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Abstract. Energy costs represent a significant share of the total cost of ownership in high- performance computing (HPC) 

systems. Using a unique data set collected by massive sensor net-works in a petascale national supercomputing center, we 

first present an explanatory model to identify key factors that affect energy consumption in supercomputing. Our analytic 

results show that, not only does computing node utilization significantly affect energy consumption, workload distribution 

among the nodes also has significant effects and could effectively be lever-aged to improve energy efficiency. Next, we 

establish the high model performance using in-sample and out-of-sample analyses. We then develop prescriptive models for 

energy-optimal runtime workload management and extend the models to consider energy consumption and job 

performance tradeoffs. Specifically, we present four dynamic resource management methodologies (packing, load 

balancing, threshold-based switching, and energy optimization), model their application at two levels (purely within-rack 

and jointly cross-rack resource allocation), and explore runtime resource redistribution policies for jobs under the emergent 

principle of computational steering and comparatively evaluate strategies that use computational steering with those that do 

not. Our experimental studies show that packing is preferred when the total workload of a rack is higher than a threshold 

and load balancing is preferred when it is lower. These results lead to a threshold strategy that yields near-optimal energy 

efficiency under all workload conditions. We further calibrate the energy-optimal resource allocations over the full range of 

workloads and present a bicriteria evaluation to consider energy consumption and job performance tradeoffs. We 

demonstrate significant energy savings of our proposed strategies under various workload conditions. We conclude with 

implementation guidelines and policy insights into energy- efficient computing resource management in large 

supercomputing data centers. 

Keywords: high-performance computing, data center, energy-efficient operation, data analytics, autoregressive model, 

dynamic panel data, optimization 
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1. Introduction 

High-performance computing (HPC) involves a network of supercomputing nodes that are primarily intended for 

solving computational problems that are either too large or too complex for traditional computing platforms. Some of 

the widely used HPC applications include parallel com-puting for scientific research and solving data-intensive 

industrial problems. A recent report from Markets and Markets expects the global HPC market to grow from USD 

32.11 billion in 2017 to USD 44.98 billion by 2022.1This growth rate also indicates a concomitant increase in the 

energy consumption by data centers worldwide. To illustrate, there were approximately 7.2 million data centers 

worldwide in 2021.2Data centers currently con-sume about 2% of the total global electricity, which is expected to 

reach 8% by 2030 (Drozdiak 2020). The global data center industry has been one of the fastest-growing energy-

consuming sectors of the economy and a significant source of carbon emissions (World Economic Forum 2020). The 

rise in energy costs and the urgent need to reduce the carbon footprint together create an imperative for new 

approaches to achieve energy efficiency in data centers.In both traditional and HPC data centers, information 

technology (IT) devices are the major energy consumers (Shuja et al. 2012). About 80% of electricity use 
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in a data center is attributable to servers, among which 
40%–50% comes from the energy needed to extract heat 
from and cool its racks of servers (Info-Tech Research 
Group 2007, Emerson Network Power 2009). Notably, 
server load is a key factor in energy consumption. Com
pared with traditional data center architectures, an HPC 
data center requires denser banks of computing nodes to 
minimize communication latency and increase capacity. 
A typical HPC data center hosts a series of server racks 
where each rack commonly hosts a large number of 
physical servers. These closely located servers not only 
consume large amounts of electrical power by them
selves but also inevitably generate significant amounts of 
heat that require advanced rack-wide cooling systems 
(Chetsa et al. 2014). These observations together suggest 
that as much as server load is a major contributor to 
energy costs, load distribution among the servers could be 
another significant factor in heat dissipation and total 
energy consumption. The principal motivation of this 
research is therefore to investigate the impact of load 
and distribution factors on the overall energy consump
tion in HPC data centers and develop energy-efficient 
workload management strategies.

