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a b s t r a c t

Peak Response Map (PRM) highlighting the discriminative regions can be extracted from a pre-trained
classification network. We can accurately localize instances of each class with the help of these response
maps. However, these maps cannot provide reliable information for segmentation even with off-the-shelf
object proposals. This is because neither PRM nor the proposals know which regions can be regarded as a
complete instance. In this paper, we tackle this problem by proposing an Instance-aware Cue-
propagation Network (ICN) with a new proposal-matching strategy. In particular, the ICN aims to filter
out background distractions and cover the complete instance, while our proposed proposal-matching
strategy adds a re-balancing constraint on the contributions of multi-scale object proposals. Extensive
experiments conducted on the PASCAL VOC 2012 dataset show the superior performance of our method
over weakly-supervised state-of-the-arts for both semantic and instance segmentation.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Convolutional neural networks have proved its huge feature
representation ability for various tasks, such as image recognition
[31], object detection [25], object segmentation [30,43,7], and so
forth. While supervised learning using pixel-level annotation data-
sets [5,16] dramatically promotes the advancement of object seg-
mentation, it requires cumbersome labelling efforts. Moreover,
supervised learning tends to easily overfit the intrinsical distribu-
tion of training data, which leads to poor performance with many
outliers as handling various objects in the real world. Weakly
supervised learning, on the other hand, can relieves the burden
of pixel-level labelling and alleviates the overfitting problem to
some extent. Several prior works [1,35,42] have shown promising
results in weakly-supervised object segmentation under the super-
vision of image-level labels.

Fully Convolutional Networks (FCNs) [30] first implement
supervised semantic segmentation by fine-tuning a classification
network, which implies that pixel-wise classification tasks can
benefit from feature representations pre-trained on an image-
level classification task. Grad-CAM [29] further explores the black
box inside the convolutional neural network by visualizing the
class activation maps. Inspired by Grad-CAM [29] and FCNs [30],
Zhou et al. [42] realize instance segmentation by selecting off-
the-shelf object proposals based on Peak Response Map (PRM),

which depicts the most critical receptive fields in the input image
that the neural network employs to ascertain object classes. How-
ever, we find that PRM tends to only highlight discriminative parts
of objects for classification. As shown in Fig. 1, PRM of the input
image only focuses on the front of the motorbike while overlooking
the other parts. Analogous to the human visual system, the neural
network optimized for classification recognizes an object class just
from the prominent parts of instances rather than the whole
regions. Since the final segmentation prediction relies on a match-
ing process between PRM and off-the-shelf object proposals, the
property of PRM that only focuses on local regions heavily limits
the performance of weakly-supervised methods for object segmen-
tation under the supervision of image-level labels.

Based on the above observation, we tailor an Instance-aware
Cue-propagation Network (ICN) with a re-balancing constraint
for proposal matching. In particular, the proposed ICN aims to
propagate instance-aware appearance cues to render the entire
shape of each instance. In the testing phase, we further design an
iterative optimization process for progressive PRM enhancing.
Specifically, the initially enhanced PRM is further input into ICN
for better results in an iterative manner. Fig. 1 shows an example
output of our method compared with the naive PRM method
[42], and we can observe that the enhanced PRM can activate more
regions belonging to the motorbike and as well suppress noises ini-
tially estimated by the naive PRM method, which finally results in
better instance segmentation. Additionally, we propose a new
proposal-matching strategy to balance the contributions of
multi-scale proposals. By doing so, requiring only image-level
labelled data, our method can perform object segmentation in
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many challenging scenarios. Extensive experiments demonstrate
our approach surpasses previous weakly supervised approaches
by a large margin on the PASCAL VOC 2012 dataset, even superior
to many fully supervised methods.

The contributions of this paper are summarized as follows:

� We analyze the main limitation of the naive PRM method, and
design an Instance-aware Cue-propagation Network (ICN) to
render clear shape of objects. Furthermore, we iteratively
enhance the initially generated PRM which hugely boosts seg-
mentation accuracy.

� We present a new proposal-matching strategy to rebalance the
contributions of multi-scale object proposals.

� Extensive experiments conducted on the PASCAL VOC 2012
dataset show a superior performance of our method over other
counterparts by a large margin.

2. Related work

2.1. Weakly supervised semantic segmentation

Weakly supervised semantic segmentation aims to predict
object masks for each class without the help of large-scale pixel-
level annotations, which leaves it more challenging than its super-
vised counterparts. Recent weakly-supervised methods, however,
get off to a promising start, supervised by various kinds of weak
labels including points [2,17], scribbles [14,34,35], bounding boxes
[3,19,32], and foreground [28]. Besides, the image-level class label
is the most commonly used annotation as it is available on large-
scale classification datasets, e.g, ImageNet. Most methods super-
vised by image-level class labels learn to leverage class activation
cues which roughly aggregate pixels in the input image which
prominently contribute to the final class estimation. However,
these class activation cues overemphasize the most discriminative
part of each object without crisp boundaries. To alleviate this prob-
lem, Some methods [11,40] utilize graphical models to generate
coarse segmentation as a pseudo label, thus their performance is
limited by the performance of object localization. As a conse-
quence, other localization approaches provide initialized accurate
object locations [10,20]. While Zhou et al. [42] perform object seg-
mentation based on Peak Response Map, they are also restricted by

the overemphasizing issue as aforementioned. In this paper, we
propose to enhance the initially generated naive PRM to cover
the entire shape of objects.

