
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2022

Multi-view scheduling of onboard live video analytics to minimize Multi-view scheduling of onboard live video analytics to minimize

frame processing latency frame processing latency

Shengzhong LIU

Tianshi WANG

Hongpeng GUO

Xinzhe FU

Philip DAVID

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Data Science Commons, and the Graphics and Human Computer Interfaces Commons

Citation Citation
LIU, Shengzhong; WANG, Tianshi; GUO, Hongpeng; FU, Xinzhe; DAVID, Philip; WIGNESS, Maggie; MISRA,
Archan; and ABDELZAHER, Tarek. Multi-view scheduling of onboard live video analytics to minimize frame
processing latency. (2022). Proceedings of the 2022 IEEE 42nd International Conference on Distributed
Computing Systems, Bologna, Italy, July 10-13. 503-514.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7888

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7888&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7888&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Shengzhong LIU, Tianshi WANG, Hongpeng GUO, Xinzhe FU, Philip DAVID, Maggie WIGNESS, Archan
MISRA, and Tarek ABDELZAHER

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7888

https://ink.library.smu.edu.sg/sis_research/7888

Multi-View Scheduling of Onboard Live Video
Analytics to Minimize Frame Processing Latency

Shengzhong Liu†, Tianshi Wang†, Hongpeng Guo†, Xinzhe Fu‡,
Philip David§, Maggie Wigness§, Archan Misra∗, Tarek Abdelzaher†

†University of Illinois at Urbana-Champaign, ‡Massachusetts Institute of Technology,
§US Army Research Labs, ∗Singapore Management University

Email: {sl29, tianshi3, hg5}@illinois.edu, xinzhe@mit.edu,

{philip.j.david4.civ, maggie.b.wigness.civ}@mail.mil, archanm@smu.edu.sg, zaher@illinois.edu

Abstract—This paper presents a real-time multi-view schedul-
ing framework for DNN-based live video analytics at the edge
to minimize frame processing latency. The work is motivated by
applications where a higher frame rate is important, not to miss
actions of interest. Examples include defense, border security,
and intruder detection applications where sensors (in this paper,
cameras) are deployed to monitor key roads, chokepoints, or
passageways to identify events of interest (and intervene in real-
time). Supporting a higher frame rate entails lowering frame pro-
cessing latency. We assume that multiple cameras are deployed
with partially overlapping views. Each camera has access to
limited onboard computing capacity. Many targets cross the field
of view of these cameras (but the great majority do not require
action). We take advantage of the spatial-temporal correlations
among multi-camera video streams to perform target-to-camera
assignment such that the maximum frame processing time across
cameras is minimized. Specifically, we use a data-driven approach
to identify objects seen by multiple cameras, and propose a
batch-aware latency-balanced (BALB) scheduling algorithm to
drive the object-to-camera assignment. We empirically evaluate
the proposed system with a real-world surveillance dataset on
a testbed consisting of multiple NVIDIA Jetson boards. The
results show that our system substantially improves the video
processing speed, attaining multiplicative speedups of 2.45× to
6.85×, and consistently outperforms the competitive static region
partitioning strategy.

Index Terms—Edge Computing, Live Video Analytics, Collab-
orative Sensing

I. INTRODUCTION

This paper introduces a scheduling framework that opti-

mizes the frame processing latency for DNN-based analytics

of live video streams associated with a multi-camera infras-

tructure deployment, where an overall region is collectively

monitored by a set of cameras with partial spatial field-of-

view (FoV) overlaps (e.g., CityFlow [1]). One such example

is shown in Figure 1. The work is motivated by defense

and security applications that push an increasing amount of

autonomy to the edge. For example, in a future conflict,

cameras might be deployed around key roads and chokepoints

to identify unauthorized or trespassing targets. The areas

surveyed by these cameras might see a lot of traffic. Only

targets of interest require immediate responding actions. The

decision of whether a target is “of interest” requires processing

the video by a DNN (such as YOLO) to identify target type.

Faster frame processing speed not only improves the object

recognition and tracking fidelity, but also helps reduce the end-

to-end system response delay to physical events.

Centralized video processing approaches [2]–[5], where

camera video streams are transferred for DNN execution to

a powerful cloud server, impose significant bandwidth and

energy overheads and also suffer from higher communication

latency and privacy concerns. Accordingly, we consider a

decentralized computing paradigm, where the captured high-

quality video frames are processed by each individual camera

node, using limited onboard computing capacity, likely includ-

ing a lower-end GPU. Our general idea is to reduce the DNN

execution latency by eliminating the redundant DNN pipeline

inspections, on multiple cameras, on such overlapping regions.

Recent approaches [6], [7] for eliminating or minimizing

such redundant DNN inspections have utilized a static, spatial

partitioning approach to turn off some of the cameras. In

contrast, we propose a finer-grained object-level, workload-
aware, latency-balancing approach, where the responsibility

for tracking distinct objects in the overall shared region, is

dynamically and periodically redistributed among the set of

collaborating cameras. It is motivated by two key limitations

observed with the static approaches:

• The overall frame processing latency of an individual cam-

era, proportional to the number of objects it currently tracks,

shows significant variability across time. As an illustration,

Figure 2 plots the number of objects/frame (sampled once

every 2 secs) across the FoV of 5 distinct cameras in Fig-

ure 1: both the absolute workload of individual cameras, and

the relative workload between camera pairs show significant

temporal variation.

• Due to the opportunistic, progressive nature of such in-the-

wild infrastructure deployments, there is often significant

heterogeneity in the processing capability across cameras–

e.g., the memory capacity and GPU cores available. As a

result, an identical object-level workload may generate very

different processing latency on distinct devices.

Our proposed approach for low-latency, distributed execu-

tion is built on two inter-related concepts.

Low-latency DNN execution. First, we reduce the average

503

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00055

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
05

5

Fig. 1: An example of camera view overlaps. We use yellow boxes to highlight an object observable to every camera.

Fig. 2: Temporal variation of object workload across cameras.

computation load by running full-frame DNN inspection (a

comparatively high latency task) only sporadically, e.g., once

per second, and use motion flow-based estimation techniques

to confine the DNN inspection on remaining frames to only

extracted salient regions (an approximate area around each

detected object that the camera is responsible for). Figure 3

illustrates this mechanism of full-vs.-partial frame inspec-

tion. It eliminates the needs for repetitive DNN scanning on

background regions and reduces the frame processing latency

to a degree that is proportional to the number of tracked

objects. Second, we accelerate the DNN inference on GPUs by

leveraging the task batching mechanism [8], [9] (see Figure 4)

to process multiple confined partial frames with the same

size in parallel on the GPU, thereby achieving notably lower

latency than the traditional serialized processing approach.

