
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

3-2021 

Fast scene labeling via structural inference Fast scene labeling via structural inference 

Huaidong ZHANG 

Chu HAN 

Xiaodan ZHANG 

Yong DU 

Xuemiao XU 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons 

Citation Citation 
ZHANG, Huaidong; HAN, Chu; ZHANG, Xiaodan; DU, Yong; XU, Xuemiao; HAN, Guoqiang; QIN, Jing; and 
Shengfeng HE. Fast scene labeling via structural inference. (2021). Neurocomputing. 442, 317-326. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7838 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Huaidong ZHANG, Chu HAN, Xiaodan ZHANG, Yong DU, Xuemiao XU, Guoqiang HAN, Jing QIN, and 
Shengfeng HE 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/7838 

https://ink.library.smu.edu.sg/sis_research/7838


Fast scene labeling via structural inference

Huaidong Zhang a, Chu Han b, Xiaodan Zhang c, Yong Du d, Xuemiao Xu a,⇑,
Guoqiang Han a, Jing Qin e, Shengfeng He a,⇑
a School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
bGuangdong Provincial People’s Hospital, Guangzhou, China
cBeijing University of Technology, Beijing, China
dDepartment of Computer Science and Technology, Ocean University of China, Qingdao, China
eHong Kong Polytechnic University, Hongkong, China

a r t i c l e i n f o

Article history:
Received 24 March 2020
Revised 26 July 2020
Accepted 22 December 2020
Available online 10 March 2021
Communicated by Shijian Lu

Keywords:
LSTM
Structural inference
Scene labeling

a b s t r a c t

Scene labeling or parsing aims to assign pixelwise semantic labels for an input image. Existing CNN-based
models cannot leverage the label dependencies, while RNN-based models predict labels within the local
context. In this paper, we propose a fast LSTM scene labeling network via structural inference. A mini-
mum spanning tree is used to build the image structure for constructing semantic relationships. This
structure allows efficient generation of direct parent–child dependencies for arbitrary levels of superpix-
els, and thus structural relationships can be learned with LSTM. In particular, we propose a bi-directional
recurrent network to model the information flow along the parent–child path. In this way, the recurrent
units in both coarse and fine levels can mutually transfer the global and local context information in the
entire image structure. The proposed network is extremely fast, and it is 2.5� faster than the state-of-the-
art RNN-based models. Extensive expseriments demonstrate that the proposed method provides a signif-
icant improvement in learning the label dependencies, and it outperforms state-of-the-art methods on
different benchmarks.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Scene labeling or parsing is a fundamental computer vision task
which aims to discover pixel-level semantic information of the
scene. It demands not only high accuracy labeling result but also
restricted time performance in the practical applications such as
autonomous driving or surveillance. Most of the existing works
[1–11] predict labels by using the feed-forward, end-to-end CNN
models. However, the convolutional operation is only capable to
capture local context. It cannot model the dependencies and inter-
actions across semantic layouts when there exist interactions
among semantic layouts. That will lead to ambiguity when decid-
ing the class of an object. For example in Fig. 1(a), there is a human
hand wearing a glove on the table while holding a spoon. To decide
whether it is a human hand or a cloth highly depends on the sur-
rounding objects. In addition, this kind of intersection is quite com-
mon in the real world scenario. To introduce semantic dependency
into the prediction, a solution with clearer structural information is
desired.

To inject global context, a straightforward solution is to build a
LSTM [12] model on neighboring pixels [13,14] or regular girds
[15–18]. These methods can easily model the information flow
horizontally and vertically, as shown in Fig. 2(a). However, the
recurrent units of these regular LSTM models only perform over
a small number of neighboring pixels, which fail to learn the struc-
tural information. Liang et al. [19] propose to model information
transfer by constructing LSTM over superpixels [20]. They transfer
the structural information within a graph-structured LSTM, as
shown in Fig. 2(b). Comparing to regular LSTM, Graph-LSTM
involves a much larger context into the semantic layouts. However,
the number of superpixels must be carefully determined to avoid
over-segmentation or under-segmentation problems. To overcome
this problem, Peng et al. [21] and Liang et al. [22] propose to grad-
ually evolve superpixel structure according to the semantic lay-
outs. However, the structural relationship among superpixels is
still not fully explored, and they cannot leverage the information
from different granularities of superpixels.