2.2. Weakly supervised instance segmentation

In comparison with semantic segmentation that predicts only
class-level masks, instance segmentation is much more challeng-
ing since it further demands to distinguish various instances
among the same object class. To address this problem, extra evi-
dence, like bounding boxes, is explored to provide additional
supervision. For example, inspired by adversarial learning, Tal
et al. [24] learn an object shape generator that can produce a real-
istic fake image by cropping the predicted masks to a random
background area. Further, GraphCut [9] obtains better instance
shape by taking into account boundaries after introducing generic
boundary detector [37]. Paired with the Conditional Random Field
(CRF), Rajchl et al. [23] upgrade GraphCut to DeepCut. However, all
of these methods require extra instance-aware information, either
pseudo labels or bounding boxes. To deal with this issue, a few
recent works center on challenging image-level class label supervi-
sion. Jiwoon et al. [1] present an AffinityNet-based model that gen-
erates object masks by randomly dilating the affinities centering at
the local discriminative part. Zhou et al. [42] leverage Peak
Response Map to locate object instances and couple it with off-
the-shelf object proposals [21] to segment instances. Ge et al. [6]
propose to refine the class activation maps via a multi-task learn-
ing in a coarse-to-fine manner. However, these methods are lim-
ited by the quality of PRM and off-the-shelf object proposals,
which are usually attributed to low-quality. In contrast, our
method introduces a simple yet effective architecture to enhance
initially generated PRM and optimize the proposal-matching strat-
egy with a new re-balance constraint.

2.3. Global class response activation

Deep networks tend to be immersed in the most distinguishing
area if merely supervised by image-level labels, so that it is neces-
sary to join shallow feature representations into global class
responses. Global max pooling (GMP) [18] takes the maximal
response score as result while abandoning the other values. Global

Fig. 1. Visualization of Peak Response Map (PRM), the enhanced one and their corresponding segmentation results. The enhanced PRM comes from our Instance-aware Cue-
propagation Network (ICN) which concatenates að Þ and bð Þ as input. For a better view, bð Þ and cð Þ are colored according to the predicted probability values, e.g., warmer color
means higher values.
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average pooling (GAP) [18] samples all responses uniformly, leav-
ing it hard to tell different objects. The log-sum-exponential (LSE)
[33] reaches a trade-off between GMP and GAP. However, all of
them ignore local spatial relevance which is critical to localize
diverse object instances. Differently, We reveal the relevance by
comparing each class response map with their filtered version,
which is beneficial to promote the instance discriminative ability.
Furthermore, we stimulate peaks extracted from class activation
maps via gradient back-propagation and combine the output Peak
Response Map with object proposals to predict the final
segmentation.

2.4. Prediction in coarse-to-fine strategy

Learning in a coarse-to-fine fashion has been widely adopted
in various tasks. Jing et al. [8] design a novel saliency detection
network that recursively refines the previously generated mask,
which is trained with only image-level class labels. Similarly,
supervised by dense masks, RefineNet [15] utilizes sub-sampled
feature representations that are updated progressively in a
multi-path fashion to predict the final object segmentation. In
contrast, our approach does not generate segmentation in this
strategy directly but enhance the Peak Response Map iteratively
which can result in better segmentation when matching with
object proposals.

3. Proposed method

Our presented network is shown in Fig. 2, which consists of
three parts, e.g., the PRM generation module, the PRM enhancing
module, and the proposal-matching strategy. The PRM generation
module (discussed in Section 3.1) takes an RGB image as input
and aims to generate the Peak Response Map (PRM). The PRM
enhancing module (discussed in Section 3.2) is designed to
enhance the initially generated naive PRM to cover more parts of
each instance instead of only prominent regions. The proposal-
matching strategy (discussed in Section 3.3) predicts the final
results of object segmentation via matching the enhanced PRM
with off-the-shelf object proposals.