Dynamic latency-balancing scheduling. We dynamically

partition the tracking workloads of objects in the overlapped

regions among cameras to balance their frame processing

latency under batched execution. Different from the static par-

titioning strategy, our approach performs a load-and-resource
aware assignment of object tracking responsibilities across the

camera nodes, taking both the hardware processing capacity

and relative object tracking workload, into the consideration.

It minimizes the processing latency on heavy-loaded cameras,

by skipping tracking objects in the overlapping regions, which

are instead tracked by light-loaded cameras.

Specifically, we formulate the scheduling problem that

decides the object-to-camera assignment as a multi-view

scheduling (MVS) problem with task batching. It seeks to

minimize the maximum processing latency - the time it takes

to process a frame - across all cameras. We prove the MVS

problem to be strongly NP-hard, and correspondingly propose

a batch-aware latency-balanced (BALB) scheduling algorithm

to approximately solve it.

The BALB algorithm employs a hybrid centralized-cum-

distributed scheduling mechanism to intelligently utilize the

observed spatial redundancy to reduce and distribute the

object tracking workload (latency) across the collective set of

camera nodes. First, all cameras communicate with a central
scheduler, which can be an edge node. After a full frame

inspection, each camera uploads its list of detected objects to

the central scheduler. The central scheduler first associates the

detected bounding boxes and identifies the common objects

across cameras, and then runs a central stage of the BALB

algorithm to derive an initial object-to-camera assignment. The

individual computing capacities and inspection workload of

cameras, as well as the task batching opportunities are all

considered in the optimization.

To additionally tackle the unforeseen object dynamics be-

tween such periodic assignments (such as a new object enter-

ing the monitored region), in between full-frame inspections,

each camera independently runs a distributed stage of the

BALB algorithm to decide whether to track a new object or

not. To minimize the need for frequent, per-frame communi-

cation, this distributed scheduler employs spatial partitioning

to update the assignment for new objects and apportions the

responsibility for tracking such object dynamics.

We implement the proposed scheduling framework on a

testbed consisting of multiple heterogeneous NVIDIA Jetson

(Nano, TX2, Xavier) boards. We comprehensively evaluate

the system performance using the AI City Challenge 2021

(AIC21) multi-camera video surveillance dataset [1], [10].

The results show that our system consistently improves the

frame processing speed by by 2.45× to 6.85×, at the cost

504

Fig. 3: Full-frame inspection vs. partial frame inspection. Fig. 4: Serialized vs. batched exec.

Fig. 5: Framework overview. For the block colors: The tracking-based slicing module is highlighted in orange, the cross-camera

association module is shown in purple, and the BALB scheduler related operations are highlighted in green.

of minor degradation on detection quality. We also show that

this dynamic, object-level scheduling approach is superior to

a competitive static spatial partitioning baseline, providing an

average of 1.88× reduction in processing latency.

The rest of this paper is organized as follows: We first

give an overview of the proposed framework in Section II.

In Section III, we formulate the scheduling problem and

introduce the proposed BALB algorithm. Evaluations results

are presented in Section IV. After discussing the limitations in

Section V and reviewing the related literature in Section VI,

we conclude the whole paper in Section VII.

II. SYSTEM ARCHITECTURE

In this section, we first give a brief overview of the proposed

architecture, then introduce the individual components that

constitute our system.

A. System Overview

Assume we have a set of static cameras deployed around

a local area, such as a shopping mall or a traffic intersection.

The cameras share complementary views to obtain compre-

hensive perception of the target area. They capture image

frames regularly at the same frequency, e.g., 10FPS. Further,

their views are partially overlapped so one object may be

simultaneously observable from multiple cameras. One such

example is given in Figure 1. Each camera is equipped with

limited computing capacity, e.g., low-end GPUs, so they can

run object detection and tracking locally. Each object needs

to be localized, classified, and tracked at every frame. Since

deep neural detection models, like YOLO [11], are resource

consuming, we regard them as the main workload to optimize.

The heterogeneous computing resources among cameras might

lead to different DNN processing speed. The detection model

accepts input images with various spatial sizes and batch sizes

(i.e., number of images in a batch), where smaller images

achieve shorter execution latencies. Only the images with the

same spatial sizes can be put into a single batch.

The objective of the scheduling is to achieve real-time live

video analytics on cameras under limited computing capacity
and network bandwidth. We assume that, on one hand, the

onboard GPUs are not powerful enough to process every

full camera frame in real-time, because running the detection

model on the full frames takes longer than the camera sam-

505

pling interval. On the other hand, the cameras do not have

enough network bandwidth to stream high-resolution videos

to the cloud in real-time for centralized processing.

We optimize the analytics efficiency by taking advantage of

the spatial-temporal correlations in multi-view video streams

to reduce the workload, and by applying effective task batching

on GPUs to accelerate the DNN inference. An overview of the

proposed system is given in Figure 5. Instead of running full-

frame inspection on every sampled image, we only run it on

some frames (which we call the key frames, blue arrows in

Figure 5) at a fixed low frequency (e.g., once per second). At

the remaining frames (which we call the regular frames, black
arrows in Figure 5), we run a set of partial-frame inspections to

search the exact object locations around their approximately

predicted locations. The period of frames between two key

frames is called a scheduling horizon. When an object appears

in multiple cameras, we only schedule one camera to track it.

We refer to the scheduling decision about the subsets of objects

each camera track as the object-camera assignment, which

should consider both the latency balancing among cameras

and GPU task batching opportunities at each camera. It is

comprised of three main modules:

• Tracking-based image slicing: At regular frames, we

slice frames into partial regions around predicted object

locations, according to the projection from a tracking

algorithm, and the regions outside the regions of interest

are not inspected by the DNN.

• Cross-camera object association: We associate individ-

ually detected object bounding boxes across cameras to

identify the common objects, and further reduce redun-

dant tracking of the same object.

• Multi-view scheduling: We decide the subset of objects

to track by each camera and their corresponding batching

decisions, to minimize the maximum camera latency.

B. Optical Flow-based Tracking and Image Slicing

We apply the optical flow-based tracking algorithm in [12].

