
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2023 

Web APIs: Features, issues, and expectations: A large-scale Web APIs: Features, issues, and expectations: A large-scale 

empirical study of web APIs from two publicly accessible empirical study of web APIs from two publicly accessible 

registries using Stack Overflow and a user survey registries using Stack Overflow and a user survey 

Neng ZHANG 

Ying ZOU 

Xin XIA 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

David LO 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
ZHANG, Neng; ZOU, Ying; XIA, Xin; LO, David; LO, David; and LI, Shanping. Web APIs: Features, issues, and 
expectations: A large-scale empirical study of web APIs from two publicly accessible registries using 
Stack Overflow and a user survey. (2023). IEEE Transactions on Software Engineering. 49, (2), 498-528. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7822 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7822&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Neng ZHANG, Ying ZOU, Xin XIA, David LO, David LO, and Shanping LI 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/7822 

https://ink.library.smu.edu.sg/sis_research/7822


1

Web APIs: Features, Issues, and Expectations
A Large-Scale Empirical Study of Web APIs from Two Publicly Accessible Registries Using

Stack Overflow and A User Survey

Neng Zhang, Ying Zou, Xin Xia, Qiao Huang, David Lo, Shanping Li

Abstract—With the increasing adoption of services-oriented computing and cloud computing technologies, web APIs have become the
fundamental building blocks for constructing software applications. Web APIs are developed and published on the internet. The
functionality of web APIs can be used to facilitate the development of software applications. There are numerous studies on retrieving
and recommending candidate web APIs based on user requirements from a large set of web APIs. However, there are very limited
studies on the features of web APIs that make them more likely to be used and the issues of using web APIs in practice. Moreover,
users’ expectations on the development and management of web APIs are rarely investigated. In this paper, we conduct a large-scale
empirical study of 20,047 web APIs published at two popular and publicly accessible web API registries: ProgrammableWeb and
APIs.guru. We first extract the questions posted in Stack Overflow (SO) that are relevant to the web APIs. We then manually analyze
1,885 randomly sampled SO questions and identify 24 web API issue types (e.g., authorization error) that are encountered by users.
Afterwards, we conduct a user survey to investigate the features of web APIs that users often consider when shortlisting a web API for
testing before they adopt it, validate the identified types of web API issues, and understand users’ expectations on the development
and management of web APIs. From the 191 received responses, we extract 14 important features for users to decide whether to use
a web API (e.g., well-organized documentation). We also gain a better understanding of web API issue types and summarize 11
categories of user expectations on web APIs (e.g., documentation and SDK/library). As the result of our study, we provide guidelines
for web API developers and registry managers to improve web APIs and promote the use of web APIs.

Index Terms—Web APIs, Empirical Study, User Survey, Stack Overflow

F

1 Introduction

Web APIs (also known as web services) are loosely-
coupled software modules that encapsulate resources

(e.g., data, storage, or computing resource), which are acces-
sible via the internet. By reusing web APIs, developers can
reduce the time and effort spent on the development, and
increase the quality and flexibility of software applications [1].
With the rapid adoption of services-oriented computing and
cloud computing technologies, web APIs have become the
fundamental building blocks to construct software applica-
tions [2], [3]. Many companies, e.g., Microsoft and Amazon,
have developed numerous web APIs and built various service-
based systems (i.e., distributed software systems built by
composing web services [4]). The web APIs are published
using the web API marketplace from a particular company
(e.g., Microsoft Azure1 and Amazon AWS2) or public web API

• Neng Zhang is with the School of Software Engineering, SUN Yat-
sen University, China.
E-mail: zhangn279@mail.sysu.edu.cn

• Ying Zou is with the Department of Electrical and Computer
Engineering, Queen’s University, Canada.
E-mail: ying.zou@queensu.ca

• Xin Xia is with the Software Engineering Application Technology
Lab, Huawei, Hangzhou, China.
E-mail: xin.xia@acm.org

• Qiao Huang and Shanping Li are with the the College of Computer
Science and Technology, Zhejiang University, China.
E-mail: {tkdsheep, shan}@zju.edu.cn

• David Lo is with the School of Information Systems, Singapore
Management University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xin Xia is the corresponding author.

1. https://azuremarketplace.microsoft.com
2. https://aws.amazon.com/marketplace

registries (e.g., ProgrammableWeb3 (PW), APIs.guru4, and
RapidAPI5), enabling third-party companies or developers to
access the resources offered by web APIs [5]. Independent
developers can also create web APIs and share them using
registries. For example, as of November 12, 2019, more than
22,000 web APIs have been registered at PW.

Given a requirement, it is not an easy task for users to
find appropriate web APIs from a large number of web APIs
published on the internet, especially when many web APIs
offer similar resources, e.g., Google Maps6 and Bing Maps7.
To facilitate the selection of web APIs, a great amount of
research effort has been devoted to improving the performance
in service retrieval [6], [7], [8], [9], [10], [11], [12] and service
recommendation [2], [13], [14], [15], [16], [17], [18], [19]. How-
ever, there are still a few limitations in the current state of
arts.

1) There is no systematic study conducted to understand
whether the published web APIs have been widely used?
and what features of web APIs make them more likely to
be used?

2) Quite often, users may encounter issues when using web
APIs. Intuitively, the issues of using web APIs may
differ from those happened when using non-web APIs,
e.g., Java SE Development Kit (JDK)8, as web APIs
can be only accessed via internet without installing the

3. https://www.programmableweb.com
4. https://apis.guru/
5. https://rapidapi.com
6. https://www.programmableweb.com/api/google-maps
7. https://www.programmableweb.com/api/bing-maps
8. https://www.oracle.com/technetwork/java/javase



2

Web API collection
Web API related 

question extraction

● 20,047 web APIs
● 6,416 mashups

Web API related 
questions

1 2

Question sampling

Web API issue type 
identification

24 web API issue types in 
four high-level categories

1,885 sampled questions

4

5

Data Collection and Analysis  Web API Issue Type Identification

Survey design

Eight close-ended and open-
ended survey questions

Participant recruitment

191 responses from industry 
professionals and GitHub developers

Response analysis

● 14 important web API features
● 26 web API issue types
● 11 user expectation categories

User Survey

6 7 8

Important features of web APIs to be investigated; web API issue types 
to be validated; and user expectations on web APIs to be understood.

Preliminary analysis 
of web API usage

Web API usage results

3

Web API registries Stack Overflow

Fig. 1. An overview of our approach.

executable code in a local machine. Although existing
work has studied specific kinds of web API issues, e.g.,
web API changes [20] and documentation reliability [21],
there is a lack of an in-depth investigation of the issues
encountered when using web APIs.

3) There is almost no study conducted to understand users’
expectations (i.e., requirements) on the development and
management of web APIs.

In this paper, we conduct a large-scale empirical study
to investigate the usage of web APIs, the issues of using
web APIs, and users’ expectations on web APIs. We collect
20,047 web APIs from two popular and publicly accessible reg-
istries: PW and APIs.guru. Stack Overflow9(SO), a popular
Q&A community for developers, has accumulated millions of
questions about various technologies. We propose a heuristic
method for extracting SO questions related to the web APIs
by leveraging web API names and a set of 26 web API related
keywords/phrases that are manually defined (Table 4). We
then perform a preliminary study of the web API usage by
analyzing the extracted SO questions and the mashups [22]
that invoke web APIs from PW. The result reveals that 18.1%-
33.5% of the web APIs are used by developers in practice.

We randomly sample 1,885 SO questions related to the
web APIs and manually identify 24 types of web API issues
(e.g., authorization error and incomplete documentation) ex-
perienced by users. The web API issue types are grouped into
four high-level categories: authorization, function, documen-
tation, and others.

Finally, we perform a user survey for three purposes: 1)
investigating the features of web APIs that are important
for users when shortlisting a web API for testing before they

9. https://stackoverflow.com

adopt it in their applications; 2) validating the identified web
API issue types; and 3) understanding users’ expectations on
web APIs. Our survey is sent to 72 industry professionals who
are working at multiple companies and 2,000 Open-Source
Software (OSS) developers who have reported issues to web
API projects hosted at GitHub10. By analyzing 191 received
responses, we obtain 14 web API features (e.g., well-organized
documentation and standard request/response formats) and
two additional web API issue types that are not discovered
from SO questions. Moreover, we summarize 11 categories
of user expectations on the development and management of
web APIs. As a result, we provide guidelines for web API
developers and registry managers to improve the quality of
web APIs and promote the use of web APIs.

The major contributions of our study are:
1) We collect a large dataset of 20,047 web APIs from two

popular registries: PW and APIs.guru. We propose a
heuristic method for extracting SO questions relevant to
web APIs.

2) We obtain 14 features of web APIs that are critical for
users to shortlist a web API for testing by performing
a user survey with industry professionals and GitHub
developers.

3) We identify 26 types of web API issues by manually ana-
lyzing 1,885 SO questions and the survey responses. The
issue types are grouped into four high-level categories.

4) We summarize 11 categories of user expectations on web
APIs from the survey responses.

5) We provide guidelines for web API developers and reg-
istry managers based on our findings.

10. https://github.com



3

Paper Organization. The rest of the paper is structured as
follows. Section 2 gives an overview of our approach. Section 3
presents the results of our study. Section 4 discusses the
implications for web API developers and registry managers.
Section 5 discusses the application of language models in
retrieving SO questions for web APIs, the reasons why we
present the usage results of web APIs, the uniqueness of our
findings to web APIs, and the threats to validity of our study.
Section 6 reviews the related work. Section 7 concludes the
paper and discusses the future work.

2 Overview of Our Approach
Figure 1 gives an overview of our approach, including three
phases: 1) Data Collection and Analysis that collects web
APIs and mashups from PW and APIs.guru, extracts SO
questions related to web APIs, and analyzes the usage of
web APIs; 2) Web API Issue Type Identification that iden-
tifies the types of user reported issues related to web APIs
from a set of sampled SO questions; and 3) User Survey
that investigates the features of web APIs that make web
APIs more likely to be used, validates the identified web
API issue types, and understands user expectations on web
APIs. The materials of this work are released at GitHub:
https://github.com/nengz/WebAPIStudy.

2.1 Data Collection and Analysis
In this subsection, we describe the three steps 1 - 3 of the
data collection and analysis phase shown in Fig. 1.

2.1.1 Web API Collection
We investigate the web APIs published at PW and APIs.guru
for the following reasons:

• PW and APIs.guru are two popular and publicly accessi-
ble registries that have a large number of web APIs pro-
vided by many companies and independent developers.

• Web APIs published at PW and APIs.guru are widely
used by researchers in web services community [4], [6],
[7], [11], [13], [14], [19], [23], [24], [25], [26], [27], [28], [29].

PW starts from 2005. The web APIs at PW are organized
by a number of categories, e.g., Mapping and Financial. Each
web API is assigned to several categories by the API provider
and/or registry managers. Despite the assigned categories,
PW records other information of a web API, e.g., the API
name, a short functional description, and the number of
followers. PW also contains a large number of mashups (e.g.,
more than 7,900 mashups as of November 12, 2019) that are
developed by composing the web APIs published at PW. For
each mashup, PW records the mashup name, several cate-
gories assigned to the mashup, a short functional description,
and the related web APIs that are composed by the mashup.
We collect 20,175 web APIs and 6,416 mashups from PW.

APIs.guru is built in 2017 and driven by the emerging
OpenAPI [30] and GraphQL [31] standards. APIs.guru has
two directories of web APIs: the OpenAPI directory and the
public GraphQL APIs directory. Both directories are stored
at the Github repository of APIs.guru11. The specification of
each web API in the OpenAPI directory is contained in a

11. https://github.com/APIs-guru

TABLE 1
Information of web APIs and mashups collected from the two

registries: ProgrammableWeb (PW) and APIs.guru.

1. Information collected for web APIs published at PW with an example
API Name Amazon DynamoDB

Description
Amazon DynamoDB is a scalable NoSQL database
homegrown by the Amazon team. Developers set their
write and read capacity to match the number of reads
and writes their system needs. ...

Categories Database, NoSQL
API Portal / Home Page http://aws.amazon.com/dynamodb/
Docs Home Page URL http://aws.amazon.com/dynamodb/
Architectural Style REST
Supported Request Formats URI Query String/CRUD
Supported Response Formats JSON
# SDKs 1
# Source Code 0
# Developers 2
# Followers 26

2. Information collected for mashups published at PW with an example
Mashup Name Flickr on Dynamo

Description
Downloads entries from the Flickr public photos Atom
feed every 2 hours and caches them in Amazon DynamoDB
("zaps atoms into Dynamo"). Why? So you can do zappy
fast searches and likes of photos using DynamoDB, ...

Categories Search, Photos
Related APIs Flickr, Amazon DynamoDB

3. Information collected for web APIs published at APIs.guru with an example
API Name Amazon DynamoDB
Categories cloud

Description
Amazon DynamoDB is a fully managed NoSQL database
service that provides fast and predictable performance with
seamless scalability. DynamoDB lets you offload the
administrative burdens of operating and scaling ...

TABLE 2
The numbers of web APIs from PW that have different architectural

styles.

Architectural Style # Web APIs Architectural Style # Web APIs
REST 17,286 Unspecified 289
RPC 1,612 Native/Browser 198
Push/Streaming 354 GraphQL 60
Indirect 328 48

YAML file, named as openapi.yaml or swagger.yaml. The in-
formation of web APIs in the public GraphQL APIs directory
is either contained in a JSON file, named as apis.json, or listed
in the README.md file of the directory. We download the
APIs.guru repository from GitHub and extract the informa-
tion (e.g., the API name and description) of 1,316 and 69 web
APIs from the OpenAPI directory and the public GraphQL
APIs directory, respectively.

Table 1 lists part of the information collected for web
APIs and mashups. We observe several problems with the web
APIs: 1) some web APIs from PW have unspecified or special
architectural styles (e.g., ‘Unspecified’ and ‘Native/Browser’)
and may not be real web APIs; 2) some web APIs are created
for testing purposes, and such web APIs typically contain the
word ‘test’ in the names or descriptions or have no meaningful
words in the descriptions; 3) the names of some web APIs
lack spaces or end with web API type keywords/phrases or
contain redundant descriptions, e.g., AzureAnalysisServices,
Microsoft Azure Search Service, and Open Banking - Payments
initiation service; and 4) there are duplicate web APIs12

with the same names from both registries, e.g., the web API
Amazon DynamoDB shown in Table 1. The problems can
affect other tasks of our study, e.g., extracting SO questions
related to the web APIs and analyzing the usage of the web
APIs. We process the web APIs as follows.

1) We count the number of web APIs from PW of each archi-

12. We consider two web APIs that have the same name duplicate.



4

tectural style, as listed in Table 2. REST [32], RPC [33],
and GraphQL are popular web API architectural styles,
whereas other styles, e.g., ‘Native/Browser’, are not cer-
tainly relevant to web APIs. We filter out 1,217 web APIs
that do not use REST, RPC, or GraphQL.

2) We manually examine 906 web APIs that contain ‘test’ in
either the web API names or descriptions. Moreover, we
manually check 549 web APIs without meaningful words
in the descriptions. We filter out one web API from PW
and four web APIs from OpenAPI as such web APIs are
likely to be created for testing purposes.

3) We manually examine the names of web APIs and revise a
number of irregular names to improve the retrieval of SO
questions related to web APIs. We focus on three kinds
of web API names: a) the names that end with typical
web API type keywords/phrases (e.g., ‘api’, ‘service’, and
‘web service’), e.g., Microsoft Azure Search Service; b) the
names that start with well-known companies or platforms
(e.g., Amazon and Azure), contain multiple tokens, and
have no space in them, e.g., AzureAnalysisServices; and c)
the names that contain a special string ‘ - ’ (the descrip-
tions after ‘-’ may be redundant), e.g., Open Banking -
Payments initiation service.
For a web API name belonging to case a), we remove the
web API type keyword/phrase at the end of the name
and search results for the modified name using the SO
search engine. If there are results returned, we revise
the original name to the modified name. For example,
Microsoft Azure Search Service is revised to Microsoft
Azure Search.
For a web API name belonging to case b), we gradually
modify the name by adding spaces between the multiple
tokens (e.g., Azure AnalysisServices and Azure Analysis
Services) and replacing the specific characters (e.g., ‘.’ and
‘_’) with spaces. We search results for the original name
and each modified name using the SO search engine. We
revise the original name to the modified name that has
the maximum number of search results. For example,
AzureAnalysisServices is revised to Azure Analysis Ser-
vices. If the revised name matches case a), we further
revise it using the steps used for case a). Consequently,
we revise Azure Analysis Services to Azure Analysis.
For a web API name belonging to case c), we modify the
name by retaining the part before ‘ - ’ and search results
for the original name and the modified name using the SO
search engine. We revise the original name to the mod-
ified name if more results are returned for the modified
one. For example, Open Banking - Payments initiation
service is revised to Open Banking. If the revised name
matches cases a) or b), we further revise it using the steps
used for cases a) or b).
Eventually, we revise 961 web APIs (456 from PW and
505 from APIs.guru). Moreover, we remove two web APIs
with meaningless API names from OpenAPI, i.e., API v1
and REST API Version 2.

4) We transform the names of web APIs to lowercase
to eliminate the possible inconsistent spellings of web
API names. We then filter out the duplicate web APIs.
More specifically, we remove 91 duplicates from PW,
32 duplicates from APIs.guru (including 17 duplicates
from OpenAPI, 13 duplicates from GraphQL, and two

duplicates appearing in OpenAPI and GraphQL), and
166 duplicates that appear in both registries. For the
duplicates appearing in both registries, we retain the web
APIs from PW and delete those from APIs.guru.

After completing the steps above, we obtain 20,047 web
APIs with unique names from both registries. There are
18,866 and 1,347 web APIs with unique names from PW and
APIs.guru, respectively.

2.1.2 Web API Related Question Extraction
Users may encounter issues when using web APIs. Since the
implementation code of web APIs is generally unavailable,
web API forum is used for users to seek help from web API
providers. A web API at PW can offer a URL referring to its
forum, e.g., the field API Forum / Message Boards of web API
Twilio SMS13. However, we find that only 3,225 (i.e., 17.0%)
of the 18,957 web APIs from PW (after filtering out the non-
web APIs and the web APIs created for testing purposes) have
forums. Most of the web APIs do not provide a forum for users
to discuss issues. Therefore, web API forums are not suitable
to investigate the usage and issues of web APIs.

As a collaborative and active Q&A community, SO has
attracted ten million users around the world to discuss tech-
nical problems in software development. As of November 12,
2019, SO accumulates 18 million questions and 28 million an-
swers14. The tremendous amount of SO data is widely used to
conduct empirical studies on various technologies, e.g., mobile
development [34], [35], text mining [36], and blockchain [37].
We observe that many SO questions are relevant to web APIs.
For example, 60,931 and 24,111 SO questions are tagged with
‘google-maps’ or ‘google-maps-api-3’, respectively, indicating
that the questions are relevant to the web API Google Maps.
Therefore, we use the SO data to investigate the usage and
issues of web APIs.

We download the official SO data dump released on
September 2, 2019. The data dump includes five XML docu-
ments: Posts.xml, Comments.xml, Badges.xml, Users.xml, and
Votes.xml. All questions and answers are stored in Posts.xml.
We extract questions from Posts.xml. It is a challenging task
to extract questions relevant to our collected web APIs due
to the inconsistent mentions for a web API in questions. For
example, Google Maps are referred to as ‘google-maps-api-3’,
‘google maps’, ‘Google maps’, etc. Recall that we have normal-
ized the names of web APIs by converting them to lowercase.
We normalize the mentions of web APIs by processing each
question using two steps: 1) converting the title, tags, and
body of the question to lowercase; and 2) replacing ‘-’ with
a blank character. Based on the transformed results, we can
match an API name with its references in SO questions.

We aim to extract the SO questions that mention web
APIs. It is an intractable task to examine each of the 18 mil-
lion questions. To improve the efficiency, we use Lucene [38]
(an efficient text search engine that implements BM25) to
build the index for all questions, and then use the Lucene
search engine to retrieve questions relevant to web APIs. We
first retrieve the questions by searching for web API names
in the content (including the title, tags, and body) of each
question. More than 13.6 million questions are retrieved for

13. https://www.programmableweb.com/api/twilio-rest-api
14. https://data.stackexchange.com/



5

TABLE 3
Web APIs extracted from four Stack Overflow (SO) questions using two methods. Only the web APIs in italics are correctly extracted from the

corresponding questions. WAKP is the set of web API related keywords and phrases listed in Table 4.

