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Abstract—Outsourcing encrypted data to cloud servers that has become a prevalent trend among Internet users to date. There is a

long list of advantages on data outsourcing, such as the reduction cost of local data management. How to securely operate encrypted

data (remotely), however, is the top-rank concern over data owner. Liang et al. proposed a novel encrypted cloud-based data share and

search system without loss of privacy. The system allows users to flexibly search and share encrypted data as well as updating keyword

field. However, the search complexity of the system is of extreme inefficiency, OðndÞ, where d is the total number of system files and n is

the size of query formula. This article, for the first time, leverages the “oblivious cross search” technology in public key searchable

encryption context to reduce the search complexity to only OðnfðwÞÞ, where fðwÞ is the number of files embedded with the “least

frequent keyword” w. The new scheme maintains efficient encrypted data share and keyword field update as well. This article further

revisits the security models for payload security, keyword privacy and search token privacy (i.e., search pattern privacy) and meanwhile,

presents security and efficiency analysis for the new scheme.

Index Terms—Secure data search, share, flexible query, update, efficiency

Ç

1 INTRODUCTION

SEARCHABLE encryption (SE) [30] enables a data owner to
fulfill search over encrypted outsourced data without loss

of data and query secrecy. The data owner needs to build an
encrypted search index structure for a cloud server. It next
can generate a search token with its secret information, so
that the server can locate and return all encrypted data
matching the query without knowing the exact “contents” of
query and the underlying data. SE is applicable to many
real-world cloud applications (e.g., CipherCloud). So far, it
is unknown that if there exists a trivial way to combine SE
with other secure sharing and computing technologies (e.g.,
proxy re-encryption and homomorphic encryption), so that
a data owner may flexibly operate (e.g., sharing, searching
and even computing) its encrypted data stored in cloud [24].

To partially resolve the unknown, an attribute-based
searchable proxy re-encryption scheme is proposed in [20].
It is the first of its type to fill the difficulties and technical
gaps between SE and proxy re-encryption. Its computation
and communication complexity, however, strongly depend
on the size of attribute set/policy. Specifically, the size of
system public key, re-encryption key and search token are
linear in the size of attribute set and furthermore, data share
leads to the expansion of ciphertext size. Besides, the key-
word update is not flexible enough as the system only
allows the update to be done in data sharing stage. The effi-
ciency bottleneck and flexible keyword update are two
interesting open problems left by [20].

To tackle the problems, Liang et al. [19] proposed a sear-
chable proxy re-encryption with flexible keyword update in
the context of identity-based encryption, in which system
users can update keyword at any time and meanwhile, data
search and share complexity are much more efficient than
that of [20].

Motivation. Although outperforming [20] in the merit of
data search, share and keyword update, [19] still cannot
achieve “efficient” search. Specifically, the scheme requires
the complexity OðndÞ to fulfill a formula query, where n is
the size of the formula and d is the total number of
encrypted files. In other words, a cloud server has to check
through all encrypted files for a single keyword search, i.e.,
OðdÞ where n ¼ 1. While n > 1, the server needs to repeat
the above throughout check n times. The search complexity
then is linear with the size of the formula as well as that
of encrypted database. In practice, response time or online
client waiting time is significantly related to the search effi-
ciency. How to reduce the complexity that mainly motivates
this work. Besides, this work will attempt to consider the
privacy of search token.
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Contributions. While deploying more expressive search
(e.g., conjunctive), the public key based SE (PKSE) technol-
ogy leads to expensive computation and communication
cost (e.g., [5] with composite order group). It is hard to
resolve the efficiency bottleneck beyond the search expres-
siveness in the context of PKSE.

Inspired by the “oblivious cross search” technique intro-
duced in [7], we propose a feasible solution, to some extent,
to fill the gap between efficiency and search expressiveness
in this paper. By using the solution, we reduce the search
complexity of [19] from OðndÞ to OðnfðwÞÞ. Our technical
roadmap is described as follows. We employ TSet and XSet
into our scheme, in which TSet is an encrypted and scram-
bled set for database DB ¼ ðmi;WiÞdi¼1, and XSet can be
seen as an extra “linked” level between keywords and files.
We create “links” between keywords and files in TSet, and
similarly, generate the “copy” links in XSet. The files here
become the connection between TSet and XSet. Much like
the idea presented in [7], our solution leverages the search
in the form of Q ¼ w1 ^ �ðw2; . . . ; wnÞ, where w1 is “least fre-
quent keyword” that is used to identify the “smallest”
encrypted files set, and � is the unconstrained query for-
mula. The corresponding encrypted files of w1 can be
located in TSet, while the query � is performed in XSet.
Since the connection between the two sets are the files, if
there are existing some files satisfying the search in both
TSet and XSet, they are the output of the query Q. The
search complexity now is proportional to the number of files
embedded with w1.

To allow one to search some single keyword in TSet, we
reuse the TSet instantiation in [7]. To achieve keyword
update, we need to redesign the search token, and to revise
TSet instantiation. Note that TSet contains many T ½w�
(which will be introduced later), in which a T ½w� corre-
sponds to all encrypted files embedded the same w. Since
the encrypted files are stored in T ½w� randomly, the server
has no chance to know which one will be going to have key-
word update later. We mask the “keyword-file link” into
extra ciphertext components, so that the server can first
locate T ½w� and next use pairing computation to find the
specified item in T ½w� (to be updated). We design an algo-
rithm called LotAlg to fulfill the above “double” trace func-
tion. To update TSet accordingly, we add a new algorithm
called UpTSet into TSet instantiation. We have to require
system user to store the location information of XSet as a
matrix locally, so that he/she can inform the server that the
item located in the position (i, j) needs to be updated.

This paper is an extension but not trivial incremental
progress of the conference version [19]. The contributions of
this paper are described as follows.

� In this paper, we mainly follow the system definition
given in [19] but with an exception that we revise the
data sharing algorithm so as to only allow a data
owner to share its encrypted files embedded with a
specific keyword with others. Keyword update is
necessary no more in the data sharing phase, as user
can update the keyword field after being granted the
decryption rights of the shared data.

� We define a “weak” search token privacy model
matching our system definition in this paper.

� It is the first time to employ SSE’s “oblivious cross
search” technique into a PKSE scheme. We also effec-
tively integrate the techniquewith keyword update.

� The new systemmaintains effective data share, search
and keyword update functionalities and meanwhile,
it achieves constant size in public key, re-encryption
key, search token and ciphertext, and no linearly cost
exists in the construction phases of re-encryption key
and search token. In other words, we reduce the
search complexity without compromising other fea-
tures and efficiency.

� The security and efficiency analysis show that out
system has a relatively better potential in the deploy-
ment of large scale database.

� This paper designs algorithms for TSet update and
redundancy elimination, which may be of indepen-
dent interest.

Related Work. Song et al. [30] introduced the first notion of
SE. Two main streams of SE have been defined: one is sym-
metric SE (SSE), and the other is public key based SE
(PKSE). Some light-weight cryptographic tools (e.g., pseu-
dorandom function) are usually used in SSE, so that an SEE
construction (e.g., [8]) enjoys relatively high search effi-
ciency. In contrast, a PKSE scheme (e.g., [4]) leverages pub-
lic key technology that yields the loss of efficiency in search.
SSE and PKSE have respective pros and cons. SSE cannot
easily check data integrity unless data owner downloads all
encrypted data from server. Although supporting data
integrity check at anytime and by any system user, PKSE
suffers from poor search efficiency and less query expres-
siveness. This paper, for the first time, employs SSE’s tech-
nique into PKSE so as to tackle the query efficiency and
expressiveness issue.

Following [4], Abdalla et al. [1] proposed a generic PKSE
construction anonymous identity-based encryption. To date
many PKSE variants have been proposed, e.g., authorized
keyword search [14], verifiable keyword search [2], fuzzy
keyword search [32], conjunctive keyword search [11], range
query [5], [29] supporting conjunctive, subset, and range
search queries, and attribute-based keyword search [34].

To delegate decryption rights to others, Blaze, Bleumer
and Strauss [3] defined the concept of proxy re-encryption
(PRE). A PRE scheme enables a semi-trusted proxy to con-
vert a ciphertext of a message intended for a user to another
ciphertext of the same message intended for another user
without “seeing” the massage. In this paper, we consider a
“multiple conversion” case, which we call it multi-hop
proxy re-encryption. PRE has been used in various contexts,
for example traditional PRE [6], [21], [22], identity-based
PRE, e.g., [12], [17], [18], and functional PRE, e.g., [16].

It is unknown that if there is a way to integrate a SSE/
PKSE with a PRE scheme to yield a secure protocol. Some
difficulties stand in front of the combination. We need to
consider the keyword privacy into two ciphertext levels - an
original ciphertext as well as its corresponding re-encrypted
ciphertext. Besides, we need to guarantee that an adversary
with search ability cannot break the payload security for
ciphertexts. To combine PKSE with PRE, Shao et al. [28]
introduced a new primitive called PRE with keyword
search (PREKS). Hu and Liu propose a “search-but-no-
decryption” PREKS scheme. These schemes are built based



on bidirectional technique to achieve data sharing, but they
cannot hold against collusion attacks where a proxy col-
ludes with another system user to reveal data owner’s secret
key. To eliminate this attack, Fang et al. [10] designed a new
PREKS system but with the price that the loss of searchabil-
ity after data sharing.