The system architecture and the service framework 
of an HPC data center are different from those of other 
computing contexts. In the HPC context, each server 
has a fixed number of cores, where a core can be viewed 
as an independent hardware computational unit that is 
fully self-contained with its own memory and inter
faces. In the cloud and cluster computing contexts, a 
virtual machine (VM) is a fully software-defined ana
logue of a core. Although VMs can be created and ter
minated as needed in a traditional physical server, the 
number of cores available in an HPC server is fixed, 
and a core in itself could host several VMs for an ap
plication. Despite the structural differences, resource 
allocation problems in these data centers are conceptu
ally similar. An HPC application would request a fixed 
number of cores rather than VMs for its execution. The 
job scheduling software allocates cores across a set of 
HPC servers to requesting applications based on some 
nontransparent algorithms. In this study, we develop 
energy-efficient core allocation strategies to support green 
data center operations. We focus on the following re
search questions. (i) What are the key workload-related 
factors that significantly affect an HPC data center’s over
all energy consumption? (ii) How does one estimate with 
reliability and validity the overall energy use from these 
factors? (iii) How does one use these estimates to opti
mally allocate cores to jobs such that the overall energy 
consumption is minimized? (iv) How does one evaluate 
the impact of workload distribution on job performance 
and consider the energy-performance tradeoffs in core 
allocations?

Our research originates from and is based on the 
operations of the National Supercomputing Center 

(NSCC) of Singapore. Using a large network of system 
sensors, NSCC collects fine-grained IT load data and 
the corresponding facility data almost on a continuous 
basis. Using these data, we first carry out a dynamic 
panel data analysis to investigate how the server utili
zation and workload distribution on a rack contribute 
to the total energy consumption of the data center. We 
then establish the model performance using in-sample 
and out-of-sample analyses and further develop effec
tive strategies to achieve energy-optimal runtime core 
allocations. We find that not only does server utiliza
tion significantly affect data center energy consump
tion, distribution of workload also has a significant 
effect on energy efficiency. When the total load of a 
rack is high, the load factor essentially dominates the 
load distribution factor in impacting energy consump
tion. The packing strategy that consolidates jobs to as few 
servers as possible would not generate significant dis
parity in the core allocations among servers and is thus 
the preferred allocation strategy. However, under ligh
ter load conditions, the load distribution factor domi
nates the load factor. The load-balancing strategy that 
distributes the workload over the servers more evenly 
would bring significant savings in total energy con
sumption and thus is preferred. Based on these insights, 
we develop a threshold-based strategy to switch between 
packing and load balancing as the total load varies over 
time. We theoretically establish the conditions for the 
existence of a threshold and its bounds. We further pro
pose an energy-optimization strategy that achieves the 
optimal runtime core allocations to minimize energy 
consumption. Finally, we extend the model to consider 
energy consumption and job performance tradeoffs.

In a dynamic environment characterized by significant 
workload variations, data centers should adopt flexible 
strategies for resource allocation. For this purpose, our 
research question (i) leads to an explanatory data analy
sis of the workload factors that impact energy consump
tion; question (ii) leads to a predictive model to measure 
the effects of changes in the workload and distribution 
variables on energy consumption; and using this model, 
questions (iii) and (iv) lead to the development of pre
scriptive resource allocation methods for runtime energy 
optimization and for the bicriteria consideration of en
ergy consumption and job performance tradeoffs. We 
implement our proposed models by considering two 
strategic management options for an HPC data center, 
computational steering (CS) and no computational steer
ing (NCS), and validate our model performance in the 
presence or absence of the job completion time effects 
under different core allocation strategies. Our extensive 
experimental studies based on both simulated data and 
NSCC data sets show consistent superior performance of 
the proposed prescriptive models. In particular, our 
results demonstrate 3.8% energy savings over the state- 
of-the-art commercial scheduler and as much as 3.3% 
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and 87.7% energy savings over the load-balancing and 
packing strategies, respectively.