Question ID Question Field Preprocessed Content of the Question Field Web APIs Extracted Web APIs Extracted based on
based on API Names API Names and WAKP

41519641

Title how do I retrieve a specific range using google sheets api
Tags android studio, for loop, google sheets api

Body
i have the following code using the google sheets api and got it working perfectly. google sheets, google sheets
it sees all my data and puts it into the app perfectly via the for loop. it runs through view,
the spreadsheets and puts the data in an edit view. as you can see, the for loop data
retrieves the data one by one until there is no more data inside a specific range ...

12868753

Title recommendations for programmatic web searches
Tags web services, search, bing, web search

Body

i was hoping i could use a web service to automatically perform full web searches based on keywords ...
my first thought was google, and their google custom search service looks pretty good ... google custom search, google custom search,
the only problem is that it has a limit of 100 queries per day. I need more like 1000 ... bing, bing
as i wrote this question i found microsoft’s bing web service home page. at first blush it looks pretty good. search
i have a slight preference for google, but am open to microsoft. i would love to hear any
advice about using microsoft’s api.

16310966

Title social framework auto appending access key
Tags ios, facebook, access token

Body
i am attempting to retrieve a list of friends with specific fields using the ios 6 facebook,
social framework. i am using the url: but the framework seems to be appending form
the access key to it automagically, and is doing so with a ‘?’ as if it were the first
url parameter ... if so, how should i form my urlstring so that this is not a problem?

13188025

Title insert string into string?
Tags php

Body
i have a number of images being uploaded to a site with random file names e.g. string
is it possible in php to somehow insert immediately before the file extension
(.jpg, .jpeg .png or .gif) part of the url another string such as 300x200?

TABLE 4
Web API related keywords and phrases (WAKP).

No Web API Related Keyword No Web API Related Keyword
or Phrase or Phrase

1 api 14 service
2 webapi 15 webservice
3 web api 16 web service
4 rest api 17 rest service
5 rest webapi 18 rest webservice
6 rest web api 19 rest web service
7 restful api 20 restful service
8 restful webapi 21 restful webservice
9 restful web api 22 restful web service
10 soap api 23 soap service
11 soap webapi 24 soap webservice
12 soap web api 25 soap web service
13 microservice 26 micro service

6,323 web APIs. However, many of the questions are irrelevant
to web APIs. Table 3 presents nine web APIs extracted
from four questions. Only the four web APIs in italics, e.g.,
google sheets and google custom search, are indeed discussed
in the questions, while the other five web APIs, e.g., view and
form, are incorrectly extracted. We evaluate 384 randomly
selected questions, which is a statistically significant sample
size considering a confidence level of 95% and a confidence
interval of 5%. The result shows that the accuracy is 13.5%.
That is, 86.5% of the questions are false positives (i.e., all
web APIs extracted from the questions are incorrect), e.g.,
the question ‘13188025’ shown in Table 3.

Through our observation, some web API related key-
words and phrases (denoted as WAKP) immediately fol-
lowing web API names, e.g., ‘api’ and ‘web api’, can be
used to improve the accuracy of question retrieval. To build
WAKP, we collect the questions retrieved for five well-known
web APIs: google maps, facebook, twitter, facebook graph, and
youtube. We extract the 1-gram, 2-gram, and 3-gram that
follow the five web API names in the questions. An N -
gram [39] means a sequence of N consecutive words. A ranked
list of the extracted word sequences is generated by sorting
them in a descending order by frequency. There are 626,247
word sequences. It is a tremendous workload to manually
examine all the word sequences to build a set of WAKP.
To make the evaluators’ workload manageable, we ask the

TABLE 5
The top ten web APIs that have the maximum numbers of SO

questions retrieved based on API names and WAKP. The web APIs
marked with ⋆, ⋄, and • are from PW, APIs.guru, and both registries,

respectively.

No API Name # Retrieved SO Questions
⋆ 1 asp.net web 36,027
⋆ 2 facebook graph 34,639
⋆ 3 google maps 33,767
⋆ 4 youtube 12,225
⋄ 5 drive 11,513
⋆ 5 google drive 11,142
⋆ 6 facebook 10,354
⋄ 7 data 9,864
⋆ 6 core 7,550
• 8 twitter 6,714

first and the fourth authors of this paper to independently
examine the ranked list and build their initial sets of WAKP
by randomly picking up to 50 interested word sequences.
There are 12 different phrases between the two sets of WAKP.
After discussing the differences, both evaluators build a set
of WAKP that contain 26 keywords and phrases, as listed in
Table 4. REST(ful) [32] and SOAP [40] are two mainstream
styles of web APIs [41]. By leveraging WAKP, we design a
method to retrieve relevant SO questions for a web API:

1) We create a set of search phrases by concatenating the
web API name and each element in WAKP. For example,
the set of search phrases created for google maps are
{ ‘google maps api’, ‘google maps service’, ... }. The
elements in WAKP that contain any word in the web
API name are not used to create search phrases in order
to avoid unnatural search phrases. For example, the
elements in WAKP that contain the word ‘web’, e.g., ‘web
api’ and ‘rest webapi’, are not used when creating search
phrases for the web API name asp.net web.

2) We use the Lucene search engine to retrieve the questions
that contain any of the search phrases.

Before using the method above, we further process the
content of each SO question by replacing the two words ‘apis’
and ‘services’ with ‘api’ and ‘service’, respectively. We then
retrieve 299,701 SO questions that involve 3,018 web APIs.
Table 3 shows the web APIs identified from four questions.



6

TABLE 6
The numbers of web APIs extracted from two data sources (i.e., the mashups from PW and SO questions); and the numbers/percentages or

number/percentage ranges of web APIs from PW, APIs.guru, and both registries (denoted as ‘both’) that have been used by developers.

A Specific Number or Number Range of Web APIs
The Set Expression for

Value of the Set Expression
Percentage or

Calculating the Number Percentage Range
or Number Range % (Registries)

# Web APIs from PW that are extracted from mashups |APImas| 1,167 6.2% (PW)
# Web APIs from PW that are extracted from SO questions based on API names | ˆAPI

PW
SO | 5,819 30.8% (PW)

# Web APIs from APIs.guru that are extracted from SO questions based on API names | ˆAPI
APIs.guru
SO | 616 45.7% (APIs.guru)

# Web APIs from both registries that are extracted from SO questions based on API names | ˆAPISO| 6,323 31.5% (both)
# Web APIs from PW that are extracted from SO questions based on API names and WAKP |APIPW

SO | 2,695 14.3% (PW)
# Web APIs from APIs.guru that are extracted from SO questions based on API names and WAKP |APIAPIs.guru

SO | 406 30.1% (APIs.guru)
# Web APIs from both registries that are extracted from SO questions based on API names and WAKP |APISO| 3,018 15.1% (both)
# Web APIs from PW that have been discussed in SO questions [|APIPW

SO |, | ˆAPI
PW
SO |] [2,695, 5,819] [14.3%, 30.8%] (PW)

# Web APIs from APIs.guru that have been discussed in SO questions [|APIAPIs.guru
SO |, | ˆAPI

APIs.guru
SO |] [406, 616] [30.1%, 45.7%] (APIs.guru)

# Web APIs from both registries that have been discussed in SO questions [|APISO|, | ˆAPISO|] [3,018, 6,323] [15.1%, 31.5%] (both)
# Web APIs from PW that have been used by developers [|APIPW

used|, | ˆAPI
PW
used|] [3,306, 6,215] [17.5%, 32.9%] (PW)

# Web APIs from APIs.guru that have been used by developers [|APIAPIs.guru
used |, | ˆAPI

APIs.guru
used |] [406, 616] [30.1%, 45.7%] (APIs.guru)

# Web APIs from both registries that have been used by developers [|APIused|, | ˆAPIused|] [3,629, 6,719] [18.1%, 33.5%] (both)

We observe that although facebook in the question ‘16310966’
is missed, no web API is incorrectly extracted from the
four questions. We evaluate 384 questions that are randomly
sampled from the retrieved questions with a confidence level of
95% and a confidence interval of 5%. The accuracy of retrieval
is 92.4%. That is, only 7.6% are false positives, indicating
that our refined method can accurately retrieve SO questions
related to web APIs. Table 5 lists the top ten web APIs that
have the maximum numbers of raised questions. Only 33,767
questions are raised for google maps. According to the number
of questions tagged with ‘google-maps’ or ‘google-maps-api-
3’ (i.e., 85,042), at least 60.3% of the questions related to
google maps are missed by our question retrieval method.
This result indicates that the recall of our method is poor.
In this work, we ensure the high accuracy of our method
for the following reasons. A large number of questions are
subsequently sampled from the raised questions to identify
web API issue types. A low accuracy would lead to retrieving
many questions irrelevant to web APIs and thus waste a
significant amount of manual effort.

2.1.3 Preliminary Analysis of Web API Usage

Knowing the usage of web APIs can help web API providers
and registry managers optimize the maintenance and man-
agement of their developed and managed web APIs. For web
API providers, it is easy to know the usage of their web APIs
from the monitoring data (e.g., execution logs). In general,
the monitoring data of web APIs is unavailable for others,
including the registry managers. We attempt to understand
the usage of our collected web APIs by leveraging two publicly
available data sources: the SO questions related to the web
APIs and the mashups from PW. We acknowledge that our
results may not reflect all the possible usage of web APIs
as web API users may have no record in both data sources.
For example, users may encounter few issues of a high-quality
web API or report issues in channels other than the two data
sources. Even though our results provide a preliminary study
of the web API usage, we still think the results are useful for
several tasks, e.g., the management of web APIs published at
PW and APIs.guru, as described in Section 5.2.

In Section 2.1.2, we retrieve the SO questions related to
the web APIs. The entire set of web APIs extracted from the
questions are denoted as APISO. The web APIs used by a
mashup from PW are recorded in the field Related APIs shown

in Table 1. We collect the web APIs used by the 6,416 mashups
from PW, which are denoted as APImas.

By integrating the web APIs extracted from the two data
sources, we obtain a set of web APIs from both registries
that have been used as APIused = APISO ∪ APImas. We
further distinguish the web APIs from PW and APIs.guru in
APISO, which are denoted as APIPW

SO and APIAPIs.guru
SO ,

respectively. We then obtain a set of web APIs from PW that
have been used as APIPW

used = APIPW
SO ∪APImas, and obtain

a set of web APIs from APIs.guru that have been used as
APIAPIs.guru

used = APIAPIs.guru
SO .

As explained previously, our method for retrieving SO
questions related to web APIs has a low recall and may over-
look some web APIs, e.g., facebook in the question ‘16310966’
shown in Table 3. Some web APIs discussed in SO questions
may not be included in APISO if all the questions relevant
to a web API are missed. Although the question retrieval
method based on web API names has a low accuracy of
13.5%, it may not miss any web API in SO questions, given
that there is no problem with the API names and their
references in SO questions (except the problems addressed in
Sections 2.1.1 and 2.1.2). Therefore, we use the web APIs that
are collected from the SO questions raised using API names
as a superset of the web APIs discussed in SO questions. We
denote the superset of a set S as Ŝ. By replacing the sets
(except APImas) defined above with the supersets, we obtain
six ranges of the web APIs from PW, APIs.guru, and both
registries that have been discussed in SO questions or used
by developers. For example, the range of web APIs from both
registries that have been used is [APIused, ˆAPIused].

Table 6 presents the numbers of web APIs extracted from
the two data sources, and the number/percentage ranges of
web APIs from PW, APIs.guru, and both registries that have
been used by developers. | S | is the cardinality of set S.
In the ‘Percentage’ column, ‘(PW)’, ‘(APIs.guru)’, or ‘(both)’
behind a percentage value indicates that the percentage is
computed with respect to the number of web APIs from PW,
APIs.guru, or both registries, respectively. From the table, we
have the following findings:

• Among the 18,866 web APIs from PW, 1,167 (i.e., 6.2%)
are extracted from the mashups; 5,819 (i.e., 30.8%) and
2,695 (i.e., 14.3%) are extracted from SO questions using
the question retrieval method based on API names and
our refined method based on API names and WAKP, re-
spectively. Based on the results, 3,306-6,215 (i.e., 17.5%-



7

32.9%) web APIs from PW have been used by developers.
• Among the 1,347 web APIs from APIs.guru, 616 (i.e.,

45.7%) and 406 (i.e., 30.1%) are extracted from SO ques-
tions using the two retrieval methods, respectively. Based
on the results, 406-616 (i.e., 30.1%-45.7%) web APIs from
APIs.guru have been used by developers. The percentages
of the web APIs that have been used from APIs.guru
are higher than those of the web APIs that have been
used from PW, which could be due to three possible
reasons: 1) web APIs driven by the emerging OpenAPI
and GraphQL standards are gaining greater prevalence
in SO; 2) the specifications of web APIs at APIs.guru
can be easily obtained from the GitHub repository, while
those of web APIs at PW need to be explored from the
webpages API Portal / Home Page or Docs Home Page
(Table 1), which hampers the use of web APIs at PW;
and 3) APIs.guru is hosted at GitHub, which is a more
popular platform than PW, and thus the web APIs at
APIs.guru have a higher opportunity to be discovered
and used than those at PW.

• Among the 20,047 web APIs from both registries, 3,629-
6,719 (i.e., 18.1%-33.5%) have been used by developers
based on the analysis of SO questions and the mashups.

According to the results listed in Table 6, 66.5% of the
web APIs from PW and APIs.guru have not been used by
developers. This result may be frustrating for the web API
providers and registry managers. It is necessary to gain some
insights on the factors that impact the use of web APIs, so that
web API providers and registry managers can take actions to
improve web APIs and facilitate the use of web APIs. In the
remaining of the paper, we summarize the issues experienced
by web API users, investigate the features of web APIs that
users often consider when shortlisting a web API for testing
before adopting it, and understand users’ expectations on the
development and management of web APIs.�

�

�

�

For the 20,047 web APIs collected from PW and APIs.guru,
we analyze the usage of the web APIs by leveraging SO ques-
tions and the mashups from PW. We find that 66.5% of the
web APIs might not be used by developers. Only 17.5%-32.9%
of the 18,866 web APIs from PW are used, while 30.1%-
45.7% of the 1,347 web APIs from APIs.guru are used. Our
findings can benefit web API users, registry managers, and
researchers on several tasks such as obtaining a rough view of
the web APIs that have been used and developing better web
API retrieval or recommendation approaches, as described in
Section 5.2.

2.2 Web API Issue Type Identification
In this subsection, we describe the two steps 4 and 5 of
the web API issue type identification phase shown in Fig. 1.

2.2.1 Question Sampling
To figure out the types of web API issues encountered by
users, we manually analyze a set of SO questions related to
web APIs. However, it is not suitable to directly sample 384
questions from the 299,701 questions retrieved using web API
names and WAKP due to two reasons: 1) the sample size may
be insufficient to discover all possible web API issue types;
and 2) the sampled questions may focus on the web APIs that
have a large number of questions but neglect many other web

APIs, as the numbers of questions retrieved for web APIs have
a large variation from 1 to 36,027.

To solve the above problem, we divide the numbers of
questions retrieved for web APIs into five ranges: [1, 10),
[10, 100), [100, 1,000), [1,000, 10,000), and [10,000, ∞)15.
Table 7 lists the number of web APIs in each range. ‘Total’
represents the range of the numbers of questions retrieved
for all web APIs and can be viewed as a specific range, ‘[1,
∞)’. For each range, ‘# Web APIs in the Range’ shows the
number of web APIs that have the numbers of questions
belonging to the range, and ‘# SO Questions in the Range’
shows the total number of questions retrieved for web APIs
in the range. We observe that only seven web APIs have
more than 10,000 questions (Table 5). 2,154 (i.e., 71.4%) of
the 3,018 web APIs have less than ten questions. The sum of
the number of questions in the five ranges is 314,244, which
is larger than the total number of questions retrieved for
all web APIs (i.e., 299,701), since multiple web APIs could
be extracted from a question. As listed in Table 3, two web
APIs, i.e., google custom search and bing, are extracted from
the question ‘12868753’. To better understand the variance
among the numbers of questions retrieved for web APIs, we
calculate five statistics, including mean, standard deviation,
the first quartile, the second quartile (aka. median), and the
third quartile, of the numbers of questions retrieved for the
web APIs in each range. The statistics are listed in Table 7.
From the statistics of ‘Total’, we find that the third quartile
is 13.0, indicating that 75% of the numbers of questions
retrieved for all web APIs concentrate in a small range, [1, 13].
The mean of ‘Total’ (i.e., 114.2) is much higher than the third
quartile (i.e., 13.0), and the standard deviation of ‘Total’ (i.e.,
1234.5) is much higher than the mean. These results indicate
that the last 25% (after the third quartile) of the numbers
of questions retrieved for all web APIs have a large variance.
From the statistics of the other four ranges (except the range
[10,000, ∞) that contains only seven web APIs), the numbers
of questions retrieved for the web APIs in each of the four
ranges have a similar variance to the variance of ‘Total’. That
is, 75% of the numbers concentrate in a relatively small range,
while the last 25% of the numbers have a large variance.

We sample different sets of SO questions from the ques-
tions in each of the five ranges, as listed in Table 7. The sample
sizes are statistically significant with a confidence level of 95%
and a confidence interval of 5%. In total, we sample 1,885 SO
questions that involve 837 web APIs.

2.2.2 Web API Issue Type Identification
We use a card sorting approach [42], [43] to identify web
API issue types16 from the 1,885 sampled SO questions. Two
evaluators (i.e., the first and the fourth authors of the paper)
are involved in the issue type identification. Since we do
not have a set of predefined web API issue types, it is a
cumbersome task to identify web API issue types from 1,885
questions because both evaluators need to manually conduct
two steps: 1) analyzing the issues reported in each question
and annotating each issue with a short description (e.g., a few
keywords) that briefly describes the issue; and 2) extracting

15. We determine the five ranges by requiring that the number of
questions in each range is large enough for sampling.

16. We refer to a web API issue type as a specific type of issue, e.g.,
authentication error, that happened when using web APIs.



8

TABLE 7
Five ranges of the numbers of SO questions retrieved for web APIs using web API names and WAKP (Table 4). ‘Total’ represents the range of
the numbers of questions retrieved for all web APIs, i.e., ‘[1, ∞)’. For each range, ‘# Web APIs in the Range’ presents the number of web APIs
that have the numbers of questions belonging to the range; and ‘# SO Questions in the Range’ presents the number of questions retrieved for all
web APIs in the range. Columns 4-8 present five statistics such as mean and median measured for the numbers of questions retrieved for the web
APIs in each range. The last column presents the sample size calculated for the set of questions retrieved for the web APIs in each range, with a

confidence level of 95% and a confidence interval of 5%.

Range of # Questions
Retrieved for Web APIs

# Web APIs
in the Range

# Questions
in the Range Mean Standard

Deviation
The First
Quartile

The Second
Quartile (Median)

The Third
Quartile Sample Size

[1, 10) 2,154 5,718 2.7 2.1 1.0 2.0 4.0 360
[10, 100) 628 19,729 32.2 23.4 14.0 23.0 43.2 377
[100, 1,000) 189 57,161 316.4 221.0 145.0 242.0 410.0 382
[1,000, 10,000) 40 98,010 2,727.4 2,003.8 1,276.0 1,916.5 3,565.8 383
[10,000, ) 7 133,626 21,381.0 11,657.8 11,327.5 12,225.0 34,203.0 383
Total 3,018 299,701 114.2 1,234.5 1.0 3.0 13.0 1,885

TABLE 8
Issue annotations that are manually assigned by two evaluators (i.e.,

the first and the fourth authors of this paper) to a SO question.

Question

ID 29026067
Title paypal api how do i upload tracking numbers
Tags paypal

Body

i can’t find the answer in the paypal api docs.
i have a paypal transactionid. i have a usps
tracking number. using paypal api (php),
which api call do i use to tell paypal what the
tracking number is for my transaction?

