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Abstract—The primary contribution of this paper is designing
and prototyping a real-time edge computing system, RhythmEdge,
that is capable of detecting changes in blood volume from facial
videos (Remote Photoplethysmography; rPPG), enabling cardio-
vascular health assessment instantly. The benefits of RhythmEdge
include non-invasive measurement of cardiovascular activity,
real-time system operation, inexpensive sensing components, and
computing. RhythmEdge captures a short video of the skin
using a camera and extracts rPPG features to estimate the
Photoplethysmography (PPG) signal using a multi-task learning
framework while offloading the edge computation. In addition,
we intelligently apply a transfer learning approach to the multi-
task learning framework to mitigate sensor heterogeneities to
scale the RhythmEdge prototype to work with a range of
commercially available sensing and computing devices. Besides,
to further adapt the software stack for resource-constrained
devices, we postulate novel pruning and quantization techniques
(Quantization: FP32, FP16; Pruned-Quantized: FP32, FP16)
that efficiently optimize the deep feature learning while min-
imizing the runtime, latency, memory, and power usage. We
benchmark RhythmEdge prototype for three different cameras
and edge computing platforms while evaluating it on three
publicly available datasets and an in-house dataset collected
under challenging environmental circumstances. Our analysis
indicates that RhythmEdge performs on par with the existing
contactless heart rate monitoring systems while utilizing only half
of its available resources. Furthermore, we perform an ablation
study with and without pruning and quantization to report the
model size (87%) vs. inference time (70%) reduction. We attested
the efficacy of RhythmEdge prototype with a maximum power of
8W and a memory usage of 290MB, with a minimal latency of
0.0625 seconds and a runtime of 0.64 seconds per 30 frames.

Index Terms—rPPG, Edge Computing, System Prototyping

I. INTRODUCTION

Heart rate (HR), the number of heartbeats (contractions of

the ventricles) per minute, is a crucial and versatile biomarker,

whose anomalous pattern can indicate various physiological

conditions. For instance, Bradycardia (slow HR) and Tachy-

cardia (fast HR) could indicate a possibility of a heart attack,

infections, fever, asthma or breathing problems, anemia, sick

sinus syndrome, high blood potassium, or under-active thyroid

gland [1].

Usually, HR can be acquired by using a medical-grade Elec-

trocardiograph (ECG/EKG) or Photoplethysmography (PPG).

Although ECG provides the most accurate measurement, it re-

quires careful placement of multiple lead-type ECG electrodes

on the body surface in a clinical setup that severely restricts

its application for ubiquitous applications. PPG provides a

non-invasive, low-cost HR measurement in ambulatory settings

as regular HR check-ups and primary screening for thorough

ECG. It is an optical technique to detect volumetric changes

in blood in the peripheral circulation. Wearable devices or

Video-based Remote Sensing enables us to leverage the PPG

mechanism to estimate HR. The ubiquitous wearables are

predominant as regular HR, Heart Rate Variability monitoring

system [2]. However, they require close skin contact with

special optical sensors [3] to measure PPG. Alternative to

wearables, Video-based Remote Sensing obtains remote Pho-

toplethysmography (rPPG) in contact-less manner by capturing

the variations in the light reflection off the human skin

using video sensors [4]. Because of the pandemic-driven and

growing deployment of camera sensors, rPPG has potential as

a ubiquitous HR monitoring system providing enhanced safety

to healthcare professionals, and the general public. However,

rPPG input video suffers from low SNR and high variability

in PPG estimation due to sensor-subject angles, distances,

relative velocity, exposed light types [5], camera sensor

heterogeneity (sensor properties, resolution, sensitivity, frames

per second (fps)), inherent video compression mechanism.

Moreover, the expensive computation of video processing and

corresponding PPG estimation severely hinders its application

as ubiquitous HR monitoring system.

We encounter a set of technical and scientific research

challenges towards developing a ubiquitous rPPG application

system. The technical parts deal with appropriate settings to

capture PPG from the subjects, facilitate off-line and real-time

operations, and devise rPPG systems compatible with a range

of available low-cost resource constraint edge platforms and

available cameras. The scientific challenges encompass the

development of a robust model to extract PPG and techniques

to effectively scale down the model for resource-efficient

operation inside edge devices [6]. In this research study,

we address these practical challenges in developing a portable

rPPG system and postulate the following contributions.

• Model Compression. We propose domain-specific com-

pression techniques to compress existing deep learning-

based rPPG models while maintaining the baseline model

performance (0.15 RMSE). Our approach reduces the model

size (10 times), power consumption, memory usage (25%),
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Figure 1: rPPG System Overview and Challenges.

and latency to enable edge platforms deployment. We val-

idate and ablate our approach on three public datasets by

performing empirical and statistical similarity analyses.