To perform scene labeling with higher accuracy and much
clearer boundaries, we want our model to fully explore both global
and local contextual information. Instead of constructing a recur-
rent network directly on the generated superpixels, we proposed

https://doi.org/10.1016/j.neucom.2020.12.134
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a Hierarchical LSTM (Hier-LSTM) to model the structural depen-
dencies of superpixels (Fig. 2(d)). To achieve efficient performance,
we tailor a fast superpixel generation method. When generating
the superpixels, we record the merging orders of superpixels and
form a superpixel tree. This tree contains all the parent–child rela-
tionships of the multiscale superpixels. Our proposed Hier-LSTM is
designed as a bi-directional recurrent network to learn the struc-
tural relationships of different levels in the superpixel tree. Based
on the directions of tree traversal, our training process can be
divided into the top-down and bottom-up directions. In the
bottom-up direction, the recurrent units in the lower levels (child
nodes) pass the local information to the recurrent units in the
higher levels (parent nodes). On the contrary, in the top-down
direction, global context information passes throughout the tree
to the lower levels. The bi-directional recurrent network allows
us to learn the hierarchical image features and provide interactions
between semantic layouts with different scales. Moreover, our pro-
posed fast superpixel generation method boosts our whole system
to efficient performance. Extensive experiments demonstrate that
the proposed method performs favorably against state-of-the-art
methods on different standard datasets. In particular, it is 10 � fas-
ter than the other RNN-based methods. Our contributions can be
summarized as followed:

� We propose a fast superpixel generation method. This method
can record the merging order of superpixels as a superpixel tree
which contains all the relationships across different levels of
superpixels.

� We propose a bi-directional recurrent network to aggregate
both local and global image structures. This network is able to
explore the interactions between semantic layouts in different
scales, which enables hierarchical features learning and size-
aware semantic prediction.
� The proposed scene labeling method outperforms state-of-the-
art methods on different benchmarks. To the best of our knowl-
edge, it is the fastest RNN-based network for scene labeling.

2. Related work

2.1. Scene labeling

Fully Convolutional Networks (FCNs) based models [2–6] can be
separated to an encoder and a decoder. The encoder is applied for
encoding the global information, while the decoder recovers the
spatial feature for pixel-level prediction. These methods play a
trade-off between abstract image features and local information.
Therefore they mainly focus on overcome this problem, i.e., skip
connection in [3,4], pyramid pooling module in [5], atrous convo-
lution in [6] and etc. However, these FCN models obtain contextual
information using only regular convolution, which makes them
difficult to model complex and non-regular structural dependency.
That will lead to ambiguity and unclear boundaries. We overcome
this issue by modeling the information flow utilizing our proposed
Hier-LSTM which is able to learn the dependency through struc-
tural inference.

2.2. Long Short-Term Memory Network

Previous LSTM models mainly explore the dependencies
between LSTM units within a given superpixel map. Some methods
[13–18,23] adopt the LSTM over pixel or grid to model information
transfer. The directions of transfer in these methods are intuitive,
but the boundaries of observed units lack semantic reasoning.
Liang et al. [19] model the information transfer over superpixels,
and make a great improvement on object parsing thanks to the
semantic boundaries of superpixels. Peng et al. and Liang et al.
[21,22] further extend the architecture of [19] to multi-level, and
the information transfer on a different level of superpixels can be
formulated at the same time. However, the above methods still
not fully explore both local and global contextual information
due to the LSTM design. Furthermore, the connections of LSTM
units in their works are decided by whether two units are neigh-
borhoods or not, which may cause unreasonable connections when
the split of superpixels is mess.

Our proposed Hier-LSTM learn structural reasoning along the
construction of superpixels. The bi-directional training strategy
allows local and global information transfer more effective. Exist-
ing methods cannot achieve this by only perform LSTM on the
same level of superpixel map.

Fig. 1. Ambiguity in real world scenario. It is hard to decide whether this is a human hand or a cloth for existing FCN-based methods since they lack semantic dependency.
Our proposed Hier-LSTM can successfully label the human hand correctly with clear boundary by learned structural inference.