3.1. PRM generation module

The PRM generation module is introduced for localizing and
stimulating the visual cues of each object instance inside the input
image domain. Given a pre-trained classification network, the acti-
vation map of each class, which is called Class Activation Map
(CAM) can be extracted from the last convolutional layer. Formally,
we denote CAM 2 RH� W� C , where H �W represents the spatial res-
olution of CAM and C denotes the number of channels. So far, we
can directly generate class-aware attention maps through gradient

Fig. 2. An overview of our method for weakly supervised object segmentation. This pipeline follows a two-stage fashion. At stage 1, marked with the number 1 inside the red
circle, we first train a classification network supervised by a Cross Entropy (CE) loss and then use the pre-trained network to extract Class Activation Map (CAM) of each class
(the orange, yellow and blue cubes), which is further utilized to launch gradient propagation backward through the feature extractor to generate the naive Peak Response
Map (PRM). At stage 2, our proposed ICN (Instance-aware Cue-propagation Network) conducts iterative optimization to obtain the enhanced PRM, taking the naive PRM and
input image as inputs. Finally, the enhanced PRM is utilized to match with off-the-shelf object proposals. Note that each color in the enhance PRM indicates an instance, and
the proposal matching process marked as ’M’ is performed independently for each instance.

Fig. 3. Illustration of Instance-aware Cue-propagation Network (ICN). ICN contains three components: 1). the Context-driven Fusion Module (CFM). 2). the Detail-driven
Fusion Module (DFM). 3). the feature mapping module (Mapping). The orange arrow indicates the flow path that works for iterative optimization in the testing phase. Note
that the PRM enhancing process is performed independently for each PRM (or instance).
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back-propagation from this kind of CAM. However, the generated
class-aware maps in this way is neither accurate nor instance-
aware. To resolve these issues, we figure out local maximal
responses from CAM which can be formulated as:

Pc ¼ max Mc � G Mcð Þ � Eg; 0
� �

; ð1Þ
where Pc is the returned peak map of the object class c. Mc repre-
sents CAM of the c-th class (i.e., the c-th channel of the last convo-
lutional layers), as is shown in Fig. 2. G denotes the gaussian filter
operation. Eg is a threshold matrix with the same spatial resolution
as Mc , aiming to suppress noises of class activations and accurately
localize the real instances with higher activation values. In our
experiments, we set Eg as the mean value of Mc .

To obtain instance-aware Peak Response Maps, we further
launch gradient back-propagation for each individual peak in Pc

instead of the original CAM Mc . Considering a two-layer convolu-
tional network for simplification, where the weight matrixes are
denoted as W1 and W2 respectively and let U denote the output
of the first layer. Based on the chain rule, PRM of each peak in Pc

can be formulated as:

Qc
k ¼

@L
@Pc

i;j
� @P

c
i;j

@U
� @U
@W1

; ð2Þ

where Qc
k means the Peak Response Map of the k-th peak of the c-th

class. L denotes the standard classification loss. Pc
i;j represents each

peak of the c-th class with the coordinates i; jð Þ. It is worth noting
that only peaks are enabled during gradient back-propagation.

With the peak activation and gradient back-propagation, we
can assign each instance the most prominent area in the input
image, which is also called Peak Response Map (PRM) as shown
in Fig. 1 bð Þ.

3.2. PRM enhancing module

The PRM enhancing module is utilized to enhance the naive
PRM that only activates the prominent part of each object, ending
in more complete object shapes for segmentation. To reconstruct
the naive PRM, we design an iterative optimization network called
ICN (Instance-aware Cue-propagation Network), as shown in Fig. 3.
It is composed of three components: the Context-driven Fusion
Module (CFM), the Detail-driven Fusion Module (DFM) and the fea-
ture mapping module. ICN takes as input the concatenation of the
naive PRM and the corresponding input image, and utilizes the
VGG-16 backbone as the feature extractor for hierarchically
multi-level feature representations. As we know, deeper layers of
the neural network contain more high-level context, while shal-
lower layers are abundant with fine details. Then we design two
parallel feature fusion processes from this perspective. The
Context-driven Fusion Module (CFM) is first leveraged to fuse fea-
ture maps from the last and penultimate convolutional layers, and
the fused features are then regarded as one input of another CFM to
fuse feature maps from relatively shallower layers. This process is
continued until the shallowest convolutional layers, which enables
high-level features to progressively aggregate low-level details dri-
ven by global and local context. On the contrary, the Detail-driven
Fusion Module (DFM) integrates multi-level features from the
opposite direction, which encourages low-level details gradually
matching their corresponding high-level context to suppress
superfluous noises. Without loss of generality, we simply imple-
ment DFM and CFM as a concatenation operation followed by
two consecutive convolutional layers. Formally, given two sets of
feature maps to be fused, the output of DFM or CFM can be formu-
lated as:

f o ¼ E C U f sð Þ; f lð Þ; hð Þ; ð3Þ

where f s and f l represent the feature maps with small and large res-
olution respectively. U �ð Þ denotes the up-sampling operation. C �; �ð Þ
stands for the concatenation operation along the channel dimen-
sion. E �; hð Þ represents the two convolutional layers with parameters
h. Finally, to make better use of the above two different feature
fusion strategies, which are complementary with each other, the
feature mapping module takes as input the last aggregated features
of the two paths and leverages concatenation and convolution oper-
ations to obtain the enhanced RPM with the same resolution as the
input image.