It follows a general tracking-by-detection paradigm [13],

where object tracking is achieved by first detecting all objects

in the new frame and then associating them with previ-

ously tracked object trajectories based on the location over-

laps [14], where applicable. The approach uses an optical

flow model [15] to predict the current locations for previously

detected objects. Optical flow estimates the pixel motions

between two input images. Optical flow-based tracking effec-

tively combines the object location information in the previous

frame and the pixel motion information extracted from the

new frame. Since the input images in a batch should have the

same spatial size, the predicted object locations are expanded

to the nearest size in a quantized set to increase the batching

opportunities. The quantized size is fixed for each object

within a scheduling horizon, and downsizing is performed if

the object size grows beyond it.

Besides, the estimated pixel motions can be used to roughly

identify newly appeared objects at regular frames. Since we

assume the cameras are statically mounted, the pixel motions

in optical flow are purely caused by the object movements.

In this paper, we define the clusters of moving pixels that do

not belong to any predicted bounding box for existing objects

as a new region, where a new object may appear. We also

feed these regions into the object detection model to detect

newly appeared objects. By doing so, we are able to detect

new objects at their first appearance, instead of waiting until

the next full-frame inspection.

C. Cross-Camera Object Association
We next explain how we perform cross-camera object

associations. The objective of this module is to identify

common objects that appear in the view of multiple cameras.

Specifically, the algorithm associates a detected object by one

camera to the detected objects by the remaining cameras.

We only consider pixel location-based association approaches,

because semantic feature-based association approaches are

typically complicated which can not run in real-time on

resource constrained cameras. As the angles of camera views

might present huge difference (as shown in Figure 1, the

differences of angles among camera 1, 2, 3, 4 are 90° or

180°), it is hard to use conventional vision techniques such as

homography transformation to directly map the pixel locations

of an object from one camera to another camera. However,

since the cameras are statically mounted, the mapping relations

of objects among cameras are fixed, except that the size (width,

length, and height) and facing direction of objects can change1.

Motivated by [16], we design a data-driven approach to fit the

location mapping relations between the cameras.
As the detected object location is represented by a pixel-

level rectangular bounding box, we use Pij to denote the

bounding box of the j-th object on camera ci. To calculate the

corresponding bounding box of Pij on camera i′, our method

works in three steps. First, we run a classification model to

determine whether Pij appears in the view of camera ci′ . If the
prediction is negative, we terminate this process. Otherwise,

we move to the second step. Second, we use a regression

model to predict the mapped location of Pij on camera i′,
denoted as P̃ i′

ij . For both classification and regression models,

we use a non-parametric K-Nearest Neighbors (KNN) model.

It works as a special lookup table which uses the nearest

case(s) in the memory to generate the prediction. Third,

having P̃ i′
ij as the predicted location of Pij on camera ci′ ,

we then calculate the proximity between P̃ i′
ij and all the

detected objects on camera ci′ based on their area overlaps

(i.e., intersection over union). We run a Hungarian algorithm

to find the most proximate detected object on camera ci′ to

P̃ i′
ij . The bounding box Pi′j′ with the maximum proximity and

within a preset threshold will be taken as the matching of Pij .

At this point, the detected object Pi′j′ at camera ci′ and Pij

at camera ci are taken as the same object. The association

procedure is illustrated in Figure 6.
Assume we have a list of M cameras in total, we iterate over

the list, and run the cross-camera object association for camera

1These 3D factors can lead the mapping of 2D bounding boxes between
cameras to be non-linear, which makes homography fail.

506

Fig. 6: Cross-camera object association. To match P11 from camera c1 to camera c2, the algorithm runs three steps: (1) We

use a k-nearest neighbors classification (KNN-classification) model to determine whether P11 appears on camera c2. (2) We

use another KNN-regression model to predict the estimated pixel locations of the object on camera c2, which is P̃ 2
11. (3) We

calculate the proximity of all the detected bounding boxes on camera c2 to P̃ k
ij . Finally, P11 is matched with P24.

ci with every camera ci′ behind it in the list, i.e., i′ > i. A

round of cross-camera object association terminates when all

the detected objects by each camera have been matched with

the detected objects on all remaining cameras. The associated

object list will be passed to the multi-view scheduling module.

However, to train the aforementioned classification and re-

gression models in offline, we need to first collect a supervised

training dataset with human labels associating same objects

across cameras for each deployment scenario, such that the

knowledge can be passed to the machine learning models to

recognize whether the object in one camera also appears in

another camera, and where it appears. The estimated camera

poses and their spatial correlations are automatically encoded

in the two models. It only works with static camera deploy-

ment, and will require the model retraining when the camera

pose changes. We acknowledge the human effort involved in

the labeling process, and list it as one of our future works to

achieve the automatic classification/regression model training.

For example, during the training stage, we can utilize the

prediction from a reliable semantic-based ReID model [17] as

the groundtruth labels to train the lightweight location-based

models for real-time deployment.

D. Multi-View Scheduling

After we obtain the associated object list, the remaining

problem becomes how to assign objects to cameras for track-

ing, such that the maximum execution time among cameras

is minimized. We formulate it as a multi-view scheduling

(MVS) problem, and correspondingly propose a two-stage

batch-aware latency-balanced (BALB) scheduling algorithm to

solve it. It considers both the latency balancing among cameras

and the task batching opportunities on GPU. The cameras track

and batch the assigned objects according to the scheduling

decisions. The details will be explained next.

III. MULTI-VIEW SCHEDULING

In this section, we first describe the task execution model,

and then formulate the multi-view scheduling (MVS) prob-
lem. Finally, we introduce the batch-aware latency-balanced
(BALB) algorithm, to solve the formulated MVS problem.

A. Object Detection Task Model

Assume we have a camera set C = {c1, c2, . . . , ci, . . . cM}
consisting of M cameras equipped with heterogeneous com-

puting capacities. They monitor a local area with overlapped

views, and run object detection models (e.g., YOLO [11])

(along with a lightweight tracking algorithm) to track the

appeared objects. A fixed number of T frames are captured

within a scheduling horizon, including a key frame and T − 1
regular frames. At start of the scheduling horizon, a set of

N physical objects O = {o1, o2, . . . , oj , . . . , oN} are detected

from the latest full-frame inspection, and their locations on

each camera are identified (if appear) after running the cross-

camera object association on a central scheduler. However, the

object set O may evolve during a scheduling horizon since new

objects may arrive and existing objects may leave. We want to

track the locations of all appeared objects, through scheduling

partial-frame inspection tasks on the cameras. We define the

coverage set Cj ⊆ C of an object oj as the subset of cameras

that can see it. The object can be tracked from any camera

c ∈ Cj .
Each object oj is associated with a target size sij at each

camera ci ∈ Cj , which defines the size of the partial regions

where we will search the object. The target size for the same

object can be different among cameras, but it is fixed in a

scheduling horizon (with possible downsizing) on the same

camera. Since we can only batch input images with the same

size on GPUs, we quantize the target sizes (by expanding the

regions) to a limited set S = {s1, ..., sK} to increase batching

507

opportunities. Given a target size s, at most Bs
i partial regions

can be batched and processed in parallel on camera ci, which

is called the batch limit of target size s on ci, and the incurred

latency is tsi , correspondingly2. The batch limit for the same

target size can be different across cameras.