Fig. 2. Comparison of different LSTM architectures. Our method can learn structural
dependencies with the proposed hierarchical superpixel architecture. Red nodes:
the starting nodes. Purple nodes: nodes connected with the starting nodes that used
for inferencing..
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3. Approach

In this paper, we propose a fast scene labeling method by learn-
ing the structural inference, as shown in Fig. 3. The input image is
passed into a CNN backbone to extract the semantical features. A
hierarchical superpixel tree is conducted by our designed fast
superpixel generation method in Section 3.1. A Hier-LSTM with
bi-directional training strategy is proposed in Section 3.2 to ana-
lyze the structural inference inside the superpixel hierarchy. The
complete network well balances the tradeoff between accuracy
and computational time, and achieves efficient performance.

3.1. Hierarchical superpixel generation

Most of the existing methods only consider the information
within one single level superpixel map. But we find that there
exists implicit structure information during the superpixel genera-
tion. Thus, we proposed to make use of the structure inference con-
veyed while generating superpixels and utilized a recurrent
network to explore it. To this end, in this paper, we design a hier-
archical superpixel generation method and conduct a multi-level
superpixel maps for scene labeling. Comparing with the single
level superpixel map, the multi-level one is able to provide more
comprehensive local details and global structure. Besides, we
believe that the merging process of superpixels also conveys

cross-level structure information. Thus, we record all the merging
steps using a tree structure to build up the parent–child relation-
ship of each superpixel as shown in Fig. 4.

3.1.1. Notation and definition
Formally, we conduct multi-level superpixel maps G in Eq. (1),

G ¼ Gkjk ¼ 1;2 . . .Kf gGk ¼ pn
k jn ¼ 1;2 . . .Nk

� � ð1Þ

where Gk denotes the k-th level of superpixel map and K is the
number of levels. Each level of superpixel map Gk contains Nk

superpixels of the whole image under the level k. pn
k is the n-th

superpixel in Gk. To build a multi-level observation, we keep
increasing the level k which indicates the merging process of super-
pixels. Thus, the number of superpixels Nk will decrease when k
increases. In our paper, we set K ¼ 8 in practice.

During the superpixel generation, we conduct a superpixel tree
to represent the structural relationship of superpixels between the
adjacent two levels. Each superpixel pn

k in the k-th level can be
regarded as one node in the tree. As defined in Eqs. (2),

P pn
k

� � ¼ pm
kþ1

� �
; when k < K

C pn
k

� � ¼ pm
k�1jm ¼ 1;2; . . . ;M

� �
; when k > 1 ð2Þ

P �ð Þ and C �ð Þ denote the set of parent and child nodes of super-
pixel pn

k respectively. Note that, each node can have more than one
child node but only one parent node.

3.1.2. Superpixel generation
We propose a multi-level superpixel generation method, which

is tailor-made for our Hier-LSTM. To fulfill the demand of efficient
performance, we solve this problem by forming the image as a
undirected graph shown in Fig. 4. Our method initially considers
each pixel as one node, and then assigns edge weights between
the node and its 8-connected neighborhoods. Then our algorithm
iteratively merges the nodes and updates the edge weights. In each
iteration, two nodes with minimum edge weight are merged into a
new node and it will inherit the edges of the elder two nodes. We
keep iteratively merging the nodes and updating the weights until
only one node left. The design of this algorithm is similar to the
minimum spanning trees (MST) algorithm [24], which can achieve
linear time complexity.

Fig. 3. System overview. Our proposed superpixel generation method not only generates but also records the whole generation process into a tree structure which provides
comprehensive local and global information for the proposed Hier-LSTM.

Fig. 4. Multi-level superpixel generation. The upper part of this figure illustrations
the multi-level superpixel generation at each level. The lower part is the
visualization of superpixel generation in real case. Note that, SP = 128 indicates
the number of superpixels in the image is 128, and so forth.
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Here, we define the edge weight E between two nodes as the
merging cost in Eq. 3.

E ¼ xLgradient þ 1
x

Lcolor ð3Þ

Lgradient denotes the boundary cost, which is presented by the aver-
age edge confidence [25] between two nodes. Lcolor measures the
absolute difference of the mean color. When the size of superpixel
increases, the content of the superpixel will become busier. There-
fore, the mean color will be less informative to present busy content
in superpixels. So we introduce a weightx, which equals to the size
of the superpixel, to balance the importance of the color and gradi-
ent difference in terms of the superpixel size. For efficient perfor-
mance, we apply a fast edge detection algorithm [25] to detect
edge maps for gradient loss.