Ideally, the enhanced PRM should be trained with pixel-level
annotations. However, only image-level labels are available in
our weakly-supervised setting. To train the PRM enhancing mod-
ule, we leverage the matching results generated by matching the
naive PRM to the object proposals (the matching process is dis-
cussed in Section 3.3). Specifically, we rank the proposals by their
matching scores in descending order, and pick up k scores one by
one from the top only if the current one is not fully contained by
previously selected ones. At last, we take the union of the selected
top k proposals and utilize the merged proposal as the pseudo label
of the enhanced PRM. Although the proposal-based pseudo label is
not accurate compared with GT segmentation annotations, it can
provide complete visual cues of each instance than the naive
PRM and benefit the proposal-matching process for better instance
segmentation (the comparison results can be found later in
Table 1). In our experiments, we empirically set k to 3 to balance
the influence of positive and negative proposals.

In addition, to further validate the effectiveness of the PRM
enhancing mechanism, we present another PRM enhancing mod-
ule that governed by pixel-level salient object annotations. This
variant is trained on the dataset proposed in [12], consists of
1000 images with annotations of salient instances. To adapt this
dataset for the supervision of PRM enhancing module, we first
input each training image into the PRM generation module to
obtain its corresponding PRM, and then match each PRM with
the labelled instance saliency map by computing IOU to generate
pairs of an instance and its corresponding PRM. In this way, given
each pair and the training image, we can train ICN to enhance the
naive PRM with the instance saliency map as label. To optimize the
weights of ICN, we take the pixel-wise cross entropy as the loss
function, which is formulated as:

L ¼ � 1
N

XH

i¼1

XW

j¼1

O
�
i;j log Oi;j

� �
; ð4Þ

where O
�
and O denote the prediction and the ground truth respec-

tively, which share the same spatial resolution with the height as H
and width as W. N is the number of training samples. In the testing
phase, we follow a multi-stage optimization manner where the
previously enhanced PRM is iteratively input into ICN to progres-
sively refine the enhanced prediction.

Table 1
Comparison results of different variants of our method on the PASCAL VOC 2012
dataset for weakly-supervised semantic segmentation. Note that the PRM enhancing
module (or ICN) is trained with object proposals in all ablation experiments.

Method mIoU %ð Þ
w/o ICN 53.5

w/o CFM and DFM of ICN 53.8
w/o input PRM of ICN 36.7

w/o multi-scale rebalance matching 53.9
Full model (Ours-proposal) 54.1
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3.3. Proposal Matching strategy

To realize instance segmentation, we design a re-balancing
matching strategy to pick out appropriate off-the-shelf object pro-
posals. Specifically, given an input image, we first leverage the
object proposals generated by the traditional methods (e.g., MCG
[21]) to construct a candidate collection of instance segmentation,
and then compute the matching score between the enhanced PRM
and each candidate, which can be formulated as:

S ¼ 1
sum Pð Þ � a � V � P þ b � E Vð Þ � P þ c � B Vð Þ � P; ð5Þ

where P is a candidate object proposal. V represents the enhanced
PRM of each instance. E �ð Þ and B �ð Þ denote a contour extractor and
a background extractor respectively. 1

sum Pð Þ is the multi-scale rebal-

ance factor of the first term, where sum Pð Þ means the number of
pixels belonging to P. a;b; c are three Lagrange multipliers which
are set as 0.95, 0.1, and 0.8, respectively via cross validation.

In Eq. (5), the first term enforces the enhanced PRM and the
selected object proposals to share more overlapped regions. The
second term coupled with the contour information extracted from
the enhanced PRM, encourages it to pick out a proposal that shares
a similar outline. Furthermore, the last term takes background as a
template to suppress irrelevant regions.

The algorithm of our method for weakly-supervised instance
segmentation is elaborated in Algorithm 1.

Algorithm 1: Instance segmentation with image-level labels

Input:
A testing image I, corresponding object proposal gallery S,

our network equipped with the PRM generation module G

and the PRM enhancing module E. Outpuy:
Instance segmentation set O;
1: Initialize instance segmentation set O ¼ £, peak map set

P ¼ £;
2: Input I into G to extract class activation maps M;
3: for all Mc such that Mc is the c-th class activation map of

M do
4: Obtain peak map Pc and append it to P;
5: end for
6: for all peak map Pc 2 P do
7: Gradient back-propagation for Pc to obtain naive PRM;
8: Iteratively enhance naive PRM to get enhanced PRM

using E;
9: for all object proposal Sj 2 S do
10: Calculate matching score between Sj and enhanced

PRM;
11: end for
12: Append top-ranked proposal and label (St , c) to O;
13: end for
14: Purge O via Non-Maximum Suppression (NMS);
15: return O;

4. Experiments

4.1. Dataset

For a fair comparison, following previous methods [36,42], we
use the PASCAL VOC 2012 dataset [5] to train the PRM generation
module. It is made of 11;530 training and validation images con-
taining 27;450 ROI-annotated objects, 6;929 dense segmentations
and class annotations. Since this work explores image-level super-

vision, only the class annotations are used for training the PRM
generation module. On the other hand, the dataset presented in
[12] for salient instance segmentation is leveraged to enhance
the naive PRM. This dataset contains 1;000 images that are mostly
selected from existing datasets (e.g., DUT-OMRON [38], HKU-IS
[13], and MSO [39]).