B. Scheduling Problem Formulation
We assume partial regions corresponding to different frames

are processed sequentially without cross-frame batching. Here

we focus on formulating the scheduling problem for a single

frame. Before that, we first define the camera latency below.

Definition 1 (Camera Latency). Given a camera ci, its latency
Li is defined as the sum of execution latencies of all its batches
belonging to one frame. No preemption is allowed during
batch executions.

We further define the system latency L as the maximum

latency among all cameras in set C, i.e., L = maxi Li. The

scheduling problem we study is to derive a feasible assignment
X between cameras and objects such that the system latency is

minimized. The feasible assignment is formally defined below.

Definition 2 (Feasible Assignment). An assignment between
a set of cameras C and a set of objects O is a matrix
X ∈ M × N , where xij ∈ {0, 1} indicates whether camera
ci tracks object oj . An assignment is feasible if it satisfies
two conditions: (1) Each object is tracked by at least one
camera that can see it, i.e.,

∑
ci∈Cj

xij ≥ 1, ∀j. (2) No
object can be tracked by a camera that can not see it, i.e.,∑

ci∈C\Cj
xij = 0, ∀j.

Given a feasible assignment, it would be trivial to convert

it to the optimal batch sequences at each camera to achieve

the minimum latency. The camera latency only depends on

the number of batches for each target size. We derive the

optimal batch sequence on each camera by batching objects

with the same target size in a greedy manner, which apparently

minimizes the number of used batches. Each target size is

independently batched. Thus, a feasible assignment uniquely

decides the corresponding optimal system latency. We then

formally define the multi-view scheduling (MVS) problem

below.

Definition 3 (Multi-View Scheduling Problem). The Multi-
View Scheduling (MVS) problem asks for a feasible assignment
between camera set C and object set O such that the system
latency L is minimized.

We establish the computational complexity of the MVS

problem in Claim 1.

Claim 1. The MVS problem is strongly NP-hard.

Proof. We prove by reducing the bin packing problem to the

MVS problem. We first constraint the MVS problem to an

2Although batching too many images would lead to a non-ignorable
increase in execution latency, we operate in a region where the execution
time changes only slightly with batching (before an inflection point is reached
where the slope increases). We correspondingly set the execution time at the
batch limit as the batch execution latency tsi .

identical machine scheduling (IMS) problem by adding the

following constraints: 1) The batch limit is always one (i.e.,
no batching is allowed); 2) Every object can be seen from all

cameras, thus can be assigned to any camera; 3) All cameras

have the identical processing speed; 4) Each object has the

same target size across all cameras, so its execution latency is

the same on different cameras. Minimizing the system latency

in the IMS problem can be converted to an equivalent decision

problem: Given a time budget T , can we finish processing

assigned objects on all M cameras? If we consider M identical

cameras as M bins with capacity T and regard the N objects

as N items with their execution latency defined as the item

size, then the decision version of assigning objects to cameras

becomes a standard bin packing problem, which has been

proved to be strongly NP-hard [18]. The claim follows.

We next propose an efficient algorithm that approximately

solves the multi-view scheduling problem.

C. Batch-Aware Latency-Balanced Scheduling Algorithm

The scheduling decisions can not be made statically at

offline, because the number of appeared objects dynamically

change the latency of cameras at runtime, which further affects

the optimal object-camera assignment. In addition, the object

set O may evolve within a scheduling horizon, making the

scheduling more challenging. A camera is unaware of new

object arrivals at other cameras unless the new object appears

in a region that both cameras can see it simultaneously. From

the optimization perspective, the updated object list at cameras

should be uploaded to the central scheduler at every frame,

to produce the updated assignment. However, too frequent

camera-scheduler communication may slow down the process-

ing significantly. From the scheduling efficiency perspective,

we should design a fully distributed mechanism which runs

independently at each camera, so that no waiting happens at

cameras. However, it ignores the unbalanced latency among

cameras, and will produce inferior assignment.

We observe that objects appear and disappear at a low fre-

quency compared to the camera sampling frequency [12]. We

thus propose the Batch-Aware Latency-Balanced (BALB)
scheduling algorithm that works in two stages, as illustrated

in Figure 5. We run a central stage on the central scheduler

at each key frame to produce an initial assignment based on

the associated object list, and then run a distributed stage
independently on each camera at each regular frame to update

the assignment based on the change of appeared object set. The

potential imbalance produced by the distributed stage will be

corrected by next central stage in a few frames.

1) Central Stage: After a full-frame inspection, the cameras

upload the list of their detected objects to the central scheduler.

The central stage algorithm takes the associated object list as

input to produce the initial assignment. It works in a batch-

aware latency-balanced manner to fully exploit the camera

view overlaps and task batching mechanisms on GPUs.

We initialize the camera latency as their corresponding full-

frame inspection time tfulli , and then minimize the maximum

508

Fig. 7: In BALB central stage, we use examples to explain when we assign an object to an incomplete batch and when we

need to start a new batch. For simplicity, we assume each object has the same target size at each camera.

Algorithm 1: Central Stage BALB Algorithm

Input: Object coverage sets C1, . . . , CN , camera

execution latencies tsi , and batch limits Bs
i ,

∀s ∈ S, ∀ci ∈ C.
Output: Feasible assignment X, camera latency L

1 Initialize: xij := 0, ∀i, j, Li := tfulli , ∀i ;

2 Reindex the objects oj ∈ O by non-decreasing order of

|Cj | (ties broken in favor of larger target size);

3 for oj ∈ O (after object reindexing) do
4 C′

j := {ci|ci ∈ Cj and ∃ incomplete sij batch};
5 if |C′

j | > 0 then
6 ci∗ := The camera in C′

j with the largest

relative capacity in the incomplete si∗j batch;

7 xi∗j := 1;
8 end
9 else

10 ci∗ := argminci∈Cj Li + t
sij
i ;

11 xi∗j := 1, Li∗ := Li∗ + t
si∗j

i∗ ;

12 end
13 end
14 Return the assignment X and the camera latency L;

camera latency through maintaining a good latency balancing

property among cameras during the process. We try to assign

each object to a camera in a single pass. The idea is motivated

by the following observation: For an object oj , the more

cameras can see it, the more flexibility we have in scheduling

its tracking. Therefore, we start with assigning objects that are

observable from only one camera, which have a deterministic

assignment. After that, we gradually assign objects with more

flexibility (i.e., larger coverage sets). When assigning an object

oj , we try to maximally batch tasks. We will not start a new

batch for oj as long as there exists a camera ci ∈ Cj that

has an incomplete batch (i.e., the batched image count is

below the batch limit) for target size sij . If there are multiple

cameras with incomplete batches, we choose the one with the

maximum batch capacity, which is defined below.

