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Image matting is an ill-posed problem that usually requires additional user input, such as trimaps or scribbles.
Drawing a fine trimap requires a large amount of user effort, while using scribbles can hardly obtain satisfactory
alpha mattes for non-professional users. Some recent deep learning based matting networks rely on large-scale
composite datasets for training to improve performance, resulting in the occasional appearance of obvious
artifacts when processing natural images. In this paper, we explore the intrinsic relationship between user
input and alpha mattes, and strike a balance between user effort and the quality of alpha mattes. In particular,
we propose an interactive framework, referred to as smart scribbles, to guide users to draw few scribbles on
the input images to produce high-quality alpha mattes. It first infers the most informative regions of an image
for drawing scribbles to indicate different categories (foreground, background or unknown), then spreads
these scribbles (i.e., the category labels) to the rest of the image via our well-designed two-phase propagation.
Both neighboring low-level affinities and high-level semantic features are considered during the propagation
process. Our method can be optimized without large-scale matting datasets, and exhibits more universality
in real situations. Extensive experiments demonstrate that smart scribbles can produce more accurate alpha
mattes with reduced additional input, compared to the state-of-the-art matting methods.
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2 Xin, et al.

1 INTRODUCTION

(a) Input Image (b) Late Fusion [43] (c) Traditional Scribbles (d) Matte from (c)

(e) Active Matting [40] (f) Matte from (e) (g) Smart Scribbles (h) Matte from (g)

Fig. 1. The comparison of smart scribbleswith the Late Fusion [43], traditional scribbles and ActiveMatting [40].
The proposed method is able to produce more accurate alpha mattes with refined texture details and clear
foreground contour, requiring relatively little additional input (both scribbles and interactive boxes are
appropriately enlarged for better distinction).

There are different object layers in the image, and we always define the layers of interest as
the foreground and the rest as the background. Separating the foreground and background from
an image precisely, defined as image matting, is a long-standing problem in both academia and
industry. Different from common image segmentation [3, 29, 36], image matting is required to
precisely pull out the foreground object, specific to sophisticated internal texture details and clear
boundary contour. It has high value in applications such as movie making and image editing, and
is modeled by solving the following under-constrained equation:

𝐼𝑝 = 𝛼𝑝𝐹𝑝 + (1 − 𝛼𝑝 )𝐵𝑝 , (1)

where 𝐼 represents the observed image, 𝑝 refers to a pixel location, 𝐹 and 𝐵 refer to the foreground
and background layers, respectively. 𝛼 represents the alpha matte, where 𝛼𝑝 varies in the range of
[0,1] to indicate the foreground proportion. Equation (1) is a highly ill-posed problem, as the only
known variable is the input 𝐼 . Therefore, additional information from users is essential to solve this
problem, which can confine the scope of foreground and background. There are mainly two types
of additional inputs: trimaps [10, 16, 25, 28, 35, 38, 41] and scribbles [14, 18, 19, 34].

A well-defined trimap is a densely-annotated auxiliary input, and each pixel in it has one of the
following three category labels: foreground, background, or unknown. The trimap can effectively
constrain the input image according to Equation (1): foreground and background indicate that
𝛼𝑝 = 1 and 𝛼𝑝 = 0 respectively, and unknown represents the critical areas between foreground
and background (𝛼𝑝 ∈ (0, 1)). As densely-annotated additional input, trimaps can provide rich
information for matting problem, hence most state-of-the-art matting methods [2, 38] typically use
input images and trimaps as input, and they can produce comparable alpha mattes. Nevertheless,
generating a perfect trimap means dense annotations for each pixel, which is tedious and time-
consuming for common users. The complexity of trimap generation limits their versatility in
real-world scenarios. Compared to trimaps, scribbles are more user-friendly additional input. In
traditional scribbles-based methods, users are nominally free to draw a few scribbles on the input
image to suggest the foreground, background and unknown. The certain regions with scribbles
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Smart Scribbles for Image Matting 3

can provide reference for the others in matting algorithms. Actually, the quality of resulting alpha
mattes depends heavily on the number of scribbles and where they are drawn. In addition, drawing
useful scribbles requires matting knowledge and experience to meet some prior assumptions of the
matting algorithms, making it little impractical to non-professional participants.

In addition, although recent deep-learning based matting methods [4, 15, 22, 33, 43] can achieve
impressive alpha mattes, they sometimes fail when handling real-world images because their
prediction models are usually trained on the composite datasets. The composition rules in [38]
can sometimes make the foreground and background disharmonious, resulting in obvious artifacts
on training images. Factors such as illumination and shadow in natural images can amplify the
influence of artifacts, and discount the final results. Our motivation is to automatically select
relevant regions that meet the prior requirements, and all the user has to do is drawing scribbles
on these suggested regions. We refer to these regions that determine the quality of alpha mattes
as informative regions. The informative regions can acquire accurate labels through limited user
interaction, which ensures that we have correct labels as a reference when processing different
kinds of input images. Besides, we observe that overmuch scribbles are unnecessary for matte
generation, because we can infer their category labels from existing scribbles in the informative
regions.
The main challenge of our motivation is to identify informative regions and effectively reduce

user interactions. To strike a balance between the user effort and matting accuracy, we propose a
unified framework, referred to as smart scribbles, to guide users to draw scribbles on the suggested
regions, and then propagate category labels to the remaining regions. Smart scribbles can achieve
alpha mattes with relatively little user effort: they only need to draw fewer scribbles on informative
regions to separate the foreground, background and unknown. Specifically, our framework first
automatically select informative regions based on the similarity, diversity, label entropy, and edge
maps [45] of different regions, and these four terms are summarized as information content. Users are
then asked to draw scribbles on these informative regions to label different categories (i.e., foreground,
background and unknown). After that, these labels are propagated to adjacent regions via Markov
propagation. The informative regions selection, drawing scribbles and Markov propagation are
iterated several times to provide essential category labels, then we employ a deep network to
capture semantic relevance in the image and adopt high-level semantics to further spread scribbles.
In contrast to Markov propagation that is limited to local image features, CNN propagation can
refine the alpha mattes in a global manner. Extensive experiments show that our smart scribbles
can generate high-quality alpha mattes with little user effort. In addition, the proposed two-phase
propagation can spread scribbles to the whole image to improve alpha mattes, outperforming the
state-of-the-art methods. Figure 1 compares smart scribbles with the Late Fusion [43], traditional
scribbles and Active Matting [40], and our method illustrates more sophisticated texture details
and clear boundary contour.

