and ∼ 13𝑚𝑠 (∼ 36𝑚𝑠 and ∼ 52𝑚𝑠

for batch size 𝑏 = 4) to build a canvas frame from𝑀 = 3 and𝑀 = 6
cameras respectively, well within the inference deadline of 170ms.
Both constraints on𝑀 thus satisfied, we compare Uniform-𝑀 for
each application accordingly.
Pedestrian Detection Application: In Figure 10, for batch size
𝑏 = 1, FCFS (where each image is processed independently and
sequentially–i.e.,𝑀 = 1) offers the highest accuracy ∼0.79 but suf-
fers from very low throughput ≤3FPS per camera in a 6-camera
setting. On the other end of the spectrum, Uniform-6 (where𝑀 = 6
images are uniformly compacted into the canvas frame) offers the
highest throughput (∼ 19 FPS) per camera, but suffers a signifi-
cant 8% loss in accuracy to ∼ 0.71. In contrast, MOSAIC offers a
significantly more favorable tradeoff as 𝑀 is varied. With 𝑀 = 6:
(a) compared to FCFS, MOSAIC-6 experiences only a negligible
∼< 1% accuracy loss but achieves over 500% (5x) higher through-
put; (b) compared to Uniform-6, MOSAIC-6 achieves significantly
higher accuracy +7.8% with minor 0.04% reduction in throughput
(Uniform-6 = 19 FPS; MOSAIC-6 = 18 FPS). This slight reduction
is due to the PS operation running for 10 frames every 30 sec-
onds. Similar throughput-vs.-accuracy tradeoffs can be observed
with batch size 𝑏 = 4 with the exception that the Uniform-6 and
MOSAIC-6 methods both achieve 24 FPS and 23 FPS per camera
respectively across 6 cameras (144 and 138 Cumulative FPS), with
MOSAIC’s method achieving significantly higher accuracy by +8%
over Uniform-6.
License Plate Recognition Application: In Figure 11, for batch
size 𝑏 = 1, Uniform-1 suffers CER=100% (complete OCR failure)
which indicates that uniformly downsizing a single image to fit
onto a 640×640 canvas causes severe, catastrophic pixelation of the
license plate. On the other hand, MOS-1 retains the pixel resolution
of the high-priority vehicle object to completely recover OCR ca-
pabilities downstream within a reasonable OCR CER value of 15%.
MOSAIC further pushes the envelope on OCR quality downstream
by also packing tiles likely containing vehicle RoIs from𝑀 = 2 and
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Figure 12: mAP vs Number of Cameras
Processed for Tile Processing Tech-
niques at the Edge

Figure 13: Canvas Size vs Cumulative
FPS x mAP@0.5

Figure 14: MOSAIC’s Performance
Gains vs. PS Periodicity

𝑀 = 3 images onto a canvas frame to similarly recover OCR ability
downstream within reasonable OCR CER bounds (29% and 33% re-
spectively), while also achieving a much higher system throughput
of 23 FPS per camera for the 3-camera system (Cumulative FPS=69).
Comparative StudywithBatched Processing of Individual Ob-
jects: We compare MOSAIC’s performance against recent priority-
aware processing works [13, 21, 22] which extract high-priority
regions of interest from a camera frame and perform batched in-
ference on the selected regions. Compared with sequential frame
inference, batched inference processes multiple inputs at one time
to improve parallelism and better utilize the computing capacity
of the GPU. However, unlike MOSAIC’s canvas-based execution
where tiles of different sizes can be packed into one canvas frame,
batched inference requires all input tile images to be the same size.
We therefore compare the mean accuracy from the pedestrian de-
tection application to illustrate the benefits ofMOSAIC’s differential
tile resizing strategy in the MoS pipeline at the edge. We first ob-
tain the average execution times of a 640 × 640 canvas frame and
batched tile images at different batch size/image size combinations
through system profiling of the Jetson TX2. The best tile image
size for batching-based execution is then determined online as the
largest tile image size to run all input tiles and finish no slower than
executing one canvas frame. The curated subset of tiles from MoS
are resized with padding to this input image size for batched infer-
ence. This way, batched inference achieves the same throughput as
MOSAIC’s canvas-based inference for batch size 𝑏 = 1.

