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a b s t r a c t 

Reliable nasopharyngeal carcinoma (NPC) segmentation plays an important role in radiotherapy plan- 

ning. However, recent deep learning methods fail to achieve satisfactory NPC segmentation in magnetic 

resonance (MR) images, since NPC is infiltrative and typically has a small or even tiny volume with in- 

distinguishable border, making it indiscernible from tightly connected surrounding tissues from immense 

and complex backgrounds. To address such background dominance problems, this paper proposes a se- 

quential method (SeqSeg) to achieve accurate NPC segmentation. Specifically, the proposed SeqSeg is de- 

voted to solving the problem at two scales: the instance level and feature level. At the instance level, 

SeqSeg is forced to focus attention on the tumor and its surrounding tissue through the deep Q-learning 

(DQL)-based NPC detection model by prelocating the tumor and reducing the scale of the segmentation 

background. Next, at the feature level, SeqSeg uses high-level semantic features in deeper layers to guide 

feature learning in shallower layers, thus directing the channel-wise and region-wise attention to mine 

tumor-related features to perform accurate segmentation. The performance of our proposed method is 

evaluated by extensive experiments on the large NPC dataset containing 1101 patients. The experimen- 

tal results demonstrated that the proposed SeqSeg not only outperforms several state-of-the-art methods 

but also achieves better performance in multi-device and multi-center datasets. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

Nasopharyngeal carcinoma (NPC) is a malignant tumor originat- 

ing in the nasopharynx that is prevalent in South China, north- 

ern Africa, and Alaska Wei and Sham (2005) . As a routine clinical 

procedure for NPC diagnosis, magnetic resonance imaging (MRI) 

is preoperatively used to assess the progress of the tumor. Ra- 

diotherapy is the treatment mainstay for NPC. Tumor segmen- 

tation in MR images is an essential step in radiotherapy plan- 

ning King et al. (20 0 0) ; Chan et al. (2017) . A reliable automatic 

segmentation model can quickly detect and segment the tumor le- 

sion and then effectively reduce the workload of radiologists for 

radiotherapy planning. 

∗ Corresponding author. 

E-mail addresses: csghtao@mail.scut.edu.cn (G. Tao), liulizh@sysucc.org.cn (L. 

Liu), hmcai@scut.edu.cn (H. Cai). 
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Traditional machine learning-based methods employ hand- 

crafted visual features to segment NPCs Huang and Liu (2012) . 

However, the selection of these features highly relies on experi- 

ence, and it is incapable of capturing high-level semantic knowl- 

edge. In recent years, deep neural networks have achieved wide 

applications for image understanding tasks due to their powerful 

automatic feature learning ability. Some efforts using deep neural 

networks attempt to solve NPC segmentation and achieve signif- 

icant results. Huang et al. (2018) proposed a deep convolutional 

neural network for automatic gross tumor volume segmentation 

on positron emission tomography-computed tomography images 

(PET-CT). Zhao et al. (2019a) proposed a method that uses fully 

convolutional networks with auxiliary paths to achieve automatic 

NPC segmentation on PET-CT images. Chen et al. (2020) proposed 

a novel multimodality MRI fusion network (MMFNet), consisting 

of several encoders and one decoder. MMFNet is committed to uti- 

lizing multiple modalities of MR images to complete accurate seg- 

mentation. However, these methods fail to provide satisfactory seg- 

mentation results for NPC in MR images. 

https://doi.org/10.1016/j.media.2022.102381 
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Since 1) the NPC typically occupies a relatively small volume in 

MR images, the immense and complex background dominates the 

feature representation during the standard encoding-decoding pro- 

cess. Moreover, 2) the background is cohesive to the tumor with a 

shape varied and indistinguishable border, making the segmenta- 

tion task more challenging. Therefore, it is difficult for such one- 

scale methods to deal with the above various challenges simulta- 

neously. 

The above various challenges are termed background domi- 

nance problems; solving the background dominance problems is 

the key to nasopharyngeal carcinoma segmentation. An effective 

strategy is to decompose the problem and solve it pertinently. 

Thus, we propose decomposing the background dominance prob- 

lem into the above two sub background dominance problems. Ad- 

ditionally, we appropriately designed a sequential method (SeqSeg) 

for NPC segmentation in MR images to address the inherent back- 

ground dominance problems from different scales at the instance 

level and feature level. At the instance level, the segmentation at- 

tention is forced to focus on the tumor and its surrounding tissue. 

At the feature level, through a recurrent attention network (RANet) 

with the recurrent attention mechanism Huang et al. (2019) , seg- 

mentation is guided to recurrently focus on tumor-related features 

along channel-wise and region-wise. 

Specifically, at the instance level, we aim to concentrate seg- 

mentation attention on the tumor and its surrounding tissue by 

prelocating the tumor with the most compact bounding box. In 

this paper, we do not use existing supervised learning mod- 

els due to unstable detection results and the lack of error cor- 

rection capabilities Zhao et al. (2019a) ; He et al. (2017) . Such 

drawbacks were even amplified when facing the imbalanced 

size of the foreground and background. In contrast, reinforce- 

ment learning Henderson et al. (2018) ; Sutton and Barto (2011) ; 

Kaelbling et al. (1996) can iteratively correct the error detection re- 

sults with a reward mechanism. Thus, we design a deep Q-learning 

(DQL) Mnih et al. (2015) based model for tumor detection at the 

instance level. In DQL, we integrate the priori knowledge to guide 

the detection agent. An efficient exploration algorithm is designed 

to reduce the exploration space and speed up the convergence rate. 

Additionally, a novel task-specific reward function is proposed to 

reasonably reward the agent. 

At the feature level, a series of attentions are applied through 

a RANet. It aims to break free from the cohesive background and 

achieve accurate segmentation. Therefore, recurrent attention mod- 

ules (RAMs) are introduced to perform channel-wise and region- 

wise attention on the feature maps by using the high-level se- 

mantic features to guide learning low-level features. Thus, the net- 

work gives more attention to more discriminating features. To fur- 

ther emphasize the tumor border, we propose a dilated border 

weighted loss to obtain a segmentation result with a precise tu- 

mor border. Due to the lack of public NPC segmentation datasets, 

we trained and evaluated our proposed model by our collected 

dataset, which includes 9531 slices of MR images from 1101 pa- 

tients. Extensive experiments were conducted to evaluate the ef- 

fectiveness of our proposed SeqSeg method. Our results outper- 

form existing methods and achieve state-of-the-art performance. 