The main contributions of this paper are:

• We propose a novel interactive framework (smart scribbles) to generate alpha mattes from
limited scribbles, which is more flexible and robust for natural image matting and can
dramatically reduce user effort.

• We design an efficient method for computing information content. It can identify the most
informative regions that are significant for the quality of alpha mattes.

• We present a two-phase propagation approach which can aggregate local and global infor-
mation to spread limited scribbles to the whole image to generate an alpha matte effectively.

• Our method can achieve high-quality alpha mattes independently of large-scale matting
datasets, and demonstrate more adaptability in real-world applications.
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4 Xin, et al.

2 RELATEDWORK
In this section, we briefly review image matting from scribbles-based and trimap-based methods,
and then introduce some deep learning based methods that have developed rapidly in recent years.

Scribbles-based Matting. In earlier works [14, 18, 19, 34], scribbles are widely used for natural
imagematting. Users only need to draw several scribbles on the input image with distinguished color
to label the foreground, background and unknown. Scribbles-based methods are very convenient
for common users and can achieve comparable alpha mattes in a user-friendly way. However, such
scribbles only cover a small portion of the image, which means the alpha mattes will discount
for slightly more complicated images. Besides, scribbles must fit the initial assumptions or prior
distribution of matting algorithms, hence users are required to possess professional knowledge
about the matting algorithms and rich experience in where to place their scribbles. For example,
some methods [18, 19] assume that all colors within a small window around an unknown pixel
lie in a line of the color space. This color-line assumption cannot provide global information, and
drawing scribbles that fit these algorithms would be a great challenge for novice users.

Trimap-based Matting. Compared with scribbles, trimaps can supply annotations for each
pixel in the image, thus can provide sufficient category information (foreground, background
or unknown) for image matting. Due to this advantages, currently, most state-of-the-art image
matting algorithms take trimaps as assistant input [2, 8, 10, 38]. Their core ideas are spreading
certain labels (the foreground and background) to unknown areas. According to the different way of
utilizing foreground-background information, these algorithms can be divided into two categories:
sampling-based and propagation-based. Sampling-based methods [10, 16, 25, 28, 35, 41] assume
that each unknown pixel can be represented by a pair of certain foreground/background pixels.
Propagation-based methods [2, 7, 13, 17–19, 31] use affinity of neighboring pixels to propagate the
alpha values from certain areas to unknown ones.

Compared with scribbles, trimap-based methods do not need experience or professional skills but
consume a lot of user labors. A well-defined trimap requires pixel-level interpret provided by users,
which is very time-consuming and fussy. Therefore, traditional matting methods usually utilize
the online benchmark [26] dataset to evaluate their algorithms, which only contains 27 training
examples and 8 test images. Although trimap-based methods can achieve competent alpha mattes,
they have poor performance in practical application because delicate trimaps are inconvenient to
label for common users.

Deep Learning Based Matting. Deep learning has contribute a lot to computer vision [37, 39,
42], also been applied in alpha matting problem. Cho et al. [8] fused the results of KNN [7] and
ClosedForm [18] with input images, and then fed them to a well-designed CNNs to generate alpha
mattes. Xu et al. [38] concatenated the input image and trimap as 4-channels input, and applied an
encoder-decoder network to reconstruct the alpha mattes from high-level semantic representation.
The subsequent matting methods [4, 15, 22, 23, 33] mostly follow this design philosophy: extracting
high-level features from the input image and the corresponding trimap, and then predict the alpha
matte through complicated network architecture. However, they all require trimaps as auxiliary
input, which limits their promotion in practical applications.
Some matting networks employ semantic segmentation network [6, 43] or attention mecha-

nism [24] to accomplish alpha mattes without trimaps, and failure case will probably occur when
semantic segmentation is not applicable [43]. Xin et al. [40] proposed an active framework to guide
matte generation. Although the above methods can produce alpha mattes without trimaps, they
all are trained on the composite images, which can sometimes result in obvious artifacts or poor
performance on real-world images. Our smart scribbles accept user scribbles, then execute Markov
and CNN propagation in superpixels to spread category labels. The proposed model is independent
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Smart Scribbles for Image Matting 5

Fig. 2. The pipeline of the proposed method. The input image is first over-segmented into superpixels, then is
divided into regular rectangle regions of the same size. We calculate the information content of each region and
the most informative region is automatically selected for users to draw scribbles, specifying the foreground
(in red), background (in blue) and unknown areas (in green). These labels are then propagated to unlabeled
regions to update the probability matrix (PrM) via two-phase propagation. During CNN propagation, we
gather all superpixel external rectangles as input, and the superpixels with scribbles are used for training,
while for the others we predict category labels for them using the trained model. After CNN propagation,
we update PrM to generate a refined trimap and the final matte can be produced by an embedded existing
matting algorithm.

of large-scale composite data, thus exhibits greater robustness and generalization on real-world
images.

3 METHODOLOGY
According to our previous analysis, a limited number of scribbles must meet some prior conditions
to achieve comparable alpha mattes, while trimaps can help produce accurate matting results at
the expense of much time and user labor in practical applications. Our goal is to achieve a balance
between user effort and the quality of alpha mattes. For this purpose, we first use automatic region
selection to replace the professional knowledge requirements for drawing scribbles, then we employ
well-designed two-phase propagation to maximize the diffusion of limited category scribbles across
the whole image, which can effectively reduce the number of scribbles drawn by users. Based
on the observation that different image regions contribute unequally for matting algorithms and
scribbles on critical ones can determine a desired alpha matte, we define informative regions to
represent the whole image and users only need to draw a few random scribbles on them. Since the
informative regions receive accurate labels (foreground, background or unknown) from users, they
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6 Xin, et al.

can actively contribute to the rest part of the input image (i.e., effectively propagating user labels
to uncertain regions).