Definition 4 (Batch Capacity). Given an incomplete batch
with b batched images, the batch capacity is defined as BC =
B − b > 0, where B is the corresponding batch limit.

Otherwise, we have to start a new batch for oj . In this case,

we select the camera that has the minimum updated latency

after including the new batch. It is different from assigning

Fig. 8: The camera masks. We assume the (increasing) latency-

based camera order is: c3 > c1 > c2. Each camera only tracks

new objects at cells that are unobservable from higher priority

cameras. If we regard the blue vehicle as a new object, camera

c1 will track it.

oj to the camera with the minimum current latency because

the inspection latency for the same object may be different

among cameras due to different target sizes and heterogeneous

GPU speed at cameras. The details of the proposed central

stage BALB algorithm are summarized in Algorithm 1, and

an illustrative example is given in Figure 7. It has a low

computation complexity as max(O(N logN), O(MN)). One

limitation in the current BALB algorithm is that we do not

consider whether one camera may be able to track the same

object for a longer period that other cameras, according to the

object moving patterns.

2) Distributed Stage: The distributed stage independently

runs at each camera to update the assignment for newly

appeared objects and objects that disappear on their originally

assigned cameras. The assignment of the remaining objects

are unchanged. The objective of this stage is to first guarantee

that each appeared object is tracked by at least one camera,

and then optimize the efficiency as much as we can.

Algorithm 1 can not be directly used because the cameras

do not know the exact latency and task batching conditions

on other cameras. Although the batch limit on each camera is

known in advance, the object arrival and leaving information

is not shared among cameras, so we can not consider batching

in the distributed stage scheduling. To make sure the cameras

make consistent decisions under no communications, we have

to rely on fixed policies that work in a self-organized way.

Specifically, we sort the cameras in increasing order of their

assigned latency by Algorithm 1, and use that order as the fixed

camera priority to assign objects. This order is determined

at the central stage and will be fixed during the scheduling

horizon. Each camera only tracks new objects at regions that

are unobservable from all higher priority cameras.

We apply the policy to two situations. First, we define new

509

objects as objects that arrived after the last key frame. New

objects enter the view of different cameras asynchronously.

Therefore, we dynamically update their assignment at each

frame. Specifically, we choose the camera from its coverage

set that has the highest priority to track it at each frame.

Second, existing objects exit the view of different cameras

asynchronously. When an object leaves its assigned camera,

other cameras that can see it should take over its track-

ing. Specifically, at each camera, for each existing object

that was not assigned to it, we test whether the object has

disappeared on its assigned camera but is still observable

from this camera. If yes, we select the camera with the

highest priority from its new coverage set to take over its

tracking. This decision is made automatically at each camera

without cross-camera communication, because they base on

the synchronized information (i.e., cell masks) to make the

decision. The computation complexity of the distributed-stage

scheduling algorithm is only O(N).
In both cases, the camera will automatically start tracking

the object if itself is selected, without communication cost. In

the implementation, we compute a mask for each camera after

the central stage, as shown in Figure 8, which indicates regions

where the camera should track the new objects. We first divide

the camera frame into a grid of pixel-level cells, and compute

the coverage set for each cell. The computation of the coverage

set for each cell relies on the cross-camera classification and

regression models, thus only works with static camera poses.

The approach combines the information of camera coverage

overlaps with the current estimation of camera load. We then

choose the camera with the highest priority to cover the cell.

In the distributed stage, the new objects, or objects that exit

their assigned cameras, are automatically assigned according

to the camera masks.

IV. EXPERIMENT

In this section, we evaluate the proposed scheduling frame-

work on a testbed consisting of various Jetson models with

the AI City Challenge 2021 (AIC21) dataset.

A. Implementation and Experimental Setup

1) Testbed: We implement the system on a heterogeneous

edge testbed consisted of 5 NVIDIA Jetson devices: 2× Jetson

Xavier, 2× Jetson TX2, and 1× Jetson Nano. Figure 9 shows

the hardware platform we used. Each device corresponds

to a smart camera. They are deployed in an off-campus

building, and connected to the central scheduler through wired

network (100Mbps Downlink, 20Mbps Uplink). We deploy

the central scheduler to a desktop with Intel i9960x CPU

located in a campus building. We did not explicitly experiment

with wireless network in this paper and leave it as a future

investigation. We utilize TCP socket programming for reliable

data communication between the edge devices and the central

scheduler.

2) Dataset: We evaluate the system with AI City Challenge

2021 dataset published by NVIDIA [1], [10]. It consists of

traffic camera data collected around traffic intersections and

Fig. 9: Heterogeneous edge testbed.

TABLE I: Hardware Configuration for Each Scenario

Scenario Edge Device Configuration
S1 Jetson Xaiver×2, Jetson TX2×2, Jetson Nano×1
S2 Jetson Xaiver×1, Jetson Nano×1
S3 Jetson Xaiver×1, Jetson TX2×1, Jetson Nano×1

streets. We choose three deployment scenarios to run the

experiment. Among the three scenarios, S1 has 5 cameras

mounted around a traffic intersection facing different direc-

tions of traffic where regular traffic patterns are observed

caused by the traffic lights; S2 has 2 cameras mounted at a

roadside of residential area, where the vehicles only distribute

sparsely; S3 has 3 cameras in total where 2 cameras monitor a

fork road and 1 camera faces the roadside, and busy traffic is

observed. The dataset provides synchronized videos from each

camera with a frame rate of 10 fps. The full image resolution

we use is 1280×704 for regular cameras, and 1280×960 for

fisheye cameras. For each camera, we use half length of the

video to train the cross-camera object association model with

the provided bounding box labels, and use the remaining half

for testing. The specific edge device configuration for each

evaluation scenario is listed in Table I.

