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Mask-Guided Deformation Adaptive Network for

Human Parsing

AIHUA MAO and YUAN LIANG, South China University of Technology, China

JIANBO JIAO, University of Oxford, United Kingdom

YONGTUO LIU and SHENGFENG HE, South China University of Technology, China

Due to the challenges of densely compacted body parts, nonrigid clothing items, and severe overlap in crowd

scenes, human parsing needs to focus more on multilevel feature representations compared to general scene

parsing tasks. Based on this observation, we propose to introduce the auxiliary task of human mask and

edge detection to facilitate human parsing. Different from human parsing, which exploits the discriminative

features of each category, human mask and edge detection emphasizes the boundaries of semantic parsing

regions and the difference between foreground humans and background clutter, which benefits the parsing

predictions of crowd scenes and small human parts. Specifically, we extract human mask and edge labels

from the human parsing annotations and train a shared encoder with three independent decoders for the

three mutually beneficial tasks. Furthermore, the decoder feature maps of the human mask prediction branch

are further exploited as attention maps, indicating human regions to facilitate the decoding process of hu-

man parsing and human edge detection. In addition to these auxiliary tasks, we further alleviate the prob-

lem of deformed clothing items under various human poses by tracking the deformation patterns with the

deformable convolution. Extensive experiments show that the proposed method can achieve superior per-

formance against state-of-the-art methods on both single and multiple human parsing datasets. Codes and

trained models are available https://github.com/ViktorLiang/MGDAN.

CCS Concepts: • Computing methodologies→ Image segmentation; Appearance and texture repre-

sentations;

Additional Key Words and Phrases: Human parsing, multi-task learning, deformable convolution
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1 INTRODUCTION

Human parsing is a segmentation task for fine-grained human body parts and clothing items,
which aims at assigning each human-related pixel a semantic label. Human parsing can bene-
fit several human-centric tasks such as person re-identification [17, 26, 34, 44], human behavior
recognition [21, 37], and clothing fashion retrieval [23, 48].

State-of-the-art human parsing approaches mainly focus on exploiting rich prior knowledge to
improve parsing performance. Among them, edge detection is introduced by [2, 10, 36, 39] as a
boundary prior to assist human parsing. Despite the promising performance, edge and parsing
results of small-scale objects tend to be coarsely predicted or mispredicted as background without
the high-level guidance of foreground and background constraints. As a result, in crowded scenes
where the close-to-camera humans have a rather larger scale than those off-camera, the small-scale
humans are easily ignored by current models (see Figure 1).

In addition to the lack of high-level constraints, the problem of background/foreground mispre-
diction is also due to the data imbalance of human parsing annotations. Statistically, more than
50% of pixels are labeled as background in the human parsing dataset LIP [11], while the rest of
the samples are exploited to recognize 19 categories of human body parts. This heavily biases
the network training toward the easy background samples, resulting in inaccurate predictions for
foreground human body parts and clothing items.

A recent line of work [9, 12, 16, 40–42] proposes to manually group the parsing labels into several
pyramid levels and elucidate the hierarchical adjacent relationships between human body parts
via Graph Neural Networks or part-relation reasoning. Another line of work [18, 36] leverages
binary edge detection to embed the local part relations in edge feature maps. The edge feature
maps provide a simple but efficient part-relation reasoning since only binary edge prediction is
generated.

To address the aforementioned shortcomings and combine their respective merits, we propose
to integrate human edge and mask detection simultaneously to fully exploit the mutually benefi-
cial low-level and high-level constraints for accurate parsing estimations. In a similar vein to the
hierarchical structured human parsing methods [9, 12, 16, 40–42], our proposed mask prediction
branch first generates full-body features and then decomposes them into human parsing features.
Like SCHP [18], our method also incorporates low-level edge information. Unlike them, the edge
features are served as supplemented details, which are aggregated with both mask features and
parsing features to generate final parsing prediction. To the best of our knowledge, it is the first
attempt to explore the fusion strategy of multilevel constraints achieved by simultaneous human
edge and mask detection for human parsing.

Another challenge for human parsing is to distinguish different kinds of body parts and clothing
items under various human poses. However, such deformation problem in human parsing is still
not well explored in the literature. Recent methods [6, 31] introduce auxiliary human pose con-
straints to alleviate this problem, but deformed clothing may not always be consistent with the
rigid human body parts and presents more complex variations due to the nonrigid nature. To this
end, inspired by the success of deformable convolutions, we propose to explore them to adaptively
learn intrinsic representations of body and clothing deformations.
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Fig. 1. Two challenging examples of human parsing on the CIHP [10] datasets. This illustrates crowd scenes,
where small-scale individuals in the off-camera regions are ignored by Grapy-ML [12]. Differently, our
method can alleviate this issue by introducing auxiliary tasks of human mask and edge detection facilitated
with deformable convolutions.