In summary, although total computational load has 
been widely known as a driver of energy consumption, it 
has rarely been recognized in both industry and research 
that load distribution among servers can be a significant 
factor of energy use. Our important theoretical contribu
tion is to not only uncover causes of energy consumption 
but also use them in energy-efficient scheduling of com
puting resources. Practically, we develop a comprehensive 
algorithmic framework for energy-efficient real-time load 
management and runtime assignment of cores to jobs in 
HPC data centers using dynamically generated big data 
from large-scale system-wide sensor networks. We further 
provide guidelines for data center administrators to con
sider the tradeoffs between energy consumption and job 
performance in resource allocations. Such an integrated 
approach to energy-efficient resource management does 
not exist in practice. The proposed data analytics frame
work and methodologies can be automated and embed
ded into the existing data center’s resource management 
scheme to support green supercomputing operations. 
Online Appendix A summarizes our key research contri
butions to both theory and practice.

The organization of this paper is as follows. Section 2
reviews related literature. Section 3 introduces our data 
analytics framework and provides data description. Sec
tion 4 presents an explanatory model to identify key fac
tors that affect energy consumption and further validates 
our predictive model performance. Section 5 develops 
prescriptive models for energy-efficient resource manage
ment and the extension to a bicriteria optimization of 
energy consumption and job performance. Section 6 con
ducts extensive computational experiments focusing on 
energy-efficient operations. Section 7 further provides 
bicriteria evaluation of efficient strategies and presents a 
decision tree guideline that leads to critical policy insights 
and practical implementation approaches. Section 8 con
cludes with directions for future research.

2. Related Literature
Our research is related to three broad topical areas: 
server workload management, energy-efficient data cen
ters, and big data and green information systems (IS). 
We briefly review the related literature in each category 
and position our current research in their milieu as 
follows.

2.1. Server Workload Management
Because servers are the highest energy consuming 
components in data centers, virtual server consolida
tion is considered a key solution to effective power 
management, especially in the contexts of cloud, clus
ter, and grid computing environments (Chernicoff 
2009, Buyya et al. 2010, Varasteh and Goudarzi 2015, 

Bermejo et al. 2019). Server virtualization enables the 
traditional data centers to run applications on various 
VMs, and server consolidation increases the average use 
of the physical machines (PMs) that host VMs. Normally 
VM consolidation problems can be formulated as a bin- 
packing problem, where job requirements of different 
VMs must be packed into a finite number of PMs to min
imize the total number of PMs used (Korte and Vygen 
2006). Speitkamp and Bichler (2010) propose a mathe
matical programming model for server consolidation 
with the consideration of quality-of-service levels. Cohen 
et al. (2019) model the resource allocation in the cloud as 
bin packing with chance constraints to guide job schedul
ing decisions. In a dynamic environment, VMs could be 
migrated to other PMs in response to workload varia
tions (Beloglazov and Buyya 2010, Dabbagh et al. 2015) 
or energy considerations (Qiu et al. 2019). The consoli
dation algorithm can be triggered when a host PM’s utili
zation reaches a threshold value (Gmach et al. 2009, 
Deng et al. 2014) or hotspots are identified (Ilager et al. 
2019). We refer to Delorme et al. (2016) for a recent sur
vey of the models and solution approaches.

Practically, workload management is supported by var
ious online approximation algorithms, including next- fit, 
first-fit, best-fit, and best-reply algorithms (Coffman et al. 
1996), as well as shortest job first (SJF), Tetris, and random 
policy (Hovestadt et al. 2003, Grandl et al. 2014). For exam
ple, SJF sorts jobs according to their execution time and 
schedules jobs with the shortest execution time first, and 
Tetris schedules job by a combined score of preferences for 
the short jobs and resource packing. As far as workload 
distribution is concerned, load balancing is often used to 
improve the data flows and workload distribution across 
multiple computing resources (Tang et al. 2018, Aghdashi 
and Mirtaheri 2019). Simple algorithms include random 
choice, round robin, or least connections that can be used 
to select which servers to allocate the jobs (Kushwaha and 
Gupta 2015). In this research, we examine both packing 
and load-balancing strategies in HPC data center work
load management. When allocating cores to jobs, we 
adopt the first-fit and round-robin algorithms for its sim
plicity, flexibility, and performance.