• rPPG System Development. We prototype a contact-less

system, RhythmEdge, for real-time and offline rPPG esti-

mation. Our prototype is compatible with heterogeneous

cameras (differing sensitivity, resolution, fps, etc.) and is

executable on diverse resource-constrained edge devices

(different architectures). Particularly, RhythmEdge is de-

ployed on three platforms (NVIDIA Jetson Nano, Google
Coral Development Board, Raspberry Pi) and facilitates

three commercially available cameras (web camera, action
camera and DSLR) with an option of storing and notifying

longitudinal rPPG.

• Evaluation and Benchmarking. We evaluate RhythmEdge
on three public datasets and our collected realistic data

for both off-line and real-time operation. Further, we test

RhythmEdge thoroughly for robustness, device overheating,

time complexity, and memory overheads to ensure stable

operation and provide system bench-marking parameters

across different design choices. Finally, we open-source our

new data, instructions, codes, baseline model weights, and

compressed model to enable future research 1.

II. BACKGROUND AND RELATED WORK

Video rPPG. Human facial veins’ blood volume varies syn-

chronously with the hearts’ systolic and diastolic cycles, and

these variations are embedded in the light reflected from the

exposed skin. Proximal video sensors (RGB [4], Near-infrared

(NIR) [7], IR [8]) with sufficient sensitivity and resolution can

pick up these variations embedded in the video on various

channels of the video from the exposed facial skin’s light

reflection. HR can be obtained by counting the peaks per

minute from the obtained rPPG signals.

rPPG. Filtering-based methods like filtering the green channel

[4], chrominance signal analysis [9], plane orthogonal to the

skin tone [10], matrix decomposition [11] have been applied

to estimate PPG from skin videos. Signal Source Separation

based methods such as Independent Component Analysis

[12], source separation [13] have shown their potential in

estimating rPPG. Recent deep learning (DL) methods have

found their application in the rPPG system. VitaMon [14], [15]

have proposed convolutional neural network (CNN) and fully

connected layer-based architecture for rPPG estimation.

Model Compression. Compression techniques reduce compu-

tations of over-parameterized DNN models by learning a fast

and compact model that approximates the function learned by

1https://github.com/mxahan/rPPG edge implementation

the baseline DNN model [16]. The existing techniques can be

broadly categorized into post-training compression (pruning,

quantization) and developing a new model. Pruning-based

methods identify and remove the insignificant nodes/weights

of models [17]. The quantization methods reduce the floating-

point precision (FP) for each node/weight [18], eventually

reducing the inference complexity and computations. The

quantization also helps the model to comply with different

hardware platforms [19], [20]. Besides post-training optimiza-

tion, [21] develop a compact model from a large trained model.

Further, as shown in [22], these methods can also be carefully

combined to achieve even greater compression gain.

rPPG on limited resource devices. The limited resource

devices rPPG system is an emerging field. Authors of [23]

integrated NIR LED sensors with field-programmable gate

array (FPGA) to detect motion and HR in real-time. [24]

assessed the HR estimation performance of the FacereaderTM

by Noldus. However, these existing systems lack an end-to-end

setup having a camera, edge processing, and output display

under the same roof. To our knowledge best, RhythmEdge
is the first attempt towards developing and benchmarking a

complete real-time rPPG system on edge devices.

III. MODEL DEVELOPMENT

We develop the CNN-based baseline rPPG-extraction model

and a compressed edge-device compatible model [figure 3]

using a computationally powerful server.

1) Baseline Model: We build the data-driven baseline DNN

model by collecting rPPG datasets, recreating a capable ar-

chitecture, training, and validating the network. Here, we

chose the open-source CamSense DL-based approaches [15]

to develop a baseline model as it offers PPG reconstruction,

interpretability, and adaptability for new environments.

Network architecture: The architecture consists of four

CNN, two inception layers, two Global average pooling

(GAP), and two fully-connected (FC) feed-forward (FF) layers

with l2 regularization. Each CNN layer couples with Batch

Normalization, Rectified Linear Unit (ReLU) activation func-

tion, and max-pooling layers. The final FCFF layer performs

a regression task. The output layer is the head network for the

multi-task learning (MTL) network. The model with a single

head consists of about 1M parameters with an input size of

100 × 100 × 40. The network optimizes the regression loss

of the weighted sum of the root mean squared error and sign

agreement loss between target and predicted PPG.