3.1 Overview
To interpret our smart scribbles, we divide our framework shown in Figure 2 into four main compo-
nents:
Over Segmentation: Our framework is performed on superpixels level for a faster and more
efficient generation. We intend to spread limited scribbles across all image areas, while pixel-level
nodes do not reflect color and texture correlations between regions. In addition, compared to pixels,
propagation on superpixels level can effectively reduce the number of nodes to decrease the total
amount of computation. The input image is segmented into superpixels via simple linear iterative
clustering (SLIC) algorithm [1] (as shown in Figure 2). The number of superpixels can automatically
adapt to the input size, thus we can obtain decent segmentation results for arbitrary-size images.
The following steps are all based on superpixels, irrelevant to the attributes of image itself (size or
classes etc.).
Regions Division and Selection: After over-segmentation, as shown in Figure 2, informative
regions are chosen for expressing the whole image. We evenly divide the input image into𝑀 ×𝑀

regular regions, then select the regions crucial for alpha mattes automatically, which can replace the
professional knowledge requirements of users. After the regions division, we define the information
content of each region according to the superpixels inside it, which is explained in 3.2. For each
iteration, the most critical region (the one with largest information content) is selected and users
only need to simply draw few scribbles on it. In practice, M can be adjusted according to the size of
the input image and is empirically set as 4 considering the convenience of users in most cases.
Drawing Scribbles: Users are required to draw scribbles on the selected region with distinguished
color to label different areas (Foreground–red, Background–blue and Unknown–green), as shown
in Figure 2.
Information Propagation: Smart scribbles will record category labels and propagate these infor-
mation to unlabeled regions. To achieve this, we construct the probability matrix (PrM) to represent
the transition possibility between different superpixels, and the label probabilities of different
categories (𝑝𝑏-background, 𝑝𝑢-unknown and 𝑝 𝑓 -foreground) of each superpixel can be calculated
according to the probability matrix. The proposed two-phase propagation is essentially a continuous
update of the probability matrix, including two stages: (1) The informative labels propagate to their
adjacent regions using Markov chain [11], by taking spatial and appearance similarity into account
(as illustrated in Figure 2), dubbed Markov propagation. (2) The output is further refined using a
convolutional neural network by exploiting high-level features of superpixels in a global manner,
dubbed CNN propagation. The detailed propagation process is developed in section 3.3.

Overall, we iterate three operations, regions selection, drawing scribbles, andMarkov propagation
for 𝑁 times, to accomplish the full spread of scribbles in the neighborhood, and CNN propagation is
then applied to generate the fine trimaps. Final alpha mattes are produced with embedded existing
matting algorithms. In our experiments, parameter 𝑁 is set as 6 to balance the trade-off between
efficiency and quality. More iterations can improve mattes slightly with user effort increasing
apparently, and the detailed analysis about iteration number can refer to baseline 2 in section 4.4.

3.2 Information Content Formulation
Scribbles often need to meet some prior assumptions, hence we propose informative regions to
replace such professional requirements of users. We hold that informative regions should contain
representative image semantics or decisive local features, and placing limited scribbles on these
regions can achieve a competent alpha matte. In contrast, image areas with single color or smooth
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Smart Scribbles for Image Matting 7

texture are insignificant for drawing scribbles (we can assign their labels through later propagation).
It is impractical for a novice user to distinguish where are informative regions, and the definition
of information content can select the most informative region iteratively guiding users to draw
scribbles.
Specifically, we conclude that the informative ones should: (1) have a high similarity with the

neighborhood, which means representative; (2) have a high color and texture diversity inside,
which makes the region contain as much scenarios as possible; (3) involve both foreground and
background for having diverse and balanced labels; (4) locate on the boundary of some object, which
may fully exploit context correlation. According to these prerequisites, we present a formulation of
information content, termed as 𝐼𝑛𝑓 𝑜 , of a region based on the superpixels inside it. During each
iteration, the region with maximum 𝐼𝑛𝑓 𝑜 is selected as the most informative one for drawing
scribbles. 𝐼𝑛𝑓 𝑜 is expressed as Equation (2).

𝐼𝑛𝑓 𝑜 = Υ + Γ + Λ + Δ, (2)

where Υ denotes the similarity with its neighbors, Γ is the diversity inside the region, Λ represents
the region entropy (foreground, background and unknown distribution) and Δ is the edge score of
the region, corresponding the above prerequisites respectively. In practice, all these four entries will
be balanced according to the number of superpixels in the current region. Among those, similarity
(Υ) is calculated as:

Υ = 𝜆1

Ω𝑖𝑛∑︁
𝑖

Ω𝑜𝑢𝑡∑︁
𝑗

𝑒𝑥𝑝 (−
||𝑐𝑚𝑖 − 𝑐𝑚 𝑗 | |2

2𝜎2 )+

𝜆2

Ω𝑖𝑛∑︁
𝑖

Ω𝑜𝑢𝑡∑︁
𝑗

2(𝑐ℎ𝑖 − 𝑐ℎ 𝑗 )2

𝑐ℎ𝑖 + 𝑐ℎ 𝑗 + 𝜃
+ 𝜆3

Ω𝑖𝑛∑︁
𝑖

Ω𝑜𝑢𝑡∑︁
𝑗

2(𝑡ℎ𝑖 − 𝑡ℎ 𝑗 )2

𝑡ℎ𝑖 + 𝑡ℎ 𝑗 + 𝜃
,

(3)

meanwhile, diversity (Γ) is expressed as :