A new PREKS is recently proposed in [20]. It is the first of
its type to explore PREKS in the attribute-based context. It,
however, suffers from heavy search complexity due to the
leverage of attribute-based technology to relate the size of
search token to the size of attribute set. Similarly, Zheng, Xu
and Ateniese’s attribute-based searchable system [34] does
also “overkill” the search efficiency for the purpose of
achieving attribute property. Knowing the bottleneck of the
previous mentioned schemes, Liang et al. [19] proposed a
novel system in the context of identity-based to achieve bet-
ter search efficiency. However, [19] still suffers from linear
search complexity. A search for a formula with size n,
in [19], has to take OðndÞ. Besides, the scheme has not con-
sidered the search token (i.e., search pattern) privacy yet.
This paper targets to tackle the above open problems
of [19]. Note some recent research works have been pro-
posed for real-world applications and attacks on SE, e.g.,
the searchable chain of PKSE [15], passive attacks over
SSE [26] and the PKSE applied to Internet of Things [13].
We notice that there exist some researches on SSE over the
topics of forward and backward security [31], [36], [37].

Since this work is the first to combine identity-based
encryption, PRE, SE and oblivious cross search techniques,
it is briefly compared with the most related works, namely
the seminal PKSE [4], an identity-based PRE [12], attribute-
based PKSE [20], a recent identity-based PKSE [19] and a
recent PKSE scheme [13] in Table 1. In the table, jSj denotes
the size of attribute set/policy, ? denotes “not applicable”,
“rk” denotes re-encryption key, “token” denotes search
token and “ROM” is short for random oracle model, respec-
tively. By ciphertext expansion we mean that the size of
ciphertext will be expanded after the ciphertext is shared.
We use “linear” and “constant” to denote if a given size
(e.g., the size of ciphertext) grows linearly with keyword/
attribute/re-encryption hops or it is constant (no matter
how many numbers of keyword/attribute/hop it has). It
can be seen that this work is the first to achieve OðnfðwÞÞ

efficiency in search without loss of data share and keyword
update functionalities in the context of PKSE. We will pres-
ent the efficiency analysis and practical comparison
with [13] in terms of computation and communication cost
in Section 4.

2 PROBLEM STATEMENT

2.1 System Entities

� A data encryptor forms a database DB as ðmi;WiÞdi¼1,
next encryptsDB to be EDB, and finally uploads the
EDB to a cloud server, where d is the number of files
inDB.

� A data receiver owns the underlying data of EDB
(stored in the cloud) intended for it and meanwhile,
it (with the valid decryption rights) can construct
search token for the EDB queries. It is allowed to
share its EDB to a specified system user. It further
can update the keyword field of EDB by delivering
the server a keyword update token.

� A trusted key issue center is to generate a secret key for
each system user. It also takes part in the generation
of a special key for decryption rights delegation.

� A cloud server stores system users’ EDB. Given a
search/share/update token, it can locate and return/
share/update the corresponding EDB matching the
token.

Note that a data encryptor can be also a data receiver for
itself, i.e., outsourcing its own encrypted data to the cloud.

2.2 System Algorithms

The system definition is similar to that of [19].

Definition 1. It consists of the following algorithms:

� ðmpk;mskÞ  Setupð1kÞ. On input a security para-
meter k, the system setup algorithm outputs a master
public key mpk and a master secret key msk, where
k 2 N. Hereafter, we implicitly regardmpk as an input
for the following algorithms.

� ðpkID; skIDÞ  KeyGenðmsk; IDÞ. On input msk
and an identity ID, the key pair generation algorithm
outputs a public key and secret key pair ðpkID; skIDÞ

TABLE 1
Comparison With the Related Works

Data rk/token ciphertext Keyword Search Complexity Security

Share size size/expansion Update Complexity Assumption Model

[4] ? ?/constant constant/� � OðndÞ Computational Bilinear Diffie-
Hellman

ROM

[12] @ constant/? constant/@ � ? Decisional Bilinear Diffie-Hellman ROM

[20] @ linear/linear linear/@ @ OðjSjndÞ Decisional Bilinear Diffie-Hellman
Exponent & Decisional l-Bilinear

Diffie-Hellman Exponent

Standard

[19] @ constant/constant constant/� @ OðndÞ generic group model ROM

[13] � constant/constant constant/? � OðndÞ Computational Bilinear Diffie-
Hellman

ROM

This work @ constant/constant constant/� @ OðnfðwÞÞ Decisional Diffie-Hellman & generic
group model

ROM



for a system user with identity ID 2 Z�q . Hereafter, we
assume that pkID implicitly includes the identity ID.

� EDB EncðpkID;DBÞ. On input a pkID, and a DB

(i.e., ðmi;WiÞdi¼1, including the files’ identitiesmd, and
a keyword description set W 2 f0; 1g�, d ¼ jDBj), the
data encryption algorithm outputs an encryptedEDB.

� TK  TKGenðskID; wÞ. On input a skID, and a key-
word description w, the search token generation algo-
rithm outputs a search token TK, which is used to
search user ID’s EDB with keyword description w.

� rkIDi!IDjjwi
 ReKeyGenðmsk, IDi, IDj, wiÞ. On

inputmsk, an IDi, an IDj, and a wi, the re-encryption
key generation algorithm outputs a re-encryption key
rkIDi!IDjjwi

which can be used to share the encrypted
files tagged with wi in IDi’s EDB to IDj.

� uptkwi!wj
 UpTKGenðskID;md; wi; wjÞ. On input

a skID, a file identity md, an old keyword description
wi tagged with md and a new one wj, the keyword
update token generation algorithm outputs a update
token uptkwi!wj

which can be used to update the
encrypted file md in EDB (intended for ID) with the
old description wi to the one with the new one wj.

� EDB ReEncðrkIDi!IDjjwi
; EDBÞ. On input a

share token rkIDi!IDjjwi
and anEDB, the re-encryption

algorithm converts all encrypted files tagged with wi in
IDi’s EDB into those encrypted files of the same mes-
sage under IDj and wi. We note that this conversion
maintains keyword update ability for IDj. In addition,
we state that the user IDi cannot obtain the decryption
and search rights of the new (re-encrypted) ciphertext
after the conversion.

� EDB Updateðuptkwi!wj
; EDBÞ. On input a key-

word update token uptkwi!wj
and an EDB, the key-

word update algorithm updates all ciphertexts with an
old keyword wi to those with the new keyword wj

within the given EDB.
� 1=0 SearchðTK;EDBÞ. On input a search token

TK generated by the user with decryption rights on
EDB, and an EDB, the search algorithm outputs 1 if
they match, and 0 otherwise. We further note that a
cloud server will choose to return either the matching
ciphertext(s) or nothing to the user based on the out-
puts of the algorithm.

� DecðskID; EDBÞ. On input a skID and an EDB, the
ciphertext decryption algorithm outputs all filesmd.

The main system work flow is described as follows.

� The setup phase. A trusted authority first runs the
algorithm Setup to generate the mpk for all system
users, trusted key issue center and a cloud server, to
initialize the system and to keep the msk only for the
key issue center.

� The key pair generation phase. The trusted key issue
center generates a key pair for a system user via run-
ning the algorithm KeyGen. A user ID publishes the
public key pkID and keeps skID secret.

� The encryption phase. A data encryptor, Bob, runs
the algorithm Enc to generate an EDB for Alice,
with the corresponding keyword description K1,
and further uploads the EDB to the cloud server.

Note here for simplicity we set jW j ¼ 1 andK1 is the
only keyword inW .

� The data search phase.
1. Alice (with the decryption rights of the EDB)

runs the algorithm TKGen and delivers the
search token corresponding toK1 to the server.

2. The server intakes the token and the EDB to run
the algorithm Search. If finding a match, the
server outputs 1 and returns the corresponding
ciphertexts, and outputs 0 and returns nothing
otherwise.

3. If receiving a successful return from the server,
Alice runs the algorithm Dec with its secret key
to recover the underlying message.

� The keyword description update phase.
1. To update keyword description from K1 to K2,

Alice (with the decryption rights of the cipher-
text) runs the algorithm UpTKGen to construct a
keyword update tokenK1! K2, and next deliv-
ers it along with a search token for K1 to the
server.

2. If there are encrypted files tagged with K1, the
server runs the algorithm Update intaking the
token and the EDB to update the keyword
description toK2.

� The ciphertext share phase.
1. To share its encrypted data tagged with K1 to

Carol, Alice can generate a re-encryption key
from Alice ! Carol with the help of the trusted
key issue center by running the algorithm
ReKeyGen.

2. If there are encrypted files tagged with K1, the
server runs the algorithm ReEnc to convert the
ciphertext’s decryption rights to Carol.

3. Carol can retrieve the shared files by searching.

2.3 Threat Models

We define the data confidentiality model, the keyword pri-
vacy model and search token privacy model below. Gener-
ally speaking, the first model is used to guarantee that a
Probabilistic Polynomial Time (PPT) adversary cannot com-
promise the information of a message by given an encryp-
tion of the message; the second model is to ensure a PPT
adversary cannot reveal the keyword embedded in a given
ciphertext; the last model is for preventing a PPT adversary
from extracting the keyword embedded into a given search
token. Note we will consider the privacy of keyword update
token as well. This can be captured in the keyword privacy
model.

We assume that cloud server, data encryptor and data
receiver are honest-but-curious, while the authority for sys-
tem initialization and the key issue center are fully trusted.
We further assume either data encryptor or data receiver
will not collude with the server to reveal the underlying
keyword description and database. Note that we here leave
the collusion attacks for our future work. By honest-but-
curious (i.e., semi-honest) we mean that one will honestly
run a protocol by following the specification of a protocol
but curiously collecting some information (in which it is
interested) during the protocol execution.