2.2. Energy-Efficient Data Centers
Data center energy efficiency is now a chief concern for 
data center administrators (Dayarathna et al. 2016). There 
are two ways to improve the energy efficiency of HPC cen
ters. The first involves hardware innovations on super
computing infrastructure, and the second, which is the 
focus of this work, is software optimization to make more 
energy-efficient use of available resources (Schöne et al. 
2014, Pitkin 2018). Notable industry examples of energy- 
efficient supercomputing include the European Union’s 
Horizon 2020 project READEX,3 which develops auto
mated tool suites for dynamically tuning parameters in 
runtime (e.g., changing CPU core frequency) to achieve 
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energy-efficient computing of HPC applications. Modern 
high-performance cluster nodes are equipped with dy
namic voltage and frequency scaling technology, which 
enables automatic adjustment of CPU frequency based 
on hardware monitoring counters (e.g., applications and 
workloads execution phases, runtime statistics) to save 
energy (Chetsa et al. 2014). Different from these approa
ches, we focus on energy optimization through workload 
distribution to dynamically adjust HPC core allocation in 
our research.

Recent studies have proposed several power profiling 
methods to improve and optimize the energy consump
tion of servers in the HPC context. Ei-Moursy et al. (2019) 
build multiple linear regression models to estimate host 
utilization. Shoukourian et al. (2014) develop a model to 
calibrate the average power consumption metrics with 
respect to a given number of compute nodes. In contrast 
to these prior works that address server-level power pro
filing and chip-level energy efficiency, we focus on rack- 
level energy effects. As the servers are powered through 
racks, the total energy consumption of a rack depends on 
the aggregate power profile of the rack, which takes into 
account both the server utilization and distribution of 
cores across the computing nodes. We propose a dynamic 
panel regression model to perform energy profiling of the 
racks that enable us to focus on rack-level workload dis
tribution for energy optimization.

Realizing that job assignment has thermal conse
quences, a few studies focus on controlling the tempera
ture of cooling system in data centers to achieve the 
overall energy savings (Pakbaznia and Pedram 2009, 
Van Damme et al. 2019). Gupta et al. (2021) develop a 
workload and cooling management framework to set 
optimal temperatures for both chilled water and cold 
airflows. Akbar and Li (2022) consider thermal-aware 
computing components and devise a Shapley value- 
based workload to schedule tasks for minimizing the 
cooling cost. Chen et al. (2012) take into account data 
center cooling dynamics and design adaptable workload 
scheduling algorithm to minimize energy consumption 
across geographically distributed data centers. Different 
from this stream of research to manage temperature and 
cooling costs in an engineering system, we focus on 
policy-level core allocation decisions to guide dynamic 
workload management toward conserving energy in 
HPC data center operations.

Energy efficiency is often achieved via different strat
egies which may or may not support job migration. 
Generally, if job migration is allowed under the job 
scheduling policy, it is termed as computational steer
ing (CS), a notion that introduces interactive steering of 
resources within the scope of real-time performance 
monitoring and adaptive control (Van Liere et al. 1997, 
Vetter and Reed 2000). In cloud data centers, CS is 
made possible by transferring a running VM from a PM 

to another PM without considerable service downtime 
(Huang et al. 2011). If service interruption is a concern, 
then noncomputational steering (NCS) policy is fol
lowed. Wolke et al. (2015) find that CS-enabled resource 
reallocation strategies achieve high levels of energy effi
ciency in different workload environments. In the HPC 
context, Atanasov et al. (2010) and Danani and D’Amora 
(2015) discuss implementations of CS solutions that 
direct or redirect the progress of an HPC application at 
runtime by modifying application-defined control para
meters using a steering client application. We develop 
both the CS and NCS versions of our prescriptive core 
allocation strategies and discuss their performance impli
cations in our HPC context.