Figure 12 visualizes the mAP score of processing 𝐵={1, 2, 4, 6}
input frames at the same time, using the Okutama-Action dataset.
We see that both canvas-based execution and batching-based execu-
tion achieve good accuracy when the number of input frames is 1.
As𝑀 increases, the accuracy achieved by batched inference drops,
with MOSAIC’s canvas-based method significantly outperforming
(a 3-fold higher accuracy when processing 4 or 6 frames concur-
rently) the batching-based method as 𝐵 increases. The accuracy for
batching-based execution drops much faster due to the requirement
that all images must be the same size, which leads to a dramatic
loss of accuracy especially for the small objects. On the other hand,
the non-uniform sizing supported by the canvas-based method is
able better to preserve the accuracy of smaller objects.

5.2 Ablation Studies
5.2.1 MOSAIC’s Performance Gains on Different Canvas Sizes.
Given that the maximum number of cameras,𝑀 , that can be packed
onto a canvas frame is limited by the object distribution observed
by the cameras and their spatial sizing bounds, it stands to reason
that increasing the canvas frame size 𝐶 could allow for a higher
value of𝑀 (thereby increasing throughput) and arguably, higher
accuracy if all tiles assume the maximum dimension within their
sizing bound. However, larger canvas frame sizes𝐶 ≥ 640× 640 im-
pose greater computation loads and incur higher inference latencies
per canvas frame. This increase in canvas frame inference latency
reflects in a lower reduced cumulative inference throughput, i.e.
CFPS = 𝑀 × 𝐹𝑃𝑆𝐶 × 𝑏, where 𝐹𝑃𝑆𝐶 is the throughput achieved
for canvas frames of size 𝐶 with batch size 𝑏. Figure 13 illustrates
such a throughput-accuracy tradeoff by plotting a joint "throughput-
accuracy" metric (defined as Cumulative FPS × mAP@0.5) vs. can-
vas frame size for the Okutama-Action dataset. We conclude that
MOSAIC consistently outperforms the uniform resizing and pack-
ing or Uniform-𝑀 baseline, regardless of the canvas frame size
𝐶 . We also note that the preferred canvas frame size of 640 × 640
provides the highest throughput-accuracy gains (15.4%), compared
to all other canvas frame sizes.

5.2.2 MOSAIC’s Performance Gains vs. PS Periodicity. We have
established that the PS operation periodicity impacts the achievable
MOSAIC throughput due to the processing latency incurred by the
FCFS-based DNN inference on all camera input frames from 𝑀

cameras. A shorter PS periodicity would yield higher number of
FCFS processed frames and therefore more accurate class-specific
object detections, while negatively impacting MOSAIC’s overall
achievable throughput. A longer PS periodicity might, conversely,
incur higher tracker failure for “last-seen" and lost or unmatched
tracks, in turn creating additional tiles (which may or may not
contain objects) that MoS will need to spatially pack, thereby re-
ducing task accuracy. Figure 14 plots the resulting relationship
between PS periodicity,MOSAIC throughput, and mAP@0.5 for the
Okutama-Action dataset. We see that a PS period=30 secs appropri-
ately balances the dual requirements of high throughput (23 FPS)
and high object detection accuracy (78.5%), while a PS period=60
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secs increases throughput by only 1 FPS while suffering a steep (∼
10%) mAP drop.

6 DISCUSSION
Operating under Network Bandwidth or Energy Constraints:
In a real-world system with bandwidth or energy constraints, a
compute-capable camera platform can additionally minimize re-
dundancy by also downgrading an image’s resolution before trans-
mitting, especially if the edge will use MOSAIC to downsize frames
during processing. Prior work has shown how criticality-aware
techniques for differential downsampling of input frames (e.g.,
MRIM [33]), can outperform uniform downsampling by helping
preserve object details for edge-based vision inferencing tasks. Such
cameras can also implement lightweight multi-object detectors and
trackers, such as FastMoT [35], to identify class-specific objects of
interest even in challenging environmental conditions such as low-
lighting and fog. MOSAIC’s MoS operation can not only co-exist
with such criticality-aware transmission, but in fact can benefit
from such on-camera processing by effectively eliminating the in-
termittent PS phase.
Canvas-based Processing of SpatiotemporallyCorrelatedCam-
era Streams: In the case of spatiotemporally correlated camera
streams, multiple objects may be visible from different camera
streams at different observer-object distances, angles, and perspec-
tives. With respect to our MoS pipeline, there arises the opportunity
to further fine-tune the spatial sizing bounds based on (i) appear-
ance of object across multiple intra-camera and inter-camera frames
(ii) motion of object and the need for shorter or longer detection
periodicity (i.e. how often an object is included on the canvas frame
for inspection). Such modifications to the criticality and application
dependant spatial sizing bound can certainly expand the function-
ality of MOSAIC’s system to a more diverse range of applications,
which we leave for future work.