Definition 2. Our system achieves chosen plaintext (CPA) secu-
rity if the advantage AdvCPAA is negligible for any PPT adver-
sary A in the following experiment:

jPr½b ¼ b0 : ðmpk;mskÞ  Setupð1kÞ; ðDB0; DB1; ID
�;

stateÞ  AOðmpkÞ; b 2R f0; 1g;EDB�  EncðpkID� ;
DB�bÞ; b0  AOðEDB�; stateÞ� � 1

2
j;

where state is the state information, DB0, DB1 are two

equal-size databases with the form ðmi;WiÞdi¼1, W � ¼P
Wi

is the challenge keyword set, ID� is the challenge identity,
O ¼ fOpk;Osk;Ork;Ouptk;OTKg. By querying the public key
oracle Opk, A is given the corresponding public key of the
system user (it issues). For the secret key oracle Osk, intak-
ing ID, the oracle outputs skID for A, where ID 6¼ ID� indi-
cating the challenge identity cannot be corrupted by A. For
the re-encryption key oracle Ork, intaking a tuple (IDi, IDj,
wi), the oracle outputs rkIDi!IDjjwi

. If IDi (resp. IDj) is in an

honest re-encryption path including ID� (note IDi may be
equal to ID�). and meanwhile, IDj (resp. IDi) is in a cor-
rupted re-encryption path,Ork outputs?. By a re-encryption
path (of a given ciphertext) we mean a path that is used to
record the re-encryption history of the ciphertext among dif-
ferent system users (in which the nodes of the path stands
for users), for example, a re-encryption path (of a ciphertext)
between user A and user C could be A - B - C. If one of the
users is corrupted, then the path is defined as a corrupted
one; otherwise, it is an honest path. For the keyword update
token oracle Ouptk, intaking a tuple (ID, wi, wj), the oracle
outputs a token uptkwi!wj

for keyword description update.
For the search token oracleOTK , intaking a tuple (ID, w), the
oracle outputs a search token TK. We here do not offer re-
encryption, update and search oracles to A. A, however, can
run the corresponding re-encryption, update and search
algorithms with the re-encryption keys, keyword update
tokens and search tokens given by the above defined oracles.
We further note that the given two databases are sharedwith
the same keyword setW �. It won’t affect the security level of
the game, since we focus on the database secrecy other than
that of keyword.

Definition 3. Our system achieves keyword privacy if the
advantage AdvKP

A is negligible for any PPT adversary A in the
following experiment:

jPr½b ¼ b0 : ðmpk;mskÞ  Setupð1kÞ; ðDB;W �
0 ;W

�
1 ;

ID�; stateÞ  AOðmpkÞ; b 2R f0; 1g;EDB�  Encð
pkID� ;W

�
b ; DBÞ; b0  AOðEDB�; stateÞ� � 1

2
j;

where state is the state information, m is the challenge mes-
sage, W �

0 , W
�
1 are two challenge distinct keyword sets (for

clarity, we highlight them as an “individual” input for Enc),
ID� is the challenge identity, and O ¼ fOpk, Osk, Ork, Ouptk,
OTKg. The oracle Opk returns public keys for A. For the
secret key oracle Osk, intaking ID, the oracle outputs skID,
where ID 6¼ ID�. For the re-encryption key oracle Ork,
intaking a tuple (IDi, IDj, wi), the oracle outputs
rkIDi!IDjjwi

. If IDi (resp. IDj) is in an honest re-encryption

path including ID� and meanwhile, IDj (resp. IDi) is in a
corrupted re-encryption path, Ork outputs ?. For the key-
word update token oracle Ouptk, intaking a tuple (ID, wi,
wj), the oracle outputs a token uptkwi!wj

for keyword
description update. For the search token oracle OTK , intak-
ing a tuple (ID, w), the oracle outputs a search token TK. If
ID ¼ ID� and w is in a keyword update path including at
least one of the challenge keywords (note w may be equal to
one of the challenge keywords), OTK outputs ?. If ID 6¼ ID�

is in a re-encryption path including ID� and meanwhile, w
is in a keyword update path including at least one of the
challenge keywords, OTK outputs ? as well. By a keyword
update path we mean a path records all the keywords
(of a given ciphertext) which have been updated so far, e.g.,
w1 - w2 - w3.

Definition 4. Our system achieves weak search token privacy if
the advantage AdvSTPA is negligible for any PPT adversary A in
the following experiment:

jPr½b ¼ b0 : ðmpk;mskÞ  Setupð1kÞ; ðw�0; w�1; ID�Þ  
AðmpkÞ; b 2R f0; 1g;TK0  TKGenðskID� ; w�RÞ;
TK1  TKGenðskID� ; w�bÞ; b0  AOðTK0; TK1Þ� � 1

2
j;

where w�0, w
�
1 are two challenge distinct keyword set,

each of the set includes a pair of distinct keywords, w�R is a
random keyword set with two distinct keywords in the key-
word space, ID� is the challenge identity, and O ¼ fOTKg.
For the search token oracle OTK , intaking a tuple (ID, w),
the oracle outputs a search token TK. If ID ¼ ID�, w ¼ w�b ,
OTK outputs ?.

3 SYSTEM CONSTRUCTION

3.1 The Intuition

Let a bilinear map tuple be ðq, g, ĝ, G1, G2, GT ; eÞ, where G1,
G2 (G1 and G2 are not the same group) and GT are multipli-
cative cyclic groups of prime order q, jqj ¼ k, and g is a ran-
dom generator of G1, ĝ is a random generator of G2. The
mapping e : G1 � G2 ! GT has three properties: (1) Bilinear-
ity: for all a; b 2R Z�q , eðga; ĝbÞ ¼ eðg; ĝÞab; (2) Non-degeneracy:
eðg; ĝÞ 6¼ 1GT

, where 1GT
is the unit of GT ; (3) Computability: e

can be efficiently computed.
A concrete encrypted cloud-based data share and search

construction is proposed in [19]. The construction supports
single keyword search, conjunctive keyword and even for-
mula queries. For example, a system user can launch a
query ðw1 ^ w2 ^ w3Þ _ w4 to a “curious-but-honest” cloud
server. The query indicates that the server needs to return
all the ciphertexts containing the keywords w1, w2 and w3 at
the same time, and those with the keyword w4. The direct
way for the server to fulfill the search is to first obtain the
set A1 of the ciphertexts Cw1

embedded with w1, the set A2

of Cw2
with w2, the set A3 of Cw3

with w3, and the set A4 of
Cw4

with w4, and finally return the intersection of the three
sets, A1 ^A2 ^A3, and the set A4 to the user.

However, the search efficiency is extremely low. This is
because the server has to exhaustedly search the whole
encrypted database for each keyword. Namely, the com-
plexity of each keyword search is linear to the size of the



database. Accordingly, the complexity of the formula query
search is at least OðmnÞ, where m is the size of the formula,
and n is the size of the database (i.e., how many encrypted
data are stored in the database).

To tackle the efficiency problem, we choose to leverage
the latest technique introduced in [7], which we named it as
“oblivious cross search”. Below, we show that how to apply
oblivious cross search into our construction to relieve the
complexity to OðfðwÞmÞ, where fðwÞ is the complexity of
locating the “least frequent keyword” w in the database.
Note that we refer readers to the Section 3.1.1 in [7] about the
way of choosing least frequent keyword in a database. The
premise of the design is to build up a second level of search
index for the cross searching. Meanwhile, we also need a
new and black-box building block, called T-Set protocol [7].
The primitive includes three main algorithms, namely
ðTSet;KT Þ  TSetSetupðT Þ, stag TSetGetTagðKT ;wÞ and
T ½w�  TSetRetrieveðTSet; stagÞ, where T is an array of lists
of equal-length bit strings indexed by the elements of key-
words, so that for any function nðkÞ of the security parameter
k, for each keyword w T ½w� is a list t ¼ ðs1; . . . ; sTwÞ of strings
(note Tw ¼ jT ½w�j, nðkÞ ¼ jsij and i 2 ½1; Tw�). The function of
the primitive are the followings: (1) Put the tuples of w and
the corresponding related file identity into T ½w�; all T ½w�
form a T ; (2) Intake T , the algorithm TSetSetup outputs an
encrypted “scrambled” set TSet and a secret informationKT ;
(3) Intake a keyword w and KT , the algorithm TSetGetTag
outputs a trapdoor stag underw; the stag is used to locate the
corresponding T ½w� later; (4) Intake stag and TSet, the algo-
rithm TSetRetrieve identifies the location and next returns
T ½w�. We will introduce the usage of TSet later. Both T ½w�
and TSet are designed for a level of search index and further
will be efficiently used in cross searching. We state that the
above techniques allow server to fasten the search complex-
ity (i.e., shortening search response time/client online wait-
ing time) but they also require data owner and cloud server
to increase some level of computation and storage. We fur-
ther note that this “increased burden” for data owner and
server are acceptable in practice (please see Section 4 for effi-
ciency analysis).

In addition to the above techniques, we make use of IBE
and PRE technologies. We use IBE to embed the keyword
for ciphertext which is a typical public key searchable
encryption mode; while the PRE is used for encrypted data
sharing for the case where the encrypted files can be further
shared to others in cloud server.