Γ = −(𝜆1
Ω𝑖𝑛∑︁
𝑖

Ω𝑖𝑛∑︁
𝑗

𝑒𝑥𝑝 (−
||𝑐𝑚𝑖 − 𝑐𝑚 𝑗 | |2

2𝜎2 )+

𝜆2

Ω𝑖𝑛∑︁
𝑖

Ω𝑖𝑛∑︁
𝑗

2(𝑐ℎ𝑖 − 𝑐ℎ 𝑗 )2

𝑐ℎ𝑖 + 𝑐ℎ 𝑗 + 𝜃
+ 𝜆3

Ω𝑖𝑛∑︁
𝑖

Ω𝑖𝑛∑︁
𝑗

2(𝑡ℎ𝑖 − 𝑡ℎ 𝑗 )2

𝑡ℎ𝑖 + 𝑡ℎ 𝑗 + 𝜃
),

(4)

where Ω𝑖𝑛 is the set of superpixels inside the region, while Ω𝑜𝑢𝑡 is the set of superpixels outside
the region. 𝑐𝑚𝑖 , 𝑐ℎ𝑖 , and 𝑡ℎ𝑖 are middle-level features (color mean, color histogram, and texture
histogram) at superpixel 𝑖 . 𝜃 is a bias to prevent the denominator from being 0. The coefficients 𝜆1,
𝜆2 and 𝜆3 are set to 0.4, 0.35 and 0.25 in practice. The diversity is obtained by taking the overall
similarity negative, because the higher the similarity, the smaller the difference, and vice versa.

We define region entropy (Λ) as:

Λ = −
Ω𝑖𝑛∑︁
𝑖

[(𝑝𝑏𝑖 )𝑙𝑜𝑔(𝑝𝑏𝑖 ) + (𝑝𝑢𝑖 )𝑙𝑜𝑔(𝑝𝑢𝑖 )

+ (𝑝 𝑓𝑖 )𝑙𝑜𝑔(𝑝 𝑓𝑖 )],
(5)

where 𝑝𝑏, 𝑝𝑢 and 𝑝𝑓 refer to the Foreground, Background and Unknown probabilities of superpixel
𝑖 respectively.

, Vol. 1, No. 1, Article . Publication date: April 2021.



8 Xin, et al.

According to the object edges in [45], we define edge score (Δ) as:

Δ =

Ω𝑖𝑛∑︁
𝑖

𝑒𝑖 =

Ω𝑖𝑛∑︁
𝑖

∑𝜓𝑖

𝑘
𝑒𝑥𝑝 (𝑒𝑚𝑘𝛿)

𝜀
, (6)

where 𝑒𝑖 is the edge value of superpixel 𝑖 , calculated via edge value of pixels inside it. 𝜓𝑖 is the
set of pixels inside the superpixel 𝑖 , 𝑒𝑚𝑘 is the edge value of pixel k, and 𝛿 , 𝜀 are coefficients. An
example edgemap image is shown in Figure 3, where white lines denotes potential object edges.
Obviously, a high edge score means the region has a high probability of being at the edge of the
object, corresponding to potential unknown in trimaps. The edge score can suggest transition
content between different types, providing context correlation of separate regions.

Input Image Edgemap Image

Fig. 3. Edge score (S) is calculated according to the corresponding edgemap image.

3.3 Two-phase Information Propagation
The region with maximum information content is selected for drawing scribbles with distinguished
colors, and some superpixels inside it are assigned with explicit category labels (foreground-red,
background-blue, unknown-green) correspondingly. In order to minimize user effort and exploit
the limited feedback from users (i.e., the labeled superpixels), we present a two-phase information
propagation strategy to spread scribbles to the whole image, which not only takes advantage of
local/low-level features with a re-modeled Markov process, but also the global/high-level semantics
with a CNN model. We construct a probability matrix (PrM) to solve the label possibility of
foreground, background and unknown areas. The element 𝑃𝑟𝑀𝑖 𝑗 in PrM indicates the transfer
probability from superpixel i to j, and the two-phase propagation can update PrM continuously.
Finally, a refined trimap can be inferred from PrM according to Algorithm 1.

Markov Propagation:We expect that user scribbles can propagate to the adjacent unlabeled
superpixels massively, so employ the excellent spatial transfer capacity of Markov Chain [11, 32]
to achieve this purpose (see Figure 2). In our framework, each superpixel in the image is modeled
as a ‘node’ in the Markov Chain (i.e., node i denotes superpixel i). We consider the superpixels
with certain labels as absorbing nodes, while the unlabeled ones are transition nodes. Therefore
the labels propagation can be treated as the state transfer in Markov Chain, and solving unknown
superpixel category labels is a process of probability transfer from transition nodes to absorbing
ones. For the concrete implementation, suppose we divide n superpixels from over-segmentation,
firstly, we can construct a connection matrix (CoM) to describe the position relevance of superpixels
in the whole image. Then we can establish an affinity matrix (AfM) to measure the color and texture
similarity between the superpixels. Both CoM and AfM are obviously 𝑛 × 𝑛 symmetric matrix. The
probability matrix (PrM) is calculated by the CoM, AfM and labels information, which is a 𝑛 ×𝑚

matrix (suppose there are𝑚 superpixels with user scribbles until current iteration). The element
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Algorithm 1Markov Propagation
Input: Connection Matrix (CoM), Affinity Matrix (AfM), Labeled Superpixels Set (𝐿), Unlabeled

Superpixels Set(𝑈 ).
Output: Probability of Unlabeled Superpixels {𝑝 𝑓𝑖 }, {𝑝𝑏𝑖 }, {𝑝𝑢𝑖 }
1: for iterations do
2: receives labels information from user drawing scribbles;
3: update 𝐿 and𝑈 ;
4: (𝐶𝑜𝑀,𝐴𝑓 𝑀,L,U) → Probability Matrix (𝑃𝑟𝑀);
5: for Superpixel 𝑖 ∈ 𝑈 do
6: 𝑆𝑈𝑀𝑓 = 0, 𝑆𝑈𝑀𝑏 = 0, 𝑆𝑈𝑀𝑢 = 0;
7: for Superpixel 𝑗 ∈ 𝐿 do
8: Case 𝑗 ∈ 𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 : 𝑆𝑈𝑀𝑓 = 𝑆𝑈𝑀𝑓 + 𝑃𝑟𝑀𝑖 𝑗