To summarize, we propose a mask-guided deformation adaptive network for human parsing.
Specifically, in addition to the primary human parsing branch, we introduce the auxiliary task
of simultaneous human mask and edge detection. The human mask prediction branch ignores
specific categories of human body parts and concentrates more on the high-level foreground and
background separations. The aforementioned data imbalance problem can be elegantly alleviated
as the foreground or background class contains roughly the same amount of training samples
(pixels). The human edge detection branch is dedicated to the low-level boundary calibrations be-
tween adjacent parsing items. It can provide detailed information regarding small-scale human
body parts, of which human parsing tends to have relatively low prediction confidence. The mu-
tually beneficial human understanding tasks share the same feature extractor and utilize three
different decoders to output human parsing, human mask, and edge detection, respectively. Addi-
tionally, the decoder feature maps of the two auxiliary branches are further exploited to facilitate
the decoding process of human parsing. Specifically, the decoded mask feature maps are multiplied
with those of the human parsing branch to serve as attention maps, indicating human regions for
better discriminating foreground humans and background clutter. Meanwhile, the decoded edge
feature maps are shared with the human parsing branch via concatenation to emphasize accu-
rate boundaries of multiscale human body parts. More importantly, the backbone network is not
only governed by human parsing but also deeply supervised by human mask and edge detection
in a multitask fashion. This design releases the training burden of foreground/background sepa-
ration and boundary calibration from human parsing and allows the learning of human parsing
to focus more on human body part classification. Furthermore, as the vanilla convolutional layer
is performed via a grid-structured kernel, which limits the capabilities of capturing shape vari-
ations caused by human pose changes, we cope with this problem by introducing deformable

convolution (DCN) [56]. Specifically, we utilize deformable convolutions in the last three blocks
of the backbone network in order to deal with the deformation in a multiscale fashion. Extensive
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experiments are conducted to explore the fusion strategies of these mutually beneficial tasks and
demonstrate superior performance against state-of-the-art methods. In summary, the main contri-
butions of our work are threefold:

• We propose to integrate human edge and mask detection simultaneously to fully exploit the
mutually beneficial low-level and high-level constraints for human parsing. This reduces the
learning ambiguity of human parsing by disentangling this task into foreground-background
separation, boundary calibration, and human body part classification, respectively, and there-
fore substantially reduces the parsing prediction errors.
• We propose to introduce deformable convolutions to adaptively learn intrinsic representa-

tions of deformed body parts and clothing items induced by various human pose changes.
• Extensive experiments show that the proposed method can achieve superior performance

with respect to three widely used benchmarks of both single-human and multihuman
parsing.

2 RELATED WORK

Here we discuss related literature in three aspects: human parsing, scene parsing, and object de-
formation modeling.

2.1 Human Parsing

Great interest has long been attracted to human parsing in the literature. Traditional human pars-
ing methods [23, 27, 29, 48] utilize hand-designed over-segmentation (i.e., HOG, superpixels) and
hand-crafted structures (i.e., And-Or graph) to build models [43, 45], and unsupervised superpixels
and CRF are commonly used to refine predicted labels. Generally, the pipelines are composed of sev-
eral hand-designed models, which readily leads to bottlenecks among them. Early convolutional

neural network (CNN)-based approaches [24, 28] utilize feature extraction and region relation
learning combined in an end-to-end manner. Although much improvement has been achieved,
the limited CNN layers cannot learn abundant discriminative feature representations. With the
proposal of deep residual networks [13], deeper parsing features boost the performance of vari-
ous human parsing approaches [22, 30, 53, 55]. In spite of the improved feature extraction, some
problems like the prediction of small-scale human body parts, deformed clothes, and crowd scenes
still remain challenging for human parsing. Recently, several methods [30, 53, 55] are proposed to
tackle the scale variation problem. Zhao et al. [53] employ three versions of each input image with
scaling factors of 0.5, 0.75, and 1, and each version is processed by a fully CNN with shared weights
to learn the scale-invariant feature representations.Some works [10, 36] utilize pyramid pooling
[52] in the top layers to abstract multilevel contextual representations for human parsing. In addi-
tion, they also introduce an auxiliary human edge detection branch. Although parsing boundaries
can be calibrated to some extent in such methods, edge and parsing results of small-scale objects
tend to be coarsely mispredicted as background without the high-level guidance of foreground
and background constraints.

Inspired by the human visual system, Zhu et al. [55] design a hierarchical structure, where large-
scale human body parts are predicted at lower layers and serve as prior information for small-scale
human body parts that are predicted at deeper layers. To further explore the inherent hierarchical
structure of a human body, BGNet [50] leverages a grammar rule to first predict conspicuous parts
(e.g., torso, head), which progressively amends the prediction of inconspicuous parts (e.g., low-
arm, low-leg). Some of the other latest works explore the inherent structure of human bodies and
propose to manually group the parsing labels into several pyramid levels (e.g., full-body, upper-
lower body, detailed parsing body) [9, 12, 40–42] or cascade tree structure [16]. To constrain the
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structured human parsing results, they typically formulate the adjacent relationships between hu-
man body parts via graph neural networks [9] or part-relation reasoning [12, 16, 40–42]. In addition
to the network architecture design and intrinsic consistency constraints, several works [18, 19] are
specialized to deal with the problem of insufficient high-quality labels. To remedy the problem of
noisy labels, SCHP [18] proposes to train the model by online aggregation and refine the noisy
labels synchronously. To alleviate the problem of insufficient training samples, Li et al. [19] design
a self-learning strategy for efficient supervision. Our model design follows the same spirit as hier-
archical structure models [9, 12, 16, 40–42], with the complementary refinement by aggregating
three predictions with learned global convolutions.