4.2. Training details

The training procedure of the entire architecture follows a two-
stage fashion. In the first stage, we train the classification network
in the PRM generation module for 20 epochs, and then freeze it to
stimulate the naive PRM by gradient backpropagation from the last
convolution layer. In the second stage, we train ICN in the PRM
enhancing module for 120 epochs. In consideration of the scale
of the training dataset in the second stage, we perform abundant
data augmentation techniques, including random flipping and
cropping. In addition, the two stages both employ Adam optimizer
[27]. We set the initial learning rate of the first stage as 1e-4 and
multiplied by 0:1 after 10 epochs. The learning rate of the second
stage is 1e-3 and decay 0:5X every 20 epochs.

4.3. Ablation study

In this section, we perform ablation experiments on the PASCAL
VOC 2012 dataset. Table 1 reports the comparison results of vari-
ous variants of our method. Note that the PRM enhancing module
(or ICN) is trained with object proposals in all ablation experiments
(so as our full model). Specifically, to validate the effectiveness of
the PRM enhancing mechanism, we drop ICN from our model,
which is denoted as w/o ICN. We can see from Table 1 that com-
pared with the full model, the mIoU of w/o ICN decreases from
54.1 to 53.5, which indicates that the enhanced PRM can benefit
a lot when matching with object proposals. Besides, we train
another variant by removing CFM, DFM and the input PRM from
ICN (denoted as w/o CFM and DFM of ICN, w/o input PRM of ICN )
to explore the optimal setting of the PRM enhancing module. As
can be seen, without CFM and DFM, the PRM enhancing ability of
ICN is limited and leads to worse segmentation accuracy than
the full ICN. When we drop the input PRM and only input the test-
ing image into ICN, the mIoU decreases dramatically by 32.2%. It is
because that each input image may contain multiple classes and
instances, and without the input PRM as a hint, ICN cannot know
which instance to enhance. In addition, to evaluate the proposed
multi-scale rebalance matching strategy, we show the comparison
result of the vanilla matching strategy [42] (denoted as w/o multi-
scale rebalance matching). As can be seen, the multi-scale rebalance
constraint contributes to the segmentation performance by a con-
siderable margin, which demonstrates the effectiveness of balanc-
ing the importance of multi-scale proposals. It is worth noting that
compared with PRM [42], the method ofw/o ICN has only one addi-
tional change (e.g., the multi-scale rebalance constraint), and still
has a higher segmentation accuracy than PRM (see Table 2). This

Table 2
Comparison results of weakly-supervised semantic segmentation with state-of-the-
art methods on the PASCAL VOC 2012 dataset. Top two methods are highlighted using
bold fonts.

Method mIoU %ð Þ Commentaries

WILDCAT [4] 43.7 CRF post-processing
SEC [10] 50.7 CRF as boundary loss

Check mask [28] 51.5 CRF & Human in the loop
Combining [26] 52.8 CRF as RNN

PRM [42] 53.4 Object proposals
Ours-proposal 54.1 Object proposals
Ours-saliency 54.9 Object proposals

X. Huang, Q. Zhu, Y. Liu et al. Neurocomputing 447 (2021) 1–9
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Fig. 4. Qualitative results of our method for weakly-supervised semantic segmentation on the PASCAL VOC 2012 dataset.

Table 3
Quantitative comparisons with weakly-supervised instance segmentation state-of-the-arts on the PASCAL VOC 2012 dataset w.r.t. mean Average Precision (mAP%) and Average
Best Overlap (ABO). Top two methods are highlighted using bold fonts.

Method mAPr
0:25 mAPr

0:5 mAPr
0:75 ABO

Rect. 18.7 2.5 0.1 18.9
Ellipse 22.8 3.9 0.1 20.8

CAM [41] MCG 20.4 7.8 2.5 23.0
Rect. 29.2 5.2 0.3 23.0
Ellipse 32.0 6.1 0.3 24.0

SPN [45] MCG 26.4 12.7 4.4 27.1
Rect. 36.0 14.6 1.9 26.4
Ellipse 36.8 19.3 2.4 27.5

MELM [36] MCG 36.9 22.9 8.4 32.9
PRM [42] 44.3 26.8 9.0 37.6

IAM-S5 [44] 45.9 28.8 11.9 41.9
Ours-proposal 47.1 29.2 12.5 42.8
Ours-saliency 47.7 29.4 13.1 43.7

Fig. 6. Visualization of the iterative optimization process of the enhanced PRM.