Extracted Web APIs paypal
Issue Annotations no answer in docs; ask for an api callby the First Author
Issue Annotations which api call do i useby the Fourth Author

web API issue types from their issue annotations. To reduce
the workload in manual analysis, both evaluators perform the
task in two rounds. In the first round, they build a set of
web API issue types from the 360 sampled questions in the
range [1, 10) as the questions cover more web APIs than the
questions sampled from any of the other four ranges. More
specifically, there are 320, 257, 177, 93, and 43 web APIs
involved in the questions that are sampled from the ranges [1,
10), [10, 100), [100, 1,000), [1,000, 10,000), and [10,000, ∞),
respectively. These numbers are different from the numbers
of web APIs listed in Table 7, which can be explained by the
fact that a question may involve multiple web APIs, e.g., the
question ‘12868753’ listed in Table 3. In the second round,
they identify web API issue types from the remaining 1,525
questions based on the issue types created in the first round.

The first round consists of the following three steps:
• Initial issue annotation. For each question, the two

evaluators independently identify issues from the ques-
tion and annotate each issue with a short description.
Multiple issue annotations are separated by a semicolon
‘;’. Table 8 shows the issue annotations assigned by both
evaluators to the question ‘29026067’. One evaluator iden-
tifies two issues while the other evaluator identifies only
one issue from the question. The annotations of an issue
from both evaluators have different expressions, e.g., ask
for an api call and which api call do i use.

• Issue type identification. We gather all issue anno-
tations of the 360 questions. One evaluator process the
issue annotations by 1) grouping the issue annotations
that have the same meaning, e.g., ask for an api call
and which api call do i use, and 2) assigning an issue
type to each group, e.g., enquiring about a particular

function is assigned to the group that contains the two
issue annotations mentioned above. The other evaluator
verifies the grouped issue annotations and the assigned
issue types, and provide suggestions for improvement. Af-
ter incorporating the suggestions, both evaluators reach
a consensus on 23 web API issue types.

• Issue annotation replacement. We automatically re-
place the issue annotations of each question with the
corresponding issue types. For example, the issue an-
notations given by the first author listed in Table 8
are separated by ‘;’ and put into two issue annotation
groups with the issue types incomplete documentation
and enquiring about a particular function, respectively.
As a result, we replace the issue annotations with the
two issue types. 72 questions are in disagreement between
the evaluators; and the Fleiss Kappa [44] value is 0.78,
indicating substantial agreement. Both evaluators discuss
the disagreements to reach a common decision.

In the second round, both evaluators independently iden-
tify web API issue types from the remaining 1,525 questions
that are sampled from the other four ranges (except [1, 10)).
They annotate issues with the existing issue types. If there
are new issues (that cannot be covered by the 23 issue types
identified in the first round), they annotate each new issue
with a short description. After the annotation process, we
gather all new issue annotations from the questions. We find
that only 12 questions have new issue annotations. Both
evaluators add one new web API issue type, i.e., authorization
expiration, to the set of issue types identified in the first round.
We then replace the new issue annotations with the new issue
type. After the replacement process, there are 196 questions
with disagreement between the evaluators. The Kappa value
is 0.86, indicating almost perfect agreement and is higher
than that of the first round, since the evaluators already have
some experience to identify issue types from questions. The
evaluators reach a consensus by discussing the disagreements.

It takes approximately 125 hours for the evaluators to
complete the two rounds and identify 24 web API issue types
from the 1,885 sampled questions.

2.3 User Survey
In this subsection, we describe the three steps 6 - 8 of the
user survey phase shown in Fig. 1.

2.3.1 Survey Design
The goals of our user survey include: 1) understanding the
features of web APIs that make them more likely to be used;



9

2) validating the web API issue types identified from SO
questions; and 3) inquiring about users’ expectations on web
APIs. To achieve the goals, we design eight close-ended and
open-ended survey questions, and limited the answer types to
Likert-scale and short free-form text based on the guidelines
specified by Kitchenham et al. [45]. In particular, we capture
the following information from respondents.

Demographics:
• Number of used web APIs: 0 / 1-5 / 6-10 / 11-20 / 20+
• Years of experience using web APIs: 0-1 years / 1-3 years

/ 3-7 years / 7-12 years / 12+ years
• Current country of residence: ________
We collect the demographic information of respondents17

to 1) analyze which countries the respondents are from; 2)
filter the respondents who have not used any web API (if a
respondent chooses ‘0’ as the number of used web APIs, the
survey will be terminated); and 3) group the respondents’
results by the number of used web APIs and the years of
experience using web APIs.

Important features of web APIs:
Given a requirement, users may obtain a set of candidate

web APIs using general web search engines (e.g., Google)
and/or the search engines of web API registries or mar-
ketplaces. Due to the limited time and budget, it is often
impossible for users to find the desired web APIs by testing
every candidate. Users often need to choose some promising
candidates for testing based on the displayed information of
web APIs. We create a survey question to ask respondents
about how often they need to choose some promising web APIs
for testing their functionality, in order to find appropriate ones
from a number of candidates?: Very Often / Often / Neutral
/ Rare / Very Rare.

We create another survey question to ask respondents the
top three important features of web APIs when they decide to
shortlist a web API for testing. To design this question, we
recruit 20 developers who have experience using web APIs
from two large sister IT companies in China: Insigma Global
Service (IGS) and Hengtian18, via email. In the emails, we
introduce the purpose of our study to the developers, i.e.,
inquiring three characteristics of web APIs that they care
the most when shortlisting web APIs for testing after they
browse the public information of no less than 50 web APIs
published at PW, APIs.guru, and RapidAPI19. We also ask
the developers about their years of experience using web APIs.
They have 1-7 years of experience using web APIs, as listed in

17. For the two survey questions that ask for the years of experience
using web APIs and the number of used web APIs, we determine the
ranges based on the surveys conducted in prior studies [46], [47].

18. IGS is an outsourcing company which has more than 500 em-
ployees and mainly does outsourcing projects for Chinese vendors.
Hengtian is also an outsourcing company which has more than 2,000
employees and mainly does outsourcing projects for American and
European corporations.

19. RapidAPI is another popular web API registry. Unlike PW and
APIs.guru that allow researchers to use the web APIs published at
them, RapidAPI has relatively strict terms of services on the use
of the web APIs published at it. Unfortunately, we do not get the
RapidAPI managers’ permission on using the web APIs published at
RapidAPI. However, the public information of web APIs published
at RapidAPI can be freely browsed by people. We ask the recruited
developers to browse the web APIs of RapidAPI, so that they could
know more about the available information of web APIs.

Table 22. After the developers complete the task of browsing
the public information of web APIs, we ask them for the
three most important characteristics of web APIs. The two
evaluators independently analyze the developers’ comments
and extract web API features20 using a card sorting approach.
There are two comments with disagreement. The Fleiss Kappa
value is 0.89, meaning almost perfect agreement. Both evalu-
ators reach a consensus on 11 features after discussing the
disagreements. We list the 11 features as answer options of the
survey question. We also allow respondents to specify other
features. The entire answer options are as follows.
□ Similar functional description to the requirement21

□ Well-organized documentation
□ Well-known API provider
□ Relatively high popularity (e.g., the number of followers

and popularity score)
□ Standard request/response formats (e.g., JSON)
□ Support (e.g., API client wrappers or sample codes) for

familiar programming languages
□ Easy-to-test endpoints
□ Free trial
□ No charge for use
□ Accessible API forum
□ Compatible license22 with the existing projects
□ Other (please specify): ________

Validation of web API issue types:
We create two survey questions to validate the 24 web API

issue types identified from SO questions.
• For each of our identified web API issue types explained

below, please confirm whether you have encountered an
issue of the type when using web APIs.
– (I1) Authorization - error: An authorization error

occurs when creating an API key (or access token) of a
web API or requesting a function with the created API
key (or access token): Yes / No / I don’t know

– ...
• Please list other issues you have encountered:

________
The first survey question asks respondents to confirm

whether they have encountered each of the 24 issue types. For
explanations of the issue types described in the survey ques-
tion (e.g., the authorization error presented above), please
refer to Section 3.2. We provide an ‘I don’t know’ option to
reduce the impact of respondents’ poor understanding of any
issue type. The second survey question is to obtain other web
API issues that are not identified from SO questions.

Expectations:

20. We refer to a web API feature as a characteristic of web APIs,
e.g., well-organized documentation

21. We list this feature as an answer option for the following reason.
Given a query, the web APIs returned by the search engines in web
API registries (e.g., PW) may not all satisfy the user’s requirement
due to two main factors: the existing search engines mainly rely
on keyword matching that often suffers from poor performance;
and the query may not precisely represent the user’s requirement.
Therefore, users often need to examine the functional descriptions of
the returned web APIs to determine if the web APIs could satisfy
their requirements.

22. Similar to the other software applications, web APIs may have
licenses for use, e.g., ‘MIT License’ and ‘Apache License 2.0’.



10

We create an open-ended survey question to collect re-
spondents’ expectations on the development and management
of web APIs: Considering the web API issues that you have en-
countered, what expectations do you have on the development
and management of web APIs? ________

2.3.2 Respondent Recruitment
To conduct our survey, we need to collect a sufficient number
of respondents with diverse backgrounds. Similar to the previ-
ous work [47], [48], [49], we follow a multi-pronged strategy to
recruit respondents from both OSS community and industry.

• For industry professionals. We send the survey to
the industry professionals in our contacts and receive
responses from 21 contacts working in different compa-
nies from China and the United States. We encourage
the respondents to help us distribute the survey to some
of their associates and colleagues in order to recruit
more industry professionals from other countries. As a
result, we are able to reach 72 industry professionals
working in Microsoft, Google, Huawei, Alibaba, Baidu,
IGS, Hengtian, and other companies from five countries.

• For OSS developers. We target developers at GitHub
who have used web APIs. We select ten well-known
web APIs, e.g., google maps and facebook graph, from
the top 20 web APIs that have the maximum numbers
of SO questions retrieved using web API names and
WAKP. We then search 50 relatively popular and active
GitHub projects (that have more than 1,000 stars and
have been updated within one month) related to the
web APIs, e.g., googlemaps/google-maps-services-js23 and
mobolic/facebook-sdk24. We obtain 2,000 developers who
have reported issues to the projects, and send an email to
each of them with links to two versions of the survey (one
link is for the English version and the other link is for the
Chinese version, as described below).

To increase the response rate, we use an anonymous sur-
vey [50]. No identity information is required or gathered from
respondents. Since our survey is oriented to web API users, we
notify in the email that If you have never used any web API,
please ignore the survey.

Before sending the survey to potential respondents, we
conduct a pilot study with five developers to verify the survey
questions from three aspects: 1) length: whether there are any
survey questions that are too lengthy to read or understand;
2) clarity: whether there are any survey questions with un-
clear expressions; and 3) bias: whether there are any survey
questions that may imply the answers that we wish to obtain
from the respondents. We refine the survey based on the de-
velopers’ feedback and ask the developers to verify the refined
survey again, which results in the final version of our survey
in English. The details of the pilot study are described in
Appendix A. As Chinese is one of the most spoken languages
in the world, we translate the survey from English to Chinese
to ensure that respondents from China could understand our
survey well. The first author of the paper translates the survey
from English to Chinese. The fourth author of the paper
then checks the semantic consistency between the English
and Chinese versions of the survey and finds three pieces of

23. https://github.com/googlemaps/google-maps-services-js
24. https://github.com/mobolic/facebook-sdk

inconsistent content related to the descriptions of three web
API issue types, e.g., the function - inconsistent result (IT10)
listed in Table 13. Both authors solve the inconsistencies
together to produce the final version of our survey in Chinese.
We do not verify the Chinese version of the survey using a pilot
study since the content is consistent with the English version
that has been verified. Unlike the other tasks performed by
the two authors, e.g., the identification of web API issue
types from SO questions, we do not measure the inter-rater
agreement score (e.g., the Fleiss Kappa value) between both
authors for the survey translation task. The reason is that the
translation process does not meet the conditions that are used
to measure an inter-rater agreement score. More specifically,
we do not have an initial survey in Chinese for both authors to
independently examine the semantic consistency between the
Chinese and English versions of the survey and then discuss
any disagreements to reach a consensus.

2.3.3 Response Analysis
We receive 191 survey responses from 35 countries, of which
the top three countries are China (with 48.7% responses), the
United States (with 11.0% responses), and Germany (with
4.7% responses). Each survey response contains answers to
at least one of the five survey questions that do not ask for
demographic information. Among the responses, 144 and 47
responses are from the 2,000 GitHub developers and the 72
industry professionals, respectively. We find that 83 emails
sent to the Github developers are rejected. Therefore, the
overall response rate of our user survey is 191/(2,000-83+72)
= 9.6%, which is similar to the online surveys conducted in
previous work [46], [51]. We analyze the responses as follows.

• For the survey question used to investigate the important
features of web APIs, we collect 11 pieces of free-form
feature descriptions specified in the ‘Other’ field. We then
use a card sorting approach [42] to identify features from
the descriptions. Two evaluators (i.e., the first and the
fourth authors of the paper) first independently identify
features from each description. There are two descrip-
tions with disagreement; and the Fleiss Kappa value
is 0.75, indicating substantial agreement. By discussing
the disagreements, both evaluators reach a consensus on
three features in addition to the 11 features listed as
answer options of the survey question. For each of the
14 features, we count the number of respondents who
consider the feature important when shortlisting a web
API for testing. Note that although we only ask for the
top three important features, a number of respondents
specify more than three features.

• For the two survey questions used to validate the 24
web API issue types identified from SO questions, we
collect 28 pieces of free-form issue descriptions from the
second survey question. Similar to the second round of
issue type identification described in Section 2.2.2, both
evaluators independently identify web API issue types
from the descriptions. There are disagreements on four
descriptions; and the Fleiss Kappa value is 0.83, which
means almost perfect agreement. Both evaluators discuss
the disagreements and obtain two additional web API
issue types. For each of the 26 issue types, we count the
number of respondents who have encountered an issue of
the type (i.e., the answer to the issue type in the first



11

TABLE 9
Six respondent groups. The three groups APINumS, APINumM, and

APINumL are divided by the number of web APIs that have been used
by the respondents; and the three groups ExpL, ExpM, and ExpH are

divided by the respondents’ years of experience using web APIs.

Group Set Group # Respondents Percentage
of Respondents

APINumGSet
APINumS 32 17%
APINumM 68 36%
APINumL 91 48%

ExpGSet
ExpL 49 26%
ExpM 106 56%
ExpH 36 19%

survey question is ‘Yes’ or such an issue is specified in the
second survey question).

• For the survey question used for respondents to express
expectations on web APIs, we collect the free-form de-
scriptions given by 114 respondents. Both evaluators use
a card sorting approach again to extract expectations
from the descriptions. They first independently extract
expectations from each description. We observe 18 de-
scriptions with disagreement. The Fleiss Kappa value is
0.83, indicating almost perfect agreement. After resolving
the disagreements, both evaluators summarize 11 cate-
gories of expectations and a set of expectations specific
to each category. We count the number of respondents
who express expectations to each category.

We divide the respondents into six groups based on their
demographic information to examine whether there are differ-
ences among the respondents who have used different numbers
of web APIs or have different years of experience using web
APIs. The six groups are as follows.

• Respondents who have used a small number (i.e., 1-5) of
web APIs (APINumS).

• Respondents who have used a medium number (i.e., 6-20)
of web APIs (APINumM).

• Respondents who have used a large number (≥ 20) of web
APIs (APINumL).

• Respondents who have low experience (≤ 3 years) using
web APIs (ExpL).

• Respondents who have medium experience (i.e., 3-12
years) using web APIs (ExpM).

• Respondents who have high experience (≥ 12 years) using
web APIs (ExpH).

Table 9 lists the numbers and percentages of respondents
in the six groups. The six groups are further grouped as
two group sets: 1) APINumGSet = {APINumS, APINumM,
APINumL} that are divided by the number of used web APIs;
and 2) ExpGSet = {ExpL, ExpM, ExpH} that are divided by
the years of experience using web APIs.

We compute the percentages of respondents in each group
who express the 14 web API features, 26 web API issue types,
and 11 categories of expectations on web APIs. Moreover,
we perform multiple comparisons between any two groups in
APINumGSet or ExpGSet using the multiple test approach
proposed by Konietschke et al. [52], which is implemented as
the function nparcomp() in the R package nparcomp. For a
comparison (e.g., A vs. B), the approach produces a p-value
(p) which indicates whether the differences between the two
groups are statistically significant (if p < 0.05) and a relative
contrast effect (e) which indicates whether the observations

in group A tend to be larger (if e > 0.5) or smaller (if e <
0.5) than those in group B. The p-values and relative contrast
effects are computed with simultaneous confidence intervals
for all comparisons in APINumGSet or ExpGSet.

As described above, our survey respondents are from dif-
ferent countries. Moreover, there are two kinds of respondents,
i.e., OSS developers and industry professionals. According to
the study conducted by Zampetti et al. [53], it is not always
the case that the answers provided by OSS respondents and
industry respondents are comparable. Similarly, the answers
provided by respondents from different countries may not
be comparable. To verify these problems, we conduct two
experiments. First, we perform multiple comparisons between
the respondents from China, the United States, and the other
33 countries, with respect to each of the 14 features, 26 issue
types, and 11 categories of expectations using the function
nparcomp() in nparcomp. Since there are only a few (i.e., 1-
9) respondents from each of the 33 countries except China and
the United States, we view the 33 countries as one group. The
results show only two of the 153 comparisons have significant
differences. Second, we perform comparisons between the OSS
and industry respondents with respect to each of the features,
issue types, and expectation categories using the function
npar.t.test() in nparcomp. Only five of the 51 comparisons
have significant differences. Based on the results from both
experiments, the answers provided by the respondents from
different countries and by the OSS and industry respondents
are comparable in most cases. Therefore, we do not distinguish
the respondents in terms of the two properties in this work.

3 Results
In this section, we present the results of our study to answer
the following three research questions:

• RQ1. What features of web APIs do users often
consider prior to shortlisting web APIs for test-
ing?

• RQ2. What types of web API issues have been
encountered by users?

• RQ3. What expectations do users have for web
API providers to facilitate the use of web APIs?

3.1 RQ1. What features of web APIs do users often
consider prior to shortlisting web APIs for testing?

Motivation. Users may obtain a number of candidate web
APIs for a requirement after searching on the internet. Due
to the limited time and budget, they need to shortlist a
subset of web APIs for testing in order to find appropriate
ones to implement the requirement. We want to find out
whether users often need to shortlist web APIs for testing
and the features of web APIs that users often consider prior
to shortlisting a web API.
Approach. We create two questions in our survey. One
survey question asks respondents how often they need to
shortlist web APIs for testing. The other survey question asks
respondents to express the top three important features of
web APIs when they decide to shortlist a web API for testing.
Results. As shown in Fig. 2, 126 (= 55+71) of the 191
(i.e., 66.0%) respondents often need to shortlist web APIs for



12

TABLE 10
Fourteen features of web APIs expressed by the respondents as important for shortlisting a web API for further testing.

Feature ID Feature # Respondents Percentage of Respondents
F1 Similar functional description to the requirement 118 62%
F2 Well-organized documentation 162 85%
F3 Well-known API provider 64 34%
F4 Relatively high popularity 59 31%
F5 Standard request/response formats 113 59%
F6 Support for familiar programming languages 61 32%
F7 Easy-to-test endpoints 72 38%
F8 Free trial 69 36%
F9 No charge for use 68 36%
F10 Accessible API forum 12 6%
F11 Compatible license 33 17%
F12 Acceptable response time 5 3%
F13 Follows REST/GraphQL specification 3 2%
F14 Uses versioning 2 1%

Very Often Often Neutral Rare Very Rare
Frequency of Web API Testing

0

10

20

30

40

50

60

70

#
 R

es
po

nd
en

ts

55

71

41

21

3

Fig. 2. The numbers of respondents based on the frequencies of short-
listing web APIs for testing.

testing. Table 10 lists 14 important features of web APIs ex-
pressed by the respondents. The ‘Percentage of Respondents’
column presents the percentages of respondents who express
the features. From the table, we have the following findings:

• Similar functional description to the requirement (F1),
well-organized documentation (F2), and standard re-
quest/response formats (F5) are selected by 59%-85%
respondents. If a web API has a functional description
similar to the requirement, it could be probably used to
implement the requirement. A well-organized documen-
tation can help users easily find the functions supported
by a web API and how to invoke the functions. For a
web API with standard request/response formats, the
functions can be easily requested and the results can be
easily processed using a standard method, e.g., a JSON
library in Python.