2.2 Scene Parsing

As a related task to human parsing, scene parsing also suffers from the issues caused by object
scale variations. Aiming at obtaining more global and local scene category clues, Zhao et al. [52]
first propose pyramid pooling with several pooling layers executed independently to obtain mul-
tiscale features. Fu et al. [8] employ self-attention modules with spatialwise nonlocal module and
channelwise SEResNet module [14] to integrate contextual features. To learn the distinct features
of foreground and background, some methods [20, 47] are proposed to utilize two branches for
foreground and background predictions individually. Li et al. [20] propose to leverage foreground
features as an attention map to guide the background branch by conducting RoI Upsampling on
the learned features of bounding boxes. In [47], the foreground and background features are fused
in the panoptic head to obtain the final dense prediction. Our method shares the same spirit with
these methods targeting reduction of the learning ambiguities of the major task. Differently, we
tailor the network for human parsing by introducing two auxiliary tasks to aid the primary parsing
task.

2.3 Deformation Modeling

Object deformation caused by viewpoint changes or nonrigid transformation has always been a
challenge in visual recognition. Felzenszwalb et al. [7] propose to consider the mixture of root filter
and part filters, where the former responds for coarse detection of an entire object, and the latter
is utilized to handle detailed deformations of each part. The filters are learned by a latent SVM and
the detection score is a combination of root and part responses. Jaderberg et al. [15] first utilize
the CNN to tackle object deformations by a spatial transformer that warps the input features by
a learnable affine transformation matrix. This matrix is applied isotropically where features at dif-
ferent channels share the same affine transformation, which limits its ability to channel-sensitive
tasks, such as semantic segmentation, where more dense or semi-dense predictions are needed.
Instead of spatially adjusting the features by a learnable transformation matrix, Dai et al. [5] han-
dle deformation by learning sample offsets for regular convolution kernels. These learnable offsets
enlarge the sample range of each convolution kernel in a local and dense manner, which makes it
more appropriate for complex tasks. In [56], an improved deformable version with the modulation
mechanism is proposed to adaptively adjust offsets and modulate the input feature amplitudes.
Differently, we adopt deformable convolution to alleviate the deformed regions of human items,
especially clothing. However, the learned offsets tend to span background regions between pair-
wise body parts such as arms and legs; thus, we further introduce a human mask detection branch
serving as a background filter for rectification.

3 APPROACH

In this section, we present our approach in detail. As aforementioned, our method mainly addresses
the foreground and background imbalance problem along with deformation issues in human
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Fig. 2. Illustration of our proposed method. In addition to the primary human parsing architecture, two aux-
iliary branches are introduced to explicitly capture the multilevel prior context of human mask and edge
detection. Specifically, the human mask prediction branch guides human parsing by attentive multiplication
in the decoding process, while the edge branch provides detailed boundary priors to facilitate fine-grained
parsing predictions. Finally, feature maps from the three branches (e.g., ParseFeat1, ParseFeat2, and Parse-
Feat3) are fused by concatenation and convolution to refine the final parsing result.

parsing. As shown in Figure 2, the pipeline of the proposed model mainly consists of four parts:
human parsing branch, human mask prediction branch, human edge detection branch, and the
parsing rescoring module. Specifically, the backbone network facilitated with deformable convolu-
tion layers (e.g., red arrows in Figure 2) aims to learn deformation adaptive feature representations
that are fed to the three downstream mutually complementary tasks. The mask prediction branch
leverages multiscale features from the backbone network to provide human mask attentions for
human parsing. The attention maps are also explored as foreground prior knowledge for the edge
detection branch, which facilitates parsing predictions of small-scale object categories. Finally,
parsing predictions from the three branches are processed by a rescoring module to refine the
final human parsing result while taking their complementary merits into consideration.

3.1 Backbone Network

We modify ResNet-101 [13] as our backbone network. To alleviate the limitations of grid-structured
kernels of vanilla convolutional layers, we employ DCN [56] in the deeper layers of the backbone
network.

Denoting the sampling grid of a convolutional layer as R for the input feature map x , the output
feature map y at each location p0 can be formulated as

y (p0) =
∑

pn ∈R
w (pn ) · x (p0 + pn ). (1)

With the learnable offset �pn for each sampled location, the result of deformable convolution can
be formulated as

y (p0) =
∑

pn ∈R
w (pn ) · x (p0 + pn + �pn ). (2)
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Fig. 3. Three types of designs for human edge detection. For the space limitation, “HED,” “S-HED,” and “SG-
HED” indicate human edge detection, semantic human edge detection, and semantic-guided human edge
detection, respectively. (a) is the vanilla setting where human edge labels are extracted from the human pars-
ing annotations without regard to semantic categories of each human body part. (b) shows the semantic
human edge detection [49] that allocates human parsing categories to extracted human edges. (c) is the pro-
posed method modified from (a) and (b) to explicitly guide human edge detection with semantic constraints
from human parsing.

The learnable offset �pn provides an adaptive selection strategy for tracking the deformation pat-
terns of clothing items under various human poses. In our model, the convolutional layers from
the third residual block to the last one (e.g., Conv3, Conv4, and Conv5 in Figure 2) are replaced by
DCN. It is worth noting that low-level features contain more accurate object locations that benefit
parsing detailed object boundaries; thus, multilevel features from the backbone network are inte-
grated to generate the initial discriminative feature maps for human parsing (e.g., ParseFeat1 in
Figure 2).