Data Preprocessing: The input video preprocessing pre-

pares the high-resolution video at 30 fps for the inference

model. The network operates on facial video instances of nor-

malized consecutive 40 green channel frames (1.33 seconds)

of 100 × 100 spatial resolution. During training, the network

weights are updated to minimize the loss objective between

the network estimated and the normalized target PPG. Further,

to support robust learning, the network receives augmented

(random face crop, brightness variations) training instances.

Transfer learning: We have utilized a transfer learning (TL)

to develop a baseline model with minimal labeled examples
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Table I: Size and accuracy comparison for baseline model,

pruned model, pruned-qunatized models for different sparsity

with different pruning priors.

Sparcity
%

Model size
Prune (KB)

Model size
Tflite (KB) Test Error Model size

(KB)
FC Full FC Full FC Full FC layer Full

10 600 550 540 500 0.9 1.6 200 180

40 650 600 600 560 0.7 1.4 250 200

70 750 680 690 620 0.5 1 270 250

90 1080 920 1050 870 0.4 0.7 350 300

for the potential application areas. We initialized the recreated

model with MTL pretrained weights and fine-tune the model

for different camera sensors and variabilities (backgrounds,

light variations) in the target environments.

2) Model Compression: The baseline model is computa-

tionally heavy and cannot be deployed directly to most limited-

resource devices. We propose domain-specific compression

(pruning and quantization) methods for the rPPG application

without dropping performance to scale down the developed

high-performing rPPG model for fast and resource-efficient

PPG inference.

We have explored the weight pruning method because of

its architectural stability and prevalence [25]. We prune the

baseline model f(x;W ) with parameter W , and produces

a new sparse model f(x;M � W ′). Here, W ′ and W are

different, M ∈ {0, 1}|W ′| is an explicit binary mask that

reduces some weights to 0, � represents element-wise matrix

product operation. As dropping weights reduces accuracy, we

try to recover performance by fine-tuning and pruning in an

iterative process. We control the pruning parameters to find

the balance between compression and accuracy. Based on our

empirical observation in the rPPG setting, we propose to prune

the fully connected layers for the best performance while

achieving sufficient compression.

3) Quantization: We apply floating-point precision (FP)

16 and 32-bit quantization that improves latency and reduces

memory, model size, and computation overhead by compro-

mising the number of computational bits for each weight. In

our case, an increased quantization level resulted in only a

negligible drop in estimation accuracy. Finally, we experiment

with quantization and pruning combinations to generate four

different models to compare and benchmark the rPPG perfor-

mance: Quantized FP32 (Q32), Quantized FP16 (Q16), Pruned

Quantized FP32 (PQ32), and Pruned Quantized FP16 (PQ16).

4) Executable Model: We prepare the lightweight and em-

bedded device compatible TensorFlow Lite model (tflite) using

the TensorFlow Lite converter from the quantized-compressed

model and equip the devices with the executable model via

the GitHub platform. We have used TensorFlow to develop

our models, post-training optimization, and TfLite conversion

relying upon the servers’ resources.

IV. SYSTEM ARCHITECTURE

Our rPPG system, RhythmEdge (prototype in figure 4),

consists of sensing, preprocessing, and PPG inference phases

[Figure 1]. Firstly, the edge devices receive the facial videos at

30 fps for extracting PPG. RhythmEdge facilitates operation in

Figure 2: Illustration of RhythmEdge in real-time and offline.

both offline and real-time rPPG inference. The edge computing

devices RhythmEdge perform video processing (center crop,

reshape, and frame crop) on the received videos. Finally,

the device executes the rPPG model to infer PPG from the

processed frames. RhythmEdge also stores and sends the

approximated PPG to authorized users.

Figure 3: Model development and compression (bottom) and

rPPG inference inside the limited resource devices (top).

1) Real-time video input: We integrate the USB-C com-

patible camera with the computing devices’ embedded USB-A

port to capture facial videos in real-time. The ffmpeg command

enables the devices to receive real-time high-resolution video

streams from the connected sensors. We provide bash script-

ing commands to control and schedule the video recording.

However, the edge devices may automatically reduce input

video fps and resolution due to the specific compatibility

requirement. To meet these technical issues and retain the

video with consistent quality, we propose to use the MJPEG
compression scheme and overcome the compatibility concerns.

2) Edge Device Operations: Sensing Input. The limited

resource devices receive videos either in real-time or offline

mode. In real-time, the devices use integrated cameras to

capture real-time videos by its automated bash commands.

