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Self-Supervised Video Representation Learning
by Uncovering Spatio-Temporal Statistics

Jiangliu Wang
Wei Liu

, Jianbo Jiao", Member, IEEE, Linchao Bao", Shengfeng He ", Senior Member, IEEE,
, Senior Member, IEEE, and Yun-hui Liu

, Fellow, IEEE

Abstract—This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically,
given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant
direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc. Then a
neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning
difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian
coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the
visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of
the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-
G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream
video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source

code is publicly available at: https://github.com/laura-wang/video_repres_sts.

Index Terms—Self-supervised learning, representation learning, video understanding, 3D CNN

1 INTRODUCTION

POWERFUL video representation serves as a foundation for
solving many video content analysis and understanding
tasks, such as action recognition [1], [2], video retrieval [3],
[4], video captioning [5], [6], etc. Various network architec-
tures [1], [7], [8] are designed and trained with massive
human-annotated video data to learn video representation
for individual tasks. While great progresses have been
made, supervised video representation learning is impeded
by two major obstacles: (1) Annotation of video data is
labour-intensive and expensive, restricting supervised learn-
ing to relish a large quantity of free video resources on the
Internet. (2) Representation learned from labeled video
data lacks generality and robustness, e.g., video features
learned for action recognition do not well to video retrieval
task [9], [10].

To tackle the aforementioned challenges, multiple app-
roaches [11], [12], [13], [14] have emerged to learn more
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generic and robust video representation in a self-supervised
manner. Neural networks are first pre-trained with unla-
beled videos using pretext tasks, where supervision signals
are derived from input data without human annotations.
Then the learned representation can be employed as weight
initialization for training models or be directly used as fea-
tures in succeeding downstream tasks.

Among the existing self-supervised video representation
learning methods, video order verification/prediction [11],
[12], [13], [14], [15] is one of the most popular pretext tasks.
It randomly shuffles video frames and asks a neural net-
work to predict whether the video is perturbed or to rear-
range the frames in a correct chronological order. By
utilizing the intrinsic temporal characteristics of videos,
these pretext tasks have been shown useful for learning
high-level semantic features. Other approaches include
flow fields prediction [16], future frame prediction [17],
[18], [19], dense predictive coding [20], etc. Although prom-
ising results have been achieved, the dense prediction pre-
text tasks may lead to redundant feature learning towards
solving the pretext task itself, instead of learning generic
representative features for downstream video analysis
tasks. For example, predicting the future frame requires the
network to precisely estimate each pixel in each frame in a
video clip. This increases the learning difficulties and causes
the network to waste a large portion of capacity on learning
features that may be not transferable to high-level video
analysis tasks.

In this paper, enlightened by the human visual system [21],
we propose a novel pretext task to learn video representation
by uncovering spatio-temporal statistical summaries from
unlabeled videos. For instance, given a video clip, the network
is encouraged to identify the largest moving area with its
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Fig. 1. Main idea of the proposed approach. Given a video sequence, we
design a pretext task to uncover the summaries derived from spatio-tem-
poral statistics for self-supervised video representation learning. Specifi-
cally, each video frame is first divided into several spatial regions using
different partitioning patterns like the grid shown in the figure. Then the
derived statistical labels, such as the region with the largest motion and
its direction (the red patch), the most diverged region in appearance and
its dominant color (the blue patch), and the most stable region in appear-
ance and its dominant color (the green patch), are employed as supervi-
sion signals to guide the representation learning.

corresponding motion direction, as well as the most rapidly
changing region in appearance with its dominant color. This
idea is inspired by the cognitive study on human visual sys-
tem [21], in which the representation of motion is found to be
based on a set of learned patterns. These patterns are encoded
as sequences of “snapshots” of body shapes by neurons in the
form pathway, and by sequences of complex optic flow patterns
in the motion pathway. In our work, these two pathways are
defined as the appearance branch and motion branch, respec-
tively. In addition, we define and extract several abstract sta-
tistical summaries accordingly, which is also inspired by the
biological hierarchical perception mechanism [21].

We design several spatial partitioning patterns to encode
each spatial location and its spatio-temporal statistics over
multiple frames, and use the encoded vectors as supervision
signals to train the neural network for spatio-temporal repre-
sentation learning. The novel objectives are informative for
the motion and appearance distributions in videos, e.g., the
spatial locations of the most dominant motions and their
directions, the most consistent and the most diverse colors
over a certain temporal cube, efc. An illustration of the main
idea is shown in Fig. 1, where a 3 x 3 grid pattern with
motion and appearance statistics is shown for example. We
conduct extensive experiments with 3D convolutional neural
networks (CNNs) to validate the effectiveness of the pro-
posed approach. The experimental results show that, com-
pared with training from scratch, pre-training using our
approach demonstrates a large performance gain for video
action recognition problem (e.g., 56.0 versus 77.8 percent on
UCF101 and 22.0 versus 40.7 percent on HMDB51). By trans-
ferring the learned representation to other video tasks, such
as video retrieval, dynamic scene recognition, and action
similarity labeling, we further demonstrate the generality
and robustness of the video representation learned by the
proposed approach.

A preliminary version of this work was presented in [22],
where the basic idea of utilizing spatio-temporal statistical
information for video representation learning is introduced.
In this paper, we further extend the previous work in five
aspects: (1) We provide a more detailed implementation of
the proposed self-supervised learning approach. We extend
the proposed method to four backbone networks, i.e., C3D
with BN, 3D-ResNet, R(2+1)D, and S3D-G, on a large-scale
dataset kinetics-400 [23]. (2) We conduct extensive ablation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

studies on the effectiveness of the pre-training dataset, the
effectiveness of different bakcbone networks, and the corre-
lation between pretext task and downstream task perform-
ances. (3) We investigate the effectiveness of different
training targets, including 1D-label regression, 2D-label
regression, and classification. (4) A curriculum learning
strategy is introduced to further improve the representation
learning. (5) We further validate the proposed method on a
new downstream task, video retrieval, to evaluate the gen-
eralizability of the learned representation.

To summarize, the main contributions of this work are
four-fold: (1) We propose a novel pretext task for video
representation learning by uncovering motion and appear-
ance statistics without human annotated labels. (2) We
introduce a curriculum learning strategy based on the pro-
posed spatio-temporal statistics, which is also inspired by
the human learning process: from simple samples to diffi-
cult samples. (3) Extensive ablation studies are conducted
and analyzed to reveal several insightful findings for self-
supervised learning, including the effectiveness of training
data scale, network architectures, correlation between pre-
text task and downstream tasks, and feature generalization,
to name a few. (4) The proposed approach significantly out-
performs previous approaches across all the studied net-
work architectures in various video analysis tasks. Code
and models are made publicly available online.

2 RELATED WORK

In this section, we review related works, including self-
supervised representation learning and its applications on
downstream video analysis tasks. Please refer to a recent
survey [24] for more details.

2.1 Self-Supervised Representation Learning
Self-Supervised Image Representation Learning. Self-supervised
visual representation learning is first proposed and investi-
gated in the image domain [25]. Various novel pretext tasks
have been proposed to learn image representation from
unlabeled image data, including predicting image con-
text [25], re-ordering perturbed image patches [26], coloriz-
ing grayscale images [27], inpainting missing regions [28],
counting virtual primitives [29], classifying image rotations
[30], predicting image labels obtained using a clustering
algorithm [31], etc. There are also studies that try to learn
image representation from unlabeled video data. Wang and
Gupta [32] proposed to derive supervision signals from
unlabeled videos using traditional tracking algorithms.
Instead Pathak et al. [33] obtained supervision signals using
conventional motion segmentation algorithms.