9: Case 𝑗 ∈ 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 : 𝑆𝑈𝑀𝑏 = 𝑆𝑈𝑀𝑏 + 𝑃𝑟𝑀𝑖 𝑗

10: Case 𝑗 ∈ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 : 𝑆𝑈𝑀𝑢 = 𝑆𝑈𝑀𝑢 + 𝑃𝑟𝑀𝑖 𝑗

11: end for
12: 𝑝 𝑓𝑖 =

𝑆𝑈𝑀𝑓

𝑆𝑈𝑀𝑓 +𝑆𝑈𝑀𝑏+𝑆𝑈𝑀𝑢

13: 𝑝𝑏𝑖 =
𝑆𝑈𝑀𝑏

𝑆𝑈𝑀𝑓 +𝑆𝑈𝑀𝑏+𝑆𝑈𝑀𝑢

14: 𝑝𝑢𝑖 =
𝑆𝑈𝑀𝑢

𝑆𝑈𝑀𝑓 +𝑆𝑈𝑀𝑏+𝑆𝑈𝑀𝑢

15: end for
16: end for
17:
18: return {𝑝𝑓𝑖 }, {𝑝𝑏𝑖 }, {𝑝𝑢𝑖 }

𝑃𝑟𝑀𝑖 𝑗 in PrM indicates the probability of transition from node 𝑗 (denotes labeled superpixel 𝑗 ) to
node 𝑖 (denotes unlabeled superpixel 𝑖), which is named as transition probability.
Transition probability is defined by the low-level appearance (e.g., color, texture) and spatial

similarity between superpixels, and a higher transition probability 𝑃𝑟𝑀𝑖 𝑗 indicates that 𝑖 and 𝑗 more
likely share the same labels (foreground, background or unknown). With the labeled superpixels
increasing by drawing scribbles, the PrM is extended through the Markov Propagation in each
iteration. For unlabeled superpixel 𝑖 , its labels probabilities 𝑝𝑓𝑖 , 𝑝𝑏𝑖 and 𝑝𝑢𝑖 in Equation (5) will
be revised according to algorithm 1. The updated labels probabilities will in turn renovate region
entropy (E) in Equation (2) for next selection. Markov Propagation iterates along with informative
regions selection, and labels probabilities are revised continuously.

CNNPropagation:After 𝑁 times of Markov Propagation, a coarse trimap is generated as shown
in Figure 2. Although most superpixels can acquire proper labels, the propagation flow is localized
and lack of consideration for high-level semantics of the superpixels. Convolutional Neural Network
(CNN) has gained success in extracting high-level features of the input images [5, 21], and is also
proved to be capable of spreading information and labels regardless of spatial limit [9]. Thereby, we
develop an efficient CNN to extract features from the superpixels for global information propagation.
We gather all the superpixels and extract their external rectangles to feed in the CNN Propagation,
then acquire corresponding labels information from the preserved stroke image (Figure 2), the
course trimap and the input image. The labeled superpixels (with users scribbles or sky-high label
probabilities) are considered as training set. The unknown typically lie in the transition between
foreground and background, and their characteristics vary widely. Therefore in context irrelevant
superpixels-level CNN propagation, we only consider foreground and background (Figure 2) labels.
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After training, we can predict the label probabilities 𝑝𝑓𝑖 , 𝑝𝑏𝑖 for unlabeled superpixels via the trained
model.
Figure 2 illustrates the CNN Propagation. The architecture has two branches: one is to extract

high-level semantics from the centering patch of each superpixel via 3 convolutional layers. The
visual features extraction takes a mini-batch for input, and output a vector with 256 elements
suggesting semantic relevance. The other branch is to encode the spatial information to a vector
with 256 elements via a fully connected (FC) layer. We feed the center coordinates of the mini-batch
into FC layer to provide some context correlation considering the global propagation. The semantic
and spatial vectors are integrated by adding element-wisely. The integrated output is converted
to a 3 ∗ 1 label probability map using a softmax function at last. The whole network is trained 20
epoches with descending learning rate and cross-entropy loss.
The proposed two-phase propagation can accomplish the overall update of PrM, and we can

predict a desired trimap via algorithm 1. Finally, some superpixels in the whole image obtain
their labels (foreground, background, or unknown) from scribbles, while others from the two-
phase information propagation by thresholding label probabilities. Here we regard the superpixels
whose 𝑝𝑓𝑖 is bigger than 0.65 as foreground empirically. Similarly, our framework can infer more
background superpixels from the unlabeled ones. Remainder unlabeled superpixels are considered as
Unknown. Afterwards, smart scribbles transform the foreground superpixels to white; background
ones to black; unknown ones to gray. Thus, we can obtain a refined trimap and the corresponding
alpha matte is generated by embedding existing matting algorithms.

4 EXPERIMENTS AND RESULTS
In this section, we present our experiments and results analysis. The visual results on the real-world
images are shown in 4.1, which can demonstrate the robustness and generalization of smart scribbles.
In addition, we compare with traditional scribble-based methods on the matting benchmark [26],
the portrait dataset [30] and the deep image matting [38] dataset (denoted as DIM) to exhibit the
superiority of smart scribbles. We compare the alpha mattes generated by smart scribbleswith several
kinds of artificial trimaps based on the matting benchmark [26] to demonstrate the applicability
with different matting algorithms. Then we evaluate our approach with 3 baselines and perform
ablation study for smart scribbles, both on the matting benchmark [26]. The following experiments
are all implemented using MATLAB, on a PC with an NVIDIA GTX 1080Ti GPU. We invite 20
users to participate in our experiments, and all of them are inexperienced to matting as well as our
framework. All these users draw scribbles through ’mspaint’ program under windows system. In
all following illustrations, red scribbles, blue scribbles and green scribbles represent the foreground,
background and unknown respectively (the scribbles are appropriately bolded to make them more
visible).