• Easy-to-test endpoints (F7), free trial (F8), and no charge
for use (F9) are selected by 36%-38% respondents. Before
shortlisting a web API, users are interested in checking
whether the web API endpoints can be easily tested to
see if the results are expected and whether there is no
expense on the trial and use of the web API.

• 31%-34% respondents care about whether a web API
has a well-known provider (F3), relatively high popularity
(F4), and support for familiar programming languages
(F6). F3 and F4 can reflect the quality of a web API
to some extent; and F6 indicates whether a web API can

be used with the user’s familiar programming languages.
• The five features F10-F14 are selected by 1%-17% respon-

dents, meaning that only a few users care about whether
a web API has the five features, e.g., an accessible web
API forum and a REST or GraphQL specification.

Table 11 presents the percentages of respondents in the six
groups (Table 9) who express the 14 features. The percentages
are different among the three groups in APINumGSet or
ExpGSet. For example, the percentages of well-known API
provider (F3) and relatively high popularity (F4) in APINumS
are 44% and 53%, respectively, which are higher than those
in APINumM and APINumL. The percentages of F3 and F4
in ExpL (i.e., 39% and 37%, respectively) are also higher than
those in ExpM and ExpH. The results can be explained by the
following possible reason. The novice users who have used a
small number of web APIs or have low experience using web
APIs may lack knowledge on how to efficiently test the quality
of web APIs through specialized methods, e.g., endpoint
testing. Therefore, novice users are more likely to follow a
common sense that web APIs from a well-known provider
and/or with high popularity generally have high quality.
In terms of accessible API forum (F10), the percentage in
APINumS (resp. ExpL) is higher than those in APINumM
and APINumL (resp. ExpM and ExpH). This result means
that novice users care more about the accessibility of web API
forums, i.e., whether they could contact and get support from
web API providers for encountered issues. We also find that
well-organized documentation (F2) has the highest percent-
ages in all the six groups. This is because documentation is
the main resource describing the functionality of a web API.
A well-organized documentation can help users easily find a
function and how to use the function.

Table 12 presents the results of multiple comparisons
between any two groups in APINumGSet or ExpGSet on each
of the 14 features. Each cell shows the p-value (p) and relative
contrast effect (e) for a comparison on a feature. ‘–’ means
p ≥ 0.05. We find a number of significant differences between
the six group pairs on six features: F2, F4, F8-F10, and F12.
For example, in terms of relatively high popularity (F4), the
differences between the group pair ‘APINumS vs. APINumM’
are significant with p < 0.01 and e = 0.69. This result implies
that the respondents in APINumS tend to care more about the
popularity of a web API than the respondents in APINumM,
which could be explained by the reason mentioned above.



13

TABLE 11
Percentages of the respondents in the six groups (Table 9) who express each of the 14 web API features (Table 10).

Feature ID APINumS APINumM APINumL ExpL ExpM ExpH
F1 62% 60% 63% 71% 60% 53%
F2 94% 97% 73% 88% 85% 81%
F3 44% 28% 34% 39% 34% 25%
F4 53% 16% 34% 37% 31% 22%
F5 69% 51% 62% 65% 54% 67%
F6 31% 25% 37% 35% 29% 36%
F7 22% 38% 43% 39% 35% 44%
F8 25% 54% 26% 55% 28% 33%
F9 44% 32% 35% 57% 30% 22%
F10 16% 4% 4% 12% 6% –
F11 28% 10% 19% 31% 13% 11%
F12 – 6% 1% – 5% –
F13 – – 3% – 3% –
F14 – – 2% – – 6%

TABLE 12
The results of multiple comparisons between any two respondent groups in APINumGSet and ExpGSet (Table 9), with respect to each of the 14
web API features (Table 10). Each cell (p, e) presents the p-value (p) and the relative contrast effect (e) of a pairwise comparison on a feature.

‘–’ means there is no significance (i.e., p ≥ 0.05).

Feature ID APINumS APINumS APINumM ExpL ExpL ExpM
vs. APINumM vs. APINumL vs. APINumL vs. ExpM vs. ExpH vs. ExpH

F1 (–, 0.51) (–, 0.50) (–, 0.49) (–, 0.45) (–, 0.59) (–, 0.54)
F2 (–, 0.48) (<0.01, 0.61) (<0.001, 0.62) (–, 0.49) (–, 0.54) (–, 0.52)
F3 (–, 0.58) (–, 0.55) (–, 0.47) (–, 0.48) (–, 0.57) (–, 0.55)
F4 (<0.01, 0.69) (–, 0.59) (<0.05, 0.41) (–, 0.47) (–, 0.57) (–, 0.55)
F5 (–, 0.59) (–, 0.54) (–, 0.45) (–, 0.44) (–, 0.49) (–, 0.44)
F6 (–, 0.53) (–, 0.47) (–, 0.44) (–, 0.47) (–, 0.49) (–, 0.47)
F7 (–, 0.42) (–, 0.40) (–, 0.48) (–, 0.48) (–, 0.47) (–, 0.45)
F8 (<0.05, 0.35) (–, 0.49) (<0.01, 0.64) (<0.01, 0.37) (–, 0.61) (–, 0.47)
F9 (–, 0.56) (–, 0.54) (–, 0.49) (<0.01, 0.36) (<0.01, 0.68) (–, 0.54)
F10 (–, 0.56) (–, 0.56) (–, 0.50) (–, 0.47) (<0.05, 0.56) (<0.05, 0.53)
F11 (–, 0.59) (–, 0.55) (–, 0.46) (–, 0.41) (–, 0.60) (–, 0.51)
F12 (–, 0.47) (–, 0.49) (–, 0.52) (<0.05, 0.52) (–, 0.50) (<0.05, 0.52)
F13 (–, 0.50) (–, 0.48) (–, 0.48) (–, 0.51) (–, 0.50) (–, 0.51)
F14 (–, 0.50) (–, 0.49) (–, 0.49) (–, 0.50) (–, 0.47) (–, 0.47)

�

�

�

�

Among the 191 survey respondents, 66.0% respondents often
need to shortlist candidate web APIs for testing in order
to find appropriate web APIs to fulfill a requirement. We
summarize 14 features of web APIs (i.e., F1-F14 listed in
Table 10) that are important for the respondents to short-
list a web API for testing. Some features (e.g., standard
request/response formats (F5) and support for familiar pro-
gramming languages (F6)) provide guidance for web API de-
velopers to design better web APIs, such as offering standard
request/response formats and implementing web API client
wrappers for multiple programming languages. Based on the
features, web API developers and managers can also present
the information of web APIs important to users to help users
make informed decisions on whether to test a web API. A
guideline is described in Section 4.2.

3.2 RQ2. What types of web API issues have been en-
countered by users?
Motivation. Having a good understanding of the web API is-
sues experienced by users can help web API providers develop
better web APIs by taking actions to avoid some issues during
the development process. Existing work studies only a few
kinds of web API issues, e.g., documentation reliability [21].
We attempt to build a comprehensive view of web API issues
reported by users.
Approach. We manually identify 24 web API issue types
from 1,885 SO questions. We also conduct a user survey to

validate the issue types by asking respondents to confirm
whether they have encountered issues of each type and express
other issues that cannot be covered by the issue types.
Results. Table 13 presents the final set of 26 web API issue
types identified from SO questions and the survey responses.
We group the issue types into four high-level categories: au-
thorization (IC1), function (IC2), documentation (IC3),
and others (IC4). The two issue types authorization -
implementation problem (IT4) and others - difficult to sign
up (IT26) are identified from other issue descriptions given by
four respondents. For each issue type, we present the number
and percentage of SO questions that discuss an issue of the
type, and the number and percentage of respondents who have
encountered an issue of the type. The value 0% means that the
percentage is less than 0.5%.

3.2.1 Explanations of 26 Web API Issue Types
IC1. Authorization. Web APIs often use an authorization
mechanism (e.g., HTTP Basic Auth [54] and OAuth [55]) to
grant a user access to the functionality. In general, users need
to create an API key or access token using the authorization
mechanism of a web API, and then use the API key or access
token to request the functions. We identify four issue types
related to the authorization of web APIs.
IT1 Error. An authorization error occurs when creating an

API key/access token of a web API or requesting a
function with the created API key/access token. An issue



14

TABLE 13
Twenty-six web API issue types belonging to four categories that are identified from 1,885 SO questions and the survey responses.

Issue Issue Category Issue Issue Type # Questions Percentage of # Respondents Percentage of
Category ID Type ID Questions Respondents

IT1 Error 97 5% 131 69%
IT2 Expiration 12 1% 129 68%
IT3 Enquiring about acquisition 73 4% 91 48%IC1 Authorization
IT4 Implementation problem – – 3 2%
IT5 Request failure with unknown reasons 315 17% 136 71%
IT6 Enquiring about a particular function 445 24% 98 51%
IT7 Change/Deprecation 62 3% 134 70%
IT8 Limitation 52 3% 158 83%
IT9 Lack of programming language support 36 2% 110 58%
IT10 Inconsistent result 95 5% 64 34%
IT11 Instability 27 1% 83 43%
IT12 Unexpected result 69 4% 106 55%
IT13 Unsupported function 31 2% 113 59%
IT14 Unsatisfactory performance 16 1% 99 52%
IT15 Implementation problem 4 0% 94 49%

IC2 Function

IT16 Difficult to process result 80 4% 75 39%
IT17 Missing 4 0% 140 73%
IT18 Incorrect 67 4% 134 70%
IT19 Incomplete 92 5% 149 78%
IT20 Out-of-date 6 0% 141 74%

IC3 Documentation

IT21 Difficult to read/understand 32 2% 143 75%
IT22 Checking for web API usage 164 9% 74 39%
IT23 Enquiring about web API implementation 108 6% 63 33%
IT24 Web API searching 25 1% 92 48%
IT25 Unsuitable charge 4 0% 56 29%

IC4 Others

IT26 Difficult to sign up – – 1 1%

description in the SO question ‘34215664’ is: “i am getting
the below error when i am trying to use the authentication
process with twitter api”.

IT2 Expiration. The authorization (i.e., an API key/access
token) expires after working for a period. An issue de-
scription in the SO question ‘49552348’ is: “i am using
amazon cognito identity services in mobile app. the id
token will expire after 30 minutes of login”.

IT3 Enquiring about acquisition. A user wants to know
how to acquire the authorization, e.g., creating an API
key/access token. An issue description in the SO question
‘38684173’ is: “the problem is that we don’t have the
accesstoken as described in the link. were do i get this
accesstoken from?”.

IT4 Implementation problem. The authorization mecha-
nism of a web API has implementation problems. This
issue type is identified from the other issue descriptions
given by three respondents, e.g., “incorrect authorization
implementation”.

IC2. Function. We identified 12 issue types related to the
functions of web APIs.
IT5 Request failure with unknown reasons. A func-

tional request fails due to unknown reasons, exclud-
ing the failures caused by the other identified issue
types, e.g., authorization - error (IT1) and function
- change/deprecation (IT7). An issue description in the
SO question ‘42730353’ is: “i’m trying to make a dm auto
reply, something like a q&a with the twitter api, but maybe
i’m screwing something and i can’t make it works”.

IT6 Enquiring about a particular function. A user wants
to know whether a particular function is supported or
how to implement a particular function. An issue de-
scription in the SO question ‘32711534’ is: “i’m trying
to use the google analytics core reporting api and have
the following troubles. i know how to fetch that i want the
problem i have is: i want to use a filter only for specific
metrics and not for all of them. is this even possible?”.

IT7 Change/Deprecation. Functions are changed or dep-

recated because of web API updates. An issue description
in the SO question ‘15056383’ is: “i’ve been using a class
based on hernan amiune library for the facebook graph api
to allow website user to write to their friends walls from
my code. with the recent february changes the graph api
method to do this is no longer available”.

IT8 Limitation. A function has a limited functionality, e.g.,
the maximum number of requests per day and the num-
ber of items per request. An issue description in the SO
question ‘31092862’ is: “i want to get all of my youtube
subscriptions using the youtube api. however, google limits
the amount of items that get returned in api calls to 50”.

IT9 Lack of programming language support. There is
lack of support (e.g., a client wrapper or sample code) for
a specific programming language. An issue description in
the SO question ‘8971374’ is: “i am using wikipedia api to
get result as article. for example to get result on india i’m
using action=parse and page=india. can anyone please
tell me how to use this using java”.

IT10 Inconsistent result. The result of a function is in-
consistent (including success or failure) when requesting
the function on different platforms (e.g., web browsers
and devices) or using different methods (e.g., CRUL [56]
and Node.js). An issue description in the SO question
‘18269085’ is: “the standard geolocation code from google
does not work in mobile browsers (android chrome, stan-
dard android browser) but in desktop browser it works
fine... why?”.

IT11 Instability. A function is unstable. For example, a func-
tion works for a period but suddenly fails. An issue
description in the SO question ‘49229881’ is: “i’m using
odoo v11 in windows localhost and i’m still beginner.
recently, i tried to edit posticket and suddenly, the point of
sale module stops loading it keep blank page. i have cleared
cache for browser and restart odoo service, it worked”.

IT12 Unexpected result. The result of a function is unex-
pected, e.g., missing a required field. An issue description
in the SO question ‘35242742’ is: “the current problem is
that the confirmation message, which is sent using twilio



15

sms api, is getting segmented into 2 or more parts. this is
messing up the confirmation link in the sms”.

IT13 Unsupported function. A desired function is not
supported. An issue description in the SO question
‘42085202’ is: “the current kik bot api gives very limited
privileges and does not allow monitoring group messages”.

IT14 Unsatisfactory performance. The performance (e.g.,
response time and availability) of a function is not
satisfactory. An issue description in the SO question
‘42853484’ is: “since 10 march 2017, i am experiencing
the slowness in the luis api”.

IT15 Implementation problem. A function has implemen-
tation problems or bugs. An issue description in the SO
question ‘46475320’ is: “safari 11 youtube api bug. rapid
play pause and failure to autoplay”.

IT16 Difficult to process result. The result of a function
is difficult to process. An issue description in the SO
question ‘36658752’ is: “i’m using a php wrapper api for
ups rating api, not the ups dev kit directly. i am trying to
echo the monetaryvalue of the shipping quote contained in
this array. ... i’m in a little over my head as i’ve never
work with an array of this complexity”.

IC3. Documentation. We identified five issue types related
to the documentation of web APIs.

IT17 Missing. The documentation is not found. An issue
description in the SO question ‘52044218’ is: “I’m using
ms translation speech and build up custom translator
model (customtranslator.ai) however, i cannot find the
document of custom translator api”.

IT18 Incorrect. The documentation contains incorrect con-
tent, e.g., the explanation of a function does not match
the actual result, an example code or an instruction does
not work, etc. An issue description in the SO question
‘37195607’ is: “i’m using the slack web api to post mes-
sages to a channel in go. i’m trying to support multi line
messages in the text field. according to the documentation
simply adding a \n should work but it not working”.

IT19 Incomplete. The documentation may not contain all
user desired or important content, e.g., the explanation
of a functional parameter, an example code for requesting
a function, etc. An issue description in the SO question
‘49106614’ is: “i need information about the campaign type
but i don’t find this field in the api documentation”.

IT20 Out-of-date. The documentation does not match the
latest web API. An issue description in the SO question
‘15244280’ is: “does anyone know where i can find the
latest documention for bings api ... even their own website
has the wrong url in the word docs i have been reading”.

IT21 Difficult to read/understand. The documentation is
difficult to read or understand, which can be caused by
the quality of the documentation or by the mismatch
between the description style of the documentation and
users’ information processing styles. More specifically,
when solving problems, females are more likely to use
comprehensive information processing styles (i.e., gath-
ering fairly complete information before proceeding),
whereas males are more likely to use selective styles (i.e.,
following the first promising information and then back-
tracking in depth-first order) [57]. An issue description
in the SO question ‘26522088’ is: “the documentation is

An issue type is pointed out here: Documentation – Difficult to read/understand.

Two particular functions of the Twitter Streaming API that are enquired by the user. 

Fig. 3. Part of an example SO question that describes two web API issue
types, i.e., IT6 and IT21 shown in Table 13.

pretty vague and i’ve searched long and hard for examples
samples but to no avail”.

IC4. Others. This category contains issue types that do not
belong to the four categories explained above. We identify five
issue types belonging to this category.

IT22 Checking for web API usage. A user wants to know
whether a web API can be used in a technical context
(e.g., some specific libraries or frameworks). An issue
description in the SO question ‘43244489’ is: “can the
paypal adaptive payments api be employed with kinvey
mbaas for a mobile ios application written in swift?”.

IT23 Enquiring about web API implementation. A user
wants to know the implementation of a function. An issue
description in the SO question ‘28205748’ is: “i just want
to ask how does the uber appz track realtime? do they
request to server every 1 second to updates the position
of car so that the car moves?”.

IT24 Web API searching. A user needs to search for a web
API that can achieve a requirement or an alternative web
API. An issue description in the SO question ‘16694506’
is: “is there a way to access dropbox events page using
some api?”.

IT25 Unsuitable charge. Web API charges (i.e., pricing) are
not suitable, e.g., unwanted functions are required to be
paid. An issue description in the SO question ‘12003277’
is: “i have to pay 110$ per year which is a lot giving the
fact that i want to use only 3 fonts. so my question is can’t
i just buy those 3 fonts and embed anyhow i want?”.

IT26 Difficult to sign up. It is difficult to sign up a web
API. This issue type is identified from the other issue
description given by a respondent: “signing up for a
simple api becoming too hard”.

3.2.2 Discussions of the Top Ten Web API Issue Types Re-
ported in SO Questions
As listed in Table 13, the top ten web API issue types identi-
fied from SO questions are {IT6, IT5, IT22, IT23, IT1, IT10,
IT19, IT16, IT3, IT12}. We perform an in-depth analysis of
the possible reasons why users frequently report the top ten
issue types by looking deeper into a number of SO questions
that discuss them.

For the issue type function - enquiring about a particular
function (IT6), two possible reasons that users frequently
report issues of this type are: 1) users may want to implement
various or customized functionality using a web API. It is
difficult for web API providers to consider all possible use



16

Fig. 4. Part of an example SO question that describes a complex array
returned by a web API that is difficult to process.

scenarios of their web APIs and describe the instructions for
many different use scenarios in the documentation; and 2) it
may not be easy for users to fully examine the documentation
(especially when the documentation is not well written or
too lengthy) to find a possible function. Figure 3 shows
part of an example SO question ‘16650361’ that describes
two issue types, i.e., IT6 and documentation - difficult to
read/understand (IT21). Users often resort to the millions of
developers in SO for the desired functions of web APIs, which
may be a good choice to quickly get the answers and avoid
wasting too much time and effort.

For the issue type function - request failure with unknown
reasons (IT5), since the functions of web APIs are requested
via the internet, it is difficult for users to figure out the
causes of issues without having the implementation code of
web APIs. Therefore, users often ask for help by reporting the
encountered issues in SO.

For the issue type others - checking for web API usage
(IT22), two possible reasons that users often report issues of
this type are: 1) it may be difficult for some users (especially
the users unfamiliar with web APIs) to successfully access a
web API; and 2) users may want to figure out whether a web
API can be used in some technical contexts, e.g., using the
web API with some other web APIs, libraries, or frameworks.
An example SO question is given in the explanation of IT22.

For the issue type others - enquiring about web API
implementation (IT23), the main reason that users frequently
enquire about the implementation of web APIs is: when
encountering unexpected errors or results of a web API, e.g.,
IT1 and IT10, users may want to have a better understanding
of the implementation details of the web API in order to
pinpoint the causes of the issues. For example, users tried to
understand how the authorization mechanism or a function is
implemented in a web API.

For the two issue types authorization - error (IT1) and
authorization - enquiring about acquisition (IT3), the possi-
ble reasons that users frequently report issues of the two types
include: 1) the authorization mechanism of a web API is not
implemented using a standard method (e.g., OAuth), which
makes it difficult for users to obtain an API key/access token;
2) the instructions for requesting an API key/access token are
incorrect or not clearly described in the documentation; and
3) it is difficult for users who are unfamiliar with web APIs to
know how to obtain an API key/access token.

For the issue type function - inconsistent result (IT10),
users may request the functions of a web API from different
browsers (e.g., Chrome and Internet Explorer) in different
platforms (e.g., Android and Windows) or using different
languages (e.g., Javacript and Node.js). It is difficult for web
API providers to make sure that the results of a function
are consistent from various browsers running in different
platforms and from various requesting languages.