Fig. 5. Per-class mAP of our method at three different IoU threshold settings.
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indicates that the multi-scale rebalance constraint is effective not
only for proposal matching with the enhanced PRM, but also for
the naive PRM.

4.4. Weakly supervised semantic segmentation

Weevaluate the effectiveness of our approachbycomparingwith
weakly-supervised semantic segmentation state-of-the-arts on the
PASCAL VOC 2012 dataset. As our framework directly produces an
instance-level segmentation, we merge the instance masks of the
same class for semantic segmentation. Table 2 summarizes the per-
formance of weakly-supervised state-of-the-art methods using the
metric of mean intersection-over-union (IoU) across 21 classes (20
object categories plus background). We can see that our method
trained with object proposals (Ours-proposal) can outperform

Table 4
Comparison results of different time steps on the PASCAL VOC 2012 dataset.

Time step(s) 1 2 3 4

mAPr
0:5 27.3 28.2 29.4 29.1

Fig. 7. Qualitative results of our method for weakly-supervised instance segmentation on the PASCAL VOC 2012 dataset. Due to limited space, ‘‘N-PRM”, ‘‘PE-PRM” and ‘‘SE-
PRM” represent ‘‘Naive PRM”, ‘‘Proposal-enhanced PRM” and ‘‘Saliency-enhanced PRM” respectively.
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previous works that even rely on additional post-processing opera-
tions (e.g., CRF),which demonstrates the superiority of the proposed
PRM enhancing mechanism and multi-scale rebalance matching
strategy. Additionally, our method trained with extra saliency data-
set can further improve the segmentation accuracy. This indicates a
more accurate enhanced PRM can benefit to the proposal matching
process and match more appropriate object proposals for the final
segmentation. Fig. 4 visualizes some examples of semantic segmen-
tation achieved by our method.

4.5. Weakly supervised instance segmentation

In this section, we evaluate the performance of our method for
weakly-supervised instance segmentation on the PASCAL VOC
2012 dataset. We compare our method with several previous
works [41,42,44,45]. Unless otherwise explicitly stated, all the
results shown in the Table 3 are computed based on the off-the-
shelf object proposals generated by MCG [21].

4.5.1. Quantitative analysis
To assess the performance quantitatively, we compare our

method with state-of-the-arts based on two widely used metrics:
the mAP� at three different IoU threshold settings and the Average
Best Overlap (ABO) [22]. The comparison results are in Table 3. We
can see that our method can surpass previous weakly supervised
localization methods (e.g., CAM [41], SPN [45] and MELM [36]),
especially CAM [41] that utilizes additional prior knowledge. In
addition, by comparing with proposal-matching based approaches
(e.g., PRM [42] and IAM-S5 [44]), our method can consistently
improve the instance segmentation accuracy even without extra
saliency annotations, which confirms the effectiveness of our
PRM enhancing mechanism and multi-scale rebalance matching
strategy. Fig. 5 illustrates the per-class mAP of our method at three
different threshold settings.

4.5.2. Qualitative analysis
Here we aim at visual understanding to validate the effective-

ness of our approach through qualitative analysis. As shown in
the second and third rows of Fig. 7, the enhanced PRM can cover
more parts of each instance compared with the naive PRM, which
only activates the prominent small regions. High-quality predic-
tions in the fourth row indicate that the enhanced PRM benefit a
lot for the final segmentation based on the improved proposal
matching strategy.

4.6. Iterative refinement

The mechanism of iterative refinement is a widely-used tech-
nique in the computer vision community due to its simplicity
and efficiency. We adopt the refinement mechanism to iteratively
enhance PRM for covering more regions of each instance. To
explore the optimal number of refinement steps, we perform abla-
tion experiments to test the PRM enhancing module with different
time steps. Note that in this section, the PRM enhancing module is
trained with only one time step on the salient instance segmenta-
tion dataset [12]. Fig. 6 shows an example of the iterative opti-
mization process. Table 4 presents the accuracy of instance
segmentation on the PASCAL VOC 2012 dataset at different time
steps. We can see from Table 4 that the performance reaches the
optimum after three times steps, so we use three refinement steps
in the other experiments to balance the computational time and
accuracy. Note that before processing the input PRM, we first nor-
malize it using min–max normalization considering the wide range
of values. In addition, we set the final enhanced PRM as a binary

image so that we can treat each part of an object equally rather
than focusing on the most discriminative regions.

5. Conclusion

In this paper, we present a novel framework for weakly-
supervised object segmentation. In particular, we propose an
Instance-aware Cue-propagation Network (ICN) to enhance the
naive PRM, making it not only focusing on the prominent part
but also covering the whole regions of each instance. Additionally,
we propose a new proposal-matching strategy that imposes a con-
straint to balance the contributions of multi-scale object proposals.
Extensive experiments conducted on the PASCAL VOC 2012 dataset
show that our method can outperform previous counterparts by a
large margin.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This project is supported by the National Natural Science Foun-
dation of China (No. 61972162, and No. 61702194) and the CCF-
Tencent Open Research fund (CCF-Tencent RAGR20190112).