The contributions and novelties of this paper are summarized as 

follows: 

1) At the instance level, an NPC detection model based on deep Q- 

learning is proposed. An efficient reward function and an explo- 

ration strategy are proposed to accurately detect NPC tumors. 

2) At the feature level, RANet with RAMs is designed for NPC 

segmentation. RAMs leverage the high-level semantic features 

in deeper layers to guide learning low-level texture features 

in shallower layers and perform attention learning on tumor- 

related features along channel and region. A dilated border 

weighted loss function is used to penalize the segmentation re- 

sult for precise tumor borders. 

3) Focusing on the background dominance problems, a sequential 

method SeqSeg from different scales, by incorporating instance 

level and feature level, is proposed to solve the dominance 

problems to segment the relatively small NPC from an immense 

background effectively. Extensive experiments demonstrate its 

effectiveness. The Dice score of our method is 80.32%, which is 

higher than that of the other comparison methods. 

4) We have collected a large NPC dataset thus far. Experiments on 

multi-device and multi-center datasets demonstrate the relia- 

bility of the proposed method. Additionally, we statistically an- 

alyze potential confounders that influence segmentation. 

2. Related works 

2.1. Recent works on NPC segmentation 

Traditional nasopharyngeal carcinoma segmentation meth- 

ods are time-consuming and prone to cause large bias be- 

cause of the hand-engineered. The accuracy of the algorithms 

also heavily depends on the rationality of feature extrac- 

tion Huang and Liu (2012) ; Zhou et al. (2006) ; Huang et al. (2015) ; 

Li et al. (2019) . In contrast, the convolutional neural network 

(CNN) has automatic powerful feature learning and representa- 

tion ability Liu et al. (2020) . Wang et al. used CNN to segment 

the NPC in MR images Wang et al. (2018) . Lin et al. designed a 

CNN with an encoder-and-decoder architecture to segment NPC 

Li et al. (2018) . Lin et al. (2019) applied the atlas-based method 

to cut the image to obtain training datasets. Then, a VoxResNet- 

based Chen et al. (2018) method is proposed to segment the NPC. 

Tang et al. (2021) proposed a dual attention mechanism for fea- 

ture refinement for NPC segmentation. However, the results of 

these NPC segmentation methods are still unsatisfactory. Because 

these methods do not handle the background dominance problem 

caused by the imbalanced region size between the region of inter- 

est and uninterest. Additionally, the background is cohesive with 

the tumor. These methods also do not effectively deal with such 

a background dominance problem because these methods do not 

make full use of the low-level features and high-level features. 

Therefore, we propose a sequential method termed SeqSeg that 

incorporates instance level and feature level to appropriately deal 

with the above background dominance problems. 

2.2. Object detection via DQL 

Most of the object detection models build on Faster R-CNN 

Ren et al. (2015) , which employs region proposal network to gen- 

erate region proposals with shared convolutions. However, NPC is 

small, infiltrative, and variable in shape, with an indistinguishable 

border. Thus, the NPC is poor in feature representation and suffers 

greatly from background dominance problems in detection tasks 

(also in segmentation tasks). Moreover, the medical image datasets 

are generally smaller than the natural image datasets. Thus, the 

detection algorithm with a supervised learning scheme is prone 

to overfitting. Therefore, such existing detection methods for NPC 

detection are still not satisfactory. In contrast, strategy learning 

algorithms such as deep reinforcement learning can be used to 

solve background dominance problems by interacting with the en- 

vironment through actions and reward strategies. It can also avoid 

model overfitting because agent exploration introduces random- 

ness and creates a large search space. Finally, priori knowledge is 

worth utilizing, but it is often ignored. Han et al. used deep Q- 

learning (DQL) to detect objects in videos Han et al. (2018) . After 

the DQL algorithm outputs the bounding box, a fully convolutional 

DenseNet Jégou et al. (2017) is employed to segment the video 
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Fig. 1. Schematic illustration of the proposed SeqSeg for NPC segmentation. 

frames. Man et al. used DQL to detect the pancreas in CT images. 

They reward the agent according to the change in interaction over 

union (IoU) Rezatofighi et al. (2019) between the outputted bound- 

ing box and the ground truth Man et al. (2019) . However, such 

an IoU metric is unreasonable in some cases to reward the agent. 

In this paper, an exploration algorithm integrated prior knowledge 

is proposed to guide the agent exploration. Additionally, a novel 

task-specific reward function is proposed to reasonably reward the 

agent to achieve NPC accurate detection on the MR image. 

2.3. Semantic segmentation to extract region of interest 

The emergence of fully convolutional networks (FCNs) 

Shelhamer et al. (2017) is a breakthrough in seman- 

tic segmentation. Badrinarayanan et al. proposed SegNet 

Badrinarayanan et al. (2017) using the encoder-and-decoder 

architecture. Different from the upsampling by transposed convo- 

lution in FCN, SegNet employs the unpooling layer in the decoder 

for upsampling. Similarly, Ronneberger et al. proposed U-Net 

Ronneberger et al. (2015) with the encoder-and-decoder archi- 

tecture. In contrast, after each upsampling in the decoder phase, 

U-Net clipped the feature maps from the symmetrical position 

of the encoder to the same size as the upsampling feature maps, 

and connected it with the upsampling feature maps along the 

channels. However, in NPC segmentation, most of the features 

extracted by the networks are rough and weak in expression be- 

cause of the background dominance problem and the insufficient 

utilization of features from various levels. The above research 

did not use a good attention mechanism to emphasize channels 

and regions with higher relevance to the segmentation target. In 

this paper, a RANet with RAMs is designed to use the high-level 

semantic features from the deeper layers to guide learning texture 

features from the shallower layers, allowing it to electively sup- 

press features with low correlation to segmentation and stimulate 

features with high correlation to segmentation. 

3. Methods 

The proposed SeqSeg consists of two major scales to jointly 

achieve NPC segmentation. Fig. 1 demonstrates the proposed Se- 

qSeg and its architecture. As shown in Fig. 1 (a), three modality MR 

sequences T1-weighted (T1), enhanced contrast T1-weighted (T1C), 

and T2-weighted (T2) Zhuo et al. (2019) are concatenated and fed 

into the detection model at the instance level. Upon having the 

detected bounded area at the instance level, it is then analyzed at 

the feature level to obtain a final segmentation. The details of the 

method are illustrated in Fig. 1 (b) and 1 (c). Section 3.1 illustrates 

the instance level processing of the proposed SeqSeg, that is, NPC 

detection. Section 3.2 shows the details of the segmentation at the 

feature level. 