For the issue type documentation - incomplete (IT19),
three possible reasons that users frequently report issues of
this type are: 1) the documentation of web APIs may not
include all necessary information, e.g., the explanation of a
parameter or an example code for using a function; 2) it
is difficult for web API providers to describe all possible
information interested by various users in the documentation;
and 3) the documentation is not well written or too lengthy,
which makes it difficult for users to find the desired content.

For the issue type function - difficult to process result
(IT16), users often report issues of this type can be due to
two possible reasons: 1) the result of a function does not use
a standard format, e.g., JSON; and 2) the result of a function
is too complex to process. Figure 4 shows part of an example
SO question ‘30680938’. The question shows a complex array
returned by the Facebook SDK 4, which is difficult to process
for many users (as the question has been viewed 70 thousand
times).

For the issue type function - unexpected result (IT12), the
main reason that users often report issues of this type is: for
many web APIs, the result of a function may not be desired
by all potential users. An example SO question is given in the
explanation of IT12.

3.2.3 Summary of Findings
From Table 13, we have the following findings:

• For each of the 24 issue types identified from SO ques-
tions, it is encountered by at least 29% of the survey
respondents. Only two additional issue types, i.e., IT4
and IT26, are expressed by four respondents. The results
mean that the issue types identified from SO questions
have good coverage of the common web API issues. In
the survey question that asks for web API issues outside
the 24 issue types identified from SO questions, two
respondents express comments on the 24 issue types: “this
is a great list. great job on summarizing!” and “those
are the most common”. Therefore, we are confident that
the 26 issue types identified from SO questions and the
survey responses provide a comprehensive list of web API
issues experienced by users.

• For the 24 issue types identified from SO questions, the
percentages of SO questions (i.e., 0%-23%) are notably
different from the percentages of respondents (i.e., 29%-
83%). The top ten issue types with the highest percent-
ages of respondents, i.e., {IT8, IT19, IT21, IT20, IT17,
IT5, IT7, IT18, IT1, IT2}, are different from those with
the highest percentages of SO questions. Only 1% of the
SO questions contain the issue type IT2, while 68% of the
respondents experienced IT2. The differences between
the issue types identified from SO questions and those
expressed by the respondents of the survey could be
explained by two possible reasons: 1) users may report
issues using channels other than SO, e.g., the web API



17

TABLE 14
Ten of the 26 web API issue types (Table 13) that have been reported

in prior studies.

Issue Type ID Prior Studies that Have Reported
Web API Issues of the Issue Type

IT5 [58], [59]
IT7 [20], [26], [29], [60], [61], [62]
IT10 [58], [63], [64]
IT11 [65]
IT12 [58]
IT14 [58], [65]
IT15 [58], [65], [66]
IT18 [21], [64], [67]
IT19 [21], [67]
IT20 [61], [67]

projects at GitHub; and 2) users may not mention every
issue in a SO question as some issues are not critical
or can be solved by themselves. For example, autho-
rization - expiration (IT2) is a frequently encountered
issue type; but in most cases it can be easily solved
by refreshing the expired API key/access token (if the
refresh method is well documented). When posting a SO
question, users may focus on describing more serious is-
sues related to authorization and function while ignoring
documentation issues.

After extensive literature search on the existing work on
web API issues [20], [21], [26], [29], [58], [59], [60], [61], [63],
[64], [65], [66], [67], we find that 16 of the 26 issue types are
reported in this work. Table 14 lists the ten issue types, i.e.,
{ IT5, IT7, IT10, IT11, IT12, IT14, IT15, IT18, IT19, IT20
}, reported in prior studies. For example, Wang et al. [20]
studied the types of web API changes, e.g., add method and
change response format, during the evolution of web APIs.
Li et al. [58] studied the issues of web APIs by leveraging
the discussion forums of commercial cloud platforms, e.g.,
the Amazon outage reports and Netflix technical blogs. They
summarized a taxonomy of 15 types of web API failures and
faults. The taxonomy includes five failure or fault types that
correspond to five issue types reported in this work, i.e., IT5,
IT10, IT12, IT14, and IT15. For example, the failure type
unexpected content corresponds to our issue type function -
unexpected result (IT12).

Table 15 presents the percentages of respondents in the six
groups (Table 9) who experienced each of the 26 issue types.
For 24 issue types (except IT2 and IT26), the percentages of
respondents in APINumS are lower than those in APINumM;
and for 17 issue types (except IT3, IT4, IT10, IT12, IT18,
IT19, IT21, IT22, and IT23), the percentages of respondents
in APINumM are lower than those in APINumL. We observe
similar results among the other three groups. These findings
could be due to the reason that the quality of web APIs is
mainly determined by web API providers during the develop-
ment and maintenance (e.g., update) of web APIs. However,
it is difficult to eliminate all possible issues for several factors.
For example, web API providers may lack experience or have
limited resources (e.g., expense budget) in developing and
maintaining web APIs; and various and complex use scenarios
of web APIs could be performed by users. Therefore, users
may encounter more issues as they have used more web APIs.

Table 16 presents the results of multiple comparisons
between any two groups in APINumGSet or ExpGSet on each
of the 26 issue types. Most of the significant differences are

observed between the five group pairs (except ‘APINumM
vs. APINumL’) on 13 issue types: IT5, IT8, IT9, IT12,
IT14-IT21, and IT25. For example, in terms of function -
request failure with unknown reasons (IT5), the differences
between the two group pairs ‘APINumS vs. APINumM’ and
‘APINumM vs. APINumL’ are significant with p-value < 0.05
and 0.01, respectively. The relative contrast effects for the
two group pairs are 0.34 and 0.33, respectively, which imply
that as the number of used web APIs increases, users tend to
experience more request failures without knowing the reasons.
In addition to the explanations above, a supplementary expla-
nation of this result is that since users generally do not have
the implementation code of web APIs, it is usually difficult for
them to pinpoint the reasons for request failures.�




�

	

Different from the existing studies that focus on particular
web API issues (e.g., web API changes and documentation
reliability), we provide a comprehensive list of 26 web API
issue types (i.e., IT1-IT26 listed in Table 13) by analyzing
1,885 SO questions and 191 survey responses. The issue types
are grouped into four high-level categories: authorization,
function, documentation, and others. 16 of the 26 issue
types (except those listed in Table 14) are reported in our
work, such as authentication - error (IT1) and function -
difficult to process result (IT16).
We find that the top ten issue types reported in SO questions
are notably different from those expressed by the survey
respondents, which can be explained by two possible reasons:
1) users may report issues in channels other than SO; and 2)
users may leave out non-critical issues (e.g., documentation
issues) to focus on more serious authorization or function
issues when posting a question in SO.
The web API issue types can help web API developers under-
stand why the survey respondents express the 11 categories
of expectations on web APIs (Table 17). Based on the issue
types and expectations, web API developers can improve web
APIs by adopting the respondents’ suggestions expressed in
the expectations to reduce web API issues. The guidelines are
described in Section 4.1.

3.3 RQ3. What expectations do users have for web API
providers to facilitate the use of web APIs?

Motivation. As mentioned in Section 3.2, web API providers
can become more aware of developing better web APIs from
our identified web API issue types. For example, from the
two issue types function - change/deprecation (IT7) and
documentation - out-of-date (IT20), web API providers
would be more aware of keeping the documentation in sync
with the updates of web APIs and clearly describe the
changed/deprecated functions. However, it may be difficult to
extract practices from the issue types when web API develop-
ment and management require more in-depth knowledge (e.g.,
design, testing, and standardization) and/or rich experience
using web APIs. We strieve for deriving useful suggestions on
the development and management of web APIs from users.
Approach. In the user survey, we create an open-ended ques-
tion to collect respondents’ expectations on the development
and management of web APIs.
Results. Table 17 presents 11 categories of expectations on
web APIs that are summarized from the survey responses. We



18

TABLE 15
Percentages of the respondents in the six groups (Table 9) who have encountered each of the 26 web API issue types (Table 13).

Issue Type ID APINumS APINumM APINumL ExpL ExpM ExpH
IT1 56% 65% 76% 57% 74% 69%
IT2 69% 56% 76% 59% 70% 72%
IT3 34% 51% 49% 39% 47% 61%
IT4 – 3% 1% – 2% 3%
IT5 44% 75% 78% 45% 78% 86%
IT6 44% 51% 54% 51% 50% 56%
IT7 56% 62% 81% 73% 67% 75%
IT8 66% 78% 92% 67% 87% 92%
IT9 25% 59% 68% 41% 56% 86%
IT10 12% 40% 36% 20% 37% 42%
IT11 22% 41% 53% 29% 44% 61%
IT12 31% 63% 58% 33% 60% 72%
IT13 44% 54% 68% 51% 56% 81%
IT14 9% 49% 69% 27% 55% 78%
IT15 22% 47% 60% 22% 53% 75%
IT16 – 38% 54% 8% 47% 58%
IT17 31% 81% 82% 59% 72% 97%
IT18 31% 82% 75% 51% 70% 97%
IT19 34% 90% 85% 59% 80% 97%
IT20 34% 76% 86% 63% 75% 86%
IT21 44% 81% 81% 59% 80% 81%
IT22 22% 46% 40% 31% 38% 53%
IT23 22% 35% 35% 35% 25% 53%
IT24 31% 46% 56% 53% 44% 53%
IT25 9% 31% 35% 8% 36% 39%
IT26 – – 1% – 1% –

TABLE 16
The results of multiple comparisons between any two respondent groups in APINumGSet and ExpGSet (Table 9), with respect to each of the 26
web API issue types (Table 13). Each cell (p, e) presents the p-value (p) and the relative contrast effect (e) of a pairwise comparison on an issue

type. ‘–’ means there is no significance (i.e., p ≥ 0.05).

Issue Type ID APINumS APINumS APINumM ExpL ExpL ExpM
vs. APINumM vs. APINumL vs. APINumL vs. ExpM vs. ExpH vs. ExpH

IT1 (–, 0.46) (–, 0.40) (–, 0.44) (–, 0.58) (–, 0.44) (–, 0.52)
IT2 (–, 0.56) (–, 0.47) (<0.05, 0.40) (–, 0.55) (–, 0.43) (–, 0.49)
IT3 (–, 0.41) (–, 0.42) (–, 0.51) (–, 0.54) (–, 0.39) (–, 0.43)
IT4 (–, 0.48) (–, 0.49) (–, 0.51) (–, 0.51) (–, 0.49) (–, 0.50)
IT5 (<0.05, 0.34) (<0.01, 0.33) (–, 0.48) (<0.001, 0.67) (<0.001, 0.29) (–, 0.46)
IT6 (–, 0.46) (–, 0.45) (–, 0.49) (–, 0.49) (–, 0.48) (–, 0.47)
IT7 (–, 0.47) (<0.05, 0.38) (<0.05, 0.40) (–, 0.47) (–, 0.49) (–, 0.46)
IT8 (–, 0.44) (<0.05, 0.37) (<0.05, 0.43) (<0.05, 0.60) (<0.05, 0.38) (–, 0.48)
IT9 (<0.01, 0.33) (<0.001, 0.28) (–, 0.45) (–, 0.57) (<0.001, 0.27) (<0.001, 0.35)
IT10 (<0.01, 0.36) (<0.01, 0.38) (–, 0.52) (–, 0.58) (–, 0.39) (–, 0.48)
IT11 (–, 0.40) (<0.01, 0.35) (–, 0.44) (–, 0.58) (<0.01, 0.34) (–, 0.42)
IT12 (<0.01, 0.34) (<0.05, 0.36) (–, 0.53) (<0.01, 0.64) (<0.001, 0.30) (–, 0.44)
IT13 (–, 0.45) (–, 0.38) (–, 0.43) (–, 0.52) (<0.01, 0.35) (<0.01, 0.38)
IT14 (<0.001, 0.30) (<0.001, 0.20) (<0.05, 0.40) (<0.01, 0.64) (<0.001, 0.24) (<0.05, 0.39)
IT15 (<0.05, 0.37) (<0.001, 0.31) (–, 0.43) (<0.001, 0.65) (<0.001, 0.24) (<0.05, 0.39)
IT16 (<0.001, 0.31) (<0.001, 0.23) (–, 0.42) (<0.001, 0.69) (<0.001, 0.25) (–, 0.44)
IT17 (<0.001, 0.25) (<0.001, 0.24) (–, 0.49) (–, 0.56) (<0.001, 0.31) (<0.001, 0.37)
IT18 (<0.001, 0.24) (<0.001, 0.28) (–, 0.54) (–, 0.59) (<0.001, 0.27) (<0.001, 0.36)
IT19 (<0.001, 0.22) (<0.001, 0.25) (–, 0.53) (<0.05, 0.60) (<0.001, 0.31) (<0.01, 0.41)
IT20 (<0.001, 0.29) (<0.001, 0.24) (–, 0.45) (–, 0.56) (<0.05, 0.39) (–, 0.44)
IT21 (<0.01, 0.31) (<0.001, 0.31) (–, 0.50) (<0.05, 0.60) (–, 0.39) (–, 0.50)
IT22 (<0.05, 0.38) (–, 0.41) (–, 0.53) (–, 0.54) (–, 0.39) (–, 0.42)
IT23 (–, 0.43) (–, 0.43) (–, 0.50) (–, 0.45) (–, 0.41) (<0.05, 0.36)
IT24 (–, 0.43) (<0.05, 0.38) (–, 0.45) (–, 0.46) (–, 0.50) (–, 0.46)
IT25 (<0.05, 0.39) (<0.01, 0.37) (–, 0.48) (<0.001, 0.64) (<0.01, 0.35) (–, 0.48)
IT26 (–, 0.50) (–, 0.49) (–, 0.49) (–, 0.51) (–, 0.50) (–, 0.51)

explain each expectation category as follows.

3.3.1 Explanations of 11 Expectation Categories
EC1. Authorization. Users often need to obtain the autho-
rization (e.g., an API key) required by a web API before using
the functions. We summarize two specific expectations on the
authorization of web APIs from the expectation descriptions
specified by ten respondents.

• Standard implementation. The authorization mecha-
nism of web APIs should be implemented using standard
flows. An expectation description is: “use of standard
authentication flows”.

• Automatic request. The authorization should be able
to be requested automatically. An expectation descrip-
tion is: “api key can be requested automatically is nice”.

EC2. Development. This category contains expectations on
the development process of web APIs. We summarize eight
specific expectations specified by 54 respondents.

• Use of standard tools. It should be better to develop
web APIs using standard tools, e.g., Swagger [30] and
OpenREST [68]. An expectation description is: “tools
such as swagger/openrest should be automated as part of
the development process”.

• Stateless and user-centered design. The design of



19

TABLE 17
Eleven categories of the respondents’ expectations on web APIs.

Expectation Expectation Category # Respondents Percentage of
Category ID Respondents

EC1 Authorization 10 5%
EC2 Development 54 28%
EC3 Documentation 63 33%
EC4 Update 12 6%
EC5 SDK/Library 24 13%
EC6 Monitoring 2 1%
EC7 Performance 13 7%
EC8 Issue support 15 8%
EC9 Easy trial 7 4%
EC10 Pricing 5 3%
EC11 Discoverability 1 1%

web APIs should be stateless and user-centered (i.e.,
making web APIs easy to understand and use from the
perspective of users). Two expectation descriptions are:
“api should be designed for the consumers” and “i expect
us devs to look at the products through the eyes of users”.

• Testing. Web APIs should be thoroughly tested dur-
ing the development. Two expectation descriptions are:
“thoroughly test the apis before starting to develop any
internal function” and “i think standardizing something
as simple as unit testing will boost the overall quality of
apis”.

• REST support. Web APIs should support a REST
specification. An expectation description is: “support
rest”.

• Simple, consistent, and explainable results. The re-
sults of functions should be simple and consistent on dif-
ferent platforms and endpoints. Rate limitations should
also be explained in the results. Two expectation descrip-
tions are: “results should be as simple and light as possible”
and “has consistency across all platforms/endpoints”.

• Stable. The functions of web APIs should be stable. An
expectation description is: “api is stable”.

• Failure control. Web APIs should provide a control of
failures. An expectation description is: “expect failure and
develop fail-first systems with retry possibilities”.

• Clear error messages. The error messages of web APIs
should be clear for users to understand. An expectation
description is: “good error messages with pointer urls to
related entities in the returned data”.

EC3. Documentation. This category contains expectations
on the documentation of web APIs. The following specific
expectations are summarized from 63 respondents:

• Unrestricted access. The documentation should be
accessible without restriction. An expectation description
is: “no login required to see documentation”.

• Well-written. The documentation should be well-
written, such that users can easily find the desired func-
tions and know how to use the functions. An expectation
description is: “documentation should be well-written”.

• Complete. The documentation should be complete, i.e.,
including all information that is necessary for users to
understand and use the web API. Two expectation de-
scriptions are: “documentation should be complete” and
“fully documents all side-effects of functions”.

• Consistent with web API implementation. The
documentation should be consistent with the implemen-
tation code of the web API. An expectation description

is: “ensuring documentation is generated from code”.
• Up-to-date. The documentation should be up-to-date.

An expectation description is: “documentation is updated
along with the api”.

• Include code examples. The documentation should
include code examples on how to use the functions. An
expectation description is: “documentation with examples
would be helpful”.

EC4. Update. This category contains expectations on the
update of web APIs. Three specific expectations are summa-
rized from 12 respondents, as described below:

• Update with users’ feedback. Web APIs should be
updated according to users’ feedback. An expectation
description is: “get feedback then update”.

• Avoid breaking changes. Web APIs should avoid
breaking changes, e.g., no change of result formats. Two
expectation descriptions are: “hopefully without breaking
changes” and “the result format must not change (in this
cases we must to adapt our code)”.

• Notify users about changes and deprecations.
Users should be notified about the changes and dep-
recations. Two expectation descriptions are: “be public
about changes” and “notify the users about deprecated
functions”.

EC5. SDK/Library. This category contains expectations on
the SDKs and libraries that are created for facilitating the use
of web APIs. 24 respondents expect standard SDKs and client
libraries of web APIs for major programming languages, e.g.,
Java and Javacript. Example expectation descriptions are:
“sdks for major languages”, “a standard sdk to use the api”,
and “try writing a library for common programming languages
which could easily be imported and used by a developer”.
EC6. Monitoring. Two respondents expect that web APIs
should be monitored in case of functional or non-functional
issues. An expectation description is: “putting enough effort
into monitoring”.
EC7. Performance. This category contains expectations on
the performance of web APIs. 13 respondents expect that
web APIs should be highly available, fast, reliable, and se-
cure. Example expectation descriptions are: “it must be 100%
available”, “to be reliable and quick”, and “i expect to be able to
fully mutate all of my personal data (or the data of my users,
assuming they have granted that authorization)”.
EC8. Issue support. 15 respondents expect instant support
for web API issues. Example expectation descriptions are: “fix
the issues always”, “pm has to take notice of the bottlenecks
and resolve them asap”, and “it’s not viable not to have
any problems, but if they’re resolved rapidly, then it’s a good
experience”.
EC9. Easy trial. Seven respondents expect that web APIs
should provide easy trial for users. Two expectation descrip-
tions are: “providing a sandbox for trying out the api is always
appreciated” and “easy trial and testing”.
EC10. Pricing. Five respondents expect that the pricing of
web APIs should be cheap or reasonable. Two expectation
descriptions are: “cheap prices” and “in production something
that works well at a reasonable price”.



20

TABLE 18
Percentages of the respondents in the six groups (Table 9) who express expectations in each of the 11 categories of user expectations on web

APIs (Table 17).

Expectation Category ID APINumS APINumM APINumL ExpL ExpM ExpH
EC1 – – 11% – 8% 6%
EC2 19% 28% 32% 31% 27% 28%
EC3 34% 32% 33% 24% 37% 33%
EC4 – 3% 11% 12% 1% 14%
EC5 12% 15% 11% 2% 17% 14%
EC6 – 1% 1% – – 6%
EC7 – 9% 8% 4% 7% 11%
EC8 6% 9% 8% 10% 8% 6%
EC9 12% 1% 2% 8% – 8%
EC10 – 1% 4% 4% 3% –
EC11 – – 1% – 1% –

TABLE 19
The results of multiple comparisons between any two respondent groups in APINumGSet and ExpGSet (Table 9), with respect to each of the 11

categories of expectations on web APIs (Table 17). Each cell (p, e) presents the p-value (p) and the relative contrast effect (e) of a pairwise
comparison on an expectation category. ‘–’ means there is no significance (i.e., p ≥ 0.05).