We assume the notation m to be a file identity in f0; 1gk,
DB to be a dataset filling with files, ID 2 Z�q is the identity
of system user, w 2 Z�q . In practice, we may put w 2 f0; 1g�
in a Target Collision Resistant (TCR) hash function [9] to
yield an element in Z�q before using it. Notations used in our
construction are summarized in Table 2.

3.2 The Construction

Below we show how to design an efficient search construc-
tion by using oblivious cross search technique.

Setup. A fully trusted authority will initialize the system,
and set upmsk andmpk below.

1). Choose an asymmetric pairing group ðq, g, ĝ, G1, G2,
GT , eÞ.

2). Choose u, a1, a2, a3, a4, a5;b1, b2 2R Z�q , and set
h1 ¼ gb1 , h2 ¼ gb2 , g1 ¼ ga1 , g2 ¼ ga2 , g3 ¼ ga3 ,
g4 ¼ ga4 , g5 ¼ ga5 , K ¼ gu, ĥ1 ¼ ĝb1 ; ĥ2 ¼ ĝb2 , ĝ1 ¼ ĝa1 ,
ĝ2 ¼ ĝa2 , ĝ3 ¼ ĝa3 , ĝ4 ¼ ĝa4 , ĝ5 ¼ ĝa5 , and K̂ ¼ ĝu.

3). Choose TCR hash functionsH1 : GT ! G1,H2 : GT !
Z�q , andH3 : f0; 1gk ! Z�q .

4). Output msk ¼ ðĝa12 ;a5; ĥ1; K̂Þ, and mpk ¼ ðq, h1, h2,
ĥ2, g, ĝ, g1, ĝ1, g2, ĝ2, g3, ĝ3, g4, ĝ4, g5,K, F ,H1,H2Þ.

KeyGen. This algorithm is run by a trusted PKG.

1). Choose an r 2R Z�q , and set (ĝa12 ðĥID
1 ĝ3Þr, ĝr) for the

user ID.
2). Set g6 ¼ ga6 , g7 ¼ ga7 , g8 ¼ ga8 , g9 ¼ ga9 , ĝ6 ¼ ĝa6 ,

ĝ7 ¼ ĝa7 , ĝ8 ¼ ĝa8 , ĝ9 ¼ ĝa9 , where a6, a7, a8, a9 2R Z�q .
3). Make use of a list Listsk to store the tuple ðID,

ĝ
a1
2 ðĥID

1 ĝ3Þr, ĝr, r, a6, a7, a8, a9).

4). Output skID as (ĝa12 ðĥID
1 ĝ3Þr, ĝr, a6, a7, a8, a9), and

pkID as (g6, g7, ĝ7, g8, ĝ8, g9).
Enc. The algorithm is run by a data encryptor to encrypt

m with a description w for a user ID. (1). Parse a DB to be
(mi,WiÞdi¼1, whereWi is the keyword set. Initialize an empty
array T (indexed by keywords from W ) and an empty set
XSet.

(2). For each w 2W , build the tuple list T ½w� andXSet as

� Initialize an empty list L.
� For all m 2 DBðwÞ, initialize a counter c1 ¼ 0,

set C1 ¼ m � eðg2; ĝ1Þt, C2 ¼ gt, C3 ¼ ðhID
1 g3Þt, C4 ¼

TABLE 2
Frequently Used Notations

k security parameter

ID user identity
msk master secret key

mpk master public key

PKG private key generator

skID=pkID the user ID’s secret/public key

DB=EDB database/encrypted database

DBðwÞ a set of files’ identities where the files arewithw
d the file number of DB, i.e., jDBj ¼ d

m file identity
W=w keyword set/keyword

Listsk a list for storing users’ secret keys
Listup a list for storing keyword update details

Listrk a list for storing re-encryption details

T an array for storing tuples of w andm

T ½w� a list for storing allm embedded with w

XSet a set for storing xtag

TSet a scramble and secure set for storing all T ½w�
XMat a set for storing (w,m, c1, c2)
L a list for storing ðe; yÞ
c1 a counter:the repetition of w
c2 a counter:the update number ofm for its

keyword field
uptkwi!wj

a keyword update token, from wi to wj

di a fresh random factor for wi

si!j a fresh random factor for re-encryption from
IDi to IDj

TK a query/search token

Pos a list for storing position value



ðg5g�H2ðmÞ
4 Þt, C5 ¼ e ðg4; ĝ4Þt, C6 ¼ H1ðeðh2; ĝ4ÞtÞ,

C7 ¼ Kt, y ¼ ðgH3ðwjjc1Þ
7 g6Þt, xtag ¼ ðgH3ðwÞ

8 g9Þt, where

t 2R Z�q .
� Set e ¼ ðC1, C2, C3, C4, C5, C6, C7Þ, and append (e, y)

to L, add xtag to XSet. The structure of XSet is
shown in Fig. 1. We assume that XSet is formed as
an n� t matrix, and meanwhile, the user will locally
save an n� t matrix XMat, where the position ði; jÞ
of XMat stores a tuple (wi ! mj, c1), the position
ði; jÞ of XSet stores a xtag indicating a relationship
(wi, mj), jW j ¼ n and t � kd. For instance, ði; jÞ in
XMat could be (1,0), meaning wi is tagged with mj

with no repetition. We further assume that XMat
will be automatically synchronized by user if there is
any update, and moreover, (i, j) in XSet is “linked”
to the (i, j) inXMat.

� Put L into T ½w�. Note that we show the structure of T
in Fig. 1.

(3). Run ðTSet;KT Þ  TSetSetupðT Þ, where TSet is a
“scrambled and encrypted” version of T , and ID is implicitly
included in TSet so that the server knows the TSet belongs to
the user ID. Output KT and EDB ¼ ðTSet;XSetÞ. We note
that the EDB receiver needs to know KT and XMat. The
data encryptor may choose a key k0 to mask KT and XMat,
encrypt k0 for the receiver, and further publish all the
encryption on a bulletin board, so that the receiver can
download and save the necessary data locally.

UpTKGen. To update the description from wi to wj,
the user ID uses a list Listup to store tuples (z, � ! ID,
wi ! wiþ1, di ! diþ1, ci ! ciþ1, d

ci
i ! d

ciþ1
iþ1 , s), where z 2

½1; jListupj�, � is wildcard, di 2R Z�q can randomize the ith
keyword update token (chosen by the user), the random
seed d

ci
i is used to randomize the counter ci (of the keyword

wi), and s will be introduced later. Each user maintains his
own Listup in the system. The Listup records a keyword
update path; each keyword description wi is tagged with
“fresh” random factors di and dci ; a given tuple in the list
indicates a re-encryption path from an identity � to ID - if
?! ID, ID does not have any delegator and s is equal to 1.
Accordingly, if a ciphertext for ID is tagged with a keyword
that has not been updated yet by a keyword update token,
the tuple stored in Listup is (z, � ! ID, wi !? or � ! wi,
di !?, dci !?, �), in which we say wi (with its random factor
di) is the starting node of the current keyword update path
(held by ID), and we hereafter may use d� and dc� to specify
such di and dci . To generate the token uptkwi!wj

, the user first

recovers di and dci (corresponding to the current keyword
description wi) from Listup and next chooses a new
dj; d

c
j 2R Z�q for wj. The user IDworks as follows.

1). Search Listup to recover the starting random factor d�

of the keyword update path including wi, the current
keywordwi and its random factors di, d

c
i , and recovers

sx!y from the re-encryption relationship remark
IDx ! IDy ¼ ID (suppose ID has a delegator only;
the multi-delegator case has been discussed in [19]).
Note that if there is no keyword update (via ID’s key-
word update token) yet, di ¼ d�, dci ¼ dc�; if ?! ID,
the value of s is equal to 1. Run locToken ¼ ðvp0, vp1,
vp2Þ  LotAlg:locTokenGenðTSet,wi,m,KT , skIDÞ.

2). Set vr1 ¼ ða7H3ðwjjjc01Þ þ a6Þdjdc
0
1
j =ða7H3ðwijjc1Þ þ a6Þ

did
c1
i ,vr2 ¼ ða8H3ðwjÞ þ a9Þdj=ða8H3ðwiÞ þ a9Þdi,

where c1 and c01 can be retrieved fromXMat.

3). Run stag TSetGetTagðKT ;wjÞ to achieve a stag
which will be used by the server to locate the T ½wj�
from TSet.

4). Retrieve the row and column numbers i and j from
XMat by using ðwj ! m; c1Þ and ðwi ! m; c1Þ. Put
ði; jÞðwiÞ and ði; jÞðwjÞ to a list Pos. Note the user will
update XMat locally, for example, by setting the old
ði; jÞ tuple to be (0,0) and the new tuple to be (1,0).

5). Finally, output uptkwi!wj
¼ ðPos; stag;vr1;vr2; locToken).

ReKeyGen. When a user IDi decides to share encrypted
data under keyword wi with another IDj, a re-encryption
key is generated and delivered to the server as follows.

1). The PKG sets rk1 ¼ ðĥIDi
1 ĝ3ÞriðĥIDj

1 ĝ3Þ�rjK̂�, rk2 ¼ ĝri�rj

and rk3 ¼ ĝ�, where � 2R Z�q , ri and rj are stored in the

Listsk corresponding to IDi and IDj, respectively.
2). By sharing the data with IDj, IDi delegates the key-

word update and search abilities to IDj. To get rid of
the re-encryption key construction cost, IDi can
choose to share Listup with the PKG. The PKG con-
structs a list Listrk to store tuples (z, IDi ! IDj, wi,

si!j), where z is the index for a tuple, si!j 2R Z�q is
chosen by the PKG and will be set to 1 for the case
where the user has no delegator. The PKG here
maintains re-encryption path in Listrk.