4.1 Comparison with Active Matting on the real-world images
Active Matting [40] (AM) can achieve competent alpha mattes with simple user interactions. The
combination of CNNs and Reinforcement Learning in AM can effectively spread limited user
information to the whole image to produce an accumulated trimap, and the corresponding alpha
matte can be generated from an existing embedded matting algorithm. However, like other deep
learning based matting networks, AM is also trained with artificial images, which significantly
restricts the robustness and generalization of the network. We follow the matting model in AM to
generate accumulated trimaps, then produce alpha mattes with existing matting methods. In this
experiments, we feed the trimaps from smart scribbles into existing matting methods to compare
with AM on the real-world images. The visual comparisons are illustrated in Figure 4 and Figure 5.
The alpha mattes generated by smart scribbles and AM are both from four identical existing matting
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Input Image Smart Scribbles SS+Closed [18] SS+KNN [7] SS+DCNN [8] SS+IFM [2]

Late Fusion [43] AM [40] AM+Closed [18] AM+KNN [7] AM+DCNN [8] AM+IFM [2]

Input Image Smart Scribbles SS+Closed [18] SS+KNN [7] SS+DCNN [8] SS+IFM [2]

Late Fusion [43] AM [40] AM+Closed [18] AM+KNN [7] AM+DCNN [8] AM+IFM [2]

Input Image Smart Scribbles SS+Closed [18] SS+KNN [7] SS+DCNN [8] SS+IFM [2]

Late Fusion [43] AM [40] AM+Closed [18] AM+KNN [7] AM+DCNN [8] AM+IFM [2]

Fig. 4. The visual comparisons with Active Matting [40] and the Late Fusion [43] on the real-world images.

algorithms: (ClosedForm [18], KNN [7], DCNN [8] and IFM [2]. The results of AM are coarse in
diverse methods, even with more user interactions or relatively simple background. The reason for
this is obvious: the overall model is fine tuned on the rendered images. Illumination, blurring, and
bokeh in real-world pictures can greatly reduce the network performance obtained from training
on artificial images.

Compared to AM, smart scribbles can achieve alpha mattes in a more general and valid fashion.
The proposed Markov and CNN propagation can spread limited scribbles to the whole image, and
all operations are executed in superpixels-level of the input image, which means smart scribbles is
independent of large-scale dataset. Although the synthetic images supply new possibility for deep
learning matting models training, the clear artifacts on them significantly reduce the robustness
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Input Image Smart Scribbles SS+Closed [18] SS+KNN [7] SS+DCNN [8] SS+IFM [2]

Late Fusion [43] AM [40] AM+Closed [18] AM+KNN [7] AM+DCNN [8] AM+IFM [2]

Input Image Smart Scribbles SS+Closed [18] SS+KNN [7] SS+DCNN [8] SS+IFM [2]

Late Fusion [43] AM [40] AM+Closed [18] AM+KNN [7] AM+DCNN [8] AM+IFM [2]

Fig. 5. The visual comparisons with Active Matting [40] and the Late Fusion [43] on the real-world images.

and versatility of matting network. Smart scribbles can automatically adjust and adapt to the
specific situation of the input image: 1) our informative region selection can effectively choose
some representative regions (the ones with noise, blurring etc.); 2) users can draw few scribbles on
suggested regions to separate the foreground, background and unknown; 3) the proposed two-phase
propagation can effectually spread category labels to the whole image. Therefore, smart scribbles
can assign category labels for each superpixel precisely, though the input image is taken in a poor
or specific situation. The first row of Figure 4 demonstrates the robustness of our method, the
bokeh and blurring in the input image did not degrade the performance of smart scribbles. The hair
of the woman is clearly visible and the complicated background is perfectly eliminated.

4.2 Scribbles Evaluations
Traditional scribbles usually require professional knowledge to draw essential labels. The com-
mon users may get poor results even if they draw many scribbles on the whole image, because
some prior conditions of the matting algorithms are left out of consideration. Compared with
traditional scribbles, smart scribbles can generate better mattes with less scribbles. To demonstrate
the superiority of smart scribbles, we conduct this experiment on the matting benchmark [26], the
portraits testing dataset [30] with 300 images and the DIM dataset. Here we divide 20 inexperienced
participators into two groups on average. One group draws traditional scribbles, and the other
performs smart scribbles. Both groups are only told the basic knowledge of separating foreground,
background and unknown areas. The alpha mattes are produced with diverse matting algorithms
(ClosedForm [18], SharedMatting [12], KNN [7], DCNN [8] and IFM [2]. The results are shown
in Table 1 with different datasets. The evaluation metric is RMSEs compared with ground truths
and smart scribbles achieves more than 40% improvement over conventional scribbles methods.
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Fig. 6. The visual comparisons with traditional scribbles. (a) The input images from the portrait testing dataset
or the DIM [38] dataset. (b) Ground truths. (c) Traditional scribbles. (d) Traditional scribbles + DCNN [8]. (e)
Smart scribbles. (f) Smart scribbles + KNN [7]. (g) Smart scribbles + DCNN [8]. (h) Smart scribbles + IFM [2].
The alpha mattes produced by smart scribbles have more complete outlines and abundant texture details.

Table 1. The RMSE comparisons with traditional scribbles on the portrait dataset [8] and deep image matting
(DIM) dataset [38].