With the proposed superpixel generation method, all of the par-
ent–child relationships (P �ð Þ and C �ð Þ) of one node can be recorded
concurrently on the fly. Thanks to the simply design of our super-
pixel generation method, multi-level superpixel maps are gener-
ated efficiently. The time statistics are shown in the experiment.
Besides, the iteratively merging process can lead to many-to-one
relation across levels, and thus the topologies of the structure are
satisfied that each node can have more than one child node but
only one parent node. The lower part of Fig. 4 shows some exam-
ples of our superpixel results in three different levels.

3.2. Hierarchical LSTM

Given the multi-level superpixel maps, we aims to learn the
structural inference inside them. Instead of learning the structure
information between two adjacent levels, we want to dig up more
implicit structure information hiding in the longer range levels.
Thus, we proposed a Hierarchical LSTM to solve this problem.

3.2.1. Basic LSTM formulation
Given the number of layers T and the input sequence

x ¼ x1; . . . ; xTf g, a Long Short-Term Memory (LSTM) [12] network
computes the hidden vector sequence h ¼ h1; . . . ;hTf g as well as
the cell vector sequence c ¼ c1; . . . ; cTf g by iterating the same cal-
culation from t ¼ 1 to T. Comparing to standard RNN architecture,
LSTM leverages memory cells to store the information over the
arbitrary length time intervals. It is benefit to exploit long range
relationship and structural inference. The basic LSTM [26] is
defined as follows.

it ¼ r Wxixt þWhiht�1 þWcict�1 þ bi
� �

;

f t ¼ r Wxf xt þWhf ht�1 þWcf ct�1 þ bf

� �
;

ct ¼ it tanh Wxcxt þWhcht�1 þ bcð Þ þ f tct�1;

ot ¼ r Wxoxt þWhoht�1 þ boð Þ;
ht ¼ ot tanh ctð Þ:

ð4Þ

where r is the logistic sigmoid function, and i; f ; o and c are the
input gate, forget gate, output gate and cell activation vector respec-
tively. The size of them are the same with the hidden vector h. In
our framework, we first extract the image feature using CNN back-
bone. For each superpixel, we take a mean pooling operation and
obtain its feature vector. Then the feature vectors of superpixels
are the input sequence x ¼ x1; . . . ; xTf g of LSTM.

3.2.2. Hier-LSTM
Since we have already recorded the merging process using a

tree structure during the superpixel generation. To leverage the
structural inference in multi-level superpixels and obtain higher
accuracy and clearer boundaries, we reformulate the basic LSTM
to a Hierarchical LSTM which is defined as follows:

it ¼ r Wxixt þWhiht�1 þWcict�1 þ bi
� �

;

f t ¼ r Wxf xt þWhf ht�1 þWcf ct�1 þ bf

� �
;

f
!

t ¼ r Wxf xt þW
h
!

f

h
!

t�1 þW
c!f

c!t�1 þ bf

 !
;

f
 

t ¼ r Wxf xt þW
h
 

f
h
 

t�1 þW
c
 
f
c
 

t�1 þ bf

� 	
;

ĉt�1 ¼ f t ct�1þ f
!

t c
!

t�1þ f
 
t c
 

t�1
N

;

ct ¼ it tanh Wxcxt þWhcht�1 þ bcð Þ þ ĉt�1;

ot ¼ r Wxoxt þWhoht�1 þ boð Þ;
ht ¼ ot tanh ctð Þ:

ð5Þ

Here, we use a bi-directional learning according to the direction
of the superpixel tree traversal, Thus, our network is trained in top-
down �! and bottom-up � directions alternately and iteratively.
Given a superpixel p, the sets of its parent and children nodes
are P pð Þ and C pð Þ respectively. For top down training, we consider
the information from the parent node P pð Þ of superpixel p. So the

hidden vector h
!

t�1 and cell vector c!t�1 in Eq. 5 is calculated as
follows:

h
!

t�1 ¼ hP pð Þ
t�1

c!t�1 ¼ cP pð Þ
t�1

ð6Þ

For bottom up training, we consider the children nodes C pð Þ. So
the hidden vector h

 
t�1 and cell vector c

 
t�1 is calculated as follows:

h
 
t�1 ¼

X
m2C pð Þ

hmt�1

M

c
 
t�1 ¼

X
m2C pð Þ

cmt�1

M

ð7Þ

Since the superpixel p may have more than one children nodes

in C pð Þ. h
 

t�1 and c
 

t�1 are computed by the mean feature value of all
the children nodes in C pð Þ. Here, M is the number of nodes in set
C pð Þ.