3) Object Detection Model: We use the YOLOv53 model

implemented in PyTorch as the object detection network, with

pretrained weight on COCO [19] dataset. We choose five sizes

for partial frame detection: 64, 128, 256 and 512. Regions

larger than 512 are downsampled to 512 as very large objects

are easy to be detected. In the offline stage, we profile the

YOLO inference time with 200 runs on each Jetson board and

store the profiles as input to the BALB scheduling algorithm.

B. Cross-camera Correlation

We first compare our cross-camera object association al-

gorithm with several baselines. We separately evaluate the

two components contained in the association algorithm: the

classification module and the regression module.
Classification Module: Given two cameras and an object

bounding box in one camera, we want to know whether the

same object appears in the other camera. If yes, the output

is positive; otherwise, the output is negative. We compare

the KNN model with three widely used binary classification

baselines: support vector machine (SVM), logistic classifica-

tion, and decision tree. We utilize precision and recall as

the evaluation metrics. Results are presented in Figure 10.

3https://github.com/ultralytics/yolov5

510

S1 S2 S3
Evaluation Scenarios

60

70

80

90

100

Re
ca

ll
(%

)

KNN
Logistic

SVM
DecisionTree

(a) Classification recall.

S1 S2 S3
Evaluation Scenarios

60

70

80

90

100

Pr
ec

is
io

n
(%

)

KNN
Logistic

SVM
DecisionTree

(b) Classification precision.

Fig. 10: Classification model comparisons.

S1 S2 S3
Evaluation Scenarios

0

20

40

60

80

100

M
AE

 (p
ix

el
)

KNN
Linear Regression
RANSAC
Homography

Fig. 11: Regression model comparisons.

Precision is more critical than recall in this case because a false

positive means we falsely identify two distinct objects as one

object and skips one of them. The results show the KNN model

achieves better precision than the baselines, except in scenario

S2, where logistical classification is slightly better. Precision

and recall for scenario S3 are generally lower because of the

limitation in labeling. S3 shows a busy traffic intersection

scenario, but the released labels do not count partially occluded

objects which may cause confusion to the classification model.

Regression Module: Given two cameras and the bounding

box of an object in one camera, we want to infer its corre-

sponding bounding box location in the other camera. We use

mean absolute error (MAE) between bounding box coordinates

as the metric for evaluating the regression models, and we

choose the following three baselines.

• Homography: We use homography transformation [20] to

map object bounding box locations between cameras.

• Linear regression: It can be regarded as a “learnable ho-

mography transformation” that learns a linear relationship

between input and output bounding boxes.

• Random sample consensus (RANSAC) [21]: A robust

regression model in the presence of many data outliers.

Figure 11 shows the comparison result for regression models.

In scenario S1 and S3, KNN reaches the lowest MAE, while in

scenario S2, it shows similar performance as linear regression

and RANSAC. Homography performs much worse than KNN

in all scenarios, because it can only map points in a 2D

plane like ground in two cameras but not the bounding box

coordinates, which can be affected by the object sizes (in all

three dimensions including height) and facing directions.

C. Impact on Detection Quality

In this section, we evaluate the impact of the proposed

framework on the resulted detection quality. Ideally, we want

to optimize the neural network processing speed without

missing any object appeared in the view.

S1 S2 S3
Evaluation Scenarios

50

60

70

80

90

100

O
bj

. R
ec

al
l (

%
)

Full
BALB-Ind

BALB
BALB-Cen

SP

Fig. 12: Comparisons on object recalls for different algorithms.

Metric: We use object recall as the quality metric here.

It is calculated as: At every timestamp, for each groundtruth

object, as long as there is at least one camera detects it, then

it is counted as a true positive. Otherwise, it is counted as a

false negative. The object recall is defined as the ratio between

true positives and all groundtruth objects. It is not affected by

the missing labels for partially occluded objects.

Baselines: The following baselines are compared:

• Full: We perform full frame detection on every frame

collected by every camera.

• BALB-Ind: Each camera independently runs the BALB

framework without considering the spatial correlations

among cameras.

• BALB-Cen: A variant of BALB that only runs the central

stage algorithm to assign objects to cameras. No dis-

tributed stage is executed.

• Static Partitioning (SP): A fixed policy that partitions the

overlap regions among cameras in offline according to

their processing power. Each camera only tracks objects

within its allocated region at regular frames.

Analysis: The results are summarized in Figure 12. Note

the full-frame inspection results are used as the upper bound of

recall for the remaining scheduling algorithms, which results

in high inference time as we will show in Figure 13. We

have the following observations: First, tracking-based slicing

shows almost no degradation on detection recalls, as BALB-

Ind achieves similar object recall as full frame detections in

all scenarios. Second, through comparing BALB and BALB-

Cen, we find that the central stage alone achieves high recall

when only a few objects appear at a time (i.e., S1 and

S2). However, there is a degradation on BALB-Cen under

complicated scenarios with busy traffic observed (i.e., S3).

This is where the distributed stage of BALB helps. Third,

the imperfect object correlation model has a larger impact on

SP than BALB-Cen in scenario S3, because we performed

a matching step to associate detected objects and predicted

object locations in BALB-Central stage, which reduces the

false positives in the identified associations. In conclusion, the

complete BALB algorithm provides better quality assurance

than using each stage individually.

D. Impact on Processing Speed

We next evaluate the achieved speedup on the inference

efficiency. We compare the average per-frame YOLO inference

time on the slowest camera for each scheduling horizon.

For BALB algorithms, we average the full frame inference

time with regular frame times in a scheduling horizon. We

511

S1 S2 S3
Evaluation Scenarios

0

200

400

600

800
In

fe
re

nc
e

Ti
m

e
(m

s) Full BALB-Ind SP BALB

Fig. 13: Comparisons on per-frame YOLO inference latency.

TABLE II: Breakdown Per-frame Latency Overhead

Scenario Central Stage Tracking Distributed BALB Batching Total

S01 2.59ms 18.90ms 0.08ms 7.53ms 29.10ms

S02 1.11ms 21.43ms 0.09ms 13.21ms 35.84ms

S03 2.27ms 11.55ms 0.22ms 19.86ms 33.90ms

compare BALB with full frame inspections (Full), BALB-

Ind, and Static Partitioning (SP) to progressively illustrate the

advantages of BALB. The corresponding results are presented

in Figure 13. We can see that BALB-Ind saves near 50%

time compared to full frame inspections in all three scenarios

by slicing and batching. Among the scenarios, the most time

saving is observed in S2 while the least saving is observed

in S3, because S2 has sparse vehicle distribution while S3

deals with busy traffic. Beyond that, BALB further saves

75%, 68%, 33% inference time compared to BALB-Ind in the

three scenarios. The saving on scenario S3 is relatively small

because the cross-camera view overlaps are smaller compared

to the other two scenarios. Putting them together, we attain

multiplicative speedups of 6.85×, 6.18× and 2.45× on BALB

compared to full frame inspections in the three evaluation

scenarios. The efficiency saving differs by scenarios depending

on the number of appeared objects and camera view overlaps.