Methods & datasets Smart scribbles Traditional scribbles
ClosedForm [18]+Portraits 0.1024 0.1806
SharedMatting [12]+Portraits 0.0998 0.1778
KNN [7]+Portraits 0.0726 0.1599
DCNN [8]+Portraits 0.0870 0.1626
IFM [2]+Portraits 0.0733 0.5197
ClosedForm [18]+DIM 0.1104 0.1616
KNN [7]+DIM 0.0859 0.1355
DCNN [8]+DIM 0.0974 0.1390
IFM [2]+DIM 0.0856 0.4257

Smart scribbles can obtain better alpha mattes with different matting algorithms. We attempt to
generate alpha mattes with state-of-the-art matting algorithms (IFM [2], but the traditional scribbles
achieve poor results. The qualitative results are shown in Figure 6 and the preponderance of smart
scribbles is more obvious on visual outcomes. Compared to traditional scribbles, the alpha mattes
produced by smart scribbles have no extra background, and the boundary between foreground
and background is clearly demarcated. Besides, some furry details can be detected more clearly by
smart scribbles.
Figure 7 reflects the quantitative comparison of additional user inputs in this experiment. The

entry ’coverage percentage’ indicates the percentage of the images covered by scribbles, which
suggests how much labels information is provided through the user interactions. Smart scribbles
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Fig. 7. The summarized coverage percentage on diverse datasets, which is the percentage of the input image
covered by scribbles. The smaller percentage of smart scribbles indicates that it can produce better alpha
mattes with less user interactions, as compared with traditional scribbles.

has lower ’coverage percentage’, approximately 60% reduction in the number of user scribbles
on diverse datasets, indicating less user inputs getting above results. With informative regions
selection, we can assure scribbles are drawn on crucial image areas. Limited user information can
effectively spread to the whole image spatially and globally via Markov and CNN propagation. The
above two points ensure that smart scribbles can produce refined mattes with minor scribbles.

4.3 Comparison with Trimaps

Table 2. The comparisons with artificial trimaps on the matting benchmark [26]. The last row reflects the
running time and the others are RMSEs. Full scratched means handcrafted trimaps, and grabcut trimaps are
produced via executing Grabcut [27] iteratively. Smart scribbles can approximate their poorer results (red
marks), while taking much less time.

Methods Smart scribbles Full scratched Grabcut trimaps
Learning [44] 0.0938 None 0.0732
ClosedForm [18] 0.0915 0.0700 0.0731
KNN [7] 0.0751 0.0456 0.0554
DCNN [8] 0.0848 0.0528 0.0647
IFM [2] 0.0791 0.0631 0.0600
ThreeLayers [20] 0.0862 None 0.0638
Average time 41s 8min 198s

Both trimaps and scribbles are classical assistant matte inputs, and scribbles can also be regarded
as sparse trimaps. To demonstrate the generality and availability of smart scribbles, here we show
the comparisons with different forms of trimaps. Trimaps ground truths are accurate pixel-wise
annotations and difficult to implement (generally generated by dilation or erosion from alpha
mattes, impractical for user interactions based on RGB images), hence we utilize full scratched and
Grabcut trimaps instead. Full scratched means drawing scribbles on the whole images according
to the trimaps ground truths. Grabcut trimaps are achieved by executing Grabcut [27] iteratively.
Specifically, users are first asked to draw scribbles and a bounding box for distinguishing the
foreground and background, then we utilize Grabcut [27] to generate the corresponding trimaps.
Such trimaps are employed to produce alpha mattes, and users continue to draw scribbles on
the original images to improve these alpha mattes. Drawing scribbles and mattes generation are
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Fig. 8. The histogram comparisons with artificial trimaps on the matting benchmark [26]. Obviously, smart
scribbles can get close to their poorer results. Full scratched is unavailable to Learning [44] and ThreeLayers [20]
matting due to the presence of unspecified pixels.

Input Image Trimap GT Full Scratched Grabcut Trimap

Fig. 9. Diverse trimaps in our experiments. Full scratched and grabcut trimaps are both hand-crafted pixel-level
trimaps.

executing alternately, terminated when users are satisfied with the final alpha mattes. Both full
scratched and Grabcut trimaps are approximately pixel-wise annotations, close to trimaps ground
truths (Figure 9). We evaluate our experiment on the matting benchmark [26]. The matte RMSEs
compared to full scratched and Grabcut trimaps are shown in Figure 8 (there is no numerical value
on the line chart indicating that the input is not suitable for this method.
As Figure 8 shows, the mattes RMSEs of full scratched and Grabcut trimaps are apparently

lower than smart scribbles, suggesting that abundant user inputs can significantly improve the
quality of final mattes. Nevertheless, the matte results generated by smart scribbles, using certain
algorithms (e.g. KNN [7] and IFM [2]), can get close to some poor results in full scratched or Grabcut
trimaps. Compared to full scratched and Grabcut trimaps, smart scribbles are more time-saving
and user-friendly. We achieve the alpha mattes in Table 2 with average interaction time 41s, while
full scratched and Grabcut trimaps take 8min and 198s respectively. Besides, smart scribbles only
requires several scribbles from users to label different categories, in contrast, more relaxed for
novice users.

4.4 Comparison to Region Selection Baselines
We have constructed three baselines in our experiments:

B1:How to select informative regions? We propose information content to select informative
regions, summarizing color, texture, labels information and object boundary. Here we compare
the proposed region selection method with the other two. The first randomly select one region
from the top 6 of information content per iteration, and the second way is for the users to specify
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Fig. 10. Smart scribbles compared with randomly selected regions and user-specified regions. Both of them
fail to take full advantage of limited scribbles, causing some details to be lost or even incomplete silhouettes
in the final mattes.

regions based on their visual observation, which is to imitate the professional requirements for
users in traditional scribbles. We term these two manners as random and users-specified regions
respectively, and replace the information content regions selection in our pipeline for comparisons.