Very recently, contrastive learning has yielded remark-
able performance [34], [35] and attracted wide attention in
the self-supervised representation learning field. The intui-
tion behind this approach is to conduct instance discrimina-
tion. It simultaneously minimizes the distances of positive
pairs, and maximizes the distances of negative pairs in the
latent space. Compared with the hand-crafted pretext tasks
described above, this framework allows more flexibility of
the design of self-supervised learning approaches. A line of
works [36], [37], [38], [39], [40] are thereby encouraged and
introduced to resolve the most fundamental problem of
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contrastive learning: how to define the positive/negative
pairs. Inspired by the empirical success, some works [41],
[42] have also made efforts to reveal the essential nature of
contrastive learning in a more theoretical way. Readers are
encouraged to view the self-supervised representation
learning from both hand-crafted pretext tasks perspective
and contrastive learning perspective, which provides a big-
ger picture.

Self-Supervised Video Representation Learning. Inspired by
the success of self-supervised image representation learn-
ing, many works have emerged to learn transferable repre-
sentation for video-related downstream tasks, such as
action recognition, video retrieval, etc. Intuitively, a large
number of studies [11], [12], [13], [14], [15] leveraged the dis-
tinct temporal information of videos and proposed to use
frame sequence ordering as their pretext tasks. Wei et al.
[43] also proposed to predict whether the video clips are
playing forwards or backwards. Biichler et al. [9] further
used deep reinforcement learning to design a sampling per-
mutations policy. Gan et al. [16] proposed a geometry-
guided network that forces the CNN to predict flow fields
or disparity maps between two consecutive frames.

Although these work demonstrated the effectiveness of
self-supervised representation learning with unlabeled vid-
eos and showed impressive performances when transfer-
ring the learned features to video recognition tasks, their
approaches are only applicable to a CNN that accepts one
or two frames as inputs and cannot be applied to network
architectures that are suitable for spatio-temporal represen-
tation. To address this problem, works [10], [13], [14] have
been introduced to use 3D CNNs as backbone networks for
spatio-temporal representation learning. Naturally, the 2D
frame ordering pretext tasks are extended to 3D video clip
ordering. Some recent works [44], [45], [46], [47] also dem-
onstrated that predicting the video playback pace/speed is
a simple-yet-effective pretext task. Inspired by the success
of contrastive learning in the image domain, some works
[20], [48], also attempted to extend the concept of contras-
tive learning in the video domain. Another line of research
should be mentioned is to leverage multi-modality sources,
e.g., video-audio [49], [50] and video-text [51], for self-
supervised representation learning. Note that in this paper,
we focus on single modality, i.e., only consider learning
representation in the video domain.

2.2 Representation Learning for Video Analysis
Tasks

Representation learning serves as a fundamental building
block in tackling most video analysis tasks, such as complex
action recognition [52], action detection and localization [53],
[54], [55], video captioning [5], [6], etc. Two types of app-
lication modes are commonly adopted to evaluate the self-
supervised video representation learning, either through
transfer learning (as an initialization model) or feature learn-
ing (as a feature extractor).

Action recognition is one of the most widely used down-
stream video analysis tasks. At the beginning, researchers
have developed various spatio-temporal descriptors for video
representation to tackle this problem [56], [57], [58]. Promising
results were achieved by improved dense trajectories (iDT)
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descriptors [58], the best-performing hand-crated feature.
Recently, extensive efforts have been focusing on the deep
neural networks development due to the impressive success
achieved by CNN. Tran et al. [59] proposed C3D that extends
the 2D kernels to 3D kernels to capture spatio-temporal video
representation. Simonyan and Zisserman [7] proposed a two-
stream network that extracts spatio and temporal features on
RGB and optical flow inputs, respectively. Stemmed from
these two works, various network architectures are designed
to learn video representation, including P3D [60], I3D [1], R(2
+1)D [8], etc. In this work, we consider to use three backbone
networks, C3D [59], 3D-ResNet [8] and R(2+1)D [8] to validate
the proposed approach, following previous works [10], [14].
Backbone networks pre-trained with the proposed spatio-
temporal statistics will be used as weight initialization and
fine-tuned on UCF101 [61] and HMDB51 [62] datasets for the
action recognition downstream task.

The other kind of evaluation mode is to use the pre-
trained networks as feature extractors for the downstream
video analysis tasks, such as video retrieval [10], [11], [14],
dynamic scene recognition [16], [63], etc. Without fine-
tuning, such a mode can directly evaluate the generality
and robustness of the learned features. Performances of the
self-supervised methods are compared with both competi-
tive hand-crated video features, such as spatio-temporal
interest points [56], HOG3D [57], slow feature analysis [64],
bags of spacetime energies [65], efc., and other self-super-
vised learning methods.

3 OuUR PROPOSED APPROACH

In this section, we first explain the high-level ideas and
motivations for designing our novel pretext task with a sim-
ple illustration in Section 3.1. Next, we formally define the
computation of the spatio-temporal statistical labels from
the motion aspect in Section 3.2 and appearance aspect in
Section 3.3. A curriculum learning strategy is presented in
Section 3.4. Finally, we summarize the whole learning
framework with 3D CNNs in Section 3.5.

3.1 Motivation

Inspired by human visual system, we break the process of
video contents understanding into several questions and
encourage a CNN to answer them accordingly: (1) Where is
the largest motion in a video? (2) What is the dominant
direction of the largest motion? (3) Where is the largest color
diversity and what is its dominant color? (4) Where is the
smallest color diversity, e.g., the potential background of a
scene, and what is its dominant color? The motivation
behind these questions is that the human visual system [21]
is sensitive to large motions and rapidly changing contents
in the visual field, and only needs impressions about rough
spatial locations to understand the visual contents. We
argue that a good pretext task should be able to capture nec-
essary representation of video contents for downstream
tasks, while does not waste model capacity on learning too
detailed information that is not transferable to other down-
stream tasks. To this end, we design our pretext task as
learning to answer the above questions with only rough
spatio-temporal statistical summaries, e.g., for spatial coor-
dinates we employ several spatial partitioning patterns to
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Fig. 2. lllustration of extracting statistical labels in a three-frame video
clip. Detailed explanation is in Section 3.1.

encode rough spatial locations instead of exact spatial Car-
tesian coordinates. In the following, we use a simple illus-
tration to explain the basic idea.

Fig. 2 shows an example of a three-frame video clip with
two moving objects (blue triangle and green circle). A typical
video clip usually contains much more frames while here we
use the three-frame clip example for better understanding. To
roughly represent the location and quantify “where”, each
frame is divided into 4 x 4 blocks and each block is assigned
to a number in an ascending order starting from 1 to 16. The
blue triangle moves from block 4 to block 7, and the green cir-
cle moves from block 11 to block 12. By comparing the moving
distances, we can easily find that the motion of the blue trian-
gle is larger than the motion of the green circle. The largest
motion lies in block 7 since it contains moving-in motion
between frames ¢ and ¢ + 1, and moving-out motion between
frames ¢ + 1 and ¢ + 2. Regarding the question “what is the
dominant direction of the largest motion?”, it can be easily
observed that in block 7, the blue triangle moves towards
lower-left. To quantify the directions, the full angle of 360° is
divided into eight pieces, with each piece covering a
45° motion direction range, as shown on the right side in
Fig. 2. Similar to location quantification, each angle piece is
assigned to a number in an ascending order counterclockwise.
The corresponding angle piece number of “lower-left” is 5.

The above illustration explains the basic idea of extract-
ing statistical labels for motion characteristics. To further
consider appearance characteristics “where is the largest color
diversity and its dominant color?”, both block 7 and block 12
change from the background color to the moving object
color. When considering that the area of the green circle is
larger than the area of the blue triangle, we can tell that the
largest color diversity location lies in block 12 and the domi-
nant color is green.