Alternatively, for offline inference, these devices receive hu-

man facial videos (captured externally by DSLR, IR, and NIR

cameras) via memory chips or cloud platforms (google drive

or GitHub) using their I/O communication ports.

Preprocessing and PPG approximation. The computing

devices process the received video and apply the model for

PPG approximation. Here, we tackle the technical challenges

of incorporating video processing python libraries in a single

pipeline under the memory, time, and power constraints. The

installed OpenCV processes each 1.33 second of video to
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100 × 100 × 40 shape of one input instance by taking only

the consecutive green channel frames. In practice, we have

considered 22S of video together consisting of 22× 30 = 660
frames, approximately equivalent to the batch of 16 input

instances. Finally, the devices use the compressed tflite model

and tensorflow runtime interpreter to extract PPG from pro-

cessed video.

Quick analysis. The computing devices analyze the esti-

mated PPG signal (HR approximation, Visualization, server

data recording) and perform Fast Fourier Transform to report

the HR from estimated PPG instantaneously. The devices

transfer the inferred PPG to the sever using onboard Wi-Fi to

compute additional features, such as the peak to peak distance,

output quality, and PPG irregularity. The server stores the

users’ longitudinal PPG information with the date and time

and informs the user via email communication. The pseudo-

code of the entire process is described in algorithm 1.

Algorithm 1: Raw video inference in devices.

Data: Stored Video
Result: Corresponding rPPG
initialization;
Result: []
tfliteNet : Compressed rPPG network;
V Index : 0; %%Video Frame Pointer
while [V Index+ 40]th video frame exists do

V Frames← Data[V Index : V Index+ 40];
DReady ← preprocess(V Frames);
TemprPPG← tfliteNet(DReady);
Result.append(TemprPPG);
V Index← V Index+ 40;

Send Result to server and user

V. SYSTEM IMPLEMENTATION

In this section, we describe the hardware-software integra-

tion and implementation of RhythmEdge. We also articulate

the three public datasets and our collected dataset containing

both indoor and outdoor environments.

1) Hardware: Limited Resource Computing Devices. We

have experimented RhythmEdge with three available hetero-

geneous edge devices (based on incorporated architecture,

memory, and sensor integrating capabilities) to check our

system’s adaptability across multiple hardware architectures

and resource configurations. i) Coral Dev Board (GCDB).
The Dev Board is a single-board computer that executes fast

ML inference. It scales to production using the onboard Coral

System-on-Module combined with PCB hardware covering

an edge TPU coprocessor capable of performing 4 trillion

operations per second (TOPS), using 0.5 watts for each TOPS.

It supports wireless connectivity, a Mendel OS, and is also

compatible with Linux. ii) Jetson Nano (JN). NVIDIA’s

JN developer kit can run multiple neural network models

for parallel inference by supporting a high-performance DL

inference runtime for neural networks called TensorRT. Be-

sides, by integrating the JetPack SDK kit, JN can utilize

the latest Linux driver packages with Linux OS and CUDA-

X accelerated libraries and APIs for DL. iii) Raspberry Pi
(RPi). The RPi covers a series of small single-board computers

featuring a Broadcom system on Chip with an integrated

ARM-compatible CPU supporting the Raspbian OS. RPi-4

Model B, 2019, is equipped with a 1.5 GHz 64-bit quad-core

ARMv8 CPU processor, 4GB RAM, onboard 802.11ac Wi-Fi,

USB 2.0, 3.0, an HDMI port, and Bluetooth.

Figure 4: RhythmEdge system complete setup. The demonstra-

tion is framed in the inset (Bottom-right).

Video Sensors. We have experimented with three heteroge-

neous camera sensors: DSLR (offline with the highest quality),

Action Camera (AC), and Web-Camera (WC) to show the

versatility of RhythmEdge . i) Offline input. Our DSLR

Nikon-D3500 camera with the AF-P DX NIKKOR 18-55mm

f/3.5-5.6G VR lens supports 30 fps videos. The device uses

a memory chip or cloud to communicate with edge devices

in offline mode. ii) Real-time input. We demonstrate two

different cameras for real-time video capture: Logitech C920s

PRO HD WC and Akaso-Ek7000 AC. AC has professional

4K 25Fps and 2.7K 30Fps wide-angle video sensor, built-in

Wi-Fi, and HDMI. Meanwhile, the WC camera is a USB class-

supported device capable of capturing 1080p flat-angle video

at 30 fps with both YUV and MJPEG format.

2) Dataset: To demonstrate the wide applicability, along

with our collected dataset we additionally studied three pub-

lic rPPG datasets [table II] to showcase the scalability and

generalization of the RhythmEdge components.