References

[1] J. Ahn and S. Kwak. Learning pixel-level semantic affinity with image-level
supervision for weakly supervised semantic segmentation. In CVPR, pages
4981–4990, 2018..

[2] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What’s the point:
Semantic segmentation with point supervision. In B. Leibe, J. Matas, N. Sebe,
and M. Welling, editors, ECCV, pages 549–565, 2016..

[3] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise
convolutional networks for semantic segmentation. In ICCV, pages 1635–1643,
2015..

[4] T. Durand, T. Mordan, N. Thome, and M. Cord. WILDCAT: weakly supervised
learning of deep convnets for image classification, pointwise localization and
segmentation. In CVPR, pages 5957–5966, 2017..

[5] M. Everingham, S.M.A. Eslami, L. Van Gool, C.K.I. Williams, J. Winn, A.
Zisserman, The pascal visual object classes challenge: A retrospective, IJCV
111 (1) (2015) 98–136.

[6] W. Ge, S. Guo, W. Huang, and M. R. Scott. Label-penet: Sequential label
propagation and enhancement networks for weakly supervised instance
segmentation. In ICCV, pages 3345–3354, 2019..

[7] J. Huang, S. Lu, D. Guan, and X. Zhang. Contextual-relation consistent domain
adaptation for semantic segmentation. In ECCV, pages 705–722, 2020..

[8] L. Jing, Y. Chen, Y. Tian, Coarse-to-fine semantic segmentation from image-
level labels, IEEE TIP 29 (2020) 225–236.

[9] A. Khoreva, R. Benenson, J. H. Hosang, M. Hein, and B. Schiele. Simple does it:
Weakly supervised instance and semantic segmentation. In CVPR, pages 1665–
1674, 2017..

[10] A. Kolesnikov and C. H. Lampert. Seed, expand and constrain: Three principles
for weakly-supervised image segmentation. In ECCV, pages 695–711, 2016..

[11] B. Lai and X. Gong. Saliency guided dictionary learning for weakly-supervised
image parsing. In CVPR, pages 3630–3639, 2016..

[12] G. Li, Y. Xie, L. Lin, and Y. Yu. Instance-level salient object segmentation. In
CVPR, pages 247–256, 2017..

[13] G. Li and Y. Yu. Visual saliency based on multiscale deep features. In CVPR,
June 2015..

[14] D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation. In CVPR, pages 3159–
3167, 2016..

[15] G. Lin, A. Milan, C. Shen, and I. D. Reid. Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation. In CVPR, pages 5168–
5177, 2017..

[16] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. L. Zitnick, and P. Dollr. Microsoft coco: Common objects in
context, 2014..

[17] K. Maninis, S. Caelles, J. Pont-Tuset, and L. V. Gool. Deep extreme cut: From
extreme points to object segmentation. In CVPR, pages 616–625, 2018..

[18] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? -
weakly-supervised learning with convolutional neural networks. In CVPR,
pages 685–694, 2015..

X. Huang, Q. Zhu, Y. Liu et al. Neurocomputing 447 (2021) 1–9

8

http://refhub.elsevier.com/S0925-2312(21)00393-3/h0025
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0025
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0025
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0040
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0040


[19] G. Papandreou, L. Chen, K. Murphy, and A. L. Yuille. Weakly- and semi-
supervised learning of a DCNN for semantic image segmentation. In ICCV,
2015..

[20] P.O. Pinheiro, R. Collobert, Weakly supervised semantic segmentation with
convolutional networks, CVPR 2 (2015) page 6.

[21] J. Pont-Tuset, P. Arbelaez, J.T. Barron, F. Marqués, J. Malik, Multiscale
combinatorial grouping for image segmentation and object proposal
generation, IEEE TPAMI 39 (1) (2017) 128–140.

[22] J. Pont-Tuset and L. Van Gool. Boosting object proposals: From pascal to coco.
In ICCV, pages 1546–1554, 2015..

[23] M. Rajchl, M.C. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach, W. Bai, M.
Damodaram, M.A. Rutherford, J.V. Hajnal, B. Kainz, et al., Deepcut: Object
segmentation from bounding box annotations using convolutional neural
networks, IEEE Trans. Medical Imaging 36 (2) (2016) 674–683.

[24] T. Remez, J. Huang, and M. Brown. Learning to segment via cut-and-paste. In
ECCV, pages 37–52, 2018..

[25] S. Ren, K. He, R.B. Girshick, J. Sun, Faster R-CNN: towards real-time object
detection with region proposal networks, IEEE TPAMI 39 (6) (2017) 1137–
1149.

[26] A. Roy and S. Todorovic. Combining bottom-up, top-down, and smoothness
cues for weakly supervised image segmentation. In CVPR, July 2017..

[27] S. Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/
1609.04747, 2016..