3.2 Human Edge Detection Branch

Human edges serve as boundary prior to distinguish highly compact clothing items and body parts
in human parsing. Different from the general edge detection problem [46], which aims at finding
all salient edges, edge detection for human parsing (see Figure 3(a)) is mainly dedicated to dis-
criminating human edges between various clothing items and body parts, which relies more on
top-down semantic guidance. To explore the optimal settings for the human edge detection branch,
we attempt to utilize the semantic human edge detection [49] as shown in Figure 3(b), where each
edge has a semantic label. However, we find that the semantic human edge detection struggles
to converge to what we want it to learn, and hardly provides general boundary constraints for
human parsing. To this end, we exploit another variant, namely, semantic-guided human edge
detection (see Figure 3(c)), which utilizes human parsing as semantic guidance for human edge
detection. Specifically, as shown in Figure 2, multiscale feature maps extracted from the backbone
network are processed by a 1 × 1 convolutional layer to generate three groups of multilevel feature
maps with the same resolution and each having 256 channels. ParseFeat3, which originates from
multilevel combined features, is transferred to the human edge detection branch for high-level
foreground and background constraints, and the transferred features together with the multilevel
combined features are both supervised by the human parsing and human edge detection branches,
which effectively bridges the multilevel mutually complementary human understanding tasks.
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Fig. 4. Illustration of the fusion process for multilevel combined feature maps. Each group of feature maps
from the backbone network is processed via convolutional layers and optional bilinear upsampling operations
to 1/4 size of the input image.

Denoting the four groups of feature maps in the edge detection branch as Pedд1, Pedд2, Pedд3, and
Pedд4, the final edge prediction Pedд is formulated as

Pedд = fk (Concat (Pedд1, Pedд2, Pedд3, Pedд4)), (3)

where Concat means concatenation along the channel dimension, and fk represents a convolu-
tional layer with kernel size of k. In addition, to further exploit the low-level boundary constraints,
we propose to divide the feature maps (i.e., Pedд1, Pedд2, Pedд3, and Pedд4) into grids (nonoverlap-
ping patches) and concatenate them along the batch dimension before they are fed into the fol-
lowing convolutional layers. The rationale behind this design is that boundary calibrations can
be realized from a local perspective, and the grid-dividing method can confine the receptive field
and be regarded as a self-supervised learning strategy for human edge detection. In experiments,
we empirically set the grid as 2 × 2. The quantitative results of our method with grid division in
the edge detection branch are marked as “Ours*” in Tables 7, 8, and 9, where “Ours” denotes the
variant without this technique.

3.3 Human Mask Prediction Branch

Human mask prediction also benefits from multilevel feature representations [33, 54]. Therefore,
derived from the backbone network, we build a new branch that extracts multilevel features for
human mask prediction. Similar to the edge detection branch, the outputs from Conv2, Conv3,
Conv4, and Conv5 are processed by convolutional layers followed by necessary upsampling op-
erations (or not) to generate four groups of feature maps with the same resolution. See Figure 4
for a detailed configuration. Aiming at providing soft attention to highlight foreground regions,
the integrated features are processed by the sigmoid function and then multiplied with the feature
maps in the human parsing branch.

The full-body supervised mask branch tends to smooth the boundary details between different
parsing categories, and thus the mask-guided full-body attentions have the potential to under-
mine the activation in parsing features. To further amend this problem, we integrate mask feature
maps for human edge detection and human parsing prediction. Besides, the input features from
the backbone network for mask and edge detection branches are also shared. With our full-body
attention, the high activations of edge features are restricted in foreground human regions. The
mask features, on the other hand, could preferably keep the desired activations in the boundary re-
gions, which might be smoothed by the mask supervision. The effectiveness of combined features
as attention maps for the human parsing branch can be better guaranteed when the combined
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features are supervised by both edge detection and mask prediction branches. The effectiveness of
this fusion strategy is demonstrated in Table 2 and visualized in Figure 5.

Formally, we denote the concatenated four groups of feature maps in the mask branch as Fcat ,
and then the multilevel combined features Fmask generated before the sigmoid activation can be
formulated as

Fmask = σ ( f3 (Fcat )), (4)

where f3 is a convolutional layer with kernel size of 3, and σ represents the ReLU activation func-
tion. For simplicity, we denote ParseFeat1 as Fps1, with the feature maps generated by Conv3
and multiscale feature pyramid pooling denoted as Fconv3 and Fpsp , respectively. Fps1 can then be
formulated as

Fps1 = f1 ( f1 (Fconv3), Fpsp ) ∗ siдmoid (Fmask ), (5)

where f1 denotes a convolutional layer with kernel size of 1, and siдmoid means the sigmoid acti-
vation function.

3.4 Human Parsing Rescoring Module

For simplicity, we denote multilevel combined features from the three branches as Pps1, Pps2, and
Pps3 (corresponding to ParseFeat1, ParseFeat2, and ParseFeat3 in Figure 2). These three groups of
feature maps are obtained from three mutually complementary tasks and contain rich multiscale
and multilevel feature representations. Specifically, Pps1 is the combination of multiscale feature
maps derived from the backbone network, which are elementwisely multiplied by Pps3 to atten-
tively discriminate human body parts from background clutter, while Pps2 is supervised by both
the human parsing branch and the edge detection branch, which can facilitate the discoveries of
boundaries and estimation of more accurate parsing results.

Appropriately incorporating the bright sides of the three branches can further benefit estima-
tions of challenging small-scale categories and constrain the local consistency for large-scale items.
To this end, neighboring pixels should also be taken into consideration for inference. For instance,
if we want to judge whether one pixel is background or not, the prediction results of its neigh-
bors should also be taken into consideration, and the wider the better. Thus, we propose a parsing
rescoring module with a large receptive field for the combination of Pps1, Pps2, and Pps3. By inte-
grating multibranch combined features for parsing, the results are further refined by the rescoring
module. Without loss of generality, we simply implement it as a convolutional layer.