MPSC-rPPG dataset [15] We utilize the public MPSC-

rPPG dataset for developing the RhythmEdge baseline model.

The dataset contains facial videos using DSLR (H.264 video

codec with 10, 000 bit rate) cameras and Empatica E4 record

simultaneous PPG ground truth. The dataset contains videos

under different artificial lights. The dataset contains volunteers

with different skin colors, gender, and facial characteristics.

Following the MPSC-rPPG dataset protocol, we have col-

lected datasets for new environments using AC (H.264 High

4 : 2 : 2 profile with 2000 bit rate, wide-angle) and WC (flat

angle). We have considered multiple realistic environments

like natural lights, angular exposure, and sensor variabilities.

MERL [26]. MERL-Rice NIR Pulse (MR-NIRP) dataset

consists of 8 subjects, varying facial expressions with near-

infrared (NIR), RGB raw, and RGB demosaiced modalities at

30 fps. The data provide simultaneous finger PPG at 60Hz.

UBFC-rPPG [27]. The UBFC-rPPG dataset contains about 8
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Table II: Experiment Dataset Overview

Dataset
(Devices) Subs Videos Time

(min/vid) Variabilities

MERL (NIR,
RGB, Demosaiced)

8 24 3.5
Beard, Glass, skin

color, gender

MPSC-rPPG (DSLR) 8 14 7 Lighting, Beard, skin

UBFC-rPPG (RGB) 8 42 (8) - Lighting, Beard

AC 2 4 8 Lighting, Beard, angle

WC 2 4 8 Lighting, angle

simple and 42 realistic RGB videos with varying fps from 28
to 30. For each subject, simultaneous PPG varies from 30 to

62.5 Hz, records are available as the target.

3) Compressed model development: For our implementa-

tion, we recreate the baseline network and utilize the shared

weights of open-source CamSense approaches [15] on Keras

functional API environment. The Keras API permits pruning

compression (the original model occurred on the TensorFlow

subclass environment, which does not allow pruning yet). We

experimented with both complete model pruning (both CNN

and FC layers) and only FC layers pruning to compress the

baseline model. We prune the model layer uniformly to match

the predefined sparsity in both experiments. We iterate over

the sparsity range from 10 to 90 percent and keep the sparsity

constant for each setup. Finally, we fine-tune the pruned

network for 30 epochs and closely observe their training and

validation loss characteristics to ensure quality.

VI. EVALUATIONS

We benchmark the performance by evaluating models’

statistical performances, accuracy, latency, memory usage, and

power consumption during RhythmEdge execution.

Figure 5: rPPG Plot of two test cases: Ground truth (Empatica

E4), PQ32, and Q32. The outputs contain random noise of high

frequencies, however, it retains the PPG information.

1) Statistical Behavior of Estimated PPG signal: We pro-

vide the statistical analysis of closeness between the models’

estimated signal and the target PPG signal to demonstrate

the models’ robust performance. We compute the probability

distribution of the normalized cross-correlation values between

different video segments’ ground truth and models’ predicted

PPG over the entire dataset. The distribution bias towards

high probability values shows the higher statistical similarities

between estimated and ground-truth signals. Our evaluation re-

sult shows the consistent performance of the models, although

the pruned model performance dropped a bit [figure 6].

2) Accuracy: We evaluate the models’ accuracy on three

bases: peak detection, false-peak, and RMSE. The server

compares ground-truth PPG with the edge devices inferred

PPG (for the Q32, PQ32, Q16, and PQ16 models) and baseline

Figure 6: Pruned (a) test, (b) train, Baseline (c) train, (d) test.

model prediction on the same scale and reports the average

values of these metrics [figure 5]. The detection accuracy

depends on the video streaming camera sensors and the

inferring models and is independent of the computing devices.

Accordingly, we discuss our accuracy results on the camera

sensor and compressed model. Firstly, out of all three camera

sensors, the DSLR performed the best due to the DSLR’s fine-

grained signal capturing ability as detailed in the earlier section

V-2. However, unlike AC and WC, DSLR is not directly

compatible with computing devices. Further, in between AC

and WC, the WC performs better than AC sensors. It can be

explained by the properties of the AC and WC sensors. Unlike

the WC flat-angle, the wide-angle of the AC camera captures

more noise and reduces the PPG SNR in the recorded video.

Moreover, WCs provide stable performance compared to AC.

We find the compressed models performing similarly to

the baseline model [table III]. We explain it by the nature

of the considered data. The higher bits of the input and model

weights contain insignificant information and trimming their

precision until FP16 points almost have no consequences.