3.1. Instance level: DQL-based NPC detection 

At the instance level, DQL-based NPC detection model is pro- 

posed. NPC detection is modeled as a decision-making process of 

the agent aimed at obtaining a bounding box with the highest sim- 

ilarity to the ground truth to reduce the uninterested region for the 

next scale. At time t , the agent takes action a t to interact with en- 

vironment state s t . The environment transitions to the new state, 

which is s (t+1) , and gives reward r t for the actions of the agent 

according to the reward function. During the training phase, the 

agents take action according to the exploration algorithm. While 

testing, the agent takes action with the maximum Q value accord- 

ing to the trained Q-network. When the agent takes a terminal ac- 

tion, the detection model outputs the final detection result, i.e., the 

final bounding box. After each interaction with the environment, a 

state transition was stored in the experience pool. Fig. 2 illustrates 

the DQL based NPC detection model. 

3.1.1. Agent actions 

In this paper, eleven actions, simulated in Fig. 3 , are designed 

for the agent to make decisions. There are six zoom actions de- 

signed to decrease the size of the bounding box to be 3/4, four 

shift actions move the bounding box by 1/4 closer to the ground 

truth, and a terminal action ends the decision-making process. The 

agent takes the terminal action once the current action is selected 

or the maximum search step is reached. 

3.1.2. State 

The state of the environment contains enough information for 

the agent to make wise decisions. The location of the bounding box 

in the MR image and the historical actions are combined to encode 

the environmental state. When encoding the location, the image 

features on the whole MR image are extracted as the global fea- 

tures, while the image features on the corresponding region of the 

bounding box are extracted as the local feature. Since the designed 

action space is discrete and the number of actions is 11, this paper 

adopts one-hot encoding to encode the historical actions and ob- 

tain the historical action features with dimensions of h × 11 , where 

h denotes the number of historical actions. 

To address this problem, we design a new reward function for 

each type of action. (1) After the agent takes a shift action, if the 

updated bounding box is closer to the ground truth, the agent then 

receives a positive reward; otherwise, it receives a negative reward. 

(2) When the agent takes the zoom action, if the IoU before and 

after the action is taken are both zero, and the bounding box is still 

3 
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Fig. 2. Illustration of DQL based NPC detection model. 

Fig. 3. Illustration of agent actions. The blue region denotes the original bounding 

box, while the white region denotes the bounding box after the action taken by the 

agent. 

greater than the size of the ground truth (multiplied by a prede- 

fined threshold), then the reward is given according to the change 

between the center of the bounding box before and after the ac- 

tion is taken; otherwise, rewards are given based on the changes 

in IoU. (3) When the action is the terminal action, a positive re- 

ward is given if recall and IoU are both greater than the corre- 

sponding predefined threshold. The reward function is illustrated 

in Algorithm 1 , where τh , τw 

, τRecall and τIoU are the predefined 

thresholds. b and b ′ denote the bounding box before and after the 

action is taken. g denotes the ground truth. The function ρ(·) is 

the distance between two center points. 

3.1.3. Reward function 

Most of the existing work on object detection using deep 

reinforcement learning rewards the agent by the intersection 

over union (IoU) between the bounding box and the ground 

truth Wen et al. (2021) ; Han et al. (2018) ; Man et al. (2019) ; 

Zhao et al. (2019b) . However, there are several drawbacks in eval- 

uating the actions of the agent by changing the IoU. When the 

bounding boxes have no intersections with the ground truth be- 

fore and after the action is taken, the reward is not positive; even 

an updated bounding box is closer to the ground truth. Such con- 

flict causes the agent to take exhaustive actions to search through 

the space, thereby introducing high costs. As shown in Fig. 4 , the 

Algorithm 1 Reward function. 

1: if act ion _ t ype == 

′ shi f t ′ then 

2: r := sign 

(
ρ
(
b, b gt 

)
− ρ

(
b ′ , b gt 

))
3: else if act ion _ t ype == 

′ hrink ′ then 

4: if IoU 

(
b ′ , g 

)
== 0 and IoU (b, g) == 0 and b ′ 

h 
> b 

gt 

h 
× τh and 

b ′ w 

> b 
gt 
w 

× τw 

then 

5: r := sign 

(
ρ
(
b, b gt 

)
− ρ

(
b ′ , b gt 

))
6: else 

7: r := sign ( lo U(b ′ , g) − lo U(b, g)) 

8: end if 

9: else 

10: r := 

{
+ σ, Recall (b, g) > τRecall , IoU 

(
b, b gt 

)
> τIoU 

−σ, Otherwise 

11: end if 

12: return r 

bounding box becomes closer to the object (red area) by moving 

the green box to the blue box after the action is taken. How- 

ever, the IoU between the bounding box and the ground truth 

remains 0. Therefore, the reward function in Han et al. (2018) ; 

Man et al. (2019) prohibits the agent from obtaining a positive re- 

ward, resulting in a conflict between the reward and reasonable 

action. 

3.1.4. Exploration algorithm 

Most of the work using deep Q-learning adopts the ε- 

greedy algorithm to select actions to explore the environment 

Man et al. (2019) ; Liu and Hodgins (2017) . The agent needs to 

make trial-and-error in the large exploration space, resulting in 

the difficulty of converging the Q-network in the early training 

phase. In this paper, we utilize priori knowledge according to the 

location and size of the NPC to guide the agent to reasonably re- 

duce the search space, thereby speeding up the convergence rate 

of the model and improving the detection performance. The pro- 
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Fig. 4. Illustration of a problem in evaluating the actions of the agent by the change 

of IoU. 

posed scheme explores the relative location and size difference be- 

tween the bounding box and ground truth to deduce conducive ac- 

tions. The differences are quantified by a priori knowledge term 

εpr ior i . (1) If the center distance between the bounding box and 

the ground truth is greater than a predefined threshold, the shift 

action is taken. (2) If the center distance is less than a predefined 

threshold but there is still a gap between the twos in size, the 

zoom action is taken. (3) In cases other than (1) and (2) , the ter- 

minal action can be taken. By taking actions based on such priori 

knowledge, the agent has a higher probability of receiving a pos- 

itive reward, thus making the Q-network learning samples more 

balanced. The algorithm for taking the three actions is shown in 

Algorithm 2 . In the early training phase, to reduce the agent search 

Algorithm 2 Taking action base on priori knowledge. 