Besides, BALB consistently outperforms SP because it not

only considers the processing power disparity among cameras,

but also the dynamics in camera latency skewness.

E. Impact of Scheduling Horizon Length

In this section, we investigate the impact of the scheduling

horizon length on the attained object recall and frame neural

network inference time. In Figure 14, we plot the change of

object recall and inference time w.r.t the number of frames in a

scheduling horizon. The observation is that longer scheduling

horizons leads to higher inference speed, because the penalty

of full frame detections are distributed among more frames,

but they also suffer from lower recalls, which is caused by

the inaccuracy of camera correlation models and the tracking

algorithm. On the contrary, short scheduling horizons attain

higher object recalls at the cost of higher inference time.

Choosing the scheduling horizon T = 10 achieves a good

tradeoff between the detection quality and inference efficiency.

F. System Overhead

Last, we report the system overhead produced by the

components in our framework. The results are summarized in

Table II. For each component, we first compute the maximum

overhead among cameras at each frame, and then compute the

0 10 20
#Frames

90

92

94

96

98

100

O
bj

ec
t R

ec
al

l (
%

)

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

(a) S01

0 10 20
#Frames

90

92

94

96

98

100

O
bj

ec
t R

ec
al

l (
%

)

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

(b) S02

0 10 20
#Frames

90

92

94

96

98

100

O
bj

ec
t R

ec
al

l (
%

)

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

(c) S03

Fig. 14: The impact of scheduling horizon length on object

recall and YOLO inference time.

mean overhead across frames. Since the central stage is only

called once per scheduling horizon, we distribute its overhead

to every frame. The central stage overhead includes both cross-

camera object association and central BALB scheduler. The

optical flow estimation is not blocked by any other steps, so

we put it in a separate thread to run in parallel, such that

its computation does affect the main thread efficiency. The

resulted overhead per frame is between 29.10ms and 35.84ms.

We can see the overhead mainly comes from the tracking and

task batching, which may be further optimized by putting more

engineering effort. We leave it as a future investigation.

V. LIMITATIONS AND DISCUSSION

In this section, we discuss a few limitations in our current

system and their potential future solutions.

Imperfect object association: The cross-camera asso-

ciation is generally a challenging problem. Although our

proposed data-driven approach outperforms the baselines in

the evaluation, its precision is still not perfect, especially

under busy traffic conditions, where occlusions and congestion

happen frequently. The system should be further optimized for

these situations. We may allocate multiple cameras to track

the same object since we are not confident whether the two

detections correspond to the same physical object.

Dynamic occlusion: Even if associations among objects

viewed by different cameras were perfect, there are still

reasons to associate multiple cameras with each object. One is

the possibility of dynamic occlusions. For example, an object

assigned exclusively to a camera might later get occluded by

another object making it invisible to that camera, whereas it

might remain visible to another camera. Taking future object

trajectories into account (to predict future occlusions) can

mitigate this effect. Assigning objects to multiple cameras with

sufficiently different vantage points can also reduce occlusion-

related failures. This effect needs further investigation.

Heterogeneity among cameras: We only consider the

different processing capacity, but did not fully address other

forms of heterogeneity among cameras (e.g., frame rate and

resolution), which may affect the tracking quality of the same

target by different cameras. Besides, the observing distance

and angle can also affect the tracking quality. One potential

solution is to introduce a tracking quality metric in the

512

scheduling framework, such that the scheduling objective is

extended to optimizing the quality-efficiency tradeoff, instead

of purely minimizing the frame processing latency.

Object size: It is well known that objects closer to the

camera are generally easier to classify [22]. Thus, all else

being equal, assigning an object to a camera that is closer

(e.g., one where the objects accounts for more screen pixels)

might help improve classification accuracy. The same policy

will also tend to increase total load compared to a policy

that is oblivious to objects’ distance from the camera. The

resulting trade-off between quality and resource savings must

be explored.

Imperfect synchronization: Another limitation is that the

approach requires the cameras to be approximately synchro-

nized, so that they process the same scene at the same time.

It might be, however, that the computational pipeline on one

camera is slower. Thus, while some cameras are processing

the “current” scene, others might still be working on older

versions of the scene. In this case, anomalies may occur. For

example, a camera might decide that an object has left its field

of view and has entered the view of another camera. At the

same time, the other camera might be “lagging” and so has not

seen the object enter its field of view yet. Thus, both cameras

might lose the current position of the object for some interval

of time. This effect needs further investigation.

The assumption of view overlap: One important efficiency

improvement in our system comes from the assumption of

overlap in camera views. However, this assumption may not

hold in more general multi-camera sensing applications, where

the cameras might not share intersecting views. To extend the

load balancing idea to those scenarios, we can consider al-

lowing heavy-loaded cameras to offload some of their partial-

frame inspections to the nearby idle cameras, but both the

transmission delay and the computation latency need to be

counted in the scheduling algorithm.

Extension to centralized processing: In some applications,

the cameras are not equipped with GPUs so the videos can not

be processed onboard. Instead, the images/videos should be

offloaded to an edge/cloud server for centralized processing,

where the network bandwidth becomes the resource bottle-

neck. The multi-view scheduling idea may be extended to this

scenario by scheduling only one camera to upload its images

or by uploading the minimum number of views that offers

complete coverage of all objects. This is to save bandwidth

consumption. The work also calls for innovations on data

compression algorithms (e.g., JPEG/MPEG).

Alternative problem formulations: Finally, the problem

addressed in this paper was one of object assignment that

minimizes the maximum object processing latency among a

set of cameras. This formulation is motivated by the need to

minimize response-time to any unusual conditions that need

attention. Multiple alternative versions of the problem are

possible and may be explored in future work. For example,

in applications where real-time response is not needed, an

alternative formulation might simply minimize the cumula-

tive processed workload, possibly subject to some fairness

constraints, or perhaps minimize consumption of a different

resource, such as energy, as opposed to latency. Those and

other formulations remain to be explored.

VI. RELATED WORK

In this section, we briefly review the recent literature on

video processing systems. Most early work [5], [23]–[25] on

this topic focused on optimizing query-based video analytics.