Denoting the result from the parsing rescoring module as Pps_r escor e and a convolutional layer
with kernel size of k as fk , the overall parsing prediction Pps_r escor e is formulated as

Pps_r escor e = fk (Concat (Pps1, Pps2, Pps3)). (6)

Note that Pps2 is the final parsing prediction, while other predictions serve as supervisors to
enforce guidance for better-learned features. As shown in Table 5, slightly better performance
improvement has been achieved with the rescore module, especially on the multihuman dataset
CIHP.

3.5 Training Details

The labels for the human mask prediction branch are generated by assigning all nonbackground
pixels as 1 and background pixels to 0, while human edge labels are extracted in the same way as
[36]. Cross-entropy is utilized as the loss function for all pixelwise predictions:

L = −
N∑

c=1

wcycloд(pc ), (7)
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where N denotes the number of categories, which is 20 for the LIP and CIHP datasets, and 2 for the
edge and mask branches. wc is the balance weight for category c . In experiments, we set all wc to
1 for all categories except the edge detection branch. For edge detection, we set the nonedge ratio
as the balance weight for the edge category, while the edge ratio is set as the balance weight for
the nonedge category. Since the ratio of background and foreground is naturally balanced across
the datasets, we also set balance weights to 1 for simplicity in the human mask prediction branch.

Denoting the loss functions for human parsing results of the three branches and the downstream
rescoring module as Lps1, Lps2, Lps3, and Lps_r escor e , respectively, the overall loss function Lps of
the human parsing branch can be formulated as

Lps = Lps1 + Lps2 + Lps3 + Lps_r escor e . (8)

Each branch has a shared top-level feature from the backbone. The loss values between any parsing
predictions are not differing much. Thus, each loss weight is set to 1.

By denoting loss functions for human mask prediction and edge detection as Lm , Ledд , the total
loss function is formulated as

Ltotal = Lps + Ledд + Lm . (9)

The edge detection branch and the mask prediction branch are both supervised by human parsing
prediction. Loss values for three tasks have no order-of-magnitude difference. Thus, we also set
the loss weights for three tasks to 1.

Our network is optimized by SGD [38]. The initial learning rate is set to 0.001 and decayed by lr×
(

1 − iter
total_iter

)0.9. The network is trained for 200 epochs with batch size of 21. The fixed resolution of

input images is 384 × 384 for LIP, and 448 × 448 for CIHP and Pascal-Person-Part. Center cropping,
scaling, flipping, and grayscaling with a probability of 0.5 are used for data augmentation.

4 EXPERIMENTS

In this section, we present extensive experiments to demonstrate the effectiveness of the proposed
method.

4.1 Dataset and Evaluation Metric

We conduct comparison experiments on the following three datasets.
LIP: The LIP [11] dataset is the largest existing single human parsing dataset, with 50,462 images

split into 30K/10K/10K for training, validation, and testing, respectively. The dataset contains 19
semantic labels for human body parts and clothing items. Human poses vary greatly in this dataset.

CIHP: The CIHP [10] dataset focuses on multihuman parsing and contains 38,280 images among
20 categories. Each image has semantic human parsing, instance-level human parsing, and human
pose annotations. The dataset is split into 28,280/5,000/5,000 for training/validation/testing. Com-
pared with other multihuman parsing datasets, CIHP exhibits higher resolutions and more crowd
scenarios.

PASCAL-Person-Part: This dataset is constructed from the person annotations of the PASCAL-
Part dataset [4]. The PASCAL-Part dataset provides pixel annotations for parts of animals, humans,
vehicles, and so forth. The PASCAL-Person-Part dataset takes human annotations from it and
groups them into six human body parts, e.g., head, torso, upper arms, lower arms, upper legs, and
lower legs. This dataset contains 3,535 images, which are split into 1,717/1,818 for training/testing.
Multiple humans and large-scale variations of human sizes could be found in this dataset.

For measuring the performance, the parsing accuracy is evaluated by mean IoU, pixel accuracy,
and mean accuracy, in which mean IoU is the main metric to compare different human parsing
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Table 1. Comparison Results of Different Configurations When
Replacing the Convolutional Kernels in the Backbone Network

by Deformable Convolution (DCN)

Method pixel acc. mean acc. mIoU

CE2P[36] 87.37 63.2 53.1
CE2P+DCN001 86.55 64.01 51.68
CE2P+DCN011 87.46 66.65 54.19
CE2P+DCN110 87.32 66.13 53.72

CE2P+DCN111 87.64 66.37 54.49

Experiments are performed on the LIP dataset. DCN-xyz denotes the

block of conv3(x), conv4(y) and conv5(z), where x, y, and z take the

values of 1 or 0 to indicate replacement or lack thereof.

models. To be consistent with previous works, each dataset is tested using the model trained on
the corresponding training set only.

4.2 Evaluation of Deformable Convolution

To explore the influence of DCN, the baseline model is kept unchanged except for the modifications
on convolutional layers from Conv3 to Conv5 of the backbone network. We gradually replace them
with DCNs. The comparison results of different modification strategies are shown in Table 1.

It can be seen that only replacing the Conv5 layer with DCN results in a slight accuracy decrease.
Marginal improvements can be found by replacement in lower levels of feature extraction (e.g.,
Conv3 and Conv4). With all convolutional layers from Conv3 to Conv5 replaced by DCNs, the
optimal performance is achieved, with mIoU improved by more than 1.3 against the baseline model.
This indicates that multilevel features need to be taken into consideration for generating sampling
offsets due to multiscale human body parts and clothing items.