1: if ρ
(
b, b gt 

)
> τdistance then 

2: take shift actions 

3: else if b ′ 
h 

> b 
gt 

h 
× τh or b ′ w 

> b 
gt 
w 

× τw 

then 

4: take zoom actions 

5: else 

6: take the terminal action 

7: end if 

space, a higher probability is used to take actions based on priori 

knowledge. However, in the later phase of training, the probabil- 

ity of randomly selecting actions ε is low, and the Q-network is 

also more reasonable, so the probability of taking actions based on 

priori knowledge declines. In summary, the early training phase is 

driven by priori knowledge, and the process is controlled by a high 

probability value of εpr ior i . In contrast, as the training progresses, 

the probability εpr ior i declines linearly until it drops to 0. The pro- 

posed exploration algorithm based on priori knowledge is shown 

in Algorithm 3 . εpr ior i _ decay is the decay factor of εpr ior i , while εdecay 

is the decay factor of ε. 

3.1.5. Deep Q-learning 

The DQL algorithm utilizes a CNN Q-network to fit the Q- 

function. To stabilize the training, the DQL algorithm uses a tar- 

get Q-network with the same structure to calculate the target Q 

value. The weight of the target Q-network is updated at intervals. 

Algorithm 3 Exploration algorithm based on priori knowledge. 

1: for epoch ∈ [1 , T ] do 

2: if random() < εpriori then 

3: taking action using Algorithm 2 

4: else if random() < ε then 

5: taking action randomly 

6: else 

7: taking the action with the highest Q value 

8: end if 

9: εpr ior i := εpr ior i − εpr ior i _ decay , ε := ε − εdecay 

10: end for 

The Q value of the state s t action a t is calculated using the Q- 

network, q = Q(s t , a t ; θQ ) , where θQ is the Q-ne twork parame ter. 

The Q-value of the target to be fitted is obtained according to the 

immediate reward of the agent from the environment and the tar- 

get Q-network. The calculation formula is given by 

q ′ = 

{
r t a = terminal 

r t + γ max a ′ Q 

(
s t+1 , a 

′ ; θtarget 

)
, a � = terminal 

(1) 

where θtarget is the target Q-network parameter. 

The proposed Q-network is illustrated in the light-blue area in 

Fig. 1 (b). After the location feature and historical action feature are 

extracted, we use a fully connected layer to output the Q-values of 

each action. 

3.2. Feature level: NPC segmentation through recurrent attention 

At this level, we take the output of the instance level as the 

input of the segmentation model. Then, we design a RANet with 

RAMs modules to obtain the final segmentation result. 

3.2.1. Recurrent attention network (RANet) 

RANet uses the encoder-decoder architecture, as shown in 

Fig. 1 (c). 

The black and red lines represent the downsampling and up- 

sampling operations, respectively, and the blue lines represent the 

data flow without changing the feature map resolution. The net- 

work takes T1, T1C, and T2 MR images as input and outputs a 

corresponding probability map as the segmentation result. In the 

encoder phase, it utilizes ResNet He et al. (2016) trained in ad- 

vance on ImageNet Krizhevsky et al. (2012) to extract multi-level 

semantic features. The extracted feature maps are iterated into the 

channel-wise recuttent attention module (cRAM) in order from the 

deepest layer to the shallowest layer, and the attention feature 

map is generated. Then, the global average pool is applied to the 

deepest attention feature map in the deepest layer to obtain the 

global contextual feature map. In the decoder phase, the upsam- 

pling results are combined with the attention feature map from 

the cRAM, which is input into the rRAM in order from the shallow- 

est layer to the deepest layer. Finally, the attention feature maps of 

rRAM are convoluted together with the global contextual feature 

map of cRAM to obtain the final segmentation result. Illustrations 

and details of cRAM and rRAM are shown in Suppl. 1. 

3.2.2. Channel-wise recurrent attention (cRAM) 

Similar to squeeze-and-excited (SE) networks Hu et al. (2018) , 

cRAM is dedicated to stimulating channels with discriminate in- 

formation, which is beneficial to NPC segmentation. The low- 

level features in the shallower layers are recalibrated by feedback 

from long short-term memory (LSTM) Hochreiter and Schmidhu- 

ber (1997) , which memorizes the high-level contextual information 

from deeper layers. Given n level feature maps from n layers, there 

are n level feature maps X = [ X 1 , X 2 , . . . , X n ] , X i ∈ R 

C i ×H i ×W i , wher e 

5 
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C, H and W denote the channel, height and width, respectively. 

Each feature map passes through a global average pooling layer 

and a convolution layer and then is reshaped to a vector v i with 

designative length. At the (i − 1) th iteration, LSTM takes v i as in- 

put, takes h i −1 as the hidden state and outputs v ′ 
i 
= F LST M 

(v i ; h i −1 ) . 

Then, we obtain attention weight W i by a convolution operation on 

v ′ 
i 
. W i is then activated by the sigmoid activation function to out- 

put the recurrent channel-wise attention map A i ∈ R C×1 ×1 . Finally, 

we obtain the attentional feature map U i by 

U i = A i � X i , i ∈ { 1 , 2 , . . . , n } (2) 

where � is the element-wise multiplication operator using array 

broadcasting. 

3.2.3. Region-wise recurrent attention (rRAM) to strengthen features 

of interest 

The rRAM is devoted to enhancing feature learning by focusing 

on the region that is highly related to targeted segmentation. It ex- 

ploits the feedback from the LSTM semantic guidance to refine the 

feature map and learn the attention map across regions rather than 

channels. At the (i − 1) th iteration, the rRAM takes feature maps 

X = [ X 1 , X 2 , . . . , X n ] as input, and h i −1 as the hidden state, and out- 

puts the corresponding attention maps A 

r = [ A 

r 
1 , A 

r 
2 , . . . , A 

r 
n ] . Specif- 

ically, each of the attention maps can be learned by 

A 

r 
i = σ ( f ( X i , h i −1 ) ) , i ∈ { 1 , 2 , . . . , n } (3) 

where f represents a series of operations, including adaptive pool- 

ing, convolution and LSTM. First, the feature maps X i are fed 

into the adaptive pooling layer and transformed to regional statis- 

tics Z i with size C ×S ×S, where S is a predefined size for Z i and 

S < min (H, W ) . Convolution is then performed on Z i and outputs a 

vector v i . Then, LSTM takes v i as input and outputs an attentional 

vector v ′ 
i 
. Furthermore, the attentional vector is transformed into 

an attention map A 

r 
i 

by successive operations in the order of re- 

shaping, convolution, upsampling, and sigmoid function activation. 