With our proposed Hier-LSTM, the recurrent unit on each
superpixel can receive structural information not only from the

adjacent levels, but also from the cross levels. Forget gates f
!

t

and f
 

t can help the network filter relative information in the mem-
ory. With this manner, the recurrent unit can selectively store
structural information in ct and ht for specific task like scene
labeling.

Since the information transfer is sensitive to the update order of
superpixel, we update each level with dynamic order: For t ¼ 1;3::,

we update from bottom-to-top and receive h
 
t ; c
 

t


 �
instead of

h
 
t�1; c

 
t�1


 �
; For t ¼ 2;4::, we update from top-to-bottom and

receive h
!

t ; c
!

t

h i
instead of h

!
t�1; c
!

t�1
h i

.

3.2.3. Multi-level fusion and optimization
In our framework, each superpixel in multi-level superpixel

maps can obtain a scene prediction result from its corresponding
recurrent unit. However, it is hard to decide which observation
level is the best for a specific area in image. Thus, for each super-
pixel, we concatenate the hidden vectors ht of itself, its parent as
well as its ancestor. With this concatenated feature, we can predict
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fine-detail and accurate result for the small superpixel in bottom
level with abundent structural information.

During training, we consider the class of largest component in a
superpixel as the desired label, and we add classifier over each lstm
unit to predict scene label for each superpixel. Softmax entropy

loss is applied to optimize our network. Note that we calculate loss
over whole the sequence recurrent unit output for deeply super-
vised. The loss come from fusion results is also adopted during
training.

Table 1
Comparison of scene labeling performance on the Pascal Context validation dataset.

Method Res101 PA(%) CA(%) IoU(%)

FCN-8s [2] 65.9 46.5 35.1
ParseNet [30] 67.5 52.3 39.1
DeepLab [31] – – 39.6
ConvPP-8 [32] – – 41.0
CAMN [33] 72.1 54.3 41.2
HO-CRF [34] – – 41.3
PixelNet [35] – 51.5 41.4
Piecewise [36] 71.5 53.9 43.3
GCPNet [37]

p
73.8 – 46.5

CRF-RNN [38] – – 39.3
Grid [15]

p
71.9 54.8 42.6

Graph [19]
p

75.4 56.6 45.1
MS Graph [19]

p
75.5 56.7 45.3

Ours
p

76.4 59.0 47.1

Table 2
Comparison of scene labeling performance on the Sift Flow validation dataset.

Method Res101 PA(%) CA(%) IoU(%)

RCNN [39] 85.1 51.7 –
ParseNet [30] 86.8 52.0 40.4
FCN-8s [2] 85.9 53.9 41.2

Piecewise [36] 88.1 53.4 44.9
CAMN [33] 86.2 58.7 45.2

Grid-LSTM [15] 70.1 22.6 –
DAG-RNN [40] 81.2 45.5 –
CRNN [17] 86.9 57.7 44.7
Grid [15]

p
87.2 53.6 45.7

Graph [19]
p

87.7 55.7 47.1
MS Graph [19]

p
87.9 58.0 48.5

Ours
p

88.0 60.0 51.4

Table 3
Comparison of scene labeling performance on the ADE20K validation dataset.

Method Res101 PA(%) CA(%) IoU(%)

FCN [2]
p

71.3 – 29.4
SegNet [4] 71.0 – 21.6

DilatedNet [41]
p

73.5 – 32.3
CascadeNet [42]

p
74.5 – 34.9

GCPNet [37]
p

77.8 – 38.4
RefineNet101 [43]

p
– - 40.2

RefineNet152 [43] – – 40.7

DD-RNNs [18]
p

– – 40.9
Grid [15]

p
77.5 47.7 36.7

Graph [19]
p

78.3 50.0 39.2
MS Graph [19]

p
79.4 50.9 40.6

Ours
p

80.2 51.7 41.8

Table 4
Ablation study on Pascal Context and Sift Flow datasets.