Keeping the above ideas in mind, we next formally describe
the approach to extract spatio-temporal statistical labels for the
proposed pretext task. We assume that by training a spatio-
temporal CNN to predict the motion and appearance statistics
mentioned above, better spatio-temporal representation can
be learned, which will benefit the downstream video analysis
tasks consequently.

3.2 Motion Statistics

Optical flow is a commonly used feature to represent motion
information in many action recognition methods [1], [7]. In
the self-supervised learning paradigm, predicting optical
flow between every two consecutive frames is leveraged as a
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ey — 1)
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(c) Pattern 3
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Fig. 3. Three different partitioning patterns used to divide video frames
into different spatial regions. Each spatial block is assigned with a num-
ber to represent its location.

pretext task to pre-train the deep model [16]. Here we also
leverage optical flow estimated from a conventional non-
parametric coarse-to-fine algorithm [66] to derive the motion
statistical labels that are predicted in our approach.

However, we argue that there are two main drawbacks
when directly using dense optical flow to compute the larg-
est motion in our pretext task: (1) optical flow based meth-
ods are prone to being affected by camera motion, since
they represent the absolute motion [67], [68]. (2) Dense opti-
cal flow contains sophisticated and redundant information
for statistical labels computation, increasing the learning
difficulty and leading to network capacity waste. To miti-
gate these influences, we seek to use a more robust and
sparse feature, motion boundary [67].

Motion Boundary. Denote u and v as the horizontal and ver-
tical components of optical flow, respectively. Motion bound-
aries are derived by computing the x- and y-derivatives of u
and v, respectively:

du ou v v
mu:(umuy): %737’;1/ ,mv:(vx,vy): gaaiy 5

where m,, and m,, is the motion boundary of v and v, respec-
tively. As motion boundaries capture changes in the flow
field, constant or smoothly varying motion, such as motion
caused by camera view change, will be cancelled out. Spe-
cifically, given an N-frame video clip, (N — 1) x 2 motion
boundaries are computed based on (/N — 1) optical flows.
Diverse video motion information can be encoded into two
summarized motion boundaries by summing up all these
(N — 1) sparse motion boundaries m,, and m,;:

No1 o N1 N-1  N-1
= (Luu) - (Sese) o
=1 ; i=1 i=1

i=1

1

where M, and M, denotes the summarized motion bound-
aries on v and v, respectively.

Spatial-Aware Motion Statistical Labels. Based on motion
boundaries, we describe how to compute the spatial-aware
motion statistical labels that describe the largest motion
location and the dominant direction of the largest motion.
Given a video clip, we first divide it into spatial blocks using
partitioning patterns as shown in Fig. 3. Here, we introduce
three simple yet effective patterns: pattern 1 divides each
frame into 4 x 4 grids; pattern 2 divides each frame into 4
different non-overlapped areas with the same gap between
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each block; pattern 3 divides each frame by two center lines
and two diagonal lines. Then we compute summarized
motion boundaries M, and M, as described in Eq. (2).
Motion magnitude and orientation of each pixel can be
obtained by transforming M, and A, from the Cartesian
coordinates to the polar coordinates.

We take pattern 1 for an example to illustrate how to gen-
erate the motion statistical labels, while other patterns fol-
low the same procedure. For the largest motion location labels,
we first compute the average magnitude of blocks 1 to 16 in
pattern 1. Then we compare and find out block B with the
largest average magnitude from the above 16 blocks. The
index number of B is treated as the largest motion location
label. Note that the largest motion locations computed from
M, and M, can be different. Therefore, two corresponding
labels are extracted from M, and M,, respectively.

Based on the largest motion block, we compute the domi-
nant orientation label, which is similar to the computation of
motion boundary histogram [67]. We divide 360° into 8 bins
evenly, and assign each bin with a number to represent its ori-
entation. For each pixel in the largest motion block, we use its
orientation angle to determine which angle bin it belongs to
and add the corresponding magnitude value into the angle
bin. The dominant orientation label is the index number of the
angle bin with the largest magnitude sum. Similarly, two ori-
entation labels are extracted from M, and M,, respectively.

Global Motion Statistical Labels. We further propose global
motion statistical labels that provide complementary informa-
tion to the local motion statistics described above. Specifically,
given a video clip, the model is asked to predict the frame
index (instead of the block index) with the largest motion. To
succeed in such a pretext task, the model is encouraged to
understand the video contents from a global perspective.

Formally, given an N-frame video clip, motion bound-
aries of the ith frame can be computed from Eq. (1),
resulting in m/, and mi, respectively. By casting m! and
m! from the Cartesian coordinates to the Polar coordi-
nates, motion magnitude and orientation of each pixel
can be obtained. Denote the magnitude maps as mag’,
and mag’. Then the global motion statistical labels can be
computed as follows:

I, = argmax Zmagz, I, = argmax ijagi7 3)

ie{1,-,N-1} ic{1,-,N—-1}

where I, I, are the frame indices of the largest magnitude
sum (largest motion) w.r.t. v and v.

3.3 Appearance Statistics

Spatio-Temporal Color Diversity Labels. Given an N-frame video
clip, we divide it into spatial video blocks by patterns
described above, same as the motion statistics. For an
N-frame video block, we compute the volumetric color distri-
bution V; in the 3D color space for the ith frame. We then use
the Intersection over Union (IoU) along the temporal axis to
quantify the spatio-temporal color diversity as follows:

_VerVQQ-"ﬂV,;“-ﬂVN

IoU = .
o V1UV2U-~'UV;---UVN

)

The largest color diversity location is the block with the
smallest IoU, while the smallest color diversity location is
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the block with the largest IoU. In practice, we calculate the
IoU on R, G, B channels separately and compute the final
IoU by averaging them as follows:

IoU = (IoU% + 10U% 4 1oU?) / 3, 5)

where the 3D distribution V; used to compute IoU", ToU%,
and ToU” is generated by calculating the color histogram
w.r.t. each color channel.

Dominant Color Labels. Based on the video blocks with
the largest color diversity and smallest color diversity, we
compute the corresponding dominant color labels. We
divide the 3D RGB color space into 8 bins evenly and
assign each bin with an index number. Then for each
pixel in the video block, based on its RGB value, we
assign a number of the corresponding color bin to it.
Finally, color bin with the largest number of pixels is the
label for the dominant color.

Global Appearance Statistical Labels. We also propose
global appearance statistical labels to provide supplemen-
tary information, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3057833. Specifically, we use the dom-
inant color of the whole video (instead of a video block) as
the global appearance statistical label. The computation
method is the same as the one described above.

3.4 Motion-Aware Curriculum Learning

We further propose to leverage the curriculum learning strat-
egy [69] to improve the learning performance. The key con-
cept is to present the network with more difficult samples
gradually. It is inspired by the human learning process and
proven to be effective on many learning tasks [20], [50], [70].
Recently, Hacohen and Weinshall [71] further investigated
the curriculum learning in training deep neural networks and
proposed two fundamental problems to be solve: (1) scoring
function problem, i.e., how to quantify the difficulty of each
training sample; (2) pacing function problem, i.e., how to feed
the networks with the sorted training samples. In this work,
for self-supervised video representation learning, we describe
our solutions to these two problems as follows.

Scoring Function. Scoring function f defines how to mea-
sure the difficulty of each training sample. In our case, each
video clip is considered to be easy or hard, based on the dif-
ficulty to figure out the block with the largest motion, i.e.,
difficulty to predict the motion statistical labels. To charac-
terize the difficulty, we use the ratio between magnitude
sum of the largest motion block and magnitude sum of the
entire videos, as the scoring function f. When the ratio is
large, it indicates that the largest motion block contains the
dominant action in the video and thus is easy to find out the
largest motion location, e.g., a man skiing in the center of a
video with smooth background change. On the other hand,
when the ratio is small, it indicates that the action in the
video is relatively diverse or the action is less noticeable,
e.g., two persons boxing with another judge walking
around. See Section 5.5 for more visualized examples.