Finally, element-wise multiplication is performed on A 

r 
i 

and X i to 

generate the attentional feature map, which stimulates the more 

relevant regions to enhance segmentation performance. 

3.2.4. Dilated border weighted loss function (DBW) 

NPC segmentation with a precise tumor border is essential for 

subsequent tumor evaluation. In this paper, we applied a loss func- 

tion to force RANet at the feature level to give more attention to 

the tumor border and its nearby pixels. We first applied the Canny 

edge detector on the ground truth to obtain the tumor border bi- 

nary map. Then, the binary map is amplified by using a morpho- 

logical dilation operation on the border. To retain the morpholog- 

ical structure of the tumor border, a cruciform structural element 

with a size equal to (2k+1) ×(2k+1) is applied on the binary map. 

Let w i, j represent the weight on the pixel (i, j) . If the pixel is at the 

dilated border, w i, j = w b ; otherwise, w i, j = 1 . The loss values on 

each pixel are normalized by dividing the summation of all pixel 

weights. Finally, the dilated border weighted loss function between 

the ground truth y i, j and the prediction p i, j is formulated by 

L = 

1 ∑ H 
i =0 

∑ W 
j=0 w i, j 

∑ H 
i =0 

∑ W 

j=0 L i, j 

= 

1 ∑ H 
i =0 

∑ W 
j=0 w i, j 

∑ H 
i =0 

∑ W 

j=0 −w i, j 

·
[
y i, j log 

(
p i, j 

)
+ 

(
1 − y i, j 

)
log 

(
1 − p i, j 

)] (4) 

where H and W are the height and width of the input image, re- 

spectively. 

The proposed dilated border weighted loss function guides the 

neural network to mine the tumor edge during training to yield 

precise NPC segmentation. 

4. Experiments 

Our proposed SeqSeg includes NPC detection model at the in- 

stance level and NPC segmentation model at the feature level. 

Thus, we first conduct verification experiments to evaluate the de- 

tection performance at the instance level. Next, experiments are 

carried out to evaluate the effectiveness of RAMs modules and di- 

lated border weighted loss function applied at the feature level. 

Then, we evaluate the segmentation performance of the proposed 

SeqSeg method on a large NPC dataset. Additionally, we evalu- 

ate the reliability of the SeqSeg on multi-device and multi-center 

datasets. Finally, we statistically analyze potential confounders that 

influence segmentation. We are devoted to increasing the segmen- 

tation performance by alleviating the corruption caused by back- 

ground dominance. Thus, we do not consider the slice with no 

NPC. For this reason, only the slices that include NPC are used for 

experiments. The proposed model is a semiautomatic method. 

4.1. Dataset 

We performed experiments on MR images of 596 NPC patients 

collected at Sun Yat-sen University Cancer Center from January 

2010 to January 2013. The MR images included T1-weighted (T1), 

T2-weighted (T2), and contrast-enhanced T1-weighted (T1c) im- 

ages. 

The imaging parameters were as follows: axial T1-w imaging 

(FSE, TR = 540 ms, and TE = 11.8 ms), axial T2-w imaging (FSE, 

TR = 4,0 0 0 ms, and TE = 99 ms), and axial CET1-w imaging (FSE, 

TR = 540 ms, and TE = 11.8 ms). The slice thickness between ad- 

jacent slices was 5 mm on average, and the spacing between slices 

was approximately 6 mm, in which imaging had a resolution of 

0.74 mm × 0.74 mm on average. The tumors occupied an average 

area of 1.11% in a slice. We divided the training, validation, and 

test sets into 301, 129, and 166 patients, respectively. Different pa- 

tients have different numbers of MR images. There were 185 pa- 

tients with 36 slices, 397 patients with 32 slices, and 14 patients 

with 16 slices. We selected the slices that had tumors from each 

patient. The collected slices come from both early and advanced 

patients. Then, there were 5412 images, including three modalities, 

each with 1804 images. The corresponding ground truth was de- 

lineated and was defined by the consensus of four experienced ra- 

diologists. Data augmentation was applied, including rotation and 

horizontal flipping. Moreover, for multicenter evaluation, we col- 

lected additional datasets of 300 patients (2,409 images) and 205 

patients (1,710 images) from the Cancer Center of Sun Yat-sen Uni- 

versity and the First People’s Hospital of Foshan, respectively. 

We evaluated the NPC segmentation performance by some 

standard evaluation metrics, including the Dice similarity coeffi- 

cient (Dice), coefficient (CC), precision, recall, and Hausdorff Dis- 

tance (HD). In addition, intersection over union (IoU) is also used 

as an evaluation metric for object detection. 

4.2. Implementation details 

4.2.1. Image preprocessing 

In this paper, the MR images of T1, T1c, and T2 are concate- 

nated together as the input with three channels. For each chan- 

nel, by calculating the maximum pixel value of the channel in the 

whole dataset, the pixels in the MR image are rescaled to [0, 1]. 

All images were resized to 384 ×384. 

4.2.2. Deep Q-learning settings 

We used ResNet-50 as the CNN backbone to extract image fea- 

tures of the environment state, and the image was rescaled to 

224 ×224 before being fed to ResNet-50. The Q-network used the 

L 1 loss function, while the regulation term with L 2 was adopted 
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Fig. 5. Convergence curve of our proposed DQL based NPC detection model with 

different initial εpr ior i . 

with a coefficient of 0.0 0 04. Stochastic gradient descent (SGD) with 

momentum was set as 0.9. The learning rate was 0.0 0 05, and the 

batch size was 128. The maximum number of steps for the agent 

was 15. During the training, the hyperparameters in the ε-greedy 

algorithm decayed from 1.0 to 0.1 with a decrease rate εdecay = 0 . 1 

in the first 10 epochs. The discount factor γ in learning was set 

to 0.6, and the size of the experience pool was 16,384. The target 

Q-network updated its parameter from the Q-network every 10 0 0 

steps. A maximum of 50 epochs was trained in each experiment. In 

addition, the decay factor εpr ior i _ decay in the proposed exploration 

algorithm was 0.2. τh , τw 

, τRecall and τIoU were set to 0.9, 0.9, 0.95, 

and 0.5, respectively. τdistance was set to 1 / 8 of the diagonal length 

of the target bounding box. The bounding box was initially set at 

the center of the image, and its height and width were 42% of the 

image size. 