In the following experiments, DCNs are applied to Conv3, Conv4, and Conv5 by default if there
are no extra declarations.

4.3 Evaluation of Mask Prediction

In Table 2, we explore different fusion strategies between the human mask prediction branch and
human parsing. The term “w/o Mask” indicates the baseline model without the human mask pre-
diction branch. When we add this branch and leverage mask features to serve as attention maps
(denoted as “w/ Mask Atten”) or communicate with the human edge detection branch (denoted
as “w/ Mask Edge”) in the decoding process, the parsing performance becomes slightly improved.
When we integrate each strategy with additional human parsing supervision (denoted as “w/ Mask
Atten+Parse” or “w/ Mask Edge+Parse”), the performance is improved accordingly, with overall
promotion of all three metrics. This indicates that the supervision signal from human parsing
can refine the decoded feature maps of the human mask prediction branch for compatible fusions
with the other branches. In addition, we train another variant to integrate these three strategies
(denoted as “w/ Mask Atten+Edge+Parse”). As seen in Table 2, the performance reaches the opti-
mum, which demonstrates the effectiveness of the introduced human mask prediction branch and
multiple fusion strategies.

In addition to the quantitative comparison, we visualize the attention maps (the gray block in
Figure 2) of “w/ Mask Atten” and “w/ Mask Atten+Edge+Parse” in Figure 5. We can see that the
attention maps of “w/ Mask Atten” mainly show high response values outside the boundaries
of human body parts, and direct attentive multiplication with the human parsing branch may
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Table 2. Comparison Results of Different Fusion Strategies between the
Human Mask Prediction Branch and Human Parsing on the LIP Dataset

Method pixel acc. mean acc. mIoU

w/o Mask 87.64 66.13 54.49
w/ Mask Atten 87.84 66.67 54.93
w/ Mask Edge 87.83 66.24 54.85

w/ Mask Atten+Parse 87.99 67.43 55.38
w/ Mask Edge+Parse 87.43 67.52 55.12

w/ Mask Atten+Edge+Parse 88.07 67.19 55.58
w/ Mask Atten+Edge+Parse+Share 88.24 67.81 56.32

Fig. 5. Visualization of the attention maps extracted from the human mask prediction branch (marked by
the gray block in Figure 2). Due to the space limitation, “Atten” and “Atten+Edge+Parse” represent “w/ Mask
Atten” and “w/ Mask Atten+Edge+Parse,” respectively.

submerge prominent discriminative responses of interior boundaries. When equipped with
the human edge and parsing supervision, the attention maps of “w/ Mask Atten+Edge+Parse”
can render more regions of foreground humans, which maximizes the inherent strength of
the human mask prediction branch for foreground/background separation and benefits the
parsing predictions especially in crowded scenes. Furthermore, we share the weights of the
backbone network among the three branches and show the result, which is denoted as “w/ Mask
Atten+Edge+Parse+Share.” It is worth noting that the shared version can boost the performance
of human parsing with fewer parameters than the unshared counterpart, which further verifies
the effectiveness of the introduced mutually complementary tasks.

Apart from the averaged accuracy of all categories shown in Table 2, we also summarize the
detailed performance of each parsing item using mIoU in Table 3. Compared with the baseline
model “B,” the modified backbone network with deformable convolution (denoted as “B+D”) can
achieve remarkable improvements for large-scale categories (e.g., dresses, pants, and jumpsuits)
and easily deformed items (e.g., gloves, scarves, and skirts). Additionally, when introducing the hu-
man mask prediction branch (denoted as “B+D+M”), the small-scale categories (e.g., socks, faces,
legs, and shoes), which perform inferiorly in “B+D,” can substantially benefit from the balanced
foreground and background separations. Those infrequent categories, such as hats, scarves, and
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Table 3. Detailed Comparison Results of Each Category on the LIP Dataset
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B 53.1 87.67 65.29 72.54 39.09 32.73 69.46 32.52 56.28 49.67 74.11 27.23 14.19 22.51 75.5 65.14 66.59 60.1 58.59 46.63 46.12

B+D 54.49 88.05 67.27 72.14 41.14 32.38 70 35.42 56.82 48.63 75.58 34.2 22.31 31.50 74.61 65.53 67.76 57.97 57.22 45.33 45.96

B+D+M 55.38 88.45 67.11 72.74 45.35 31.49 70.84 35 57.93 50.67 76.15 33.95 22.27 28.37 75.25 66.84 69.09 60.07 59.7 47.72 48.58

B+D+M+R 55.84 88.45 67.67 72.93 45.08 32.27 70.98 36.27 58.1 51.23 76.29 35.24 23.94 28.55 75.42 66.94 69.36 61.07 60.23 47.84 48.85

B, D, M, and R denote the baseline model [36], deformable convolution, human mask prediction branch, and parsing

rescoring module, respectively. Due to the space limitation, the best accuracy of each column is underlined.