3). The PKG verifies if IDi has a single delegator, say
IDo, in all the re-encryption paths. Note we have con-
sidered the case where IDi has multiple delegators

in [19]. If yes, set rk4 ¼ ðsi!j=so!iÞðaðIDjÞ
7 H3ðwijjc1Þ þ

a
ðIDjÞ
6 Þ=ððaðIDiÞ

7 H3ðwijjc1Þ þ a
ðIDiÞ
6 Þðdidc1i =d�dc�ÞÞ, and

rk5 ¼ ðsi!j=so!iÞðaðIDjÞ
8 H3ðwiÞ þ a

ðIDjÞ
9 Þ=ððaðIDiÞ

8 H3ðwiÞ þ
a
ðIDiÞ
9 Þðdi=d�ÞÞ; if no, construct rk4; rk5 as above except

for setting so!i ¼ 1, where di is related to the current
keyword wi embedded in the ciphertext (of IDi), and
d� can be traced back in Listup with knowledge of IDi

and wi. The PKG then may encrypt si!j for the corre-
sponding delegatee IDj via a simple IBE encryption1

and next to publish the encryption to a bulletin board,

Fig. 1. The structures used to store T andXSet belonging to user ID.

1. The encryption may be as C0 ¼ si!j �H0ðY Þ, C1 ¼ Y � eðg2; ĝ1Þt,
C2 ¼ gt, C3 ¼ ðhIDj

1 g3Þt, where Y 2 GT , t 2R Z�q ,H0 : GT ! Z�q .



so that the delegatee can download the ciphertext,
recover the si!j and store it into Listup. Note the
encryption does not need to be a part of re-encryption
key.

4). The user IDi runs stagwi
 TSetGetTagðKðIDiÞ

T ; wiÞ. It
further locates (i, j) fromXMat by wi,m, c1, and puts
(i, j) to Pos.

5). The user IDj runs ^stag TSetGetTagðKðIDjÞ
T ; wiÞ to

achieve a rk6 ¼ ^stagwhich will be used by the server
to locate the T ½wi� from TSet belonging to IDj.

6). Finally, the re-encryption key rkIDi!IDjjwi
is set to be

ðPos, rk1, rk2, rk3, rk4, rk5, rk6, stagwi
Þ.

TKGen. To generate a search token TK for query
�w ¼ ðw1; . . . ; wnÞ, the user IDworks as follows.

1). Run stag TSetGetTagðKT ;w1Þ. Recall that w1 is the
least frequent keyword.

2). For c1 ¼ 1; 2; . . . till server sends “stop”,
� For each i ¼ 2; . . . ; n, set xtoken½c1; i� ¼
ððĝða8H3ðwiÞþa9Þ=ðða7H3ðw1jjc1Þþa6Þðdc1i =dc�ÞÞÞr; ĝrÞ, where
r is a fresh random seed in Z�q , d

c� and d
c1
i are the

current and the original random seeds for the
counter which can be retrieved from Listup.

� Set xtoken½c1� ¼ ðxtoken½c1; 2�; . . . ; xtoken½c1; n�Þ.
3). Put all xtoken and stag to TK and send TK to the

server.
Update. The algorithm fulfills the “update” function,

namely updating the keyword description of encrypted files
and sharing encrypted files among system users. The
update functionality will not expand the size of encrypted
files. No matter how many times an encrypted file is
updated, its size remains constant.

1). Update keyword description (see Fig. 2) - the server
runs the algorithm Updateðuptkwi!wj

; EDBÞ as
� To locate the items, run ðei; yiÞ  LotAlg:locateItem

ðlocToken; TSetÞ.
� For each tuple (ei, yi), set yi ¼ y

vr1
i , and next

updates the resulting yi into (ei, yi).

� Run TSet UpTSetðTSet, stag, UpEÞ, where
UpE  ðei; yiÞ. Note that we will introduce the
algorithm UpTSet and the update of old tuples
(ei; yi) in TSet later.

� Retrieve ði; jÞwi from Pos, locates all xtag inXSet,
and updates xtag ¼ xtagvr2 . It further sets the
xtags of the positions ði; jÞwi to “null” and puts
the new xtags to the positions ði; jÞwj .

2). Share encrypted data (see Fig. 3) - the server runs the
algorithm ReEncðrkIDi!IDjjw, EDBÞ as:
� To locate the items, the server runs ðei; yiÞ  

T ½w� ¼ L TSetRetrieveðTSetIDi ; stagwi
Þ.

� For each ðei; yiÞ, the server sets

C1 ¼ C1 � eðC2; rk1Þ�1 � eðC3; rk2Þ � eðC7; rk3Þ

¼ m � eðg2; ĝ1Þt � eððhIDi
1 g3Þt; ĝri�rjÞ � eðKt; ĝ�Þ

eðgt; ðĥIDi
1 ĝ3ÞriðĥIDj

1 ĝ3Þ�rjK̂�Þ

¼ m � eðg2; ĝ1Þt � eðgt; ðĥ1
IDj ĝ3ÞrjÞ

eððhIDi
1 g3Þt; ĝrjÞ

; yi ¼ y
rk4
i :

� The server runs TSetIDj  UpTSetðTSetIDj , rk6,
UpEÞ, where UpE  ðei; yiÞ.

� The server retrieves ði; jÞ from Pos, locates all

xtags in XSetIDi , and further appends xtagrk5 to

the (i; j) ofXSetIDj .
Search. With the search token TK, TSet and XSet, the

server runs the search process as follows.

1). The server extracts stag from TK, and set
L TSetRetrieveðTSet; stagÞ.

2). For c ¼ 1; . . . ; jLj, the server works as follows:
� Retrieve each ðec, ycÞ from L.
� If 8i ¼ 2; . . . ; n, check if eðyc; xtoken½c; i�1Þ ¼

eðxtag; xtoken½c; i�2Þ. If yes, send ec to the user.
3). When the last tuple in L is reached, the server sends

“stop” to the user and halt.
After receiving all e from the server, the user can easily

run m ¼ C1 � eðC3; sk2Þ=eðC2; sk1Þ to recover all file identi-
ties, where C3, C2 are the components of each e.

Dec. The user ID recoversm as follows.

(1). Recover sk1 ¼ ĝ
a1
2 ðĥID

1 ĝ3Þr, sk2 ¼ ĝr from skID.

(2). Recover the message asm ¼ C1 � eðC3; sk2Þ=eðC2; sk1Þ.
For the original ciphertext, one can compute as

C1 � eðC3; sk2Þ=eðC2; sk1Þ
¼ m � eðg2; ĝ1ÞteððhID

1 g3Þt; ĝrÞ=eðgt; ĝa12 ðĥID
1 ĝ3ÞrÞ

¼ m � eðg2; ĝ1Þt=eðgt; ĝa12 Þ ¼ m:

Fig. 2. Keyword description update for user ID only.

Fig. 3. Share encrypted data - from user IDi to user IDj.



For the re-encrypted ciphertext, one can decrypt as

C1 � eðC3; sk2Þ=eðC2; sk1Þ

¼ m � eðg2; ĝ1Þteðgt; ðĥIDj

1 ĝ3ÞrjÞeððhIDi
1 g3Þt; ĝrjÞ

eððhIDi
1 g3Þt; ĝrjÞeðgt; ĝa12 ðĥ

IDj

1 ĝ3ÞrjÞ
¼ m � eðg2; ĝ1Þt=eðgt; ĝa12 Þ ¼ m;

where IDi is the delegator of the ciphertext, and IDj is the
delegatee, i.e., the current ciphertext holder, who can
decrypt the message by using skIDj

.
(3). The user can also reveal the pseudorandom keys k1,

k2 and k3 by C0 	H3ðeðg2; ĝ1ÞtÞ. With the keys, the user
obtains search ability.

3.3 The Construction of LotAlg

The algorithm LotAlg (which is executed by both data
owner and server) includes two sub-algorithms, namely
locTokenGen and locateItem. It can locate the items (which
are stored in TSet) needed to be updated. The sub-algorithm
locTokenGen (run by data owner) intakes TSet, w, m, KT ,
skID, and outputs a locate token locToken that helps server
locate the items; while locTokenGen (run by server) takes
locToken, TSet as input, and outputs all matching tuples (ei,
yi). In the algorithms, vp0 is used to locate the set T ½w�, and
vp1, vp2 are to identify the files md within T ½w�. Since a5 is a
part of msk belonging to PKG, the PKG will involve in Step
1. (2) to help generate vp1, vp2.

Algorithm 1. LotAlg - Locate Item in TSet

1. locToken locTokenGenðTSet; w;m;KT ; skIDÞ
(1). Run stagw  TSetGetTagðKT ;wÞ.
(2). Generate (rtk, ðĥ2ĝ

�rtk
4 Þ

d�
ða5�H2ðmÞÞdisx!y ), where rtk 2R Z�q .

(3). Set the locate token as locToken ¼ ðvp0, vp1, vp2Þ ¼
ðstagw, rtk, ðĥ2ĝ

�rtk
4 Þ

d�
ða5�H2ðmÞÞdisx!yÞ.