Formally, given an N-frame video clip, two summarized
motion boundaries M, and M, are computed based on
Eq. (2) and the corresponding magnitude maps are denoted
by M;" and M]'™. Denote B,, B, as the largest motion
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Fig. 4. Framework of the proposed approach. Given a video clip, 14 motion statistical labels and 13 appearance statistical labels are to be predicted. The
motion statistical labels are computed from the summarized motion boundaries M, and M,. The appearance statistical labels are computed from the input
video clip. For each local motion pattern, 4 ground-truth labels are generated: p,,, o,—the spatial location of the largest magnitude based on M, and its cor-
responding dominant orientation; p,, o,—the spatial location of the largest magnitude based on ), and its corresponding dominant orientation. Two global
motion statistical labels are I,,, I,—the frame indices of the largest magnitude sum w.rt. m,, and m,. For each local appearance pattern, 4 ground-truth
labels are generated: p;, ¢,—the spatial location of the largest color diversity and its corresponding dominant color; p,, c;—the spatial location of the small-
est color diversity and its corresponding dominant color. The global appearance statistical label is C—the dominant color of the whole video.

blocks, and B]'", B as the corresponding magnitude
maps. The scoring function f is defined as the maximum
ratio between the magnitude sum of B,, M, and B,, M,:

> B DB
f = max( Z A[;nugv Z Mi'r;nag . (6)

Here we use the maximum ratio between the horizontal com-
ponent v and the vertical component v as the difficulty score.
The reason is that large magnitude in one direction can
already define large motion, e.g., a person running from left
to right contains large motion in horizontal direction u but
small motion in vertical direction v. With the scores computed
from function f, training samples are sorted in a descending
order accordingly, representing the difficulty from easy to
hard.

Pacing Function. After sorting the samples, the remaining
question is how to split these samples into different training
steps. Previous works [20], [50], [70] usually adopt a two-stage
training scheme, i.e., training samples are divided into two
categories: easy and hard. In [71], the authors formally define
such a problem as a pacing function g, and introduce three
stair-case functions: single step, fixed exponential pacing, and
varied exponential pacing, where they demonstrate that these
functions have comparable performances [71]. In our case, we
adopt the simple single step pacing function (we also tried
other functions and similarly found that they show compara-
ble performances). Formally, we denote the first half of the
training samples (descendingly sorted as aforementioned) as
Si and the remaining half samples as .S;. Then the pacing
function is defined as follows:

g(i) = S1+ H(i —t)- Sy, ©)

where i is the training iteration, H(i — t) is the Heaviside
step function [72], and ¢ is the number of iterations when
the remaining half samples S, are included for pre-training.

In practice, the entire S will then be used for the second-
stage training when the model is converged on the first half
training samples.

3.5 Learning With Spatio-Temporal CNNs

The framework of our approach is illustrated in Fig. 4.
Given an input video clip, a neural network is trained to
uncover motion and appearance statistics defined above.
Specifically, we consider C3D [59], 3D-ResNet [73], R(2
+1)D [8], and S3D-G [74] as Backbone Networks. Regarding
training targets, the proposed task could be modeled as
either a regression problem or a classification problem.
The effectiveness of different backbone networks and
training targets is thoroughly analyzed in Sections 5.2
and 5.6, respectively.

3.5.1 Backbone Network

C3D [59] network extends 2D convolutional kernel &k x k
to 3D convolutional kernel k x k x k to operate on 3D
video volumes. It contains 5 convolutional blocks, 5 max-
poling layers, 2 fully-connected layers, and a soft-max
layer in the end to predict action class. Each convolutional
block contains 2 convolutional layers except the first two
blocks. Batch normalization (BN) is also added between
each convolutional layer and ReLU layer.

3D-ResNet [73] is a 3D extension of the widely used 2D
architecture ResNet [75], which introduces shortcut connec-
tions that perform identity mapping of each building block.
A basic residual block in 3D-ResNet (R3D) contains two 3D
convolutional layers with BN and ReLU followed. Shortcut
connection is introduced between the top of the block and
the last BN layer in the block. Following previous work [73],
we use 3D-ResNet18 (R3D-18) as our backbone network,
which contains four basic residual blocks and one tradi-
tional convolutional block on the top.
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R(2+1)D [8] breaks the original spatio-temporal 3D convo-
lution into a 2D spatial convolution and a 1D temporal convo-
lution, since 3D CNNs are computationally expensive. While
preserving similar network parameters to R3D, R(2+1)D out-
performs R3D on supervised video action recognition task.

S3D-G [74] builds on top of I3D [1]. While achieving com-
parable results with I3D, S3D-G is much more efficient by
introducing three vital ideas. First, it adopts a top-heavy
design, i.e., uses 2D convolutions in the lower layers and 3D
convolutions in the higher layers. Second, it replaces 3D
convolutions with separable 2D and 1D convolutions.
Third, it uses spatio-temporal feature gating.

3.5.2 Training Targets

Regression. We first model the spatio-temporal statistics pre-
diction task as a regression problem. Specifically, we con-
sider two different designs: 1D label regression and 2D
label regression.

In the 1D label regression design, we represent each sta-
tistical label by a 1D label. In this case, 27 values, including
14 motion statistical labels and 13 appearance statistical
labels, are to be regressed. In the 2D label regression design,
we represent the spatial location of patterns 1 and 3 by a 2D
label. For example, in pattern 1, block 1 will be represented
as (1,1) and block 7 will be represented as (2,3). In this case,
35 values, including 18 motion statistical labels and 17
appearance statistical labels, are to be regressed. Ly-norm is
leveraged as the loss function to measure the difference
between predicted labels and target labels. Formally, the
loss function is defined as:

Yall2s ®)

Lyeg = Al T = Yl + Nall G —

where ¢, Y, denote the predicted and target motion statis-
tical labels, and 9, y, denote the predicted and target
appearance statistical labels. A,, and )\, are the weighting
parameters that are used to balance the two loss terms.

Classification. We further consider modeling our pretext
task as a classification problem. Each statistical label will be
predicted independently by a fully-connected layer with a
cross-entropy loss. In this case, it will introduce 27 fully-
connected layers. Although optimizing through such a large
number of fully-connected layer seems to bias the learning
towards these layers instead of the preceding layers, our
experimental analysis (Section 5.6) reveals some different
findings. Formally, the loss function is defined as:

Tm, T

(’15_)\ Z‘Cm (’19_'_)\ Z‘ca _cls? (9)

where n,, and n, denote the numbers of motion and appear-
ance statistical labels (n,, = 14 and n, = 13 in our paper).
Specifically,

m s — Zy:)n( log p:)n( a s — Zyot lOg pa(

(10)

where £, ., £}, denote the ith motion and jth appear-
ance classification losses, M;, M; denote the number of clas-
ses for the ith motion and jth appearance statistical labels,
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Yo's Yo indicate whether the predicted label c is the same as
the target label o, and p}., p; . denote the predicted probabil-
ities. \,, and )\, are the weighting parameters that are used
to balance the two loss terms.

4 EXPERIMENTAL SETUP

4.1 Datasets
We conduct extensive experimental evaluations on five
datasets in the following sections.

Kinetics-400 (K-400) [23] contains around 306k videos of
400 action classes. It is divided into three splits: training split,
validation split, and testing split. Following previous works
[20], [44], [47], we use the training split as pre-training data-
set, which contains around 240k video samples.

UCF101 [61] is a widely used dataset which contains
13,320 video samples of 101 action classes. It is divided into
three splits. Following previous works [14], [20], [47], we
use the training split 1 as pre-training dataset and the train-
ing/testing split 1 for downstream task evaluation.