Expectation Category ID APINumS APINumS APINumM ExpL ExpL ExpM
vs. APINumM vs. APINumL vs. APINumL vs. ExpM vs. ExpH vs. ExpH

EC1 (–, 0.50) (<0.01, 0.45) (<0.01, 0.45) (<0.05, 0.54) (–, 0.47) (–, 0.51)
EC2 (–, 0.45) (–, 0.43) (–, 0.48) (–, 0.48) (–, 0.51) (–, 0.50)
EC3 (–, 0.51) (–, 0.51) (–, 0.50) (–, 0.56) (–, 0.46) (–, 0.52)
EC4 (–, 0.48) (<0.01, 0.45) (–, 0.46) (–, 0.44) (–, 0.49) (–, 0.43)
EC5 (–, 0.49) (–, 0.51) (–, 0.52) (<0.01, 0.57) (–, 0.44) (–, 0.52)
EC6 (–, 0.49) (–, 0.49) (–, 0.50) (–, 0.50) (–, 0.47) (–, 0.47)
EC7 (<0.05, 0.46) (<0.05, 0.46) (–, 0.51) (–, 0.51) (–, 0.47) (–, 0.48)
EC8 (–, 0.49) (–, 0.49) (–, 0.51) (–, 0.49) (–, 0.52) (–, 0.51)
EC9 (–, 0.56) (–, 0.55) (–, 0.50) (–, 0.46) (–, 0.50) (–, 0.46)
EC10 (–, 0.49) (–, 0.48) (–, 0.48) (–, 0.49) (–, 0.52) (–, 0.51)
EC11 (–, 0.50) (–, 0.49) (–, 0.49) (–, 0.51) (–, 0.50) (–, 0.51)

EC11. Discoverability. One respondent expects that web
APIs should be able to be discovered by users. The expecta-
tion description is: “there should be discoverability”.

3.3.2 Discussions of the Top Three Expectation Categories
As listed in Table 17, the top three categories of the respon-
dents’ expectations on web APIs are documentation (EC3),
development (EC2), and SDK/library (EC5). The possible
reasons for the categories are explained as follows.

For the category documentation (EC3), the documenta-
tion of a web API is the main resource offered by the web
API provider to help users understand and use the web
API. However, users often experience documentation issues
(Table 13). The respondents express many expectations on the
high-quality documentation, e.g., complete and up-to-date,
which could help users easily find the desired functions and
solutions to the encountered issues.

For the category development (EC2), a possible reason
that the respondents express many expectations of this cat-
egory is: if web API providers could ensure the quality of
their web APIs, users could encounter fewer issues when
using the web APIs. For example, if web APIs could provide
simple, consistent, and explainable results of the functions,
users may not encounter some types of issues, e.g., function
- inconsistent result and function - difficult to process result.

For the category SDK/library (EC5), a possible reason
that the respondents express many expectations belonging
to this category is: SDKs and libraries can help users easily
request the functions of web APIs and avoid many issues by
providing high-level functional interfaces or templates.

3.3.3 Summary of Findings
We find that the 11 categories of expectations cover diverse
aspects of web APIs, e.g., documentation, development, and
pricing, which could be explained by the fact that the respon-
dents experience various issues of web APIs (Table 13).

Table 18 presents the percentages of respondents in the
six groups (Table 9) who express expectations belonging to
each category. There are differences among the six groups in
terms of the percentages. For example, the percentage of the
category easy trial (EC9) is relatively high (i.e., 12%) in the
group APINumS, while those in the other five groups are low
(i.e., ≤ 8%), indicating that users in APINumS more strongly
expect that the functions of a web API can be easily tried out.
This result may be due to a possible reason that users with
a small number of used web APIs may lack confidence about
judging the functionality and performance of web APIs based
on the documentation and some other descriptions. They
prefer trying out the functions of a web API to see whether the
web API can meet their requirements. In terms of the category
SDK/library (EC5), the percentages in ExpM and ExpH are
17% and 14%, respectively, and are much higher than that
in ExpL (i.e., 2%), which could be explained as follows. With
relatively high experience using web APIs, users may realize
that SDKs and libraries can greatly facilitate the requests of
the functions of web APIs, especially when the users need to
work with an unfamiliar programming language. Therefore,
they will more expect that web APIs can provide SDKs
and libraries. Despite the differences, the top two categories
with the highest percentages, i.e., development (EC3) and
documentation (EC2), are the same in the six groups.

Table 19 presents the results of multiple comparisons be-



21

TABLE 20
Correlation between the 26 web API issue types (Table 13) and the 11 categories of user expectations on web APIs (Table 17). Each cell presents

the number of respondents who have encountered the corresponding issue type and express expectations in the corresponding category.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10 EC11
IT1 8 40 41 8 13 2 10 4 7 – 1
IT2 6 38 42 10 12 2 10 9 7 – 1
IT3 6 27 32 4 13 – – 10 2 2 1
IT4 – 3 – – 2 – – – – – –
IT5 8 44 52 8 18 2 11 12 7 1 1
IT6 4 32 49 6 10 – 3 13 6 1 1
IT7 8 47 54 12 12 2 13 15 7 3 1
IT8 10 41 57 10 20 2 13 12 7 5 1
IT9 8 33 44 8 14 2 11 9 7 3 1
IT10 4 13 26 5 6 1 6 4 6 1 1
IT11 6 33 29 6 5 2 8 12 7 2 1
IT12 8 32 44 7 14 2 7 13 7 1 1
IT13 6 41 43 10 7 2 9 15 3 1 1
IT14 8 34 41 9 9 2 13 9 3 3 1
IT15 6 38 37 5 10 2 9 10 3 1 1
IT16 4 25 29 5 7 2 8 10 3 – 1
IT17 6 42 57 12 20 2 11 15 7 3 1
IT18 4 42 53 10 18 2 11 13 7 1 1
IT19 6 48 56 10 20 2 11 15 7 1 1
IT20 8 45 58 12 17 1 10 13 6 3 1
IT21 8 45 63 10 17 1 12 15 6 3 1
IT22 6 16 25 4 12 – 2 4 2 – 1
IT23 4 20 32 8 11 – 2 5 2 – 1
IT24 6 32 38 10 8 1 8 6 3 5 1
IT25 2 22 24 4 6 – 5 2 2 1 1
IT26 – 1 1 – – – – – – – –

tween any two groups in APINumGSet or ExpGSet on each of
the 11 expectation categories. There are significant differences
between the five group pairs (except ‘ExpL vs. ExpH’) on
four categories: EC1, EC4, EC5, and EC7. For example, in
terms of authorization (EC1), the differences between the
two group pairs ‘APINumS vs. APINumL’ and ‘APINumM
vs. APINumL’ are significant with p-value < 0.01; and the
relative contrast effects are 0.45, which implies that users in
APINumL tend to have more expectations on authorization.
A possible reason for this result is that users with a large
number of used web APIs may often encounter authorization
issues and find that it is not easy to obtain the authorization.
Therefore, they more strongly expect that web API developers
implement the authorization using standard flows and enable
automatic request of the authorization.

Table 20 presents the correlation between the 26 web API
issue types (Table 13) and the 11 expectation categories.
Each cell (ITi, ECj) (i = 1-26 and j = 1-11) contains the
number of respondents who have encountered the web API
issue type ‘ITi’ and meanwhile express expectations in the
category ‘ECj’. From the perspective of issue types, the top
two expectation categories with the maximum numbers of re-
spondents, i.e., development (EC2) and documentation (EC3),
are the same for 25 issue types (except IT4). For 18 issue types
(except IT6, IT7, IT11, IT13, IT14, IT16, IT24, and IT26),
the category SDK/library (EC5) is in the top three categories.
This result could be explained by the reason that SDKs and
libraries of web APIs can help users avoid many issues by
providing high-level functional interfaces for requesting the
functions. The category issue support (EC8) has relatively
strong correlation with 18 issue types (i.e., EC8 is in the top
five categories of those issue types), since an issue support is
generally necessary for users to solve encountered issues.

�

�

�

�

After enquiring the survey respondents about their experi-
enced web API issues, we derive the respondents’ expecta-
tions for web API developers and managers related to im-
proving web APIs and facilitating the use of web APIs. A set
of user expectations on web APIs that belong to 11 categories
(i.e., EC1-EC11 listed in Table 17) are summarized by ana-
lyzing the survey responses. For example, the authorization
is expected to be implemented using standard flows; and the
results of functions are expected to be consistent on different
platforms. Following the expectations, web API developers
and managers can improve web APIs and reduce the web
API issues encountered by users. A number of guidelines are
described in Section 4.1.

4 Implications
In this section, we provide implications for web API develop-
ers (or providers) and registry managers based on the results
of our study to improve the practice of web APIs.

4.1 Implications for Web API Developers
1) Offer well-structured, correct, and complete web API doc-
umentation with code examples. We find that well-organized
documentation is the most important feature of web APIs
when the respondents of our survey decide to shortlist a web
API for testing. The web API issue types related to doc-
umentation are frequently encountered by the respondents.
The documentation is also the most required expectation.
Therefore, it is important for web API developers to provide
high-quality documentation for web APIs. Even though good
documentation is a general practice, some web API devel-
opers (especially inexperienced developers) may not have a
very good understanding of the requirements of high-quality
documentation. Based on our findings, we recommend web
API developers to: 1) provide well-structured documentation



22

by clearly describing different content (e.g., authorization,
functions of different topics, and charge of services), so that
users can easily find their needed information in the documen-
tation; 2) check the correctness of the documentation, e.g., the
parameters and results of functions are consistent with the
web API implementation, the instructions are workable, etc.;
3) check the completeness of the documentation, i.e., whether
the documentation contains the explanations of every neces-
sary parameter and result field of functions; and 4) include
code examples for important functions in the documentation.
As expressed by several respondents, the documentation of
the web API GitHub is a good reference.

2) Provide simple, explainable, and consistent results of web
API functions. We find that function - inconsistent result
and function - difficult to process result are two of the top
ten web API issue types reported in SO questions. Some
respondents of our survey express that the results of functions
should be simple, consistent, and explainable. Based on these
findings, we recommend web API developers to: 1) keep the
results of web API functions simple without too complex or
nested data structures, e.g., the counter-example shown in
Fig. 4; 2) make the results of functions explainable, e.g., nam-
ing the result fields using meaningful words and including rate
limitations in the results; and 3) test the functions on different
platforms (e.g., web browsers) using different methods (e.g.,
CURL and Node.js) to avoid inconsistent results.

3) Provide clear error messages and failure control. As listed
in Table 13, users may encounter various issues when invoking
functions of web APIs. The issues of type function - request
failure with unknown reasons are frequently reported in SO
questions and experienced by the survey respondents. As
expressed by some respondents, web API developers should
provide clear error messages and failure control of web APIs.
More specifically, web API developers should clearly describe
the error messages of functions to help users understand
and address the errors, such as the possible causes (e.g.,
authorization expiration or function deprecation), the related
resources in the requests or results, and the possible solutions
(e.g., refreshing the API key or using a new function). For
unexpected errors (e.g., network problems), web API develop-
ers could provide failure control for users, e.g., allowing users
to set a time interval to periodically request a function until
obtain the results.

4) Implement authorization using standard flows and enable
automatic request. We find that authorization - error and
authorization - expiration are two of the top ten web API
issue types that are frequently encountered by the respon-
dents; and authorization errors are often difficult to address
as they are reported in many SO questions. As specified by
some respondents, web API developers should implement the
authorization mechanisms using standard flows (e.g., OAuth)
and allow the authorization (e.g., an API key) to be requested
automatically, which could help reduce authorization issues.

5) Create standard SDKs and libraries for major program-
ming languages. We find that 13% of the respondents expect
that web APIs should provide standard SDKs and libraries
for major programming languages, e.g., Java, Python, and
JavaScript. Web API developers should better create such
SDKs and libraries to facilitate the use of web APIs by users

who prefer different programming languages. For independent
web API developers or small companies with a few developers
who are limited by the technical background (e.g., familiar
programming languages) and budget, they may not be able to
provide support for multiple programming languages. In such
cases, web API developers could publish web APIs at publicly
accessible registries (e.g., PW) and rely on other developers to
create diverse SDKs and libraries for the web APIs.

6) Make the changes and deprecations public and notify users
about them. We find that function - change/deprecation is
one of the top ten web API issue types frequently experienced
by the respondents. When updating web APIs, web API
developers should make the changes and deprecations public
and notify users about them. More importantly, as specified
by some respondents, web API developers should better avoid
breaking changes, e.g., no change of the result formats. A new
version number should also be used to label the updated web
API with significant changes, such that users can easily know
the current state of a web API.

7) Put effort on monitoring. As expected by two respondents,
web API developers should put effort on monitoring their web
APIs after publishing the web APIs. From the monitoring
records (e.g., execution logs), web API developers could design
machine learning algorithms to effectively discover functional
and non-functional issues of the web APIs and address the
issues before users report them.

8) Provide instant issue support. Users may encounter various
issues during the use of web APIs, e.g., those shown in Ta-
ble 13. As expected by 8% of our survey respondents, web API
developers should provide instant issue support that allow
users to report encountered issues and help users solve issues
rapidly. Web API developers should also pay close attention
to the discussions of their web APIs in SO and the registries
where the web APIs are published, in order to proactively
discover and address the issues of web APIs.

9) Allow easy trial. We find that easy-to-test endpoints is an
important feature of web APIs that is cared about by 38%
of the survey respondents when shortlisting a web API for
testing. Seven respondents express expectations on easy trial
of web APIs. According to these findings, web API developers
should provide easy trial for users to test the functions and
endpoints of their web APIs, such that users can quickly check
whether a web API could be used to fulfil a requirement.

10) Charge properly. We find that free trial and no charge for
use are two important features of web APIs that are cared
about by 36% of the survey respondents. Five respondents
expect that the pricing of web APIs should be cheap and
reasonable. It is good to also keep the charges flexible, e.g.,
allowing users to pay only for their needed functions.

4.2 Implications for Web API Registry Managers
11) Collect and present the features of web APIs that are often
considered by users when shortlisting a web API for testing.
We find 14 important features of web APIs (Table 10) when
users decide to shortlist a web API for testing. Web API
registry managers should better collect such features of web
APIs and present them to users. 11 features can be specified
by web API providers, including the functional description,



23

API provider, documentation URL, pricing, support (e.g.,
SDKs and libraries) for major programming languages, re-
quest/response formats, license, forum URL (if exist), speci-
fication types (e.g., REST and GraphQL), and versions. The
other three features, i.e., popularity, easy-to-test endpoints,
and performance, could be collected or provided as follows.
The popularity could be collected by recording the number
of followers and the average score rated by users. A testing
platform could be developed for users to test endpoints of
web APIs. The performance (e.g., response time) could be
monitored by periodly calling the functions of web APIs.

12) Provide a communication channel for users and web API
providers. We find that 83.0% of the web APIs from PW do
not provide a forum for users to communicate with the web
API providers. Although users can report web API issues
by posting questions in Q&A communities such as SO, it
should be better for web API registry managers to provide
a communication channel for users and web API providers to
discuss and solve issues.

5 Discussions
5.1 Can Language Models Help Retrieve More SO Ques-
tions Relevant to Web APIs?
In this work, we propose a method for retrieving SO questions
related to web APIs based on web API names and a set of
web API related keywords/phrases. The method achieves an
accuracy of 92.4%, but suffers from a poor recall. As explained
in Section 2.1.2, the method is suitable for our study. Recently,
some language models, e.g., word2vec [69] and word Inverse
Documentation Frequency (IDF) [70], have demonstrated the
effectiveness of retrieving similar documents for a query [71],
[72], [73]. We further examine whether the language models
could improve the recall of our method by retrieving more SO
questions for web APIs.

We implement a language model based question retrieval
method that combines the word2vec and word IDF models
according to the details described by Huang et al. [72]. To
build the two language models, we collect a dataset of 599,402
SO questions that contain the 299,701 questions retrieved
using our method and another 299,701 questions randomly
selected from the set of more than 13.6 million questions
retrieved using web API names. We process the collected
questions by performing tokenization, stemming, and stop
word removal using the NLTK [74] toolkit. We then train the
word2vec model using the word2vec algorithm (with default
parameter settings) in the Gensim [75] toolkit, and compute
the IDF metrics of all words.

We randomly select 20 SO questions relevant to web APIs
from the 384 questions sampled for evaluating the accuracy of
our method. We retrieve the top 200 similar questions (that
are not included in the 299,701 questions retrieved using our
method) for each selected question using the language model
based method. We then evaluate two different strategies to
select similar questions as follows.

1) We evaluate the top 200 questions with the maximum
similarities from the 4,000 (= 20 × 200) similar questions
retrieved for the 20 questions. We find that the ques-
tions are all retrieved for a question related to web API
linkedin. The result shows that only 70 (i.e., 35%) of the
200 questions are relevant to web APIs.

2) We evaluate the top ten similar questions retrieved for
each of the 20 questions. 141 (i.e., 71.9%) of the 196 ques-
tions (except four duplicate questions) are relevant to
web APIs, which is much better than the first evaluation
result. However, we find that the language model based
method could not achieve good performance for every
input question. Among the 20 selected questions, for the
questions related to some web APIs, e.g., google maps, the
top ten questions are all relevant; while for the questions
related to some other web APIs, e.g., mailchimp, most of
the top ten questions are irrelevant.

Based on the results from both strategies, it is promising
to retrieve more SO questions relevant to web APIs using a
language model based method. However, the two strategies
could collect similar questions irrelevant to web APIs. To use
the language model based method, we need to prepare a num-
ber of questions relevant to web APIs, e.g., the 20 questions
used in the above experiment. The questions relevant to a
web API will be used as the input of the language model based
method to retrieve other questions that may be relevant to the
web API. As described in Section 2.1.2, our method can help
find questions relevant to a considerable number of web APIs.
However, it still requires a great amount of effort to search
for questions relevant to the web APIs that have no question
retrieved using our method. We will further investigate the
application of language models in retrieving SO questions
relevant to web APIs in future work.

5.2 Why Do We Present the Preliminary Analysis Results
of Web API Usage?
In Section 2.1.3, we perform a preliminary analysis of the
usage of 20,047 web APIs from PW and APIs.guru. The
results show that 18.1%-33.5% of the web APIs have been
used. Our results are obtained by analyzing SO questions
that discuss the web APIs and the mashups from PW that
directly invoke the web APIs. The results may not reflect all
the possible usage of web APIs in source code. We present the
results because they could be beneficial for web API users,
registry managers, and researchers on several tasks:

1) Our results help web API users validate the conventional
wisdom that most of the web APIs published on the
internet may not have been used.

2) Our results could help the registry managers of PW and
APIs.guru obtain a rough view of the used web APIs
published at their platforms. Based on the results, the
registry managers could optimize the resource allocation
for the management of web APIs. For example, more
resources could be allocated to popularize and maintain
the web APIs with higher frequencies of use.

3) Our results could help web API researchers develop bet-
ter web API retrieval or recommendation approaches. For
example, web APIs with higher frequencies of use could
be ranked higher in the recommendation list.

4) We understand the usage of web APIs by leveraging the
SO and mashups. Web API researchers could further
investigate the web API usage using other data sources,
e.g., the request code of web APIs in applications. They
could then compare the results with our results to exam-
ine whether there are significant differences between the
two kinds of results.



24

TABLE 21
Classification of our findings.

Findings Unique to Web APIs Not Unique to Web APIs
Web API Features F5-F10, F12, F13 F1-F4, F11, F14
Web API Issue Types IT1-IT5, IT8-IT10, IT22-IT26 IT6, IT7, IT11-IT21
Categories of Expectations on Web APIs EC1, EC5, EC6 EC2-EC4, EC7-EC11
Implications for Web API Developers
and Registry Managers 2)-5), 7), 11) 1), 6), 8)-10), 12)

5.3 Are Our Findings Unique to Web APIs?
We obtain four sets of findings, including 14 web API features,
26 web API issue types, 11 categories of user expectations on
web APIs, and 12 implications for web API developers and
registry managers. It is worth mentioning that some findings
are unique to web APIs, while the other findings are applicable
to both web APIs and non-web APIs. Whether a finding is
unique to web APIs can be judged based on the aspect to
which the finding is related. If a finding relates to an aspect
common to any APIs, e.g., documentation or popularity, then
the finding is applicable to any APIs. If a finding relates to an
aspect specific to web APIs, e.g., endpoint or authorization,
then the finding is unique to web APIs. We divide the findings
into two categories, i.e., unique to web APIs and not unique
to web APIs, as listed in Table 21.