2. ðei; yiÞ  locateItemðlocToken; TSetÞ
(1). Retrieve T ½w� ¼ L TSetRetrieveðTSet; stagwÞ.
(2). For each ei within T ½w� (i 2 ½1; t�), check H1ðeðC4;vp2Þ

C
vp1
5 Þ ¼ C6, whereC4,C5,C6 are elements in each ei.

(3). Output all the tuples (ei; yi) that make the above
equation hold.

3.4 The Constructions of TSet,XSet, andXMat

We state that the construction of TSet can follow the one
introduced in [7]. We refer the reader to [7] for more con-
struction details of TSet. The TSet is instantiated as a hash
table with B buckets of size S each. Here, we define the size
of B to be jW j, i.e., total number of keywords in a DB, and
the size of S to be jT ½w�j, i.e., the size of jDBðwÞj. Accord-
ingly, the size of the hash table is

P
w2W jDBðwÞj. We use

TSet½i� (i 2 ½1; B�) and TSet½i; j� (j 2 ½1; S�) to denote T ½wi�
and the jth item of T ½wi�, respectively. The jth item includes
a record tuple (label, value), in which label is used to indicate
if files tagged with the same w, and value is used to store
ðe; yÞ. We show the structure of TSet in Fig. 4.

To adapt the design of [7] to our construction, we need to
fix the size of B, jT ½w�j and S, and meanwhile fix the

universal keyword setW in advance, where S has to be suffi-
cient large. For example, we can set B ¼ jW j, the number of
keywords, to be 1,000,000 throughout the whole system,
and meanwhile, for each keyword, we allow it to be repeat-
edly tagged with at most 10,000 files. If T ½w� is not fully
taken, we then automatically set the corresponding tuple
ðe; yÞ to be “null”. For instance, a tuple T ½w� can be (ðe1; y1Þ,
ðe2; y2Þ; . . . ; ðet; ytÞ), where ðet; ytÞ=“null”. Accordingly, we
need to set TSet½b; j�:value “null” in the algorithm
TSetSetupðT Þ, but still setting TSet½b; j�:label L.

The structure of XSet (storing xtags), n� t matrix (in
which the rows are for keywords and the columns are for
files), is reflected onto XMat (storing 1/0 tuples). The posi-
tion (i; j) indicates the relationship between a keyword wi

and a file mj. Both of the structures also need to fix the size
in advance, where the n and t must be identical to the size
of universal keyword set and file set defined in TSet. We
note that the above operations and set design are required
to be done by data owner rather than server.

3.5 Feasible Update Function

Below we define and design the algorithm UpTSet. The
algorithm intakes TSet, stag F ðKT ;wÞ and a set UpE, and
outputs a new TSet, where UpE is a set for ((e1,
y1Þ; . . . ; ðejUpEj, yjUpEj)).

Algorithm 2. UpTSet - Update the TSet

1. Set a bit b ¼ 1, and a counter z ¼ 1,
2. For each (e, y), repeat the following loop while b ¼ 1:

(1). Set ðb; L;KÞ  HðF ðstag; zÞÞ, retrieve an array
B TSet½b�,

(2). Search for index c 2 f1; . . . ; Sg s.t. B½j�:label ¼ L,

(3). Randomly choose a B½j�:value ¼“null”, and reset
B½j�:value ðbjsÞ 	K, where s ðe; yÞ, if the item
is the last one in B½j�, set b ¼ 0, and b ¼ 1 otherwise.

(4). If either the above reset cannot be done or all (e, y)
are not reset yet, increment z.

The UpTSet can update the new tuples, say (ewj
, ywj

) to
the new “null” positions in TSet. With similar technique
and knowledge of stagwi

, the server can also locate the old
tuples (ewi

; ywi
) in TSet and further set the B:½j�:value to

“null”.

3.6 Get Rid of Redundancy

The update of TSet will definitely incur the redundancy of
(e, y). For example, updating a tuple (ewi

, ywi
) to become

(ewj
, ywj

) by using the algorithm UpTSet, the old tuple (ewi
,

Fig. 4. The structure of TSet.



ywi
) is still there, stored in TSet. After being shared with

many (ew, yw) from IDi, IDj may find out that some (e, y)
may point to the same keyword and file identity. We state
that these “overlap” cannot be noticed by the server, as they
are in the “well-formed” encryption. The overlap phenome-
non will be told while IDj proceeds to the decryption of e.
To reduce the redundancy, we design the algorithm ReMov
for the server. The algorithm intakes TSet, locToken, and
outputs a new TSet, where locToken ¼ ðstag;vp1;vp2Þ
(please refer to Algorithm 1).

Algorithm 3. ReMov - Remove the Redundancy of TSet

1. Set a bit b ¼ 1, and two counters z ¼ 1, q ¼ 0,
2. Repeat the following loop while b ¼ 1:

(1). Set ðb; L;KÞ  HðF ðstag; zÞÞ and retrieve an array
B TSet½b�,

(2). Search for index c 2 f1; . . . ; Sg s.t. B½j�:label ¼ L,
(3). Let v B½j�:value	K, where b is the first bit of v,

and the rest of v is s.
(4). Extract e from s, check H1ðeðC4;vp2ÞCvp1

5 Þ ¼ C6,
where C4, C5, C6 are elements in e.

(5). If the above equation holds, set q þþ; otherwise,
proceed.

(6). If q > 1, resetB½j�:value ¼“null”; otherwise, proceed.
(7). Increment z.

A data owner can generate locToken for the server to run
ReMov at any time. Recall that locToken includes stag and
vp1;vp2. stag is used to locate the T ½w�, while vp1;vp2 are for

tracking a specific pair of (e, y) within T ½w�. locToken is an
individual “pointer” for the file(s) embedded with a key-
word w. Whilst the equation of the step 2. (4) has been
repeated, it indicates the current (e, y) is a redundant tuple.

4 SYSTEM ANALYSIS

4.1 Security Analysis

We make use of the generic bilinear group model and the
random oracle model to prove that no PPT adversary can
break the chosen plaintext security and keyword privacy.
We consider three random encodings d1, d2, dT of the addi-
tive group Fq with injective maps d1; d2; dT : Fq ! f0; 1gk,
where k > 3logðqÞ. For i ¼ 1; 2; T , set Gi ¼ fdiðxÞ : x 2 Fqg.
The game simulator B is given oracles to compute the
induced group action on G1;G2;GT and an oracle to com-
pute a non-degenerate bilinear map e : G1 � G2 ! GT . It is
also given random oracles for representing hash functions.

Theorem 1. Let Q1 be a bound on the total number of group ele-
ments an adversary A receives from queries of hash functions,
groups G1, G2, GT and the bilinear map e, and from interac-
tions with the chosen plaintext security game. We have that the
advantage of A in winning the game is OðQ2

1=qÞ.
Proof 1. In the normal chosen plaintext security game, a

challenge ciphertext includes C1 ¼ mb � eðg; ĝÞa1a2t. We
can revise the game so that C1 is either eðg; ĝÞ� or
eðg; ĝÞa1a2t instead, where � 2R Fq. We state that any
adversary with advantage � in the normal game can be
converted into an adversary with advantage �=2 in the
revised game. The adversary is required to distinguish

m0eðg; ĝÞa1a2t from eðg; ĝÞ�, and eðg; ĝÞ� from m1eðg; ĝÞa1a2t.
Below we let gx, ĝy, and eðg; ĝÞz denote d1ðxÞ, d2ðyÞ and
dT ðzÞ, respectively. Note B will maintain Listsk, Listrk
and Listup as in the real scheme.

� Setup Phase. B chooses u, a1, a2, a3, a4, a5, b1,
b2 2R Fq, and further sets h1, ĥ1, h2, ĥ2, g1, ĝ1, g2,
ĝ2, g3, ĝ3, g4, ĝ4, g5, ĝ5, K and K̂ as in the real
scheme. B sends the master public keympk to A.

� Random Oracle Queries. When A queries H1 on a
GT element, B chooses a random s 2 Fq and out-
puts gs. Similarly, B responds the corresponding
values (in Fq) to other random oracles (H2 and
H3) queries.

� Phase 1.
(1) Public key and Secret Key Queries. For an

identity ID, B chooses r, a6, a7, a8;a9 2R Fq,

and next computes ĝ
a1
2 ðĥID

1 ĝ3Þr, ĝr, g6 ¼ ga6 ,
g7 ¼ ga7 , g8 ¼ ga8 , g9 ¼ ga9 , ĝ6 ¼ ĝa6 , ĝ7 ¼ ĝa7 ,
ĝ8 ¼ ĝa8 , ĝ9 ¼ ĝa9 . B sends the secret key tuple

(ĝa12 ðĥID
1 ĝ3Þr, ĝr, a6, a7, a8, a9) and the corre-

sponding public key to A. Finally, B stores

ðID, ĝa12 ðĥID
1 ĝ3Þr, ĝr, r, a6, a7, a8, a9) into Listsk.