HMDB51 [62] is a relatively small action dataset which
contains around 7,000 videos of 51 action classes. Following
previous works [14], [20], [47], we use the training/testing
split 1 to evaluate the proposed approach.

YUPENN [63] is a dynamic scene recognition dataset
which contains 420 video samples of 14 dynamic scenes. We
follow the recommended leave-one-out evaluation proto-
col [63] when evaluating the proposed approach.

ASLAN [76] is a video dataset focusing on the action sim-
ilarity labeling problem and contains 3,631 video samples of
432 classes. During testing, following previous work [76],
we use a 10-fold cross validation with leave-one-out evalua-
tion protocol.

4.2 Implementation Details

Self-Supervised Pre-Training Stage. When pre-training on UCF101
dataset, video samples are first split into non-overlapped
16 frame video clips and are randomly selected during pre-
training. When pre-training on K-400, following previous
works [13], [20], we randomly select a consecutive 16-frame
video clip and the corresponding 15-frame optical flow clip
from each video sample. Each video clip is reshaped to spatial
size of 128 x 171. As for data augmentation, we randomly
crop the video clip to 112 x 112 and apply random horizontal
flip for the entire video clip. Weights of motion statistics A,
and appearance statistics A, are empirically set to be 1 and 0.1.
The batch size is set to 30. We use Stochastic Gradient
Descent (SGD) as the optimizer with learning rate 5 x 1074,
which is divided by 10 every 6 epochs and the training process
is stopped at 25 epochs. Model with the lowest validation loss
is used for downstream stream video analysis tasks.

Supervised Fine-Tuning Stage. During the supervised fine-
tuning stage, weights of convolutional layers are retained
from the self-supervised pre-trained models and weights of
the fully-connected layers are re-initialized. The whole net-
work is then trained again with cross-entropy loss on action
recognition task with UCF101 and HMDB51 datasets. Image
pre-processing procedure and training strategy are the same
as the self-supervised pre-training stage, except that the ini-
tial learning rate is changed to 3 x 1073
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TABLE 1
Ablation Experiments on Spatio-Temporal Statistics Component

(a) Partitioning statistical patterns

(b) Local and global statistics

(c) Motion and appearance statistics

Initialization UCF101 Initialization UCF101 Initialization = UCF101 =~ HMDB51
Random 454 Random 454 Random 454 19.7
Motion pattern 1 53.8 Motion global 48.3 Appearance 48.6 20.3
Motion pattern 2 53.2 Motion pattern all 55.4 Motion 57.8 30.0
Moiton pattern 3 54.2 Motion pattern all + global 57.8 Joint 58.8 32.6

Evaluation. For action recognition task, during testing,
video clips are resized to 128 x 171 and center-cropped to
112 x 112. We consider two evaluation methods: clip accu-
racy and video accuracy. The clip accuracy is computed by
averaging the accuracy of each clip from the testing set. The
video accuracy is computed by averaging the softmax prob-
abilities of uniformly selected clips in each video [14] from
the testing set. In all of the following experiments, to have a
fair comparison with previous works [10], [14], [20], we use
video accuracy to evaluate our approach, apart from the
ablation studies on the effectiveness of each component
(Section 5.1), where we use clip accuracy to keep a consis-
tency with our previous conference paper [22].

We further use our self-supervised pre-trained models as
feature extractors on three downstream video analysis
tasks: dynamic scene recognition, and action similarity
labeling. More evaluation details are presented in Section 6
for every downstream task.

5 ABLATION STUDIES AND ANALYSES

In this section, we conduct extensive ablation studies to ana-
lyze the proposed approach. We study the effectiveness of
each component in Section 5.1, the effectiveness of different
backbone networks in Section 5.2, the correlation between
pretext and downstream task performances in Section 5.3,
the effectiveness of the pre-training dataset in Section 5.4,
and the effectiveness of curriculum learning strategy in
Section 5.5. All these studies are conducted on top of the 1D
label regression design. Then we investigate the effective-
ness of different training targets in Section 5.6.

5.1 Effectiveness of Each Component

Pattern. We study the performances of three partitioning
patterns. Here, we analyze and show the performances
based on the motion statistics while the appearance statis-
tics follows the same trend. As shown in Table 1 a, all three
patterns achieve comparable results. Compared to random
initialization, i.e., training from scratch, each pattern
improves by around 8 percent.

Local versus Global. We study the performances of local
statistics, where is the largest motion location?, global statistics,
which is the largest motion frame?, and their ensemble. As can
be seen in Table 1 b, when the three local patterns are com-
bined together, we can further get around 1.5 percent
improvement, compared to single pattern in Table 1 a. The
global statistics also serves as a useful supervision signal
with an improvement of 3 percent. All motion statistical
labels, i.e., local and global statistics, achieve 57.8 percent
accuracy on the UCF101 dataset.

Motion, RGB, and Joint Statistics. We finally analyze the per-
formances of motion statistics, appearance statistics, and their
combination in Table 1 c. Both appearance and motion statis-
tics serve as useful self-supervised signals but the motion sta-
tistics is more powerful. We hypothesize the reason is that
temporal information could be more important for action rec-
ognition task. When combining motion and appearance statis-
tics, the action recognition accuracy can be further improved.

5.2 Effectiveness of Backbone Networks

Recently, modern spatio-temporal representation learning
architectures, such as R3D-18 [73] and R(2+1)D [8], have
been used to validate self-supervised video representation
learning methods [10], [14]. While the performances of
downstream tasks are significantly improved, this practice
introduces a new variable, backbone network, which could
interfere with the evaluation of the pretext task itself. In the
following, we first evaluate our proposed method with
these modern backbone networks in Table 2. Following
that, we compare our method with recent works [10], [14]
on these three backbone networks in Fig. 5.

We present the performances of different backbone net-
works on UCF101 and HMDB51 datasets under two settings:
without per-training and with pre-training in Table 2. When
there is no pre-training, baseline results are obtained by train-
ing from scratch. When there is pre-training, backbone net-
works are first pre-trained on UCF101 dataset with the
proposed method and then used as weights initialization for
the following fine-tuning. We have the following observations:
(1) Significant improvement is achieved on both action recog-
nition datasets across three backbone networks. With C3D it
improves UCF101 and HMDB51 by 9.6 and 13.8 percent; with
R3D-18 it improves UCF101 and HMDB51 by 13.6 and
12.1 percent; with R(2+1)D it improves UCF101 and HMDB51
by 19.5 and 15.9 percent remarkably. (2) Compared to C3D,
R3D-18 and R(2+1)D benefit more from the self-supervised

TABLE 2
Evaluation of Different Backbone Networks on UCF101 and
HMDBS51 Datasets

Experimental setup Downstream task

Pre-training  Backbone  #Params. UCF101 HMDB51
x C3D 33.4M 61.7 24.0
v C3D 33.4M 69.3 34.2
x R3D-18 14.4M 54.5 21.3
v R3D-18 14.4M 67.2 32.7
x R(2+1)D 14.4M 56.0 22.0
v R(2+1)D 14.4M 73.6 34.1

When pre-training, we use our self-supervised pre-training model as weight
initialization.
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Fig. 5. Action recognition accuracy in terms of four initialization methods
w.r.t three backbone networks on UCF101 and HMDB51 datasets.

pre-training. While C3D achieves the best performance in the
no pre-training setting, R(2+1)D finally achieves the highest
accuracy on both datasets in the self-supervised setting. (3)
The proposed method using R(2+1)D achieves better perfor-
mance than using R3D-18, while with similar number of net-
work parameters. Similar observation is also demonstrated in
supervised action recognition task [8], where R2+1)D per-
forms better than R3D-18 on K-400 dataset.