7 RELATEDWORK
Recent works on real-time vision pipelines in cyber physical sys-
tems are motivated by both (1) the demonstrated need for edge-
based concurrent computation of diverse and high-resolution sensor
streams [1], and (2) the reality that state-of-the-art DNNs for vision
tasks are often too complex for efficient execution on the resource
constrained edge [13].

With computation power as the key bottleneck, real-time edge
AI has attracted increased academic interest. From the system per-
spective, earlier-stage works focused on analyzing and understand-
ing the intelligent edge platforms with GPUs [28], CUDA sched-
uling [27], and CPU/GPU co-scheduling [5]. Alternatively, from
the machine learning model perspective, there have been works
on optimizing the flexibility in DNN execution [4, 17], which could
further facilitate their deployment in real-time applications. They
essentially modify the DNN execution to support various forms of
preemption, so that corresponding real-time scheduling algorithms
could be applied. More recently, attention scheduling [16, 21, 22]
was proposed and utilized as a novel data-level optimization and
scheduling strategy to enable real-time edge AI, where no mod-
ification on the DNN model or the underlying operating system
is performed. However, they mostly explored the GPU parallel

processing capacity by using task batching. To reduce the aver-
age inference latency for processing individual video frames on
edge devices, prior Region-of-Interest (ROI) approaches attempt
to selectively execute the heavyweight object detector DNN only
on selected portions of an incoming image frame, identified via
techniques such as background subtraction [29, 36], the use of a
lower-complexity, ‘pre-processor’ DNN [11] and, most recently,
patch extraction [34]. While these techniques are conceptually sim-
ilar to our curation of high-priority tiles, they largely focus purely
on a single sensor feed as opposed to our approach of spatially
packing multiple sensor streams within a single image canvas.

With network bandwidth as the key bottleneck, some approaches
explore attention and criticality in the context of input filtering by
limiting the number of frames transmitted , using techniques such
as frame sampling [8] and micro classifiers and cascading filters
camera [12]. More recently, temporal correlation across frames has
been leveraged to limit the cameras to transfer only certain regions
of the frame [14] or adjust resolutions of objects of interest within
a frame [15, 33]. To tackle the challenge of priority inversion in the
AI workflow, recent works (e.g., [16, 22]) explore the scheduling
and resolution adjustment of each frame based on both its spatial
and temporal criticality. Within the broader vision and AI commu-
nity, a large body of work addresses the computational overhead of
DNNs with techniques for early exit and model selection [7], model
compression [9], weights quantization and weights/feature maps
sparsification [31], and dynamic pruning [19]. While these strate-
gies reduce the computation load at the edge, our methodology for
canvas-based processing employs input pre-processing to accelerate
the concurrent processing of multiple multimedia sensor streams,
and can be complemented by such DNN modification techniques.

8 CONCLUSION
We have introduced MOSAIC, a criticality-aware “spatial multiplex-
ing" based approach for DNN-based inferencing on edge devices
that extracts high-priority regions of individual images and then
spatially packs them into a composite canvas frame of smaller size,
so as to ensure high processing throughput. MOSAIC’s key inno-
vation is the Mosaic-of-Scales (MoS) concept, a multi-scale tiling
approach that ensures that objects of varying sizes are both rep-
resented at adequate dimensions, and with minimal redundancy
on the canvas. Experimental studies with a representative Jetson
TX2 edge device demonstrate how MOSAIC can provide a multi-
plicative increase in throughput—e.g., by packing critical regions
from 6 distinct camera images into a single canvas frame, MOSAIC
can achieve a cumulative throughput of ∼ 138 FPS while achiev-
ing pedestrian detection accuracy of 79% on the Okutama-Action
dataset. In contrast, processing each image frame individually pro-
vides a slight increase (≤ 1%) in accuracy to 80% but with sharply
lower throughput (∼ 3𝐹𝑃𝑆), while simplistically packing 6 image
frames uniformly into a canvas frame can achieve similar through-
put (∼144 FPS) but with significantly lower accuracy (71%). Similar
gains are observed for a separate LPR application, thereby demon-
strating the generalizability of MOSAIC. In future work, we plan
to complement MOSAIC’s spatial packing strategy with additional
temporal packing, where high-priority regions from consecutive
frames are extracted and packed on a single canvas.
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