(2) Re-Encryption Key Queries. A issues the tuple
(IDi, IDj, wi) to B. B recovers the tuples ðIDi,

ĝ
a1
2 ðĥIDi

1 ĝ3ÞrIDi , ĝrIDi , rIDi
, aIDi

6 , aIDi
7 , aIDi

8 , aIDi
9 )

and ðIDj, ĝ
a1
2 ðĥ

IDj

1 ĝ3ÞrIDj , ĝ
rIDj , rIDj

, a
IDj

6 , a
IDj

7 ,

a
IDj

8 , a
IDj

9 ) from Listsk, and next computes

rk2 ¼ ĝ
rIDi
�rIDj , rk1 ¼ ðĥIDi

1 ĝ3ÞrIDi ðĥIDj

1 ĝ3Þ�rIDj K̂n,

rk3 ¼ ĝn, rk4 ¼ ðsi!j=so!iÞ ða
ðIDjÞ
7

H3ðwðIDiÞ
i

jjc1Þþa
ðIDjÞ
6

Þ
ððaðIDiÞ

7
H3ðwðIDiÞ

i
jjc1ÞþaðIDiÞ

6
Þ

ðdidc1i =d�i dc�i ÞÞ, rk5 ¼ ðsi!j=so!iÞ ðaðIDjÞ
8

H3ðwiÞþa
ðIDjÞ
9

Þ
ððaðIDiÞ

8
H3ðwiÞþaðIDiÞ

9
Þðdi=d�ÞÞ

as in the real scheme,where n 2R Fq and the val-
ues of s and d are from Listrk and Listup. B fur-
ther generates Pos; rk6; locToken; stagwi

as in the
real game. Finally, B sends the re-encryption
key to A. Besides, B will publish an encryption
of si!j, and add si!j to the corresponding tuple
stored inListup.

(3) KeywordUpdate TokenQueries.A issues a tuple
(ID, wi, wj) to B. B generates Pos, stag, locToken,

vr1 ¼ ða7H3ðwjjjc01Þ þ a6Þdjdc
0
1
j =ða7H3ðwijjc1Þ þ

a6Þdidc1i , vr2 ¼ ða8H3ðwjÞ þ a9Þdj=ða8H3ðwiÞ þ
a9Þdi as in the real scheme, and returns uptkwi!wj

toA.
(4) Search Token Queries. B computes the search

token
xtoken½c1� ¼ ðxtoken½c1; 2�; . . . ; xtoken½c1; n�Þ as
in the real scheme, in which xtoken½c1; i� ¼
ððĝða8H3ðwiÞþa9Þ=ðða7H3ðw1jjc1Þþa6Þðdc1i =dc�ÞÞÞr; ĝrÞ and
i 2 ½2; n�.

� Challenge Phase. A commits to m0, m1, w
� and

ID�. B chooses �; t 2R Fq, and computes the
ciphertext as C1 ¼ eðg; ĝÞ�, C2 ¼ gt, C3 ¼ ðhID�

1 g3Þt,
C4 ¼ ðg5g�H2ðmbÞ

4 Þt, C5 ¼ eðg4; ĝ4Þt, C6 ¼ H1ðeðh2; ĝ4ÞtÞ,



C7 ¼ Kt, y ¼ ðg�H3ðw�jjc1Þ
7 g�6Þt, xtag ¼ ðg�H3ðw�Þ

8 g�9Þt,
where g�6; g

�
7; g
�
8; g
�
9 are the public key elements of

ID� generated by B as in the real scheme.

� Phase 2. Same as Phase 1 but with the restrictions.
� Guess. A outputs a guess bit b0.
We assume A can query the group oracles by using its

responses from the simulations and some intermediate
values obtains from the oracles; there are q distinct values
in the ranges of d1;2;T with probability 1�Oð1=qÞ. We
seen an oracle query as a rational function f ¼ x=y in the
variables �, bz, al, u, t, n, the random factors d, s and r,
where z 2 f1; 2g and l 2 ½1; 9�. We here consider a colli-
sion event where two queries for two distinct rational
functions f ¼ x=y and f 0 ¼ x0=y0 with two sets of random
choices of variables that yields the same output. For
any query pair (in G1, G2, or GT ) corresponding to two
distinct f and f 0, the collision will happen only if the
non-zero polynomial xy0 � x0y leads to zero, where the
total degree of the equation is at most 7. By the Schwartz-
Zippel lemma [27], [35], we have that the probability of
the collision is at most Oð1=qÞ. By a union bound, we
have OðQ2

1=qÞ. The simulations do not have collision
event with probability 1�OðQ2

1=qÞ.
We here consider the view of A in the case where

� ¼ a1a2t. Since there is no any collision for queries to
oracles (with overwhelming probability) and each group
element (responded by B) is uniformly chosen, the view
of A should be identically distributed. However, one
remaining possibility that A’s view is distinct in the
above case is that there are two distinct queries f and f 0

to GT but yielding the same output. Since the � is an
exponent of the element in GT , we can have some addi-
tive computation to output an exponent g� with a non-
zero g. Similarly, we have g 0a1a2t as well. Accordingly,
we have f � f 0 ¼ g� � g 0a1a2t, and then f � f 0 � g� ¼
g 0a1a2t. To hold the equation,A has to obtain the element
with exponent g 0a1a2t from queries to GT . Namely, if A
can achieve the element, it can tell the difference to win
the game.

But A cannot construct a query for eðg; ĝÞg0a1a2t for
some constant g 0. Since our system is built on top of asym-
metric pairing groups, it is much easier to make observa-
tion on oracle queries. By observation, only group G1

provides elements with exponent t, namely, gt, gðb1IDþa3Þt,
gða5�a4H2ðmbÞÞt, gut, gða7H3ðwjjc1Þþa6Þt and gða8H3ðwÞþa9Þt. Since
there are no factors 1=u, 1=b1 and 1=a3 existing in group

G2 for the elimination of the corresponding exponents, A
may consider the rest of the elements. Recall that

a6;a7;a8;a9 2 Fq are designed for keyword field that is

unrelated to the target component. Moreover, a4 and a5

have no direct computation relationship with a1 and a2.A
can only focus on gt. A is given an element eðga4 ; ĝa4Þt in
GT . However, it cannot helpA break the game as it is only

used in additive operations.
Given gt,A needs the elements with exponent ka1a2 in

group G2. From the simulations, we can see that there is
only the response of secret key query, a ĝa1a2þðIDb1þa3Þr,
satisfying the requirement. A accordingly has a K1 ¼
tða1a2 þ ðIDib1 þ a3ÞrIDi

Þ ¼ a1a2tþ IDib1rIDi
tþ a3rIDi

t,

where i is the index for ith query. To cancel out the part
IDib1rIDi

tþ a3rIDi
t, A needs to find a gt and the ele-

ments with exponents b1rIDi
and a3rIDi

in G2. By obser-
vation, A has K2 ¼ ðb1IDi þ a3ÞrIDi

� ðb1IDj þ a3ÞrIDj
þ

un (via re-encryption key queries), such that it can create
a query a1a2tþ tb1IDjrIDj

þ ta3rIDj
� unt by subtracting

K1 with tK2. We can see that the computation indicates
that the given ciphertext under IDi is re-encrypted to
IDj. We setK3 ¼ a1a2tþ D� udt. Since A is given gut and
ĝn, it can cancel out the last part of K3 to have
K4 ¼ a1a2tþ D.

If A finds a way to eliminate D, it can recover a1a2t
from K4. A only needs to require a query between
gðb1IDjþa3Þt and a “special” ĝ

rIDj . But a pair of identities
IDi, IDj in a re-encryption key cannot be corrupted in
the security game if one of them has a re-encryption path
with ID�. Besdies, K4 is computed from the elements of
the challenge ciphertext. Therefore, the special element
ĝ
rIDj , a part of the secret key skIDj

, will not be given to A.
There is no other term A gains access to that can cancel
out the part D of K4. A cannot construct a query for

eðg; ĝÞg0a1a2t with some constant g 0. tu
Theorem 2. Let Q2 be a bound on the total number of group ele-

ments an adversary A receives from queries of hash function,
groups G1, G2, GT and the bilinear map e, and from interac-
tions with the keyword privacy game. We have that the advan-
tage ofA in winning the game is OðQ2

2=qÞ.
Proof 2. Due to the similarities in the proofs between Theo-

rems 4.1 and 4.1, we here only present a proof stretch, and
state that the proof can be easily completed by following
the roadmap of the proof of Theorem 4.1. The game chal-
lenger here sets up system and responds the queries of
random oracles, public and secret key, re-encryption key,
keyword update token and search token as in the proof of
Theorem 4.1 but being limited to the restrictions listed in
theDefinition 3. In the challenge phase, the challenger con-
structs the challenge ciphertext toA by intaking (m,w�0,w

�
1,

ID�). Following the restrictions given in the Definition 3,A
attempts to find either ĝa7H3ðwbjjc1Þþa6 or ĝa8H3ðwbÞþa9 to

match pairings eðgða7H3ðwbjjc1Þþa6Þt; ĝÞ or eðgða8H3ðwbÞþa9Þt; ĝÞ.
Since ĝ6 and ĝ9 are not given as the public key of ID� and
meanwhile, no ĝKa6 or ĝKa9 can be achieved via oracle

queries (where K is a constant), the only way A can reach

the goal is to corrupt the secret key of ID� or to obtain

some “sensitive” search tokens. But those queries are for-

bidden (Definition 3).A fails to win the game. tu
Theorem 3. Assume the decisional Diffie-Hellman assump-

tion [7] holds in G2, all the pseudorandom functions and hash
functions are secure and target collision resistant, our scheme
achieves the weak search token privacy.

Proof 3. Given two distinct search tokens TK1 and TK2,
the PPT adversary A is target to tell the difference.