We further compare our method with two recent pro-
posed pretext tasks VCOP [14] and VCP [10] on these three
backbone networks in Fig. 5. We have three key observa-
tions: (1) The proposed self-supervised learning method
achieves the best performance across all three backbone net-
works on both UCF101 and HMDB51 datasets. This demon-
strates the superiority of our method and shows that the
performance improvement is not merely due to the usage of
the modern networks. The proposed spatio-temporal statis-
tical labels indeed drive neural networks to learn powerful
spatio-temporal representation for action recognition. (2)
For all three pretext tasks, R(2+1)D achieves the largest
improvement on both datasets, which is similar to the
observation in the above experiments. (3) No best network
architecture is guaranteed for different pretext tasks. R(2+1)
D achieves the best performance with our method and
VCOP, while C3D achieves the best performance with VCP.

5.3 Pretext Task versus Downstream Task

We show the correlation between pretext and downstream
task performances in Fig. 6. Specifically, we use UCF101 train-
ing split 1 as the pre-training dataset. The pretext task perfor-
mance is evaluated by the mean square error between the
target and predicted spatio-temporal statistical labels on
UCF101 testing split 1. A lower pretext task error indicates a
better pretext task performance. The downstream task perfor-
mance is evaluated by action recognition accuracy on the
UCF101 dataset.

We have the following observations: (1) When using dif-
ferent backbone networks, a better pretext task performance
does not guarantee a better downstream task performance.
For example, in the left of Fig. 6, while C3D and R(2+1)D
produce comparable pretext task error, R(2+1)D outper-
forms C3D by 4.3 percent. (2) On the contrary, when the
backbone network is fixed to R(2+1)D, as shown in the right
of Fig 6, with the pretext task error decreasing, action recog-
nition accuracy on UCF101 dataset increases. (3) The first
few pre-training epochs play an important role in the
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Fig. 6. Correlation between pretext task error and downstream task
accuracy. Left: representative value obtained from the best performed
model using different backbone networks. Right: Complete evolution
using R(2+1)D as the backbone network.

downstream task performance improvement. For example,
training 3 epochs can already lead to a significant improve-
ment in the downstream task performance.

5.4 Effectiveness of Pre-Training Data

In the following, we consider two scenarios to investigate
the effectiveness of pre-training data. One is the comparison
on different pre-training datasets with different data scales.
The other is the comparison on the same pre-training data-
set but with different sizes of pre-training data.

Pre-Training Dataset Analysis. We analyze the performances
of training on a relatively small-scale dataset UCF101 [61] and
a large-scale dataset K-400 [23]. The pre-trained models are
evaluated on UCF101 and HMDB51 datasets w.r.t. three dif-
ferent backbone networks. As shown in Fig. 7, the perfor-
mance can be further improved when pre-training on a larger
dataset w.r.t all the backbone networks on both downstream
datasets.

Dataset Scale Analysis. We further consider pre-training net-
works on different proportions of the same K-400 dataset. In
practice, 1/k of K-400 is used for pre-training, where k =
16,8,4,2,4/3,1. To obtain the corresponding pre-training
dataset, for k = 16, 8, 4, 2, we select one sample from every k
samples of the original full K-400. As for k =4/3, we first
retain half of the K-400, and then select one sample from every
2 samples in the remaining half dataset. We conduct extensive
experiments on three backbone networks and two down-
stream datasets.

As shown in Fig. 8a, the increase of pre-training data scale
does not lead to a linear increase of performance. Specifically,
the increasing speed of performance is high at the beginning
and then gradually decreases. Let us take R(2+1)D for exam-
ple. Using 1/8 of the K-400 can achieve half of the
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Fig. 7. Action recognition accuracy in terms of different pre-training data-
sets w.r.t. three backbone networks on UCF101 and HMDB51.
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Fig. 9. Three video samples of the curriculum learning strategy. From left to right, the difficulty to predict the motion statistical labels of each video clip
is increasing. For each sample, the top three images are the first, middle, and last frames of a video clip. In the bottom row, the first two images are the
corresponding optical flows and the last image is the summarized motion boundaries M,/ M,, with the maximum magnitude sum.

improvement compared to training from scratch. In addition,
compared with using full K-400, using half of the K-400 only
leads to inconsequential drop from the highest performance.
When the z-axis is shown in log-scale as in Fig. 8b, with the
increase of the pre-training data size, the performance of the
proposed method improves log-linearly. Similar observations
on this log-linearly improvement property are also reported
in other pretext tasks of self-supervised visual representation
learning [77] and in supervised learning [78], [79], [80].

5.5 Effectiveness of Curriculum Learning Strategy
We have shown that downstream task performances improve
log-linearly with the pre-training data size in Section 5.4. Based
on this observation, we suggest that it is an interesting direc-
tion to investigate the importance of different training sam-
ples in improving the downstream task performance. In this
way, we can utilize the large amount of video data for self-
supervised learning in a more efficient way. In the following,
we show that by using the proposed curriculum learning
strategy, the performance can be further improved using the
same full K-400 as the pre-training dataset.

The evaluation of the proposed curriculum learning strat-
egy is shown in Table 3. Compared with the baseline results
(100 percent of K-400), the performances are further boosted
on both UCF101 dataset and HMDB51 dataset. This validates
the effectiveness of the proposed curriculum learning strat-
egy. It is also interesting to note that when using the first or
the last half of the sorted training samples, i.e., simple samples
or difficult samples, the performances on UCF101 dataset are
both lower than the random half of K-400. Such observations
further validate that the careful selection of training samples

is necessary in self-supervised representation learning. Three
video samples ranked from easy to hard are shown in Fig. 9.

5.6 Effectiveness of Training Targets

We evaluate the effectiveness of three different training tar-
gets: 1D label regression, 2D label regression, and classifica-
tion w.r.t. three backbone networks in Table 4. Specifically,
we use UCF101 training split 1 as the pre-training dataset.
The pretext task performance is evaluated by spatio-temporal
statistics prediction accuracy on UCF101 and HMDB51 data-
sets. The downstream task performance is evaluated by action
recognition accuracy on UCF101 and HMDB51 datasets.

We have three key observations: (1) The proposed pre-
text task is quite challenging, when we formulate it as a
regression problem. The mean square error loss introduces
ambiguity when predicting discrete numbers. As a result,
it results in a poor performance when we measure the
accuracy by considering the exact number. (2) Although

TABLE 3
Evaluation of Curriculum Learning Strategy.

Experimental setup Downstream task

Curr. Learn. Pre-training data UCF101 HMDB51
x 100 % K-400 76.5 37.9
x 50 % K-400 73.6 35.6
x T ,50% K-400 (simple) 72.4 35.9
X 1 ,50% K-400 (difficult) 72.8 32.1
v 100% K-400 77.8 40.5

“1” represents the first half of the K-400 dataset while “|” indicates the last
half of the K-400 dataset.
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TABLE 4
Evaluation of Different Training Targets on UCF101 and
HMDB51 Datasets w.r.t Three Backbone Networks

Training Pretext task Downstream task
Target UCF101 HMDB51 UCF101 HMDB51
C3D 1D label 20.5 19.1 69.3 34.2
2D label 24.7 23.6 68.7 30.3
Classification  52.5 49.2 72.3 39.0
R3D-18 1D label 18.2 174 67.2 32.7
2D label 22.3 214 67.1 28.0
Classification  49.0 45.5 70.4 34.9
R(2+1)D 1D label 19.6 18.2 73.6 34.1
2D label 23.5 22.5 74.5 32.7
Classification  50.8 47.6 77.8 40.7

challenging, the proposed pretext task indeed encourages
the neural networks to learn transferable representation for
video understanding. The classification training target
achieves the best performances on both pretext task and
downstream task w.r.t. different network architectures. (3)
A better pretext task performance does not always leads to
a better downstream task performance, in which case too
much network capacity may be allocated to the pretext task
optimization. For example, the 2D label regression outper-
forms the 1D label regression consistently in terms of the
pretext task performance. But it achieves worse down-
stream (action recognition) task performance in most cases.