These findings are consistent across multiple test trials, and

we report the mean performance of different rPPG models. We

depict a sample performance of the Q32 and PQ32 model for

real-time test data using GCDB and WC in figure 5. Table III

shows their comparative results for the three datasets. Finally,

we report the model’s average performance and put forth the

comparative analysis between the models in the table IV.

3) Execution Time: The execution time of the system mea-

sures its’ response lag and compatibility in real-time operation

by reporting the time to process the input data. The rPPG

system execution time depends on the specific components and

the executing computing devices. We measure the execution

time of the five components in the rPPG system, (1) OpenCV

video processing, (2) video preprocessing, (3) Data loading,

(4) Model load, and (5) Inference time on three experimented

computing platforms. We measure the metrics of the [28] to

benchmark the system components’ run-time by finding the

first run time (warm-up time after reboot) and the consecutive

execution time (regular time) for each section. Moreover, we

report the data and model load time. The loading, warming,

and regular run-times of the components measure the system’s

response. We leveraged the python ‘time’ library to estimate

the run-time by measuring the difference between the start and

end time for the different operation blocks.

We observe that the OpenCV processing time dominates

the among the components of execution time across all the

computing devices as OpenCV requires operating on HD

videos with high fps. Moreover, JN outperformed the other

two computing devices, GCDB and RPi, in almost every
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Table III: Accuracy comparison with baseline for both compressed models using TP, FP and FN for three datasets.

Subject Personalized model Q32 MSE
Q32
and

Origin

PQ32 MSE
PQ32
and

Origin

TP
/Actual
Peaks

FP FN
TP

/Actual
Peaks

FP FN
TP

/Actual
Peaks

FP FN

MPSC-
rPPG
RGB

S1 12/12 1 0 12/12 1 0 0.1 12/12 1 0 0.15
S2 8/12 4 4 8/12 4 4 0.1 8/12 4 4 0.16
S3 10/11 2 1 10/11 2 1 0.05 10/11 2 1 0.1
S4 10/12 2 4 10/12 2 4 0.1 10/12 2 4 0.2
S5 11/12 1 2 11/12 1 2 0.1 11/12 1 2 0.2

MERL
RGB

Sub 1 8/9 1 2 8/9 1 2 0.1 8/9 1 2 0.15
Sub 2 7/10 3 3 7/10 3 3 0.08 7/10 3 3 0.1
Sub 3 11/11 0 0 11/11 0 0 0.05 11/11 0 0 0.1
Sub 4 0/11 11 11 0/11 11 11 0.1 0/11 11 11 0.15

MERL
NIR

Sub 1 8/9 1 2 8/9 1 2 0.1 8/9 1 2 0.15
Sub 2 7/10 3 3 7/10 3 3 0.08 7/10 3 3 0.1
Sub 3 11/11 0 0 11/11 0 0 0.05 11/11 0 0 0.1
Sub 4 0/11 11 11 0/11 11 11 0.1 0/11 11 11 0.15

UBFC
rPPG
RGB

Sub 1 8/15 6 7 8/15 6 7 0.1 8/15 6 7 0.15
Sub 2 11/11 0 0 11/11 0 0 0.1 11/11 0 0 0.12
Sub 3 11/11 0 0 11/11 0 0 0.05 11/11 0 0 0.1
Sub 4 10/12 2 2 10/12 2 2 0.05 10/12 2 2 0.1

Table IV: Comparison of average % accuracy for four compressed models with the baseline model for all datasets and video

sensors. Their performance shows that the compressed models matches the baseline performance for peak detection.

Model MERL (RGB) MERL (NIR) UBFC-rPPG MPSC-rPPG (DSLR) AC WC

TP
R

FP/
Actual
peaks

FN
R

TP
R

FP/
Actual
peaks

FN
R

TP
R

FP/
Actual
peaks

FN
R

TP
R

FP/
Actual
peaks

FN
R

TP
R

FP/
Actual
peaks

FN
R

TP
R

FP/
Actual
peaks

FN
R

Base 91 11 9 88 10 12 83 16 17 87 12 13 73 26 27 82 19 18

Q32 91 11 9 88 10 12 83 16 17 87 12 13 73 26 27 82 19 18

PQ32 91 11 9 88 10 12 83 16 17 87 12 13 73 26 27 82 19 18

Q16 91 11 9 88 11 12 83 16 17 87 12 13 73 26 27 82 19 18

PQ16 90 10 10 88 11 12 83 16 17 84 12 16 71 27 29 82 19 18

execution time. Between GCDB and RPi, to our surprise,

GCDB outperformed RPi in most of the system components,

although RPi is a more resource-heavy computing device. This

result can be attributed to the fact that despite having narrower

specifications than RPi, the GCDB may be using a lighter

version of OpenCV and has better compatibility with Python

and TensorFlowLite. However, JN and RPi performs best in

data and model loading. The comparative illustration of our

findings is depicted in figure 7 and table V. These run-time

values enable us to design scheduling of rPPG components for

different devices while avoiding system clogging.