Method Sift Flow Pascal Context

PA(%) IoU(%) PA(%) IoU(%)

Baseline 87.2 42.5 72.4 42.9
w/o LSTM 87.7 47.0 75.1 44.9

Bottom-up Only 87.9 47.9 76.0 45.8
Top-down Only 87.9 48.5 76.0 46.0
w/o Dilation 87.8 50.8 76.1 46.3

Ours-complete 88.0 51.4 76.4 47.1
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321



3.3. Implementation details

We implemented the proposed network using Torch library
[27]. The network was trained on NVIDIA Geforce GTX1080Ti. For
the CNN backbone, we adopt the widely used ResNet101 model
[28] pre-trained on ImageNet dataset [29]. For higher accuracy
on pixel-level prediction, the global average pooling layer and
the final linear classification layer were removed. Dilation convolu-
tions were employed in the last two residual blocks by a factor of 2
and 4 respectively. Thus the resolution of the extracted feature
maps can be enlarged from 1/32 to 1/8 of the original size. Then
we bilinearly upsample the extracted features maps to the original
size and calculated the feature representation for each superpixels.

During the superpixel generation, the number of superpixels in
the top level is set to 1 to preserve global structural information
from the whole image. In our experiment, the number of superpix-

els from top to bottom is 1, 4, 16, 32, 64, 128, 256 and 512. How the
number of superpixels affect our performance is discussed in Sec-
tion 4.2.3. The dimension of LSTM hidden state was set to 512,
which is same as the size of extracted feature from the CNN back-
bone. We adopt the module recurrent in 2 times to learn structural
relationships, and we cannot observe improvement when more
layers are added.

We trained our framework in two steps. First, we added the de-
convolutional layers and the softmax layer to the CNN backbone
and fine-tune it with evaluation dataset. Then we trained Hier-
LSTM with the extracted feature from fine-tuned backbone. We
train our model 15 epochs for Pascal-Context and SIFT Flow data-
sets, and 20 enpochs for ADE20K dataset. We used 4 examples as
a batch during training. Adam optimization is used with a fixed
learning rate 0.0001.

Fig. 5. The ablation visualize results on Pascal-Context and ADE20K datasets. GT indicates ground truths; Ours indicate our structural inference learning model; Top-down
Only and Bottom-up Only indicate our system with only top-down modeling or bottom-up modeling; Baseline indicates our Resnet backbone model.

Fig. 6. The scene labeling results of our method from Pascal-Context and ADE20K datasets.
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4. Experiments

In this section, we first conduct an experiment to evaluate the
performance between our method and state-of-the-art methods.
Then an ablation study is introduced to demonstrate the effective-
ness of our framework on scene labeling. We also visualize some
scene labeling results of our proposed method.

4.1. Datasets and metrics

SIFT Flow [44] consists of 2,688 images. In our experiments, we
follow the training/testing split protocol (2,488/200) provided by
[44]. The images are captured from 8 typical outdoor scenes with
a resolution of 256� 256 pixels. The task in this dataset is to assign
each pixel to one of the 33 semantic classes.

Pascal-Context [45] comprises 4,998 training images and 5105
testing images. Originally, the images are sampled from PASCAL
VOC 2010 dataset and re-labeled at pixel-level for the segmenta-
tion task. Each image has a resolution of about 375� 500 pixels.

ADE20K [42] is a challenging scene parsing dataset involves
150 classes. The dataset contains 20,210 (train) and 2,000 (val)
pixel-level annotated images. The provided images are labeled
with 150 object and stuff classes. The varied resolution of the
images and the requirement of distinguishing small stuff bring
large challenge to existing methods.

In this paper, we evaluate the performance of scene labeling
results by Pixel Accuracy (PA) (the percentage of correctly classi-
fied pixels), Per-class Accuracy (CA) and the Intersection-Over-
Union (IoU).