Table 4. Detailed Comparison Results of Each Category with Respect to the Auxiliary Human Edge
Detection Branch
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Single human parsing on LIP

w/o Edge 55.0 88.17 66.14 71.90 43.19 30.84 70.89 36.08 58.04 49.03 75.61 34.43 24.30 28.86 74.45 65.29 68.22 60.34 60.11 46.52 48.05

w/ Edge 56.56 88.71 67.71 73.14 45.49 33.38 71.25 39.75 58.45 51.63 76.52 34.13 25.72 29.53 75.60 67.87 70.06 62.50 61.62 48.71 49.43

Multiple human parsing on CIHP

w/o Edge 61.8 94.21 71.32 80.99 33.48 57.02 69.42 58.67 66.07 36.10 74.82 73.03 35.85 43.15 87.88 70.58 71.55 60.04 60.45 47.32 45.93

w/ Edge 61.91 94.18 71.38 81.03 33.14 58.17 69.13 58.76 65.59 35.21 74.97 73.77 36.19 41.88 87.95 70.65 71.93 60.27 61.19 46.71 46.06

Variants of our method with and without the edge detection branch are denoted as “w/ Edge” and “w/o Edge,”

respectively.

glasses, are still challenging for the introduced human mask prediction task. Therefore, adding the
auxiliary human mask prediction branch may not boost the performance significantly for those
categories. However, for the majority of parsing items, the human mask prediction branch can im-
prove the performance through the introduced explicit semantic constraints. The last row entitled
“B+D+M+R” represents an additional parsing rescoring module based on “B+D+M,” which will be
discussed in Section 4.5.

4.4 Evaluation of Edge Detection

To evaluate the effectiveness of the human edge detection branch, we train two variants of the pro-
posed method with and without the auxiliary branch, respectively denoted as “w Edge” and “w/o
Edge” in Table 4. To be specific, “w/o Edge” represents the model where all the blocks and lines in
Figure 2 specified for the edge detection branch are removed. As seen in Table 4, the introduced hu-
man edge detection branch can consistently improve the average accuracy (mIoU) for both single
and multiple human parsing, which demonstrates the efficacy of low-level boundary constraints
achieved by the auxiliary explicit human edge supervision. Compared with multiple human pars-
ing on CIHP, single human parsing on LIP exhibits a greater performance gain with respect to the
average accuracy, and almost all the categories on LIP exhibit better parsing predictions with the
edge detection branch added. This indicates that boundary calibrations are especially effective for
large-scale parsing items, which are typical and common in single human parsing datasets.

4.5 Evaluation of Rescoring Module

To further refine the parsing results, we introduce a parsing rescoring module at the end of the
network. As the rescoring module is designed to exploit the merits of multibranch parsing results,
we simply implement it with a convolutional layer without loss of generality. The ablation study
of the kernel size is conducted on the LIP and CIHP datasets, and the comparison results are shown
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Table 5. Comparison Results of the Parsing Rescoring Module with
Respect to Different Kernel Sizes on the LIP Dataset

Method pixel acc. mean acc. mIoU

Single human parsing on LIP
w/o Rescore 87.99 67.43 55.38
w/ R_Conv1 87.97 67.43 55.52
w/ R_Conv7 88.07 67.74 55.61
w/ R_Conv15 88.04 67.89 55.70
w/ R_Conv31 88.07 68.23 55.84

Multiple human parsing on CIHP
w/o Rescore 90.62 69.14 58.49
w/ R_Conv31 90.74 69.68 59.07

R_Conv* denotes the parsing rescoring module with kernel size of *. Note

that large kernel sizes lead to explosively growing computational cost for

vanilla convolutional layers. To be efficient, we implement it as the global

convolution [32]. The best accuracies are indicated by bold fonts.

Table 6. Quantitative Comparisons of the Cost and Accuracies of the
Baseline Model and Variants of the Proposed Method on the LIP Dataset

Method #Params GFLOPs fps mIoU

Baseline 66.7M 49.2 17.7 53.1
Ours 106.4M 162.6 14 55.8

Ours (Shared Params.) 74.1M 116.7 19.1 56.56

in Table 5. We can see that larger kernel sizes can bring consistent improvement with more compu-
tational cost. As the performance saturates when the kernel size reaches 31, we select this setting
for the other experiments.

4.6 Network Analysis

To comprehensively analyze the proposed method, we show the numbers of parameters, running
times, and accuracies of the baseline model and variants of our model in Table 6. We can see that
the shared version of our method can outperform the unshared counterpart with smaller num-
bers of parameters and higher processing speed, which demonstrates the superior performance of
the introduced multitask learning mechanism for human parsing. Specifically, compared with the
baseline model, our method improves mIoU with 3.46 at the cost of an extra 7.4M parameters and
67.5 GFLOPs. In spite of the relatively high increase of GFLOPs, the runtime requirements can be
satisfied in most of the real-world application scenarios.

4.7 Comparison with State-of-the-art Methods

In this section, we compare our method with the state of the art on three widely used bench-
marks. Table 7 reports the comparison results on the LIP dataset, which is dedicated to single
human parsing. We can see that the proposed method (denoted as “Ours*”) can achieve superior
performance across all three metrics even without the explicit hierarchical adjacent relationship
constraints [12, 42]. In addition, we also conduct comparison experiments on the CIHP and
PASCAL-Person-Part datasets, which are committed to multiple human parsing. The comparison
results are summarized in Table 8 and Table 9. We can see from Table 8 that our method achieves

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 1, Article 11. Publication date: March 2022.