Figure 7: Run-time: (a) OpenCV Processing (b) Video Prepro-

cessing, and (b) Inference on server and computing devices.
4) Memory: Investigating the memory footprint of deep

models in the limited resource devices enables us to appre-

hend the feasibility of the RhythmEdge . The feasibility is

satisfied if the maximum memory of the system components

during execution never exceeds the device memory capacity.

The memory handling issue depends on the device hardware

architecture and background software. To measure run-time

memory usage, we monitor the device idle and run-time

memory using the top command for GCDB and RPi, and jtop
for JN during component execution and report the maximum

and average value during five successive iterations by cal-

culating the difference between idle and execution memory.

To benchmark execution memory, we observe the occupied

memory for three major tasks: (1) OpenCV video processing,

(2) Data preparation, and (3) inferences [20]. We empirically

observe that the model execution memory depends on the com-

pression methods. The PQ16 (most compressed) requires the

least memory. As compression reduces, the inference memory

increases. Secondly, OpenCV operation occupies maximum

run-time, whereas the PPG inference utilizes the most memory.

It is due to the serialized frame-by-frame computation by

OpenCV. Meanwhile, the inference operation considers all the

inputs and models simultaneously.

Finally, we compare the memory performance for the

RhythmEdge components in three devices. The JN requires

much higher memory since there is no dedicated memory. The

RPi and GCDB (slightly worse than RPi) are memory-efficient

among the three devices as they contain dedicated on-chip

memory. However, since the GCDB, RPi stores the network

on chip, it offer some slack in memory requirement by min-

imizing the burden of repetitive model loading. Furthermore,

we sort the average disk storing memory for the uncompressed

(3.5 MB), Q32 (2.5 MB), PQ32 (2.4 MB), Q16 (1.4 MB), and

PQ16 (1.3 MB) models. We report our overall results in table

VI and visualize them in figure 9.
5) Power: We investigate the power profile RhythmEdge

components as a part of our feasibility study and report the

maximum power and average power in all three devices.

To measure these values, we place a wattmeter with the

power source to observe the change in power while executing

different operations and report the average difference between
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Table V: Run-time of RhythmEdge for the most compressed PQ16 model. Q32, Q16, and PQ32 showed similar behavior.

OpenCV Process
Time (Second)
(Vid siz 22s)

Preprocessing
Time (Second)
(22 S of video)

Data Load Time (Second)
(Optional)

(22 S of video)

Tflite Model
Load Time

(Second)

Inference Time
(Second)

(22 S of video)
warm Up Regular warm Up Regular warm Up Regular warm Up Regular warm Up Regular

PQ
16

Server 5.12 5.12 0.02 0.015 0.005 0.005 0.01 0.0002 0.26 0.22
GCDB 25.9 25.9 0.27 0.26 0.043 0.039 0.029 0.003 1.34 1.33

JN 12.8 12.8 0.12 0.11 0.023 0.023 0.07 0.003 1.01 0.99
RPi 34.9 34.9 0.29 0.29 0.19 0.18 0.001 0.0005 1.43 1.4

Table VI: Memory usage of the computing devices. Results is generated for 22S of video and same

TfLite models. The top and below values represents maximum and average memory respectively.

OpenCV
Video 22S

Q32 Model
(Batch size=16)

PQ32 Model
(Batch size=16)

Q16 Model
(Batch size=16)

PQ16 Model
(Batch size=16)

Process Inference Process Inference Process Inference Process Inference
Coral
Dev 107 MB 111 MB

284 MB
246 MB

111 MB
278 MB
232 MB

106 MB
284 MB
236 MB

106 MB
268 MB
220 MB

Jetson
Nano 112 MB 202 MB

291 MB
257 MB

202 MB
280 MB
250 MB

197 MB
290 MB
252 MB

197 MB
284 MB
245 MB

Rasberry
Pi 104 MB 160 MB

210 MB
179 MB

120 MB
205 MB
168 MB

98 MB
205 MB
173 MB

98 MB
192 MB
139 MB

Figure 8: Trend of

OpenCV processing time

with varying video fps.

the idle and execution power over multiple times. Among the

rPPG components, video input requires more power since,

during video recording, the devices energize both the camera

sensor and the computing device simultaneously. We observe

similar power profiling independent of the models, devices,

and rPPG system components for other operations. We also

noticed that the idle power of the limited resource devices

shows an inversely proportional relationship with their spec-

ifications. We report power consumption profile for all the

devices in table VII and visualize RhythmEdge them in figure

9.