5.4 Threats to Validity
Internal validity relates to the bias and errors in our
manual analysis. In this study, we perform several manual
processes. To retrieve SO questions related to web APIs, we
create 26 web API related keywords/phrases (i.e., WAKP)
from a ranked list of word sequences extracted from the SO
questions that contain five well-known web APIs. We identify
24 web API issue types from 1,885 SO questions. For the
survey design, we summarize 11 features of web APIs from
the comments given by 20 developers. We extract three new
features of web APIs, two new web API issue types, and 11
categories of user expectations on web APIs from the free-form
text descriptions specified by the survey respondents. To avoid
potential subjective bias from a single person, we carefully
perform each of the manual tasks with the first and the
fourth authors of this paper. The authors first independently
build their own results (e.g., WAKP, features, issue types, and
expectations) from the corresponding data sources, and then
discuss the disagreements to reach a common decision.

For the analysis of the usage of web APIs, a threat is
that there are problems with the collected web APIs, e.g.,
some web APIs may not be real web APIs. As described in
Section 2.1.1, we address four kinds of problems. For example,
we filter out the possible non-web APIs with unspecified or
special architectural styles (e.g., ‘Native/Browser’) and filter
out the web APIs that may be created for testing purposes.
The steps contribute to retrieving better SO questions related
to the web APIs. However, there might be other problems
unsolved in this study, which may impact the results.

For the identification of web API issue types from SO
questions, we randomly select a statistical sampling of ques-
tions from each of the five ranges (i.e., within the range from
360 to 383 for each sample) listed in Table 7. According to
the stratified sampling method [76], the number of samples
selected from a range should be proportional to the number

of questions in the range. From this perspective, in our study,
the numbers of questions sampled from the ranges are not
proportional, which may lead to bias in the identified issue
types towards the web APIs with a small number of relevant
questions. Moreover, our work may not provide a complete
list of web API features that are important to users when
they shortlist web APIs for testing. In addition to the 14
features of web APIs listed in Table 10, users may consider
the features of competing web APIs with similar functionality
when shortlisting a web API.

It is also possible that there might be bias and errors
in the survey responses. We make several kinds of effort
to alleviate this threat. First, we include an ‘I don’t know’
option in the survey question that asks respondents to confirm
whether they have encountered each of the web API issue
types identified from SO questions. This option could help
reduce the noise data caused by respondents’ poor under-
standing of some issue types. Second, to avoid dishonest
answers (e.g., saying what we want to hear or saying what
they want us to hear) from respondents, we explicitly state in
the survey invitation email that our survey is anonymous and
no personal information would be disseminated in the paper.
As found by Ong et al. [77], anonymity and confidentiality
can help obtain un-biased answers from survey respondents.
Third, we conduct a pilot study with five developers to verify
the survey questions from three aspects: length, clarity, and
anchoring bias. We refine the survey based on the developers’
feedback. Fourth, following the advice given by Kitchenham
and Pfleeger [45] that proper language medium should be
used for intended survey respondents, we translate our survey
into Chinese to ensure that respondents from China could
understand our survey well. However, there might be two
another threats related to the user survey. When recruiting
industry professionals, we send the survey to our contacts
working in different companies from China and the United
States as the contacts in the two countries respond to us. To
recruit more industry professionals from other countries, we
ask the respondents to help us distribute the survey to their
associates and colleagues. The industry professionals recruited
from our contacts may have the potential for making the
survey results biased. To minimize the potential bias, we only
ask our contacts to help us distribute the survey. We do not
have any other connections with the rest of the participants.
During the answering of the survey, after confirming the 24
web API issue types from SO questions, respondents might be
tired of listing any other issues.
External validity relates to the generalizability of our re-
sults. We identify web API issue types by analyzing a sampled
set of web API related SO questions. Due to the extremely im-
balanced numbers of questions raised for web APIs, we divide
the web APIs into five ranges by the number of questions and



25

then randomly sample a relatively large set of 1,885 questions.
The sampled questions involve 837 web APIs that contain
enough numbers of both frequently used and less frequently
used web APIs. Therefore, the 1,885 questions should be
suitable for identifying web API issue types. Furthermore, we
ask the survey respondents to specify other web API issues
that cannot be covered by the issue types discovered from SO
questions. By using these strategies, the final set of 26 web
API issue types provide a comprehensive view of the issues
that have been encountered by users.

The response rate of our survey is 9.6%, which is similar to
those of the surveys conducted in recent work [46], [51]. This
indicates that our survey does not suffer from a low response
rate, and the survey results should be reliable. Our 191 survey
respondents are from 35 countries. They are working for
different companies (e.g., Microsoft, Google, Alibaba, and
Baidu) or have reported issues to web API projects at GitHub.
Moreover, the respondents have different numbers of used web
APIs and different years of experience using web APIs. The
diversity of respondents can help improve the generalizability
of our findings obtained from the survey responses.
Construct validity relates to the suitability of the data
sources used for the analysis of web API usage and the
translation of the English survey into Chinese. We analyze
the usage of our collected web APIs by leveraging two publicly
accessible data sources: the discussions of web APIs in SO and
the mashups that invoke web APIs from PW. Our results may
not reflect all possible usage of the web APIs. For example,
users may not report their encountered web API issues in the
two data sources and may experience few issues when using
high-quality web APIs.

We adopt two strategies to alleviate the threat that the
translated Chinese survey may be inconsistent with the En-
glish version and may pose any information about the answers
that we wish to obtain from the respondents. Before translat-
ing the survey from English to Chinese, we verify the length,
clarity, and bias of the survey written in English using a pilot
study with five developers. We refine the survey to address
the developers’ feedback. The first and the fourth authors of
the paper then carefully translate the survey from English
to Chinese while keeping the content consistent between the
two versions of the survey (Section 2.3.2). The English survey
verified by the pilot study and the consistency between the
two versions of the survey could help avoid the bias of the
Chinese survey. However, the assessment of the consistency
between the Chinese and English versions of the survey could
be influenced by the personality of the two authors. For
example, one author might have a dominant personality and
have a stronger influence on the decisions. Moreover, the two
authors may potentially have some bias towards our work.

6 Related Work
In this section, we review the related work on web API
studies, empirical studies using SO, and surveys of software
practitioners.

6.1 Web API Studies
In the past two decades, the studies on web APIs mainly
concentrate on proposing approaches to retrieve and recom-
mend web APIs based on user requirements. Most of the

existing service retrieval and recommendation approaches can
be roughly categorized as keyword-based [4], [10], [12], [78],
[79], [80], semantics-based [6], [7], [8], [11], [81], [82], [83],
[84], [85], [86], [87], Quality of Services (QoS)-based [9], [15],
[17], [88], [89], and network-based [13], [14], [18], [19], [23],
[90], according to the descriptive models of web APIs and
requirements and the algorithms for measuring similarities
between web APIs and requirements.

Despite numerous studies on service retrieval and recom-
mendation, there are a number of studies [20], [21], [26], [29],
[58], [59], [60], [61], [63], [64], [65], [66], [67], [91], [92], [93], [94],
[95], [96] conducted to investigate the usage of web APIs or the
issues happened when using web APIs. For example, Wang et
al. [20] summarized 21 change types (e.g., add/change/delete
method and add/change/delete response format) of web API
evolution by comparing the multi-version documentation of
11 web APIs. Venkatesh et al. [91] studied the concerns of
developers when using web APIs. They collected the develop-
ers’ discussions of 32 popular web APIs from API forums and
SO, and then used the Latent Dirichlet Allocation (LDA) [97]
model to mine topics from the discussions. Espinha et al. [26]
investigated the impact of web API evolution on the client
applications that integrate web APIs. By analyzing the com-
mits of ten client projects at GitHub that use four popular
web APIs, e.g., Google Maps and Twitter, they identified
several issues about web API evolution (e.g., instability and
breaking changes) and provided a list of recommendations
for web API providers to ease the evolution task for client
developers. Hosono et al. [21] performed an empirical study
on the reliability of web API documentation by analyzing 67
endpoints of 14 web APIs. They identified four categories of
mismatch between the documentation and endpoints: undoc-
umented/dynamic/unreturned keys and type mismatched. Li
et al. [58] presented an empirical study of cloud API issues
in commercial cloud platforms based on 32 discussion forums.
They built a catalogue of the failures and faults related to
cloud APIs. Zhou et al. [65] analyzed the faults in industrial
microservice systems as well as the debugging practices based
on 22 typical cases. They summarized six fault types, e.g.,
service interaction fault and functional fault. Belkhir et al. [92]
conducted a study on the practices of web APIs used in
Android apps. They analyzed the specifications of Android
REST clients in the literature and built a catalogue of seven
practices (e.g., the use of third-party HTTP client).

Oumaziz et al. [93] performed an empirical study to under-
stand how REST services are used in Android apps based on
15 popular services and 500 popular apps. An online survey
was conducted to identify the best practices for Android
developers. They discovered that Android developers prefer to
use a dedicated service library offered by the service provider
and identified several important features of service libraries,
e.g., complete documentation and vocabulary consistency.
Rodriguez et al. [94] investigated whether the principles and
guidelines of the REST architectural style are well followed
in practice. They analyzed the HTTP calls of REST APIs
from more than 78GB of HTTP traffic collected by Italy’s
biggest mobile internet provider, Telecom Italia. Rapoport
et al. [95] analyzed the web requests made by 20 Android
apps and presented a tool called Stringoid to scan the string
concatenation operations in apps. Neumann et al. [96] ana-
lyzed 26 technical features of 500 REST APIs, e.g., the degree



26

of compliance with REST architectural principles and the
adherence to best practices (e.g., API versioning). Based on
the analysis results and the findings of several technical trends
(e.g., widespread JSON support), they provided guidelines
for designing higher quality services. Cummaudo et al. [64]
studied three popular computer vision services over an 11-
month longitudinal experiment. They found that the services
behave inconsistently over time, and the documentation con-
tains inconsistent descriptions of the techniques.

The aforementioned works mainly focused on analyzing 1)
the usage of web APIs in Android apps or based on HTTP
requests or 2) some specific kinds of web API issues (e.g., API
changes and documentation reliability) by leveraging a num-
ber of web APIs or industrial cases. Although the discussion
topics of web APIs that are mined using LDA by Venkatesh
et al. [91] could reflect several web API issues, the topics (i.e.,
a set of keywords) are difficult to indicate the concrete issues.
There still lacks a study on the usage of the large number of
web APIs available on the internet and a comprehensive view
of the web API issues encountered by users. In this paper, we
analyze the usage of 20,047 web APIs from PW and APIs.guru
by leveraging the SO questions and the mashups from PW.
Moreover, we manually identify 26 web API issue types from
1,885 SO questions and the responses of a user survey. As
evaluated by the survey respondents, our identified issue types
provide a great view of the common issues that happened
when using web APIs.

6.2 Empirical Studies using SO
The huge amount of questions and answers accumulated in
SO covers various aspects of software development. Many
empirical studies [20], [37], [92], [98], [99], [100], [101], [102]
have been performed by leveraging SO data. Wan et al. [37]
analyzed the discussion topics of blockchain by applying a bal-
anced LDA model to the SO questions related to blockchain.
Li et al. [98] conducted an empirical study to determine the
needs of developers and understand the challenges faced by
the developers when performing software development tasks.
Nashehi et al. [99] investigated the factors that make an effec-
tive code example through a qualitative analysis of SO posts.
Wang et al. [100] analyzed the interactions among developers
in SO based on the distributions of questioners and answerers.
Vasilescu et al. [101] evaluated the presence of women in SO
by comparing their levels and duration of engagement to the
male counterparts. In this paper, we analyze the usage of web
APIs by leveraging SO questions. We also identify the issue
types of using web APIs from a sampled set of SO questions.

6.3 Surveys of Software Practitioners
Survey is a methodology that has been widely used by prior
studies to obtain information from software practitioners, e.g.,
work habits [103], motivation [104], search behavior [105], and
perceptions on technologies or tools [46], [47], [48], [51], [106].
Xia et al. [105] summarized 34 search tasks from the search
queries collected from 60 developers. Then, they surveyed 235
software engineers to understand the frequency and difficulty
of the tasks. Wan et al. [51] used a mixed qualitative and
quantitative approach to explore practitioners’ perceptions,
expectations, and adoption challenges of defect prediction

techniques. They collected hypotheses regarding defect pre-
diction from literature and open-ended interviews. Then, a
survey was conducted to investigate the hypotheses from
practitioners. Zou et al. [46] investigated practitioners’ per-
ceptions on the current state of smart contract development
and challenges ahead through interviews and a survey. Bao
et al. [106] conducted a survey to investigate how developers
participate in OSS projects and their opinions on the factors
that affect developers being a long-term contributor.

We conduct a survey to investigate the features of web
APIs that are important for users to decide whether to test a
web API, validate the web API issue types identified from SO
questions, and understand user expectations on web APIs.

7 Conclusion and Future Work
We conduct a large-scale empirical study of 20,047 web APIs
collected from two popular registries, i.e., ProgrammableWeb
(PW) and APIs.guru. We extract the questions from Stack
Overflow (SO) that are relevant to the web APIs using a
heuristic method. Based on the SO questions and the mashups
composed by web APIs from PW, we perform a preliminary
analysis of the usage of web APIs. We then manually identify
24 web API issue types by analyzing 1,885 SO questions.
A user survey is finally conducted to investigate the web
API features that users often consider when shortlisting web
APIs for testing, validate the identified web API issue types,
and understand users’ expectations on the development and
management of web APIs. From the survey responses, we
obtain 14 important features of web APIs, a better under-
standing of web API issue types (including two additional
issue types identified from the responses), and 11 categories
of user expectations on web APIs. According to our findings,
we provide guidelines for web API developers and managers
to improve web APIs and promote the use of web APIs.

In the future, we plan to develop an automated method
to identify web API issue types from SO questions or other
discussions of web APIs. By applying the method to the
entire set of SO questions related to web APIs, we could
perform some in-depth analysis, e.g., the evolution of web
API issue types over time. As discussed in Section 5.1, we will
also investigate the use of language models in retrieving SO
questions relevant to web APIs. Moreover, we will attempt
to further investigate the usage of web APIs by collecting
their request code and exploring the request code in GitHub
projects. We can then examine whether there are differences
between the web API usage results obtained by looking at the
code and the results obtained in this work.

Acknowledgments
We are grateful for the participants in our study who answered
our survey questions and provided insightful comments. This
research/project is supported by the National Natural Sci-
ence Foundation of China (No. 62032025), National Research
Foundation, Singapore, under its Industry Alignment Fund
- Pre-positioning (IAF-PP) Funding Initiative. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore.



27

References
[1] M. Bano, D. Zowghi, N. Ikram, and M. Niazi, “What makes

service oriented requirements engineering challenging? a quali-
tative study,” IET Software, vol. 8, no. 4, pp. 154–160, 2013.

[2] Y. Hu, Q. Peng, and X. Hu, “A time-aware and data sparsity
tolerant approach for web service recommendation,” in 2014
IEEE International Conference on Web Services. IEEE, 2014,
pp. 33–40.

[3] W. Song and H.-A. Jacobsen, “Static and dynamic process
change,” IEEE Transactions on Services Computing, vol. 11,
no. 1, pp. 215–231, 2016.

[4] Q. He, R. Zhou, X. Zhang, Y. Wang, D. Ye, F. Chen, J. C.
Grundy, and Y. Yang, “Keyword search for building service-
based systems,” IEEE Transactions on Software Engineering,
vol. 43, no. 7, pp. 658–674, 2016.

[5] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating
web apis on the world wide web,” in 2010 eighth IEEE European
Conference on Web Services. IEEE, 2010, pp. 107–114.

[6] N. Zhang, J. Wang, K. He, Z. Li, and Y. Huang, “Mining and
clustering service goals for restful service discovery,” Knowledge
and Information Systems, vol. 58, no. 3, pp. 669–700, 2019.

[7] N. Zhang, J. Wang, Y. Ma, K. He, Z. Li, and X. F. Liu, “Web
service discovery based on goal-oriented query expansion,”
Journal of Systems and Software, vol. 142, pp. 73–91, 2018.

[8] Z. Li, K. He, J. Wang, and N. Zhang, “An on-demand services
discovery approach based on topic clustering,” Journal of In-
ternet Technology, vol. 15, no. 4, pp. 543–555, 2014.

[9] Q. He, J. Yan, H. Jin, and Y. Yang, “Quality-aware service
selection for service-based systems based on iterative multi-
attribute combinatorial auction,” IEEE Transactions on Soft-
ware Engineering, vol. 40, no. 2, pp. 192–215, 2014.

[10] S. Meng, W. Dou, X. Zhang, and J. Chen, “Kasr: a keyword-
aware service recommendation method on mapreduce for big
data applications,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 12, pp. 3221–3231, 2014.

[11] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu,
“Category-aware api clustering and distributed recommenda-
tion for automatic mashup creation,” IEEE Transactions on
Services Computing, vol. 8, no. 5, pp. 674–687, 2014.

[12] A. Halevy, E. Nemes, X. Dong, J. Madhavan, and J. Zhang,
“Similarity search for web services,” in Proceedings of the 30th
VLDB Conference, 2004, pp. 372–383.

[13] F. Xie, J. Wang, R. Xiong, N. Zhang, Y. Ma, and K. He, “An
integrated service recommendation approach for service-based
system development,” Expert Systems With Applications, vol.
123, pp. 178–194, 2019.

[14] R. Xiong, J. Wang, N. Zhang, and Y. Ma, “Deep hybrid col-
laborative filtering for web service recommendation,” Expert
Systems with Applications, vol. 110, pp. 191–205, 2018.

[15] J. Liu, M. Tang, Z. Zheng, X. F. Liu, and S. Lyu, “Location-
aware and personalized collaborative filtering for web service
recommendation,” IEEE Transactions on Services Computing,
vol. 9, no. 5, pp. 686–699, 2015.

[16] M. Tang, Y. Jiang, J. Liu, and X. Liu, “Location-aware collabo-
rative filtering for qos-based service recommendation,” in 2012
IEEE 19th International Conference on Web Services (ICWS).
IEEE, 2012, pp. 202–209.

[17] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai,
“Qos prediction for service recommendation with deep feature
learning in edge computing environment,” Mobile Networks and
Applications, pp. 1–11, 2019.

[18] K. Huang, Y. Fan, and W. Tan, “Recommendation in an
evolving service ecosystem based on network prediction,” IEEE
Transactions on Automation Science and Engineering, vol. 11,
no. 3, pp. 906–920, 2014.

[19] T. Liang, L. Chen, J. Wu, H. Dong, and A. Bouguettaya,
“Meta-path based service recommendation in heterogeneous
information networks,” in International Conference on Service-
Oriented Computing. Springer, 2016, pp. 371–386.

[20] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to
restful api evolution?” in International Conference on Service-
Oriented Computing. Springer, 2014, pp. 245–259.

[21] M. Hosono, H. Washizaki, Y. Fukazawa, and K. Honda, “An
empirical study on the reliability of the web api document,”
in 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2018, pp. 715–716.

[22] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understand-
ing mashup development,” IEEE Internet Computing, vol. 12,
no. 5, pp. 44–52, 2008.

[23] B. Bai, Y. Fan, W. Tan, and J. Zhang, “Dltsr: A deep learning
framework for recommendation of long-tail web services,” IEEE
Transactions on Services Computing, 2017.

[24] J. Wang, N. Zhang, C. Zeng, Z. Li, and K. He, “Towards services
discovery based on service goal extraction and recommenda-
tion,” in 2013 IEEE International Conference on Services
Computing. IEEE, 2013, pp. 65–72.

[25] N. Zhang, J. Wang, and Y. Ma, “Mining domain knowledge on
service goals from textual service descriptions,” IEEE Transac-
tions on Services Computing, 2017.

[26] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing
pains: Stories from client developers and their code,” in 2014
Software Evolution Week-IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-
WCRE). IEEE, 2014, pp. 84–93.