4.2.3. Sequential NPC segmentation 

During the training process of the detection model, a bounding 

box was obtained once every action was taken. The MR image was 

cropped according to the bounding box output by the agent. To 

guarantee enough contextual information, we enlarge the bound- 

ing box by 1.5 times the input image of RANet. In the joint training 

of the two scales, the initial learning rate was 0.001 and declined 

to 0.0 0 01 after 25 epochs. 

4.3. Detection results 

4.3.1. Convergence 

Using the different initial probabilities of taking actions based 

on priori knowledge, we analyzed whether the priori knowledge 

used in the exploration algorithm would have an impact on the 

model convergence. There were three different initial values εpr ior i , 

which were 0, 0.4, and 0.8. εpr ior i decayed with εpr ior i _ decay = 0 . 2 

at the end of each epoch until it decayed to 0. Fig. 5 shows that 

with the value of εpr ior i being zero, that is, no priori knowledge 

was used, there were several rush jumps in the loss value. The 

training converged slowly to a large error of approximately 0.04. 

Similar behavior was also observed with the value of εpr ior i being 

0.4. In comparison, when we used a large value of εpr ior i of 0.8, the 

training rapidly converged to a small error of approximately 0.03. 

The resulting loss value smoothly decayed until convergence. The 

comparison demonstrates that the convergence of the Q-network 

can be accelerated by using priori knowledge. 

4.3.2. Ablation study of the exploration algorithm 

This subsection analyzes the behaviors of the proposed explo- 

ration algorithm by comparing different initial probabilities εpr ior i 

in exploiting priori knowledge to guide action taking. The results 

Table 1 

Experimental results for exploration algorithm. 

εpr ior i Recall IoU 

min max mean min max mean 

0.8 49.00% 100.00% 95.13% 7.53% 81.73% 49.41% 

0.4 34.66% 100.00% 87.47% 6.19% 79.60% 48.95% 

ε-greedy 29.91% 100.00% 86.74% 5.83% 82.90% 43.05% 

Table 2 

Experimental results for comparison with Faster R-CNN. 

Model Recall IoU 

min max mean min max mean 

Ours 49.00% 100% 95.13% 7.53% 81.73% 49.41% 

Faster R-CNN 0 100% 93.54% 0% 98.57% 69.66% 

are summarized in Tab. 1 . Without priori knowledge, i.e., εpr ior i = 0 , 

the proposed exploration algorithm is reduced to the ε-greedy al- 

gorithm. The larger the value εpr ior i is, the more obvious the effect 

of priori knowledge in the initial training phase. Tab. 1 shows the 

experimental results of the exploration algorithm. When the agent 

took actions according to priori knowledge with a high probability 

εpr ior i = 0 . 8 , the detection model achieved the highest score on all 

metrics except for the max IoU. Therefore, it can be concluded that 

in the early training phase, the agent selected actions based on pri- 

ori knowledge with high probability, which reasonably reduced the 

exploration space of the agent, thus speeding up the convergence 

speed and improving the detection performance. 

4.3.3. Comparison with Faster R-CNN 

We compared the proposed detection model with the bench- 

mark method of Faster R-CNN Ren et al. (2015) . For a fair compari- 

son, we used feature pyramid network (FPN) Lin et al. (2017) as the 

RPN for Faster R-CNN to exploit its merits in detecting small tar- 

gets. Tab. 2 summarizes the experimental results, where the Faster 

R-CNN yields a higher mean IoU and maximum IoU than the pro- 

posed detection model. However, the proposed detection model 

achieved a higher mean recall value of 95.13% than the Faster R- 

CNN of 93.54%. Such a high recall value implies that the proposed 

detection model detects stable bounding boxes containing suspi- 

cious tumors more frequently than Faster R-CNN. Moreover, the 

minimum recall by Faster R-CNN was 0, while the rate by the pro- 

posed model achieved 49.00%. Such superior results demonstrate 

that the proposed model performs stably in that the agency takes 

the correct action in moving the bounding box. 

An illustrative example is shown in Suppl. 2 to demonstrate the 

detection process by the proposed DQL. Initially, we start with an 

initial bounding box in a solid white line. Then, during the detec- 

tion process, the agent moves the bounding box with various ac- 

tions to cover the tumor area with a minimal area. 

4.4. Segmentation results 

In this section, we aim to validate the performance of tumor 

segmentation at the feature level. For a fair comparison, the whole 

MR slice other than the partial image detected bounding box was 

tested by various models. 

4.4.1. Test on recurrent attention modules 

The RAMs were incorporated into a one-scale U-Net to measure 

its capability. The experiments were summarized in Tab. 3 . 

One can observe that the proposed RAMs remarkedly improved 

the performance of U-Net by increasing the Dice scores by 5.6%. 

Similarly, U-Net equipped with cRAM is comprehensively superior 

to U-Net equipped with an SE block in every metric. For visual 
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Fig. 6. Results comparison for NPC segmentation in 3 slices. The red region denotes the ground truth, the green region denotes the segmentation results of the models, and 

the yellow region denotes the interaction between them. 

Table 3 

Experiments to demonstrate the capability of the proposed recurrent 

attention modules. 

Model Dice Precision Recall CC 

U-Net 66.71% 70.89% 62.99% 0.18% 

U-Net + SE 69.76% 72.27% 67.41% 13.29% 

U-Net + cRAM 71.87% 73.20% 70.58% 21.71% 

U-Net + rRAM 71.10% 70.27% 71.94% 18.70% 

U-Net + cRAM+rRAM 72.31% 70.27% 75.38% 25.02% 

comparison, the segmentation results on three typical MRI slices 

after different models are shown in Fig. 6 . The tumor labeled by 

the radiologists is highlighted in red, while the predicted results 

are in green. Their overlapped parts are in yellow for emphasis. In 

the first example (first row in Fig. 6 ), the tumor has a nice shape 

with a large area and is easy to segment. In the second example, 

the tumor is tiny; therefore, the segmentation is largely affected 

by the background dominance problem. The third example is more 

challenging than the first two; the tumor is infiltrative, and thus, 

its appearance is irregular. The five models were found to accu- 

rately segment the tumor in the first example. Thus, the obtained 

results are largely covered in yellow. In the second example, U-Net 

mistakenly segmented the tumor. The error was partially corrected 

by using the SE block or cRAM. However, there remained mistakes. 