Table VII: Power consumption (in Watts) by devices during

different component execution for the computation of 22S

video (Batch size 16). The top and below values represents

maximum and average power.

Device
Power

Idle
Power

Video
input

Ope-
nCV

Inference
Q32 PQ32 Q16 PQ16

GCDB 3.5
7.9
6.9

5.8
6

5.4
5.9
5.3

5.9
5.4

5.9
5.3

JN 1.6 7.89
7.03

5.07 6.22
5.9

6.12
5.8

6.3
5.9

6.07
5.7

RPi 2.6
7.2
6.7 6.6

6.23
5.8

6.28
5.6

6.44
6.03

6.38
5.93

Our empirical result demonstrates the feasibility and com-

patibility of the RhythmEdge on the limited resource devices.

VII. DISCUSSION

Model Compression Ablation Study. The CNN layer

pruning significantly deteriorated rPPG model performance.

However, as shown in Table I, an equivalent pruning of the

FC layer parameters does not result in significant performance

degradation. We explain this behavior by the nature of tasks the

layers are performing. The earlier convolution layers performs

the general tasks of finding face and extracting inherent PPG

[29]. The FC layers reconstruct target PPG from CNN features.

Although pruning FC layers increase the reconstruction error,

the model retain the underlying PPG shape [figure 5] and act

as a regularization.

Figure 9: Comparison of (a) average required memory, (b)

Maximum required memory, (c) Average Power consump-

tion, and (d) Maximum Power consumption during running

OpenCV Processing (P), Data Processing (P), and different

models’ inference (I) for different models.

System Robustness. We have studied the system robustness

by varying the angle, distance between subject and camera,

lighting condition (natural and artificial), subject skin, gender,

and relative motion. i) RhythmEdge can reliably extract

PPG from the angular face (one side of the face) and

occluded faces from three feet distances. It also performs

robustly for subjects’ gender and skin tone variations. ii) The

system performance degrades with increasing subject-sensor

distance as the weak diffusion signal gets significantly

weaker due to the inverse squared law. Further, the maximum

workable subject-sensor distance depends on the camera

sensor properties. For example, the DSLR (specified lens)

capture video PPG from about seven feet and the viable

distance may increase with more powerful lens. WC captured

video significantly degrades after four feet in terms of PPG

extraction. The AC has the least range, and the model

fails to extract PPG beyond three feet. iii) The lighting

condition plays a vital role in encoding PPG as it dictates
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the diffusion reflection scattered from the skin. Although the

systems’ performance degrades with decreasing light intensity,

RhythmEdge can estimate PPG consistently under dim light

for videos within three feet distance. We further tested the

system under natural light and successfully estimated PPG

(under shade). However, direct exposure to sunlight degrades

the performance. iv) The relative motion between the subject

and the sensors degrades the system’s performance and

usability.

Experimenting with varying camera parameters. To

demonstrate our system’s robustness under varying sensor

types, we test the system with different video settings by vary-

ing fps and resolution. We experimented with combinations

of three different fps: 30, 60, and 120 and two resolutions:

720p and 1080p. Since with varying inputs only the OpenCV

processing varies, we report the OpenCV processing time

in this experiment. The trend of OpenCV processing time

with fps variation is illustrated in figure 8. As expected, the

OpenCV processing time tends to ascend with fps increment.

Among edges, The JN is the fastest and the GCDB fails to

perform the processing of 120 fps video due to its limited

memory and computation power.

VIII. CONCLUSION

In this research, we have successfully developed a real-time

rPPG system, RhythmEdge, on three limited resource plat-

forms by addressing relevant challenges. Firstly, we compress

the baseline rPPG model while preserving the accuracy. Fur-

ther, RhythmEdge supports two different video sensors to infer

rPPG from real-time videos. Finally, we have benchmarked

RhythmEdge by reporting the computation time, memory

usage, and power consumption of the devices during the exe-

cution of rPPG components. We have validated the feasibility

of real-time cardiovascular activities monitoring system inside

multiple edge devices by evaluating under multiple realistic

conditions and using three public datasets.
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