6 COMPARISON WITH STATE-OF-THE-ARTS

In this section, we validate the proposed approach both quan-
titatively and qualitatively. We compare with state-of-the-arts
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on four downstream video understanding tasks: action recog-
nition in Section 6.1, video retrieval in Section 6.2, dynamic
scene recognition in Section 6.3, and action similarity labeling
in Section 6.4.

6.1 Action Recognition
We compare our approach with state-of-the-art self-supervised
learning approaches on the action recognition task in
Table 5. We have the following observations: (1) Compared
with random initialization, i.e., training from scratch, net-
works fine-tuned on pre-trained models with the proposed
spatio-temporal statistics (5TS) achieve significant improve-
ment on both UCF101 and HMDB51 datasets. Such results
demonstrate the great potential of self-supervised video
representation learning. (2) With larger input size, i.e., 112 x
112 to 224 x 224, longer input length, i.e., 16 frames to 64
frames, and a more powerful backbone network, i.e., R(2+1)
D to S3D-G, the performance of the proposed STS can be
further improved drastically on both UCF101 and HMDB51
datasets. This considerably validates the scalability and pot-
ential of the proposed approach. (3) Our approach achieves
state-of-the-art performance on both datasets. Given RGB
videos as the network inputs, the proposed STS outper-
forms the state-of-the-art SpeedNet [44] by 7.9 percent on
UCF101 and 13.2 percent on HMDB51. (4) The proposed
approach even performs better than MemDPC* [48], which
takes both RGB and optical flow as inputs and is the current
best performed method; the proposed approach also achi-
eves comparable performance with AVTS [50] and XDC
[82], which use both audio and video modalities.

Attention Visualization. Fig. 10 visualizes the attention
maps on several video samples using [81]. For action classes
with subtle differences, e.g., Apply lipstick and Apply eye

TABLE 5
Comparison With State-of-the-Art Self-Supervised Learning Approaches on the Action Recognition Task

Method Pre-training Experimental Setup Downstream task
Network Input size #Params Dataset Audio Visual UCF101 HMDB51

Random R(2+1)D 224 x 224 14.4M - v 56.0 22.0
Fully supervised R(2+1)D 224 x 224 14.4M K-400 v 93.1 63.6
AVTS [50] 13D 224 x 224 27.2M K-400 v v 83.7 53.0
AVTS [50] MC3 224 x 224 11.7M AudioSet v v 89.0 61.6
XDC [82] R(2+1)D 224 x 224 14.4M K-400 v v 86.8 52.6
XDC [82] R(2+1)D 224 x 224 14.4M AudioSet v v 93.0 63.7
Object Patch [32] AlexNet 227 x 227 62.4M UCF101 v 42.7 15.6
ClipOrder [11] CaffeNet 227 x 227 58.3M UCF101 v 50.9 19.8
AoT [43] AlexNet 227 x 227 62.4M UCF101 v 55.3 -

Deep RL [9] CaffeNet 227 x 227 58.3M UCF101 v 58.6 25.0
OPN [12] VGG 80 x 80 8.6M UCF101 v 59.8 23.8
VCP [10] R(2+1)D 112 x 112 14.4M UCF101 v 66.3 32.2
VCOP [14] R(2+1)D 112 x 112 14.4M UCF101 v 72.4 30.9
PRP [83] R(2+1)D 112 x 112 14.4M UCF101 v 72.1 35.0
STS (Ours) R(2+1)D 112 x 112 14.4M UCF101 v 77.8 40.7
MAS [22] C3D 112 x 112 33.4M K-400 v 61.2 33.4
ST-puzzle [13] R3D-18 224 x 224 33.6M K-400 v 65.8 33.7
DPC [20] R3D-34 224 x 224 32.6M K-400 v 75.7 35.7
Pace [47] R(2+1)D 112 x 112 14.4M K-400 v 77.1 36.6
MemDPC [48] R-2D3D 224 x 224 32.6M K-400 v 78.1 41.2
SpeedNet [44] S3D-G 224 x 224 9.6M K-400 v 81.1 48.8
MemDPC* [48] R-2D3D 224 x 224 32.6M K-400 v 86.1 54.5
STS (Ours) S3D-G 224 x 224 9.6M K-400 v 89.0 62.0

“x” indicates both RGB and optical flow are taken as input, where the predictions are finally averaged.
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Fig. 10. Attention visualization. For each sample from top to bottom: A
frame from a video clip, activation based attention map of conv5 layer on
the frame by using [81], summarized motion boundaries 1/, and sum-
marized motion boundaries M, computed from the video clip.

makeup, the pre-trained model is sensitive to the location
that is exactly the largest motion location as quantified by
the summarized motion boundaries M, and M,. It is also
interesting to note that for the SumoWrestling video sample
(the fifth column), although three persons (two players and
one judge) have large motion in direction u, only players
demonstrate larger motion in direction v. As a result, the
attention map is mostly activated around the players.

The performances on the action recognition downstream
task strongly validate the great power of our self-supervised
learning approach. The proposed pretext task is demon-
strated to be effective in driving backbone networks to learn
spatio-temporal features for action recognition. In the fol-
lowing, to the goal of learning generic features, we directly
evaluate the learned video representation on three different
downstream tasks by using the networks as feature extrac-
tors without fine-tuning on the downstream task.

6.2 Video Retrieval

We evaluate spatio-temporal representation learned from
our self-supervised approach on video retrieval task.
Given a video, we follow [10], [14] to uniformly sample ten
16-frame clips. Then the video clips are fed into the self-
supervised pre-trained models to extract features from the
last pooling layer (pool5). Based on the extracted video fea-
tures, cosine distances between videos of testing split and
training split are computed. Finally, the video retrieval per-
formance is evaluated on the testing split by querying top-k
nearest neighbours from the training split based on cosine
distances. Here, we consider k to be 1, 5, 10, 20, 50. If the test
clip class label is within the top-k retrieval results, it is con-
sidered to be successfully retrieved.

In Tables 6 and 7, we compare our approach with the other
self-supervised learning methods on UCF101 dataset and
HMDB51 dataset, respectively. The proposed approach out-
performs VCOP [14] and VCP [10] on both datasets signifi-
cantly. We further investigate whether the performances
could be improved, since video features extracted from the
pool5 layer tend to be more task-specific and could lack gen-
eralizability for the video retrieval task. To validate this
hypothesis, we extract video features from each pooling
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TABLE 6
Comparison With State-of-the-Art Self-Supervised Learning
Methods on the Video Retrieval Task With the UCF101 Dataset

Method Top-1 Top-5 Top-10 Top-20 Top-50
AlexNet Jigsaw [26] 19.7 285 335 40.0 494
OPN [12] 199 287 340 40.6  51.6
DeepRL[9] 257 362 422 492 59.5
C3D Random 167 275 337 414  53.0
VCOP [14] 125 290 390 50.6  66.9
VCP [10] 173 315 420 526  67.7
Ours 39.1 592 688 77.6  86.4
Ours (p4) 439 634 713 790 875
R3D-18 Random 99 189 260 355 519
VCOP [14] 141 303 404 51.1  66.5
VCP [10] 186 33.6 425 53.5  68.1
Ours 383 599 689 772  87.3
Ours (p4) 42.7 623 710 783 873
R(2+1)D Random 106 207 274 374 531
VCOP [14] 107 259 354 473 639
VCP [10] 199 337 420 50.5 644
Ours 381 589 681 77.0 859
Ours (p4) 422 634 713 787  86.9

The best results from pool5 w.r.t. each 3D backbone network are shown in
bold. The results from pool4 on our method are in italic and highlighted.

layer. In Fig. 11, we show the comparison between the self-
supervised method (pre-trained on the proposed pretext task)
and supervised method (pre-trained on the action labels) on
HMDB51 dataset, and UCF101 dataset follows the similar
trends.