By using both cRAM and rRAM, U-Net perfectly segmented the 

suspicious tumor. In the third example, both U-Net with/without 

SE block mistakenly identified more tumor areas than the labeled 

ones. In comparison, the segmentation result obtained by jointly 

using cRAM and rRAM was very similar to the labeled results with 

irregular appearances. 

The experiments demonstrate that the proposed RAMs improve 

the segmentation performance of U-Net by exploiting the seman- 

tics in the deeper layers to guide the feature learning in the shal- 

lower layer with the help of both channel and regional informa- 

tion. 

4.4.2. Test on dilated border weighted loss function 

We compared the dilated border weighted loss function with 

the typical cross-entropy loss function, the category weighted loss 

function, and the Dice loss function. The mentioned compared loss 

functions can be found in Suppl. 3. 

For a fair comparison, all of these experiments use a one-scale 

U-Net as the baseline model. Tab. 4 summarized the results. When 

using the popular cross-entropy loss function, U-Net achieves the 

Table 4 

Experiments to compare the performance of RANet by different loss functions. 

Loss function Dice Precision Recall CC HD 

Cross entropy 66.71% 70.89% 62.99% 0.18% 19.01 

Category weighted 61.47% 47.25% 94.31% -25.36% 22.18 

Dice loss 66.96% 66.89% 67.05% 1.34% 18.98 

Dilated border weighted 71.65% 69.17% 77.99% 20.87% 16.75 

Table 5 

Experiments to compare RANet (weighted loss) with existing methods. 

Model Dice Precision Recall CC HD 

U-Net 66.71% 70.89% 62.90% 0.18% 19.01 

DenseNet 60.63% 53.32% 70.25% -29.90% 22.74 

DDNN 70.98% 69.85% 72.14% 18.22% 18.08 

Att Unet 73.43% 70.39% 75.61% 25.68% 16.85 

RANet 77.66% 75.54% 79.91% 42.48% 14.72 

RANet (weighted loss) 79.63% 78.24% 81.07% 48.84% 13.11 

highest precision but a low recall value. When using the cate- 

gory weighted cross-entropy loss function, the recall grows with 

the increase in the positive category weighting. However, the pre- 

cision decreases sharply, implying that the segmentation result has 

a large number of false positives. The Dice loss function achieved a 

balance in all metrics and outperformed the first two loss func- 

tions in key metrics Dice scores, but its performance was still 

unsatisfactory. In contrast, when using the proposed dilated bor- 

der weighted loss function, both the Dice score and CC increased 

steadily with increasing dilation coefficient k and edge pixel weight 

w b . The two values reached their peaks when k = 10 , w b = 20 . 

4.4.3. Comparative test of segmentation capability by RANet 

We compared the RANet performance with that of the 

designed RAMs under DBW loss with three state-of-the-art 

methods on NPC segmentation. The comparative methods in- 

cluded U-Net Ronneberger et al. (2015) , fully convolutional 

DenseNet Jégou et al. (2017) , deep deconvolutional neural net- 

work (DDNN) Men et al. (2017) and the attention U-Net (Att 

Unet) Oktay et al. (2018) . Tab. 5 summarizes the experimental re- 

sults. It is clear that our method achieves better performance than 

other methods on all the metrics, where the Dice and CC val- 

ues of our proposed method are 79.63% and 48.84%, respectively, 

which are dramatically larger than those of U-Net (66.71%, 0.18%), 

DenseNet (70.98%, -29.90%), DDNN (70.98%, 18.22%) and Att Unet 

8 



G. Tao, H. Li, J. Huang et al. Medical Image Analysis 78 (2022) 102381 

Fig. 7. Comparative results on NPC segmentation after different models. The red 

contour, green contour and yellow contour represent the ground truth, prediction 

result and their overlap, respectively. There are two samples of the T1-weighted MR 

image shown in the first column. The second to fourth columns show the results of 

two samples obtained by different methods. For the best visualization, we zoomed 

the segmentation results. 

Table 6 

Quantitative measurements on five segmentation methods. 

Model Dice Precision Recall CC HD 

RANet-S 79.63% 78.24% 81.07% 48.84% 13.11 

Mask R-CNN 76.91% 73.84% 83.00% 39.96% 14.34 

Lin et al. (2019) 78.39% 73.00% 86.75% 44.87% 13.78 

Tang et al. (2021) 77.98% 73.45% 85.00% 43.52% 13.16 

SeqSeg (Ours) 80.32% 75.53% 87.57% 51.00% 12.25 

(72.91%, 25.68%). The proposed method obtained a nearly 10% in- 

creasing ratio with respect to the Dice value. 

The segmentation results on the two difficult cases after dif- 

ferent methods are visualized in Fig. 7 . In the first example, the 

tumor border was unclear, and the volume was small; in the sec- 

ond image, the tumor contrast was weak. RANet also achieves the 

best visualization results, and its predicted contours fit well with 

the ground truth. In comparison, the other methods missegment 

the tumor, and thus the obtained segmentation fails to seriously 

overlap with the labeled truth. 

5. Results of the proposed SeqSeg method 

We tested the proposed SeqSeg method on real datasets 

by comparing it with Mask R-CNN He et al. (2017) , 

Tang et al. (2021) DA-DSUnet, and a network proposed by 

Lin et al. (2019) . We selected the benchmark Mask R-CNN because 

it is a representative method that inherits from Faster R-CNN 

and has been successfully tested on various instance detection 

tasks. Additionally, it is a sequential framework similar to our 

method for detection and segmentation. To demonstrate the ben- 

efit of detection at the instance level to overcome the background 

dominance problem, RANet is also tested individually, in which 

the whole MR image rather than the detected region is used. 

Lin et al. (2019) is an effective NPC segmentation method based 

on VoxResNet Chen et al. (2018) . It first crops patches covering 

the tumor using an atlas-based method Sims et al. (2009) . Then, 

a VoxResNet-based method is designed to refine the delineation 

of the tumor. Similar to our method, DA-DSUnet designed an 

attention mechanism for feature refinement. DA-DSUnet is a dual 

attention method, including position and channel attention, for 

NPC segmentation. 