Assume TK1 ¼ ððĝa8H3ðwðRÞ2
Þ=a7H3ðwðRÞ1

jjc1Þb1Þr1 ; ĝr1Þ and TK2 ¼
ððĝa8H3ðwðbÞ2 Þ=a7H3ðwðbÞ1 jjc1Þb2Þr2 ; ĝr2Þ, where r1 and r2 are dis-

tinct random factors in Zq, b1 and b2 are the respective d

computation, ðRÞ and ðbÞ represent the sign of random

and bit b, respectively. Since our bilinear pairings are



designed as e : G1 � G2 ! GT with no easy homomor-

phism between G1 and G2, A cannot use the parings com-

putation directly. Furthermore, r1 and r2 are two fresh

and distinct random factors, A cannot find the corre-

sponding elements in G1 to compute correct pairings to

verify the equality of TK1 and TK2. Similarly, A cannot
generate correct elements in G1 without knowing a6, a7,

a8, a9, the parts of secret key of the target ID. But if A can

output ĝr1r2D and ĝr1r2V by using TK1 and TK2, it can defi-

nitely tell the difference between the search tokens. If so,

it can break the DDH problem. That contradicts to our

assumption. This weak tu

4.2 Efficiency Analysis

To present a fair computational cost analysis, we denote the
exponent cost in G1, G2 and GT as exp1, exp2, exp3, respec-
tively. For the pairing cost in GT , we denote it as p. We will
consider the cost w.r.t. a trusted system setup party, system
user, a PKG and a server. We note that the computational
cost of the algorithm Enc shown in Table 3 is for the case
where a file is only tagged with a single keyword. From the
Table 3, it can be seen that a system user is only required to
take less than 50 percent of the system total cost,
13exp1 þ 3exp2 þ 5p, to achieve flexible data query, key-
word update and data share, while the trusted party, PKG
and server are responsible for the rest of the cost, which is
more than 50 percent of the total cost.

In the following communication analysis, we use mpk,
msk, pk, sk, CT , uptk, rk, TK to denote master secret key,
master public key, public key, secret key, ciphertext, key-
word update token and search token, respectively. We note
that the communication cost of TK and CT normally have
to respectively multiply factors jSF j and jDj, where jSF j is
the size of the search formula, jDj ¼P

w2W jDBðwÞj. Below
we only set jSF j and jDj to be 1, namely, the following com-
munication cost is for the case where a file is tagged with a
single keyword.

In Table 4, we can see that a system user only needs to
spend 3Zq þ 7G1 þ 3G2 þ 2GT in communication cost with a
server during the execution of the system. The GT part is
due to the pairings (C1; C5) used in the ciphertext. It is not

difficult to see that the cost of the user is approximately
45 percent of the total system cost.

4.3 Practical Simulation

We further implement our scheme using PBC library [23]
which is one of the most widely used library for pairing
computation. We choose the asymmetric pairing which is
constructed on ordinary curves with embedding degree 6,
and its orders are prime or a prime multiplied by a small
constant. It is first discovered by Miyaji, Nakabayashi and
Takano [25], and it is usually more efficient compared with
other curves. The simulation is performed on a mac pro
with 2.2 GHz Intel Core i7 and 16 GB 1,600 MHz DDR3
memory. Similar to the theoretical analysis, we demonstrate
our practical simulation results in Tables 5 and 7.

We verify our theoretical analysis through the simulation
that the workload of a system user indeed is lightened sig-
nificantly. From Table 5 (computational cost), we can see
that the computational time for Trust Party, Server and
PKG are 0.0738, 0.0409 and 0.1510 seconds, while the user
side takes only 0.0682 seconds. As a result, the user side
takes only 20 percent of the total computational cost.

We further compare our design with the recent and light-
weight PKES scheme [13]. Since [13] do not consider

TABLE 3
Theoretical Computation Cost

Computation Cost

Cost Setup KeyGen UpTKGen ReKeyGen TKGen Enc Update. (2) Update. (1) Search Dec

epx1 8 4 0 0 0 13 2 2 0 0

epx2 8 8 2 7 3 0 0 0 0 0

epx3 0 0 0 0 0 0 0 1 0 0

p 0 0 0 0 0 3 3 1 2 2

trusted party (for setup) 8exp1 þ 8exp2

Server 4exp1 þ exp3 þ 6p

PKG 4exp1 þ 17exp2

User 13exp1 þ 3exp2 þ 5p

Total 29exp1 þ 28exp2 þ exp3 þ 11p

TABLE 4
Theoretical Communication Cost

Communication Cost

Groups mpk msk pk sk TK rk uptk CT

Zq 0 1 0 4 0 2 3 0

G1 8 0 4 0 0 0 0 7

G2 6 3 2 2 2 3 1 0

GT 0 0 0 0 0 0 0 2

TP! PKG Zq þ 3G2

PKG! User 5Zq þ 4G1 þ 5G2

PKG! Server 2Zq þ 3G2

User! Server 3Zq þ 7G1 þ 3G2 þ 2GT

Total 10Zq þ 19G1 þ 19G2 þ 2GT



keyword update (which is mainly on server side) and
decryption functionalities, we only compare the computa-
tional cost in terms of KeyGen, Enc, TKGen and Search to
achieve comparison fairness. Based on the test bar set
in [13], we can have our KeyGen, Enc, TKGen and Search
require 0.02598, 0.046789, 0.006495 and 0.010854 s, respec-
tively. From Table 6, it can be seen that our scheme outper-
forms [13] in trapdoor generation and a single keyword
search, while the rest of our functions require more run
time than [13]. But, in general, our run time cost in the four
functions is acceptable in practice.

As for the communication cost, we need to find out the
length of elements in groups G1, G2, GT and Zn. According
to the implementation of the MNT curve, the group ele-
ments have 40; 120; 120 and 20 bytes in length accordingly.
As a result, from the trusted party to PKG, 380 bytes data
are sent. From PKG, 860 and 400 bytes data are sent to
User and Server respectively. The data communication
cost from user to server comes from the ciphertext and
token delivery as well as the search query costing about
940 bytes. In total the practical communication cost is
about 2,580 bytes.

We also compare our scheme with [13] w.r.t. communica-
tion cost in Table 8. But we only consider the related cost
over the Keys, Ciphertext and Trapdoor. We note that for
Keys we consider the size of both public key and secret key.
As for the size of Keys, our scheme requires 4 more G2 than
[13]; and our ciphertext size is larger than that of [13] due to

the support of our decryption function (which needs extra
5G1 þ 2GT as compared to [13]). But we state that the above
cost is acceptable in the viewpoint of practical user since the
cost is < 1 MB which is bearable for common network/
communication device, e.g., smartphone.

The “least frequent keyword” technique proposed in this
paper can help to improve the keyword searching speed
dramatically. Now we would like to set up an experiment
to simulate this event. Assume that there are in total r files,
and the keyword set A belongs to m files, and keyword set
B belongs to n files, where m ¼ 10� n, m ¼ r� 0:9, and
m;n < r, such that the number of files contain A dominants
the whole set. B is defined to be the “least frequent key-
word” according to the previous definition. To search the
files that contain both A and B, traditionally, we would first
search r files to locate files contain either A or B. And then
search m or n times depending on which keyword is
searched first. So the time complexity is Tsearch � rþ
Tsearch �m or Tsearch � rþ Tsearch � n. However, if we
assume that B is the “least frequent keyword” that has been
prepared, then the searching strategy becomes that we
search the files contain B first, and then search the A. In this
case, the time complexity becomes Tsearch � rþ Tsearch � n,
which is obviously better than the previous searching strat-
egy if we are sure n < m. In the first case, we do not know
which keyword will be searched first, thus each time the
user will have 50 percent chance to pick A or B. In detail,
the average time follows the binomial distribution with
p ¼ 1=2, but for the simplicity we omit the probability dis-
cussion here. We further state that the bitmap index (via
BigInteger) is used to denote file identifier, and our experi-
ment tests the search and update time for one keyword in
which each keyword has 20 entries.

As shown in Fig. 5, the number of total files (r) is from
100 to 2000, and m;n can be easily computed accordingly.
By “traditional searching time” we mean that is the non-
oblivious-cross-search approach with encryption. It is clear

TABLE 6
Computational Cost Comparison (Second)

Function/Scheme Ours [13]

KeyGen 0.02598 0.008674

Enc 0.046789 0.016378

TKGen 0.006495 0.017462

Search 0.010854 0.015225

TABLE 5
Practical Computational Cost

(Second)

Trust Party 0.0738

Server 0.0409

PKG 0.1510

User Side 0.0682

Total 0.3267

TABLE 7
Practical Communication Cost (Byte)

Trusted Party! PKG 380

PKG! User 860

PKG! Server 400

User! Server 940

Total 2580

TABLE 8
Communication Cost Comparison (Byte)

Item/Scheme Ours [13]

Keys 720 240

Ciphertext 520 80

Trapdoor 240 120

Fig. 5. Time complexity for large scale searching.



that our proposed keyword searching strategy can greatly
improve over the previous designed searching strategy as
the number of files grows large.

5 CONCLUSION

We have revised encrypted cloud-based data share and
search (with keyword update) framework as well as its
security notion. We have further proposed an enhanced sys-
tem satisfying the notion by leveraging identity-based
encryption, asymmetric pairing group conversion, identity-
based proxy re-encryption and “least frequent keyword”
searchable technique. We have proved the security of the
system in the generic bilinear group model. Our system is
cost-effective as compared to its conference version, and has
great potential in being deployed in large scale database.

This paper also leaves some interesting open problems.
In the context of PKSE, it may be desirable to consider the
forward and backward security, if the system provides file
add and deletion. One may consider to use simulation-
based or universal composability model define the security
for forward/backward PKSE. Another research direction
may be to consider the use of the technique proposed in [33]
to hold against active online attacks.
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