Figure 10 shows the performance of different selection manners. We evaluate Root Mean Square
Errors (RMSEs) of the alpha mattes produced by smart scribbles and ground truths on the matting
benchmark training dataset, and the quantitative results are shown in Table 3. Random regions
manner (Figure 10) specially fails in the thin structures (the furs of the elephant and monkey).
User-specified manner give an inaccurate shape estimation (the last row of Figure 10). In contrast,
as proposed smart scribbles consider the local affinity structure and the correlations across regions
synthetically by a novel information content formulation, the global representative regions can be
selected successfully. The smart scribbles demonstrates enormous superiority in three aspects: the
structure details (the third row in Figure 10, the hair on the monkey), the shape completeness (the
second row in Figure 10, the abdomen of the elephant) and the lower RMSE in Table 3.

Table 3. The quantitative results of baseline1 and two ablation study (RMSEs). The first two rows compare
different region selection strategies and the next two lines are propagation ablation results. The last four rows
besides smart scribbles reveal the significance of different information content entries.

Methods ClosedForm KNN DCNN
Random regions 0.2010 0.1434 0.1608
User-specified regions 0.1326 0.0942 0.1020
Without Markov propagation 0.2198 0.1717 0.1886
Without CNN propagation 0.1934 0.0963 0.1234
Without neighboring similarity 0.1452 0.0946 0.1068
Without inner diversity 0.1319 0.0940 0.0969
Without regions entropy 0.1624 0.1065 0.1182
Without edge score 0.2447 0.1766 0.1899
Smart scribbles 0.0915 0.0751 0.0848

B2:How many regions is essential? This experiment is to verify the impact of iterations in
the phase of Markov propagation. In Markov propagation, we produce a coarse trimap after 6
iterations. A large number of iterations can memorably improve the quality of immediate trimaps
and final mattes. Nevertheless, the cumbersomeness of user interaction increases significantly as
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Fig. 11. Compare the number of iterations. The RMSEs gradually descend as the number of iterations increases
and become stable after 6 times.

the number of iterations increases. We conduct our experiments with different iteration numbers
to reflect the rationality of setting the number of iterations in smart scribbles.

As illustrated in Figure 11, here we employ diverse matting algorithms (ClosedForm [18], KNN [7],
DCNN [8], IFM [2]) to calculate alpha mattes, and the number of iterations is calculated from 1
to 10. In the initial two iterations, the two-phase propagation has insufficient labels information
for reference, therefore the results are unsatisfactory and RMSEs are higher. RMSEs decline as the
number of iterations increases, and the trend of descending levels off when the iterations times up
comes to 6. More iterations can improve mattes slightly, but more users labors are involved, which
goes against our intention of reducing user labors. To balance the trade-off between the quality
and efficiency, we set the number of iterations as 6 in practice.

Input Image With Iteration Without Iteration

Fig. 12. Trimap comparison with/without iterative region selection.

B3:Why select regions iteratively? For each region selection, we record users scribbles and
perform a Markov propagation to update labels probabilities. For next selection, the entropy in the
information content is recalculated according to new labels probabilities, while similarity, diversity
and edge score remain. Here, we exclude the entropy from information content and select 𝑁 regions
at a time for users to drawing scribbles. Then Markov propagation is executed once, followed by
the CNN propagation. Here we display the trimaps comparisons for more intuitive (Figure 12).
Selecting regions at once weakens the impact of Markov propagation on adjacent affinity, leading
to local discontinuity, as shown in the left side of Figure 12.
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4.5 Ablation Study and Analysis

Input Image Without Markov Without CNN Full Framework

Fig. 13. The qualitative results of the propagation ablation study. The proposed two propagation phases are
complementary and the absence of either can possibly lead to prediction errors in the refined trimaps.

Propagation ablation.Here we verify the effectiveness of Markov propagation and CNN prop-
agation, where the two components are evaluated by removing the other one from smart scribbles.
We conduct ablation experiment on the matting benchmark training images to evaluate three kinds
of framework: smart scribbles, the framework without Markov propagation and the framework
without CNN propagation. Here we adopt ClosedForm [18], KNN [7] and DCNN [8] for mattes
generation. The quantitative results are summarized in Table 3 and the visual trimaps are shown in
Figure 13. The framework without Markov propagation and the framework without CNN propaga-
tion both produced less competent results, inferior to our full framework. The absence of Markov
propagation affects the continuity of spatial label distribution, while the CNN propagation resorts
to the high-level features of the superpixels themselves, lacking the constrain of image context.
The ablation experiment demonstrates that both propagation are essential in smart scribbles.

Information content entry ablation.We summarize 4 entries for information content formu-
lation according to Equation (2) and all them are essential for informative regions selection. Here we
conduct an ablation experiment removing four entries in turn, to illuminate the significance of them.
We calculate information content without neighboring similarity, without inner diversity, without
entropy, without edge score respectively and produce corresponding mattes with DCNN [8]. The
quantitative RMSEs results are shown in Table 3 and the combination of these four terms leads to a
minimum RMSE (0.0848). The absence of either entry can discount the final mattes: the removal of
similarity or diversity lack of consideration for image color and texture; the entropy elimination
has no regard for existing labels information; the edge score has the greatest impact due to its
accurate identification of object edges.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a new interactive framework for image matting, called smart scribbles.
We explore the principles of informative regions for matting, and an informative measurement
strategy is presented for proposing regions for users labeling. It suggest informative regions for
users to draw scribbles for labeling the foreground, background and unknown. A fine trimap can
then be obtained by the proposed two-phase information propagation. Extensive experiments have
proved the validity and universality of our framework and smart scribbles can be applied to various
matting algorithms.

Figure 14 shows a failure case of the proposed method. All alpha mattes in this example are gen-
erated using IFM [2]. Smart scribbles cannot handle regions where the foreground and background
intersect severely, causing many details missing (Figure 14). For future research, we aim to extend
the proposed framework to a real-time editing system.
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Input Image Smart Scribbles Trimap GT Ground Truth

Input Image Smart Scribbles Trimap GT Ground Truth

Fig. 14. The comparisons with trimap ground truths. Although smart scribbles demonstrate complete contours
and sophisticated texture details, compared to trimap GTs, there are still some local estimation errors.
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