4.2. Quantitative evaluation

4.2.1. Comparisons with existing methods
In this experiment, we compare our method with the baseline

model, which is the CNN backbone in our paper, three different
types of LSTM-based models, i.e. Regular-LSTM [15], Graph-LSTM
[19] and Evo-LSTM, and other existing scene labeling methods.
Since there is no released code for these three LSTM models, we
implemented them according to their papers. For a fair compar-
ison, we implemented these three LSTM-based methods directly
on our model by only modifying the core setup while keeping other
components fixed.

Tables 1–3 show the evaluations of our method against several
scene labeling methods on Pascal Context, Sift Flow and ADE20K
respectively. The upper part shows the comparisons with the
non-LSTM-based models while the lower part is the comparisons
with LSTM-based models. As can be seen, our method outperforms
both LSTM-based models and non-LSTM-based models in all data-
sets. Note that our method shares the same backbone of Res101 to
most state-of-the-art methods.

The grid connection (Grid-LSTM) model predicts label on regu-
lar grid, which leads to coarse boundaries prediction on small
objects. On Pascal Context which has lots of small categories, grid
connection even slightly perform lower than the baseline model.

For the graph LSTM model (Graph-LSTM) and the multi scale LSTM
model (MS-LSTM), they learn a reliable label inferring on not only
the simple scene consisting of sea, sky, road (SIFT Flow dataset),
but also the challengeing scene which has lots of foreground
objects (cat, flower, cup, etc). Thus their methods both perform
better compared with the baseline. Our method further model
the structural inferring in multi level bidirectional way, and make
our methods more robustly on predicting accurate label for each
superpixel based on structural label information.

4.2.2. Ablation study
Table 4 demonstrates the ablation study of our proposed model.

We compare our model with baseline model as well as three vari-
ations of our model including the model with top down training
only (Top-down Only), the model with bottom up training only
(Bottom-up Only), and the model without LSTM (ours w/o LSTM).

Comparing the baseline model and the model without LSTM, we
can find that the simple multi-level information fusion can also
bring an obvious improvement compare to the baseline model
thanks to the multi-level scene observation from the superpixels
hierarchy. Comparing Bottom-up Only, Top-down Only and Ours-
complete, it can be observed that all these three frameworks out-
perform the models without LSTM. It proves that the hierarchical
LSTMmechanism capture the complex structural information from
the multi-level superpixel maps. Moreover, the bi-directional
training strategy (Ours-complete) brings greater improvement
than the other one way training models. It demonstrates the effec-
tiveness of our proposed model on scene labeling by introducing
the structure inference. We further evaluate the performance of
our model if the dilation convolution is not exploited in the CNN

Table 5
Comparison of scene labeling performance on two datasets predicting with different scales.

Scale Sift Flow Pascal Context

PA(%) CA(%) IoU(%) PA(%) CA(%) IoU(%)

1/16 85.1 42.2 36.5 68.8 45.6 35.1
1/64 87.3 53.5 45.6 74.7 55.5 43.9
1/128 87.3 54.5 46.5 75.0 56.5 44.9
1/256 87.8 59.2 48.8 76.2 58.7 46.8
1/512 88.0 60.0 51.4 76.4 59.0 47.1
1/1024 88.0 60.2 50.3 76.4 58.7 46.8

Fig. 7. The comparison of visualization result between ours and Zhao et al. [5]. Ths
proposed LSTM-based method can predict semantic boundary. more precisely.
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backbone (w/o Dilation). We can find that the model without dila-
tion convolutions performs lower than the equipped one slightly,
indicating that gathering more contexts as initialized information
for each superpixel can help feature learning.

4.2.3. Superpixel scale
We have decided that the largest scale of the superpixels is the

original image itself because we want the network can scan
through the whole image to make full use of the structural infor-
mation. The smallest scale of the superpixels should be carefully
designed, as a small scale of superpixels cannot provide sufficient
regional information, and it is redundant. While using a too large
the scale of superpixels, e.g., 1=16 of the image resolution, it lacks
structural information.

To select the appropriate scale of the smallest superpixels, we
do ablation analysis about the scale selection of the smallest super-
pixels in Table 5. The scale in the table indicates the scale factor of
superpixel size of the original image resolution. When the scale of
superpixels is large (1=16; 1=64; 1=128, etc), one superpixel may
contain two or more object categories. It will lead to coarse bound-
ary prediction and greatly harm the precision of the scene labels.
When the scale decreases to 1=1024, the our model may trapped
into the local information, and can not leverage the global struc-
tural context correctly. As the results show, our system performs
best when the smallest scale of superpixels equals to 1=512. Thus
we use this scale in all the other experiments in this paper.