A query is provided and the system needs to automatically find

all related information in a large-scale video database. They

either optimize the indexing policy and storage structure for

video data [23], or reduce the searching and querying effort

by filtering out unrelated information [24].

Recent attention [3], [16], [26], [27] was paid to live

video analytics systems, where the system needs to coordinate

deployed cameras to perform query-based tasks, or general

detection tasks, on the live video streams. These systems work

in a traditional client-server architecture, where the cameras

send the sampled image frames to the cloud for centralized

processing. The key idea in this thread is to minimize the

amount [3], [26], [28], resolutions [27], or the regions [16] of

frames to be transmitted, because the network bandwidth is

the main bottleneck in this pipeline.

With increasing compute power on smart cameras, one

can provide a better real-time response if neural network

processing was done locally. Existing work that utilizes camera

compute power [29]–[32] focused on partitioning the workload

between camera and edge/cloud servers. Glimpse [33] intro-

duced the concept of intermittent cloud-based DNN execution,

combined with local optical flow based tracking, to support

continuous, real-time object recognition. This paper, to the best

of our knowledge, is the first to optimize the neural network

processing speed of a live video processing system purely at

the edge devices, by exploiting the spatiotemporal correlations

in the multi-view video streams and task batching mechanism

on modern GPUs.

VII. CONCLUSION

We proposed a new paradigm of collaborative, fine-grained
workload-sharing among a set of cameras under FoV overlaps,

involving the dynamic and autonomous partitioning of indi-

vidual object detection/tracking responsibilities among the set

of collaborating cameras. It is achieved by fully exploiting the

spatial-temporal data correlations in multi-view video streams,

and effective task batching on GPU platforms. Through ex-

tensive evaluation using the NVIDIA AIC21 dataset on a het-

erogeneous edge testbed, we demonstrated the superiority of

the proposed system in optimizing neural network processing

speed, which achieves multiplicative speedups by 2.45× to

6.85× compared to processing full image frames, while the

object tracking accuracy remains competitive.

ACKNOWLEDGEMENT

Research reported in this paper was sponsored in part

by DARPA award W911NF-17-C-0099, the Army Research

Laboratory under Cooperative Agreement W911NF-17-20196,

513

NSF CNS 20-38817 and the National Research Founda-

tion, Singapore under its NRF Investigatorship grant (NRF-

NRFI05-2019-0007). The views and conclusions contained in

this document are those of the author(s) and should not be

interpreted as representing the official policies of the CCDC

Army Research Laboratory, DARPA, the US government or

the National Research Foundation, Singapore. The US gov-

ernment is authorized to reproduce and distribute reprints for

government purposes notwithstanding any copyright notation

hereon.

REFERENCES

[1] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Ku-
mar, D. Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale benchmark
for multi-target multi-camera vehicle tracking and re-identification,” in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019, p. 8797–8806.

[2] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live Video Analytics at Scale with Approximation and
Delay-Tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), ser. NSDI ’17, 2017.

[3] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359–376.

[4] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 557–570.

[5] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” arXiv preprint
arXiv:1703.02529, 2017.

[6] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video analytics
on large camera networks,” in 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2020, pp. 110–124.

[7] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez, “Scaling
video analytics systems to large camera deployments,” in Proceedings
of the 20th International Workshop on Mobile Computing Systems and
Applications, 2019, pp. 9–14.

[8] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in 2020 IEEE Real-Time
Systems Symposium (RTSS). IEEE, December 2020, pp. 319–332.

[9] S. Liu, S. Yao, X. Fu, H. Shao, R. Tabish, S. Yu, A. Bansal, H. Yun,
L. Sha, and T. Abdelzaher, “Real-time task scheduling for machine
perception in intelligent cyber-physical systems,” IEEE Transactions on
Computers, 2021.

[10] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang, X. Yang,
Y. Yao, L. Zheng, P. Chakraborty, C. E. Lopez, A. Sharma, Q. Feng,
V. Ablavsky, and S. Sclaroff, “The 5th ai city challenge,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2021.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[12] S. Liu, X. Fu, M. Wigness, P. David, S. Yao, L. Sha, and T. Abdelzaher,
“Self-cueing real-time attention scheduling in criticality-driven visual
machine perception,” in 2022 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS). IEEE, 2022.

[13] M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection
and people-detection-by-tracking,” in 2008 IEEE Conference on com-
puter vision and pattern recognition. IEEE, 2008, pp. 1–8.

[14] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on image
processing (ICIP). IEEE, 2016, pp. 3464–3468.

[15] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using
dense inverse search,” in European Conference on Computer Vision.
Springer, 2016, pp. 471–488.

[16] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi: Cross-
camera region of interest optimization for efficient real time video
analytics at scale,” arXiv preprint arXiv:2105.06524, 2021.

[17] S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Tran-
sreid: Transformer-based object re-identification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 013–15 022.

[18] M. R. Garey and D. S. Johnson, Computers and intractability. freeman
San Francisco, 1979, vol. 174.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[20] E. Dubrofsky, “Homography estimation,” Diplomová práce. Vancouver:
Univerzita Britské Kolumbie, vol. 5, 2009.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[22] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2021.

[23] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video
datasets with low latency and low cost,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 269–286.

[24] Y. Zhang and A. Kumar, “Panorama: a data system for unbounded
vocabulary querying over video,” Proceedings of the VLDB Endowment,
vol. 13, no. 4, pp. 477–491, 2019.

[25] M. R. Anderson, M. Cafarella, G. Ros, and T. F. Wenisch, “Physi-
cal representation-based predicate optimization for a visual analytics
database,” in 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE). IEEE, 2019, pp. 1466–1477.

[26] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. R. Dulloor, “Scaling video analytics on constrained edge
nodes,” arXiv preprint arXiv:1905.13536, 2019.

[27] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253–266.

[28] S. Paul, U. Drolia, Y. C. Hu, and S. T. Chakradhar, “Aqua: Analyti-
cal quality assessment for optimizing video analytics systems,” arXiv
preprint arXiv:2101.09752, 2021.

[29] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[30] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelligence,”
in Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, 2020, pp. 409–421.

[31] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1421–1429.

[32] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: Speeding up neural network inference
by trading edge computation for network latency,” in Proceedings of
the International Conference on Embedded Networked Sensor Systems
(SenSys), 2020.

[33] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155–168.

514

	Multi-view scheduling of onboard live video analytics to minimize frame processing latency
	Citation
	Author

	Multi-View Scheduling of Onboard Live Video Analytics to Minimize Frame Processing Latency