Mask-Guided Deformation Adaptive Network for Human Parsing 11:15

Table 7. Comparison Results of Our Method
with State of the Art on the LIP Dataset [11]

Method pixel acc. mean acc. mIoU
DeepLab (VGG-16) 82.66 51.64 41.64

DeepLab (ResNet-101) 84.09 55.62 44.80
JPPNet [11] (CVPR 17) 86.39 62.32 51.37
CE2P [35] (AAAI 19) 87.37 63.20 53.10
CNIF [40] (ICCV 19) 88.03 68.80 57.74

Grapy [12] (AAAI 20) 87.41 66.55 54.40
SCHP [18] (PAMI 20) - - 59.36
HTPR [42] (CVPR 20) 89.05 70.58 59.25
PCNet [51] (CVPR 20) - - 57.03
BGNet [50] (ECCV 20) - - 56.82
SNT [16] (ECCV 20) 88.10 70.41 54.86

Ours 88.30 68.50 56.56
Ours* 88.45 71.12 58.14

“Ours” and “Ours*” represent variants of the

proposed method without and with the grid

dividing technique, respectively, which is described

in Section 3.2. The best accuracy is highlighted in

bold font and the second and third best accuracies

are underlined.

Table 8. Comparison Results of Our Method with
State of the Art on the CIHP Dataset [10]

Method mean acc. mIoU
PGN [10] (ECCV 18) 64.22 55.80

DeepLab v3+[3] (ECCV 18) 65.06 57.13
Graphonomy (PASCAL) [9] (CVPR 19) 66.65 58.58

Grapy [12] (AAAI 20) 68.95 60.36
Grapy-ML [12] (AAAI 20) 68.97 60.60

PCNet [51] (CVPR 20) 67.05 61.05
HTPR [42] (CVPR 20) 72.67 60.60

Ours 72.36 61.91
Ours* 72.98 62.61

The best accuracy is highlighted in bold font and the

second and third best accuracies are underlined.

Table 9. Comparison Results of Our Method with
State of the Art on the PASCAL-Person-Part

Dataset [4]

Method mIoU

LIP [11] (CVPR 17) 59.36
RefineNet [25] (CVPR 17) 68.6

Bilinski et al. [1] (CVPR 18) 68.6
DeepLab v3+ [3] (ECCV 18) 67.84

PGN [10] (ECCV 18) 68.4
Graphonomy (CIHP) [9] (CVPR 19) 71.14

CNIF [40] (ICCV 19) 70.76
Grapy [12] (AAAI 20) 69.50

Grapy-ML [12] (AAAI 20) 71.65
SCHP [18] (PAMI 20) 71.46
HTPR [42] (CVPR 20) 73.12
PCNet [51] (CVPR 20) 74.59

BGNet [50] (ECCV 20) 74.42
SNT [16] (ECCV 20) 71.59

Ours 72.47
Ours* 73.46

The best accuracy is highlighted in bold font and the

second and third best accuracies are underlined.

the best performance on CIHP with respect to all the metrics. It is worth noting that our method
can consistently outperform hierarchical graph-based methods in multiple human parsing where
crowd scenes are typically common, which verifies the effectiveness of the introduced multitask
fusion mechanism. The comparison results in Table 9 demonstrate that the proposed method can
be also effective on a small dataset.
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Fig. 6. Qualitative comparisons of the predicted human parsing results on the LIP dataset.

In addition to the quantitative comparison, we visualize the predicted human parsing results of
the proposed method and state of the art on the LIP and CIHP datasets in Figure 6 and Figure 7. We
can see that our method can make better judgments between foreground humans and background
clutter and estimate clearer boundaries between parsing items. Notably, the three tasks have the
potential to be conflicted as we can see in the first column of Figure 7 where “ours mask” missed the
leftmost people. However, the mask prediction and the edge detection tasks provide supplements
rather than compulsive guidance for human parsing. With the refinement of parsing predictions
in the rescoring module, the possible misalignments within three tasks could be amended.

4.8 Failure Cases

We find that our model may fail in the following cases: (1) misprediction between categories with
similar shapes (e.g., upper clothes and dress) when the human body is partly occluded or has
an unusual posture, (2) overlapping with other shapes or textures in similar categories, and (3)
inconsistent prediction within part of human items that is caused by noisy labels or largely changed
image gradients. Corresponding examples are shown in Figure 8 in each column, respectively. To
handle these problems, we may need to introduce extra guidance to compromise the local detail
with the global context. Besides, a label refinement strategy should be promising to make a noisy-
tolerant model in our further study.

5 CONCLUSION

In this article, motivated by several inherent problems of human parsing (e.g., label imbal-
ance, scale variations, and nonrigid deformation), we tailor a mask-guided deformation adaptive
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Fig. 7. Qualitative comparisons of the predicted human parsing results on the CIHP dataset [10]. For the
convenience of discussion, we denote the challenging factors of each input image in the last row, where
Crowd, Ambiguous, Deform, and Overlap represent crowd scenes, confusing foreground and background, more
clothing deformation, and overlapped human body parts, respectively. It can be seen that our method can
consistently alleviate the challenges thanks to the introduced human mask and edge detection, along with
deformable convolution, and predict more accurate parsing results compared with competitors.

network to resolve these problems. Specifically, we introduce the human mask and edge detection
branch as the auxiliary task with deformable convolution for learning rich and diverse human
parsing feature representations. This not only relieves the inferior predictions caused by the imbal-
ance of background/foreground separations but also readjusts the convolutional sampling offsets

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 1, Article 11. Publication date: March 2022.



11:18 A. Mao et al.

Fig. 8. Failure cases. The first column shows that the occluded dress of the right people is mispredicted as
upper clothes. The second column shows that the cross-overlapped left arm of the left people is mispredicted
as right arm. The last column shows an inconsistent prediction case where the dress of the left people was
wrongly labeled as upper clothes, which is partly mispredicted as upper clothes by our method.

thanks to deformable convolution. Comprehensive experiments show that the proposed method
can outperform state-of-the-art methods on both the single human and multiple human parsing
datasets.
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