We have the following key observations: (1) Regarding
our self-supervised method, with the evaluation layer going
deeper, the retrieval performance would increase to a peak
(usually at pool3 or pool4 layer) and then decrease. Similar
observation is also reported in self-supervised image repre-
sentation learning [84]. The corresponding performance of
pool4 layer is reported in Tables 6 and 7 (highlighted in
blue). (2) Our self-supervised method significantly outper-
forms the supervised method, especially at deeper layers.

TABLE 7
Comparison With State-of-the-Art Self-Supervised Learning
Methods on the Video Retrieval Task With the HMDB51 Dataset

Method Top-1 Top-5 Top-10 Top-20 Top-50
C3D Random 7.4 20.5 31.9 445 66.3
VCOP [14] 74 22.6 34.4 48.5 70.1
VCP [10] 7.8 23.8 35.5 49.3 71.6
Ours 164  36.9 49.9 64.9 82.0
Ours (p4) 20.7 369 49.9 64.9 82.0
R3D-18 Random 6.7 18.3 28.3 43.1 67.9
VCOP[14] 7.6 22.9 34.4 48.8 68.9
VCP [10] 7.6 244 36.6 53.6 76.4
Ours 18.0 37.2 50.7 64.8 82.3
Ours (p4) 201 424 55.6 68.1 82.3
R(2+1)D Random 45 14.8 23.4 38.9 63.0
VCOP [14] 5.7 19.5 30.7 45.8 67.0
VCP [10] 6.7 21.3 32.7 49.2 73.3
Ours 16.4  36.9 50.5 65.4 81.4
Ours (p4) 19.7 418 55.5 68.4 83.6

The best results from pool5 w.r.t. each 3D backbone network are shown in
bold. The results from pool4 on our method are in italic and highlighted.
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Fig. 11. Evaluation of features from different stages of the network; i.e., pooling layers, on the video retrieval task with the HMDB51 dataset. The dot-
ted blue lines show the performances of the supervised pre-trained models on the action recognition problem, i.e., random initialization (Rnd). The
orange lines show the performances of the self-supervised pre-trained models with our method (Ours). Better visualization with color.

Fig. 12. Qualitative video retrieval results. From left to right: one query frame from the testing split, frames from the top-3 retrieval results based on the
supervised pre-trained models, and frames from the top-3 retrieval results based on our self-supervised pre-trained models. From top to bottom:
three qualitative examples of video retrieval on the UCF101 dataset. The correctly retrieved results are marked in blue while the failure cases are in

orange. Better visualization with color.

This suggests that features learned from our self-supervised
method are more robust and generic when transferring to
the video retrieval task. Some qualitative video retrieval
results are shown in Fig. 12.

6.3 Dynamic Scene Recognition

We further study the transferability of the learned features on
dynamic scene recognition problem with the YUPENN data-
set [63], which contains 420 video samples of 14 dynamic
scenes. Following previous work [59], each video sample is
first split into 16-frame clips with 8 frames overlapped. Then
the spatio-temporal feature of each clip is extracted based on
the self-supervised pre-trained models from pooling layers.
In practice, similar to Section 6.2, we investigate the best-
performing pooing layer w.r.t. each backbone network in
such a problem. The best-performing layer for these three net-
works is pool4. Next, video-level representation is obtained by
averaging the corresponding video-clip features, followed by
L normalization. Finally, a linear SVM is used for classifica-
tion and we follow the same leave-one-out evaluation proto-
col as described in [63]. We compare our approach with state-
of-the-art hand-crafted features and the other self-supervised
learning methods in Table 8. The proposed approach signifi-
cantly outperforms the state-of-the-art Geometry [16] by 8.1,
6.0, and 7.4 percent w.r.t. C3D, R3D-18, and R(2+1)D back-
bone networks, respectively.

6.4 Action Similarity Labeling

In this section we introduce a challenging downstream task,
action similarity labeling. The learned spatio-temporal
representation is evaluated on the ASLAN dataset [76],
which contains 3,631 video samples of 432 classes. Unlike
action recognition task or dynamic scene recognition task
that aims to predict the actual class label, the action similar-
ity labeling task focuses on the similarity of two actions.
That is, given two video samples, the goal is to predict
whether the two samples are of the same class or not. This
task is quite challenging as the test set contains never-before-
seen actions [76].

TABLE 8
Comparison With State-of-the-Art Hand-Crafted Methods and
Self-Supervised Representation Learning Methods on the
Dynamic Scene Recognition Task

Method Hand-crafted Self-supervised YUPENN
SOE [63] v 80.7
SFA [64] v 85.5
Object Patch [32] v 70.5
ClipOrder [11] Vv 76.7
Geometry [16] v 86.9
Ours, C3D v 95.0
Ours, R3D-18 V4 92.9
Ours, R2+1)D Vv 94.3
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TABLE 9
Comparison With Different Hand-Crafted Features and Fully-
Supervised Models on the ASLAN Dataset

Features Hand-crafted  Sup.  Self-sup. Acc.
C3D [59] v 78.3
P3D [60] Vv 80.8
HOF [76] Vv 56.7
HNF [76] v 59.5
HOG [76] v 59.8
Ours, C3D v 62.0
Ours, R3D-18 v 61.7
Ours, R(2+1)D v 62.1

To evaluate on the action similarity labeling task, we use
the self-supervised pre-trained models as feature extrac-
tors and use a linear SVM for the binary classification, fol-
lowing [59]. Specifically, given a pair of videos, each video
sample is first split into 16-frame clips with 8 frames over-
lapped and then fed into the network to extract features
from the pool3, pool4 and pool5 layers. The video-level
spatio-temporal feature is obtained by averaging the clip
features, followed by L, normalization. After extracting
three types of features for each video, we compute 12 dif-
ferent distances for each feature as described in [76]. The
three 12 (dis-)similarities are concatenated together to
obtain a 36-dimensional feature. Since the scales of distan-
ces are different, we normalize the distances separately
into zero-mean and unit-variance, following [59]. A linear
SVM is used for classification and we use the 10-fold leave-
one-out cross validation same as [59], [76].

We compare our method with full-supervised met-
hods and hand-crafted features in Table 9. We set a new base-
line for the self-supervised method as no previous self-
supervised learning methods have been validated on this
task. We have the following observations: (1) Our method out-
performs the hand-crafted features: HOF, HOG, and HNF (a
composition of HOG and HOF). But there is still a big gap
between the fully supervised method. (2) Unlike the observa-
tions in previous experiments (e.g., action recognition), the
performances of three backbone networks are comparable
with each other. We suspect that the reason lies on the fine-
tuning scheme leveraged in previous evaluation protocols,
where the backbone architecture plays an important role. Asa
result, we suggest that the proposed evaluation on the
ASLAN dataset (Table 9) could serve as a complementary
evaluation task for self-supervised video representation
learning to alleviate the influence of backbone networks.

7 CONCLUSION

In this work, we presented a novel pretext task for self-
supervised video representation learning by uncovering a
set of spatio-temporal labels derived from motion and
appearance statistics. A curriculum learning strategy was
incorporated to further improve the representation learn-
ing performance. To validate the effectiveness of our
approach, we conducted extensive experiments on four
downstream tasks of action recognition, video retrieval,
dynamic scene recognition, and action similarity labeling,
over four different backbone networks, including C3D,
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R3D-18, R(2+1)D, and S3D-G. Our method achieves state-
of-the-art performances on various configurations. When
directly evaluating the learned features by using the pre-
trained model as a feature extractor, our approach dem-
onstrates great robustness and transferability to down-
stream tasks and significantly outperforms the other
competing self-supervised methods.
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