4.3. Visualization

We show the visualization results of the ablation study in Fig. 5
using Pascal-Context and ADE20k datasets. We can easily observe
that without Hier-LSTM, the network get confuse especially on
foreground/background or two objects with similar color and tex-
tures. The results with LSTM but only one way training shows bet-
ter scene labeling results than the one without LSTM. However,
they may fail when the objects with complex overlapping relation-
ship, like the billboard on the bus. Our complete model with bi-
directional training is able to give the most structurally reasonable
results and is the most closed one to the groundtruth.

Fig. 6 shows the visualization results on 3 different datasets,
SIFT Flow, Pascal Context and ADE20K. The input images on the left
hand side in Fig. 6 have clearer boundaries of the objects and
between the foreground and background. The input images on
the right are from more complex scenarios which contains occlu-
sion, overlapping, objects with different scales. For those easier
cases, our method can deliver prediction results almost the same
with the groundtruth as a matter of course. When facing the more
complex images, our method can still give the structurally reason-
able results thanks to the structural information learned by the
Hier-LSTM.

Fig. 7 shows more results compared with the non-superpixel
based model [21]. In this evaluation, our method can predicts more
precisely on the sharp or thin boundaries, e.g., the thin structure
the bed and floor lamp. This big visual improvement is caused by
the hierarchical superpixels that contain precise semantic bound-
ary. The existing non-superpixel based models, PSPNet [21] for
example, use convolutional layer with grid-based kernel for cap-

turing semantic layout information. Therefore the network has
similar semantic features on neighbor pixels while ignoring the
semantic boundary, making coarse prediction on irregular
boundary.

4.4. Time performance

Table 6 shows the time performance of our system. We show
the results in millisecond on resolution 256� 256 (the average res-
olution of SIFT Flow dataset) and 500� 375 (the average resolution
of Pascal-Context dataset). Here Backbone indicates the running
time of backbone model. SP generation indicates the running time
of multi-level superpixel generation. SIL module indicates the run-
ning time of our structural inference learning module. We can
observe that both of these resolution achieve fast prediction. Our
proposed method runs at roughly 20 FPS on 256 � 256 (Sift-
flowVal) and 10 FPS on 500 � 375 (PascalContextVal). We further
compare the running time of proposed method with existing
LSTM-based methods [17,18,22] in Table 7. They model informa-
tion flow based on neighbor direction, which may have ten or more
superpixels as neighbors at the same time. The slow speed of
tedious dependencies learning of their methods leads to heavy
computation. We model information flow based on parent–child
direction, and we ensure that there is at most one parent for each
superpixel, and the sum of the number of children from the super-
pixels within one level is equal to the superpixel size of next level.
Thus we can see that our SIL module runs in stable (Table 6) and
lead to low time-consuming of the proposed algorithm.

5. Conclusion

In this paper, we present a fast scene labeling method via struc-
tural inference over hierarchical superpixels. Instead of construct-
ing the multi-level superpixels one by one, we generate all the
superpixels based on the merging order of minimum spanning tree
and therefore achieve fast generation. We further propose a bi-
directional recurrent network to learn the structural inference over
the hierarchical superpixels. The process can be divided into top-
down and bottom-up stages, which aims to aggregate both local
and global image structures. The proposed method is able to
explore the interactions between semantic layouts in different
scales, which enables hierarchical features learning and size-
aware semantic prediction. The proposed scene labeling method
is evaluated and compared with state-of-the-art algorithms and
achieves better results in both numerical and visual evaluations.

As the proposed hierarchical superpixels segmentation is fast
and general, we aim to extend this structure to different applica-
tions in the future.
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Table 6
Time statistics of our system on different resolution.

Time Cost (ms)

Resolution Backbone SP gen. SIL Module Total

256� 256 14 21 18 53
500� 375 20 70 18 108
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Table 7
Time statistics of our system compared with other methods.

Method Resolution Time Cost (ms)

Evo-LSTM [22] – 1300
CRNN [17] 384� 384 700

Ours 384� 384 83
DD-RNNs [18] 512� 512 360

Ours 512� 512 142
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