The experimental results are summarized in Tab. 6 . One will 

note that the proposed SeqSeg achieves the highest performance 

with respect to all metrics except precision. Dice and recall are 

pivotal metrics in the NPC segmentation task. The proposed Se- 

qSeg achieves a higher Dice value of 80.32% than RANet (79.63%) 

and a higher recall value of 87.57% than RANet (81.07%). Addition- 

ally, the proposed SeqSeg achieves the highest score in all metrics 

compared with Mask R-CNN, Lin Network Lin et al. (2019) , and DA- 

DSUnet. For visual comparison, the segmentation results of each 

Fig. 8. Comparison of the segmented NPC by different models. The red, green, and 

yellow contours represent the ground truth, the prediction, and their overlap, re- 

spectively. 

method are shown in Fig. 8 . Red contours, green contours, and 

yellow contours represent the ground truth, segmentation result, 

and their overlapping part, respectively. In the first and second ex- 

amples, the tumor has a nice shape with a distinguishable border 

and is easy to segment. The third example and the fourth exam- 

ple are more challenging than the first two. In the third example, 

the tumor is surrounded by low contrast tissues. In the fourth ex- 

ample, the tumor is flocculent and unshapely. Additionally, both 

of them have an irregular shape and an indistinguishable border. 

This causes the background to largely affect the segmentation by 

the background dominance problem. The three models were found 

to accurately segment the tumor in the first example and the sec- 

ond example. Thus, the obtained contours fit well with the ground 

truth. In the third and fourth examples, the Mask R-CNN results 

were dissimilar to the original shape. The results of RANet missed 

the border details. In comparison, the segmentation results by the 

proposed SeqSeg fit well with the labeled contours without the 

above problems. The experiments demonstrate that the proposed 

SeqSeg achieves the best visualization results compared with other 

methods. 

We analyze the influence of different factors on segmenta- 

tion accuracy. Categorical variables for the testing cohorts were 

compared by using the x 2 test or Fisher exact test, and nu- 

meric variables were compared by using the Mann Whitney U 

test. The Mann Whitney U test was used to compare Dice and 

HD between different subgroups. Statistical significance was set at 

two-tailed P -value < 0.01. In the subgroup analyses, the proposed 

method achieved comparable Dice and HD between the post- 

induction chemotherapy and chemotherapy-naive subgroups (Dice: 

P -value = 0.29; HD: P -value < 0.001). In HD, the performance of the 

proposed method was highly related to the chemotherapy con- 

dition. Its performance in chemotherapy-naive patients was bet- 

ter than that in post-induction patients. Tab. 7 shows the details 

of the performance under the different chemotherapy conditions 

of the proposed method. For the different T-categories, the pro- 

posed method achieved a significantly smaller HD in the early T- 

category tumors than in the advanced T-category tumors (Dice: P - 

value = 0.97; HD: P -value < 0.001). Tab. 8 shows the details of the 

performance in the different T-categories of the proposed method. 

However, we did not observe a difference in Dice between the dif- 
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Table 7 

The performance of our method in different chemotherapy condition 

(Chemo). Dice: P -Value = 0.29; HD: P -Value < 0.001. 

Chemo Dice Precision Recall CC HD Sample 

0 80.65% 76.09% 87.50% 52.01% 11.42 235 

1 79.73% 74.77% 87.57% 49.15% 13.38 169 

Note. 0 = Chemotherapy Naive, 1 = Post induction chemotherapy. 

Table 8 

The performance of our method in different T-category. Dice: P -Value = 0.97; HD: 

P -Value < 0.001. 

T-category Dice Precision Recall CC HD Sample 

T1 + T2 79.84% 75.01% 86.63% 49.50% 9.459 51 

T3 + T4 80.33% 75.61% 87.66% 51.03% 12.65 353 

Note. T staging used the American Joint Committee on Cancer staging system. 

ferent chemotherapy conditions and different T-categories. In addi- 

tion, other confounders, including gender, age, MR sequences, im- 

age quality, and N-category showed no impact on segmentation 

performance. The corresponding performances are shown in Suppl. 

Tab. 1, Tab. 2, Tab. 3, Tab. 4, and Tab. 5, respectively. Importantly, 

experimental results show that our method maintains stable and 

accurate segmentation performance on the newly added datasets 

from multi-devices and multi-centers. The details are shown in 

Suppl. Tab. 6 and Suppl. Tab. 7. 

6. Conclusion 

In this paper, we identified that the key to accurate segmen- 

tation of NPC is to solve the problem of background dominance. 

Then, we presented the SeqSeg to deal with the background dom- 

inance problem for accurate NPC segmentation. The proposed Se- 

qSeg pertinently solves the background dominance problem at dif- 

ferent scales, including instance level and feature level. At the in- 

stance level, it aims to capture the relatively small NPC from the 

giant and complex background. A stable detection model based on 

DQL was proposed to gradually capture the NPC through the in- 

teraction between agents and the environment, to force segmen- 

tation to focus attention on the tumor and its surrounding tis- 

sue. Additionally, an exploration algorithm was proposed to re- 

duce the exploration space of agents in the detection model; a re- 

ward function was proposed to reasonably reward the agent, thus 

speeding up the convergence and improving the detection per- 

formance. At the feature level, the proposed SeqSeg aims to deal 

with the background dominance problem in which the background 

is cohesive to the tumor with a shape varied and indistinguish- 

able border. We designed RAMs to guide the segmentation to give 

attention to tumor-related features by using high-level semantic 

features to guide learning low-level texture features and perform 

channel-wise attention and region-wise attention. Additionally, we 

proposed DBW loss to enlarge the attention on the border and to 

mine border features. 

Experimental results show that the proposed SeqSeg achieves 

state-of-the-art NPC segmentation performance and demonstrate 

that solving the background dominance problem is the key to 

achieving excellent segmentation. Additionally, pertinently solving 

the background dominance problem at different scales, including 

the instance level and feature level is an effective strategy. Fi- 

nally, we conduct a comprehensive experiment and analysis about 

the potential confounders of segmentation performance on large 

NPC datasets. Multi-center verification and multi-device verifica- 

tion were also conducted and further verify the reliability of our 

proposed SeqSeg method. 
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