[27] U. Zdun, E. Wittern, and P. Leitner, “Emerging trends, chal-
lenges, and experiences in devops and microservice apis,” IEEE
Software, vol. 37, no. 1, pp. 87–91, 2019.

[28] E. Wittern, A. Cha, and J. A. Laredo, “Generating graphql-
wrappers for rest (-like) apis,” in International Conference on
Web Engineering. Springer, 2018, pp. 65–83.

[29] J. Yasmin, Y. Tian, and J. Yang, “A first look at the depreca-
tion of restful apis: An empirical study,” in 2020 IEEE Inter-
national Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 151–161.

[30] Swagger, “What is openapi?” 2020. [Online]. Available:
https://swagger.io/docs/specification/about/

[31] GraphQL, 2020. [Online]. Available: https://graphql.org
[32] REST, 2020. [Online]. Available: https://restfulapi.net
[33] P. A. Ly, C. Pedrinaci, and J. Domingue, “Automated infor-

mation extraction from web apis documentation,” in Interna-
tional Conference on Web Information Systems Engineering.
Springer, 2012, pp. 497–511.

[34] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An ex-
ploratory analysis of mobile development issues using stack
overflow,” in 2013 10th Working Conference on Mining Soft-
ware Repositories (MSR). IEEE, 2013, pp. 93–96.

[35] C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical
Software Engineering, vol. 21, no. 3, pp. 1192–1223, 2016.

[36] T. Menzies, S. Majumder, N. Balaji, K. Brey, and W. Fu, “500+
times faster than deep learning:(a case study exploring faster
methods for text mining stackoverflow),” in 2018 IEEE/ACM
15th International Conference on Mining Software Repositories
(MSR). IEEE, 2018, pp. 554–563.

[37] Z. Wan, X. Xia, and A. E. Hassan, “What is discussed about
blockchain? a case study on the use of balanced lda and the
reference architecture of a domain to capture online discussions
about blockchain platforms across the stack exchange commu-
nities,” IEEE Transactions on Software Engineering, 2019.

[38] L. Azzopardi, Y. Moshfeghi, M. Halvey, R. S. Alkhawaldeh,
K. Balog, E. Di Buccio, D. Ceccarelli, J. M. Fernández-Luna,
C. Hull, J. Mannix et al., “Lucene4ir: Developing information
retrieval evaluation resources using lucene,” in ACM SIGIR
Forum, vol. 50, no. 2. ACM, 2017, pp. 58–75.

[39] F. Peng and D. Schuurmans, “Combining naive bayes and
n-gram language models for text classification,” in European
Conference on Information Retrieval. Springer, 2003, pp. 335–
350.

[40] SOAP, 2020. [Online]. Available: https://en.wikipedia.org/
wiki/SOAP

[41] W. Jiang, D. Lee, and S. Hu, “Large-scale longitudinal analysis
of soap-based and restful web services,” in 2012 IEEE 19th
International Conference on Web Services. IEEE, 2012, pp.
218–225.

[42] D. Spencer, Card sorting: Designing usable categories. Rosen-
feld Media, 2009.

[43] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating in-
tention mining,” IEEE Transactions on Software Engineering,
vol. 46, no. 10, pp. 1098–1119, 2018.

[44] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological Bulletin, vol. 76, no. 5, p. 378, 1971.

https://swagger.io/docs/specification/about/
https://graphql.org
https://restfulapi.net
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/SOAP


28

[45] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion sur-
veys,” in Guide to Advanced Empirical Software Engineering.
Springer, 2008, pp. 63–92.

[46] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng,
Z. Chen, and B. Xu, “Smart contract development: Challenges
and opportunities,” IEEE Transactions on Software Engineer-
ing, 2019.

[47] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine
learning change software development practices?” IEEE Trans-
actions on Software Engineering, 2019.

[48] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How
practitioners perceive automated bug report management tech-
niques,” IEEE Transactions on Software Engineering, vol. 46,
no. 8, pp. 836–862, 2018.

[49] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ ex-
pectations on automated fault localization,” in Proceedings of
the 25th International Symposium on Software Testing and
Analysis, 2016, pp. 165–176.

[50] P. K. Tyagi, “The effects of appeals, anonymity, and feedback
on mail survey response patterns from salespeople,” Journal of
the Academy of Marketing Science, vol. 17, no. 3, pp. 235–241,
1989.

[51] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Per-
ceptions, expectations, and challenges in defect prediction,”
IEEE Transactions on Software Engineering, vol. 46, no. 11,
pp. 1241–1266, 2020.

[52] F. Konietschke, L. A. Hothorn, and E. Brunner, “Rank-based
multiple test procedures and simultaneous confidence inter-
vals,” Electronic Journal of Statistics, vol. 6, pp. 738–759, 2012.

[53] F. Zampetti, G. Fucci, A. Serebrenik, and M. Di Penta, “Self-
admitted technical debt practices: a comparison between indus-
try and open-source,” Empirical Software Engineering, vol. 26,
no. 6, pp. 1–32, 2021.

[54] “Http authentication,” 2020. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Authentication

[55] OAuth, 2020. [Online]. Available: https://oauth.net
[56] CURL, 2020. [Online]. Available: https://curl.haxx.se/docs/

manpage.html
[57] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith,

I. Kwan, A. Peters, and W. Jernigan, “Gendermag: A method
for evaluating software’s gender inclusiveness,” Interacting with
Computers, vol. 28, no. 6, pp. 760–787, 2016.

[58] Z. Li, Q. Lu, L. Zhu, X. Xu, Y. Liu, and W. Zhang, “An
empirical study of cloud api issues,” IEEE Cloud Computing,
vol. 5, no. 2, pp. 58–72, 2018.

[59] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api fragility:
How robust is your mobile application?” in 2015 2nd ACM
International Conference on Mobile Software Engineering and
Systems. IEEE, 2015, pp. 12–21.

[60] ——, “Web api growing pains: Loosely coupled yet strongly
tied,” Journal of Systems and Software, vol. 100, pp. 27–43,
2015.

[61] S. Sohan, C. Anslow, and F. Maurer, “A case study of web api
evolution,” in 2015 IEEE World Congress on Services. IEEE,
2015, pp. 245–252.

[62] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service
api evolution affect clients?” in 2013 IEEE 20th International
Conference on Web Services. IEEE, 2013, pp. 300–307.

[63] A. Mendoza and G. Gu, “Mobile application web api recon-
naissance: Web-to-mobile inconsistencies & vulnerabilities,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 756–769.

[64] A. Cummaudo, R. Vasa, J. Grundy, M. Abdelrazek, and
A. Cain, “Losing confidence in quality: Unspoken evolution of
computer vision services,” in 2019 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE,
2019, pp. 333–342.

[65] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding,
“Fault analysis and debugging of microservice systems: Indus-
trial survey, benchmark system, and empirical study,” IEEE
Transactions on Software Engineering, 2018.

[66] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: State-
ful rest api fuzzing,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp.
748–758.

[67] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating
web apis on the world wide web,” in 2010 eighth ieee european
conference on web services. IEEE, 2010, pp. 107–114.

[68] OpenREST, 2020. [Online]. Available: https://sourceforge.
net/projects/openrest

[69] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in neural information process-
ing systems, 2013, pp. 3111–3119.

[70] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, “In-
terpreting tf-idf term weights as making relevance decisions,”
ACM Transactions on Information Systems (TOIS), vol. 26,
no. 3, pp. 1–37, 2008.

[71] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information
retrieval in software engineering,” in Proceedings of the 38th
international conference on software engineering, 2016, pp.
404–415.

[72] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowl-
edge gap,” in 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2018, pp.
293–304.

[73] N. Zhang, Q. Huang, X. Xia, Y. Zou, D. Lo, and Z. Xing,
“Chatbot4qr: Interactive query refinement for technical ques-
tion retrieval,” IEEE Transactions on Software Engineering,
2020.

[74] S. Bird, E. Klein, and E. Loper, Natural language processing
with Python: analyzing text with the natural language toolkit.
O’Reilly Media, Inc., 2009.

[75] R. Rehurek and P. Sojka, “Software framework for topic mod-
elling with large corpora,” in In Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frameworks. Citeseer,
2010.

[76] S. Baltes and P. Ralph, “Sampling in software engineering
research: A critical review and guidelines,” arXiv preprint
arXiv:2002.07764, 2020.

[77] A. D. Ong and D. J. Weiss, “The impact of anonymity on
responses to sensitive questions 1,” Journal of Applied Social
Psychology, vol. 30, no. 8, pp. 1691–1708, 2000.

[78] P. Plebani and B. Pernici, “Urbe: Web service retrieval based on
similarity evaluation,” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no. 11, pp. 1629–1642, 2009.

[79] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu, “Measuring similar-
ity of web services based on wsdl,” in 2010 IEEE International
Conference on Web Services. IEEE, 2010, pp. 155–162.

[80] F. Thung, R. J. Oentaryo, D. Lo, and Y. Tian, “Webapirec:
Recommending web apis to software projects via personalized
ranking,” IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, vol. 1, no. 3, pp. 145–156, 2017.

[81] J. M. García, D. Ruiz, and A. Ruiz-Cortés, “Improving se-
mantic web services discovery using sparql-based repository
filtering,” Journal of Web Semantics, vol. 17, pp. 12–24, 2012.

[82] M. Klusch, B. Fries, and K. Sycara, “Owls-mx: A hybrid seman-
tic web service matchmaker for owl-s services,” Journal of Web
Semantics, vol. 7, no. 2, pp. 121–133, 2009.

[83] D. Roman, J. Kopeckỳ, T. Vitvar, J. Domingue, and D. Fensel,
“Wsmo-lite and hrests: Lightweight semantic annotations for
web services and restful apis,” Journal of Web Semantics,
vol. 31, pp. 39–58, 2015.

[84] S. Subbulakshmi, K. Ramar, A. Shaji, and P. Prakash, “Web
service recommendation based on semantic analysis of web ser-
vice specification and enhanced collaborative filtering,” in The
International Symposium on Intelligent Systems Technologies
and Applications. Springer, 2017, pp. 54–65.

[85] A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam,
“Semantics-based automated service discovery,” IEEE Trans-
actions on Services Computing, vol. 5, no. 2, pp. 260–275, 2011.

[86] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes,
“An integrated semantic web service discovery and composition
framework,” IEEE Transactions on Services Computing, vol. 9,
no. 4, pp. 537–550, 2015.

[87] F. Chen, C. Lu, H. Wu, and M. Li, “A semantic similarity
measure integrating multiple conceptual relationships for web
service discovery,” Expert Systems with Applications, vol. 67,
pp. 19–31, 2017.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://oauth.net
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://sourceforge.net/projects/openrest
https://sourceforge.net/projects/openrest


29

[88] Y. Xu, J. Yin, S. Deng, N. N. Xiong, and J. Huang, “Context-
aware qos prediction for web service recommendation and se-
lection,” Expert Systems with Applications, vol. 53, pp. 75–86,
2016.

[89] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web
service qos prediction via neighborhood integrated matrix fac-
torization,” IEEE Transactions on Services Computing, vol. 6,
no. 3, pp. 289–299, 2012.

[90] W. Xu, J. Cao, L. Hu, J. Wang, and M. Li, “A social-aware
service recommendation approach for mashup creation,” in
2013 IEEE 20th International Conference on Web Services.
IEEE, 2013, pp. 107–114.

[91] P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan,
“What do client developers concern when using web apis? an
empirical study on developer forums and stack overflow,” in
2016 IEEE International Conference on Web Services (ICWS).
IEEE, 2016, pp. 131–138.

[92] A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y.-G.
Guéhéneuc, and É. Beaudry, “An observational study on the
state of rest api uses in android mobile applications,” in 2019
IEEE/ACM 6th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, 2019, pp.
66–75.

[93] M. A. Oumaziz, A. Belkhir, T. Vacher, E. Beaudry, X. Blanc,
J.-R. Falleri, and N. Moha, “Empirical study on rest apis usage
in android mobile applications,” in International Conference on
Service-Oriented Computing. Springer, 2017, pp. 614–622.

[94] C. Rodríguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco,
L. Canali, and G. Percannella, “Rest apis: a large-scale analysis
of compliance with principles and best practices,” in Interna-
tional conference on web engineering. Springer, 2016, pp. 21–
39.

[95] M. Rapoport, P. Suter, E. Wittern, O. Lhótak, and J. Dolby,
“Who you gonna call? analyzing web requests in android appli-
cations,” in 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 2017, pp. 80–
90.

[96] A. Neumann, N. Laranjeiro, and J. Bernardino, “An analysis of

public rest web service apis,” IEEE Transactions on Services
Computing, 2018.

[97] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, no.
Jan, pp. 993–1022, 2003.

[98] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers
seek, when and how?” in 2013 20th Working Conference on
Reverse Engineering (WCRE). IEEE, 2013, pp. 142–151.

[99] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes
a good code example?: A study of programming q&amp;a in
stackoverflow,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2012, pp. 25–34.

[100] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in stackoverflow,” in Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, 2013, pp. 1019–
1024.

[101] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, rep-
resentation and online participation: A quantitative study of
stackoverflow,” in 2012 International Conference on Social
Informatics. IEEE, 2012, pp. 332–338.

[102] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Archi-
tectural knowledge for technology decisions in developer com-
munities: An exploratory study with stackoverflow,” in 2016
13th Working IEEE/IFIP Conference on Software Architecture
(WICSA). IEEE, 2016, pp. 128–133.

[103] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of
the 28th International Conference on Software Engineering
(ICSE), 2006, pp. 492–501.

[104] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of soft-
ware developers in open source projects: an internet-based
survey of contributors to the linux kernel,” Research Policy,
vol. 32, no. 7, pp. 1159–1177, 2003.

[105] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and
Z. Xing, “What do developers search for on the web?” Empirical
Software Engineering, vol. 22, no. 6, pp. 3149–3185, 2017.

[106] L. Bao, X. Xia, D. Lo, and G. C. Murphy, “A large scale study
of long-time contributor prediction for github projects,” IEEE
Transactions on Software Engineering, 2019.



30

TABLE 22
Profiles of the 20 developers involved in our user survey design and the
five developers recruited for our pilot study. The seven developers with

‘–’ in the last two columns are not available for the pilot study.

Developer
Id

# Years of Experience
Using Web APIs

Proficiency
in English

Recruited for
Pilot Study

D1 1 Poor No
D2 2 Mediocre No
D3 2 – –
D4 2.5 Good No
D5 2.5 Mediocre No
D6 3 – –
D7 3 Mediocre No
D8 3 Mediocre No
D9 3 – –
D10 3 Good No
D11 3.5 Good Yes
D12 4 – –
D13 4.5 – –
D14 4.5 Mediocre No
D15 5 Good Yes
D16 5 Good Yes
D17 5.5 – –
D18 6 Good Yes
D19 6.5 – –
D20 7 Very Good Yes

Appendix
A. Pilot Study for Verifying the User Survey
In this appendix, we describe the detailed steps of the pilot
study conducted to verify the design of our user survey.

Step 1: Developer recruitment. The first step of the
pilot study is to recruit several developers who have experi-
ence in using web APIs and are proficient in English, such that
the developers can understand and verify the survey questions
about web APIs in English. As described in Section 2.3.1, we
ask 20 developers with 1-7 years of experience using web APIs
(Table 22) for the top three most important features of web
APIs when shortlisting a web API for testing. The developers
are recruited from two IT companies: IGS and Hengtian. We
contacted the 20 developers again via email. In the emails, we
introduce our user survey and the purpose of our pilot study
and ask for the following information:

• Availability to participate in the pilot study? Yes / No

• Proficiency in English: Very Good / Good / Mediocre /
Poor / Very Poor

We receive responses from the 20 developers, and 13 devel-
opers are available to participate in the pilot study. From the
13 developers, we select five developers with more than three
years of experience using web APIs and very good or good
proficiency in English. The profiles of the five developers are
listed in Table 22.

Step 2: Survey verification. We send our initial survey
in English to the five developers by email and ask them to
verify the survey questions from three aspects: 1) length:
are there any survey questions that are too lengthy to read
or understand? 2) clarity: are there any survey questions
with unclear expressions? and 3) bias: are there any survey
questions that may imply the expected answers that we wish
to obtain from the respondents? We give the developers one
week to check the survey and encourage them to comment on
the three aspects.

One week later, we received the developers’ feedback. They
report that there is no problem with the length of the survey
questions, and the survey questions have no bias. However,
the developers provide comments on the clarity of four survey
questions (except the three survey questions relevant to the
demographics and the survey question that asks for other
web API issues outside the 24 issue types identified from
SO questions). For example, Table 23 presents an ambiguous
survey question that asks for the top three important features
of web APIs and the comments given by the developers.

Step 3: Survey refinement. We refine the ambiguous
descriptions of the survey questions according to the devel-
opers’ feedback. The last column of Table 23 presents the
refined survey question that clarifies the ambiguous question
presented in the first column.

Step 4: Refined survey verification. We send the
refined survey to the five developers and ask them to verify the
survey again. The developers report that the refined survey
has no more problems.

After completing the steps of the pilot study, we obtain
the final version of our survey in English.

TABLE 23
Example of an ambiguous survey question, the comments given by the five developers of the pilot study, and the refined survey question.

Ambiguous Survey Question Comments Given by the Developers Refined Survey Question
When you need to choose some candidate web APIs
for testing, what are the top 3 most important
features (i.e., characteristics) of a web API
that make you decide to test it?
□ It has a functional summary similar to your requirements
□ It has a well-known web API provider (e.g., Google)
□ It has a relatively high popularity (e.g., #followers
and popularity score)
□ It has a well-organized documentation
□ It has easy-to-test endpoints
□ It has a free trial
□ It has no charge for use
□ It has a support (e.g., a web API client wrapper or
sample code) for your familiar programming languages
□ It follows standard request/response formats (e.g., JSON)
□ It has a compatible license with your existing projects
□ It has a web API forum alive
Other: ________

D11: ‘It has a’ is unnecessary and ‘#’ is unclear.
D15: The expressions of web API features can be simplified,
e.g., ‘It has a free trial’ -> ‘free trail’.
D16: No guidance for the last input field ‘Other:’
D18: The symbol ‘#’ may not be understood by every person.
What do you mean about an ‘alive’ forum?
D20: remove ‘it has a’ and ‘your’ in the features;
replace ‘other:’ by ‘other (please specify):’

When you need to choose some candidate web APIs
for testing, what are the top 3 most important
features (i.e., characteristics) of a web API
that make you decide to test it?
□ Similar functional description to the requirement
□ Well-known API provider (e.g., Google)
□ Relatively high popularity (e.g., the number of followers
and popularity score)
□ Well-organized documentation
□ Easy-to-test endpoints
□ Free trial
□ No charge for use
□ Support (e.g., API client wrappers or sample codes) for
familiar programming languages
□ Standard request/response formats (e.g., JSON)
□ Compatible license with the existing projects
□ Accessible API forum
Other (please specify): ________


	Web APIs: Features, issues, and expectations: A large-scale empirical study of web APIs from two publicly accessible registries using Stack Overflow and a user survey
	Citation
	Author

	Introduction
	Overview of Our Approach
	Data Collection and Analysis
	Web API Collection
	Web API Related Question Extraction
	Preliminary Analysis of Web API Usage

	Web API Issue Type Identification
	Question Sampling
	Web API Issue Type Identification

	User Survey
	Survey Design
	Respondent Recruitment
	Response Analysis


	Results
	RQ1. What features of web APIs do users often consider prior to shortlisting web APIs for testing?
	RQ2. What types of web API issues have been encountered by users?
	Explanations of 26 Web API Issue Types
	Discussions of the Top Ten Web API Issue Types Reported in SO Questions
	Summary of Findings

	RQ3. What expectations do users have for web API providers to facilitate the use of web APIs?
	Explanations of 11 Expectation Categories
	Discussions of the Top Three Expectation Categories
	Summary of Findings


	Implications
	Implications for Web API Developers
	Implications for Web API Registry Managers

	Discussions
	Can Language Models Help Retrieve More SO Questions Relevant to Web APIs?
	Why Do We Present the Preliminary Analysis Results of Web API Usage?
	Are Our Findings Unique to Web APIs?
	Threats to Validity

	Related Work
	Web API Studies
	Empirical Studies using SO
	Surveys of Software Practitioners

	Conclusion and Future Work
	References
	Appendix: A. Pilot Study for Verifying the User Survey