[28] F. Saleh, M. S. A. Akbarian, M. Salzmann, L. Petersson, S. Gould, and J. M.
Alvarez. Built-in foreground/background prior for weakly-supervised semantic
segmentation. In ECCV, pages 413–432, 2016..

[29] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
cam: Visual explanations from deep networks via gradient-based localization.
In ICCV, pages 618–626, 2017..

[30] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic
segmentation, IEEE TPAMI 39 (4) (2017) 640–651.

[31] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, ICLR (2015).

[32] C. Song, Y. Huang, W. Ouyang, and L. Wang. Box-driven class-wise region
masking and filling rate guided loss for weakly supervised semantic
segmentation. In CVPR, pages 3136–3145, 2019..

[33] C. Sun, M. Paluri, R. Collobert, R. Nevatia, and L. D. Bourdev. Pronet: Learning to
propose object-specific boxes for cascaded neural networks. In CVPR, pages
3485–3493, 2016..

[34] M. Tang, A. Djelouah, F. Perazzi, Y. Boykov, and C. Schroers. Normalized cut loss
for weakly-supervised CNN segmentation. In CVPR, pages 1818–1827, 2018..

[35] P. Vernaza, M. Chandraker, Learning random-walk label propagation for
weakly-supervised semantic segmentation, CVPR (2017).

[36] F. Wan, P. Wei, J. Jiao, Z. Han, and Q. Ye. Min-entropy latent model for weakly
supervised object detection. In CVPR, June 2018..

[37] S. Xie, Z. Tu, Holistically-nested edge detection, IJCV 125 (1–3) (2017) 3–18.
[38] C. Yang, L. Zhang, R. X. Lu, Huchuan, and M.-H. Yang. Saliency detection via

graph-based manifold ranking. In CVPR, pages 3166–3173. IEEE, 2013..
[39] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Mech. Unconstrained salient

object detection via proposal subset optimization. In CVPR, June 2016..
[40] W. Zhang, S. Zeng, D. Wang, and X. Xue. Weakly supervised semantic

segmentation for social images. In CVPR, pages 2718–2726, 2015..
[41] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba. Learning deep

features for discriminative localization. In CVPR, pages 2921–2929, 2016..
[42] Y. Zhou, Y. Zhu, Q. Ye, Q. Qiu, and J. Jiao. Weakly supervised instance

segmentation using class peak response. In CVPR, pages 3791–3800, 2018..
[43] H. Zhu, F. Meng, J. Cai, S. Lu, Beyond pixels: A comprehensive survey from

bottom-up to semantic image segmentation and cosegmentation, J. Visual
Commun. Image Representation 34 (2016) 12–27.

[44] Y. Zhu, Y. Zhou, H. Xu, Q. Ye, D. Doermann, J. Jiao, Learning instance activation
maps for weakly supervised instance segmentation, CVPR (2019).

[45] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao. Soft proposal networks for weakly
supervised object localization. In ICCV, Oct 2017..

Xin Huang is a master student in the School of Com-
puter Science and Engineering, South China University
of Technology. His research interests include computer
vision, image processing and deep learning.

Qianshu Zhu is a master student in the School of
Computer Science and Engineering, South China
University of Technology. His research interests include
computer vision, image processing and deep learning.

Yongtuo Liu is a master student in the School of Com-
puter Science and Engineering, South China University
of Technology. His research interests include computer
vision, image processing and deep learning.

Shengfeng He is an Associate Professor in the School of
Computer Science and Engineering, South China
University of Technology. He was a Research Fellow at
City University of Hong Kong. He obtained his B.Sc.
degree and M.Sc. degree from Macau University of Sci-
ence and Technology, and the Ph.D degree from City
University of Hong Kong. His research interests include
computer vision, image processing, computer graphics,
and deep learning.

X. Huang, Q. Zhu, Y. Liu et al. Neurocomputing 447 (2021) 1–9

9

http://refhub.elsevier.com/S0925-2312(21)00393-3/h0100
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0100
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0105
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0105
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0105
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0150
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0150
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0155
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0155
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0175
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0175
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0185
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0220
http://refhub.elsevier.com/S0925-2312(21)00393-3/h0220

	Weakly supervised segmentation via instance-aware propagation
	Citation

	Weakly supervised segmentation via instance-aware propagation
	1 Introduction
	2 Related work
	2.1 Weakly supervised semantic segmentation
	2.2 Weakly supervised instance segmentation
	2.3 Global class response activation
	2.4 Prediction in coarse-to-fine strategy

	3 Proposed method
	3.1 PRM generation module
	3.2 PRM enhancing module
	3.3 Proposal Matching strategy

	4 Experiments
	4.1 Dataset
	4.2 Training details
	4.3 Ablation study
	4.4 Weakly supervised semantic segmentation
	4.5 Weakly supervised instance segmentation
	4.5.1 Quantitative analysis
	4.5.2 Qualitative analysis

	4.6 Iterative refinement

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