2.3. Big Data Analytics and Green IS
The wireless sensor networks (WSNs) have evolved into 
the backbone of big data gathering and made it possible 
for large-scale data analytics (Rani et al. 2017). The dis
tributed WSNs can track various environmental vari
ables and generate a huge volume of streaming data in 
real time (Takaishi et al. 2014). In addition, the new 
Internet of Things applications have gained traction in 
the IS research community (Ketter et al. 2016). In mod
ern data centers, the real-time data collected by network 
sensors shows great promise to optimize the scheduling 
solutions (Chatterjee et al. 2019). In this research, we 
pool the fine-grained, large-scale sensor data from multi
ple sources to obtain the real-time rack-level total energy 
consumption measures and workload distributional sta
tistics, which are essential to support our data-driven 
analytics and runtime optimization of performance.

Methodological advances in data analytics and opti
mization have allowed large-scale data to be used for 
complex decision making in a variety of business re
search fields. The “predict-then-optimize” paradigm is 
one such new approach that first builds a predictive 
model using data and then embeds the model into the 
objective function of an optimization problem (Mišić 
and Perakis 2020). However, good out-of-sample pre
diction does not necessarily yield good out-of-sample 
decisions. We thus focus on econometrics modeling for 
understanding the causal impact of both load and load 
distribution factors on energy consumption and then 
embed this causal model within a data-driven prescrip
tive analytics framework to optimize energy-efficient 
resource allocation and job scheduling decisions. Wat
son et al. (2010) have proposed energy informatics as a 
core subfield of IS to reduce IT-related energy con
sumption and create a sustainable society. This research 
contributes to the growing field of green IS research 
that focus on the roles of information technologies and 
data analytics in tackling environmental sustainability 
problems (Melville 2010, Loock et al. 2013, Malhotra 
et al. 2013, vom Brocke et al. 2013, Loeser et al. 2017).
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3. Analytics Framework and Data 
Description

Figure 1 presents our data analytics framework for 
energy-efficient supercomputing. We first collect data 
from the supercomputing center. The proposed ana
lytics framework consists of (1) an explanatory model 
to establish causality, which empirically identifies the 
key factors that affect energy consumption; (2) a pre
dictive model to validate model performance using 
in-sample and out-of-sample tests; and (3) a prescriptive 
model for policy evaluations, which help achieve energy- 
efficient data center operations. Based on a series of policy 
experiments on core allocation strategies, we produce 
calibration charts and policy guidelines to support the 
practical implementation of energy-efficient strategies in 
data centers.

The NSCC data center has 1,160 base compute nodes 
(CPU servers) and 128 accelerated nodes (GPU servers). 

Each node has 24 cores. These compute nodes are de
ployed over 20 standard equipment racks, consisting of 
16 CPU racks, 3 GPU racks, and 1 mixed rack. A CPU 
rack chassis holds 72 identical CPU servers, and a GPU 
rack chassis holds 36 identical GPU servers. For our 
research purpose, we focus on the data on server loads 
and energy consumption. We thus used three big data 
sets collected from NSCC on power use in the server 
racks, their associated environmental sensor measure
ments, and the job schedules. This unique database is 
comprised of data logs over a one-month period from 
July 1 to July 31, 2018, at minute-level data granularity. 
It has a total of 892,800 observations in the one-month 
study period. Of these, 604,800 observations occur in 
the first three weeks and are used for the main model 
analyses. The remaining data set is used for out-of- 
sample validations and robustness checks of the pro
posed models.

Figure 1. Proposed Data Analytics Framework 
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The first data set Power captures the streamed power 
sensor data at one-minute intervals from the rack power 
distribution units (RPDUs). This data set consists of 
about 70 million records (13 sensor types × 6 RPDUs ×
20 racks × 44,640 minutes). For the purpose of this study, 
we first extracted the power consumption rate recorded 
by each RPDU at each time unit. We then aggregated the 
power consumption rate (in watts) by the six RPDUs of 
a rack into a rack-level measure TotalPowerit, where i �
1, : : : , 20 and t � 1,…, 44,640.

The second data set Facility provides various facility 
sensor data such as heat load, facility pressure, facility 
water flow rate, exchanger water temperatures (inlet 
and outlet), and many other facility metrics, all mea
sured at one-minute intervals. This data set consists of 
about 9.8 million records (11 sensor types × 20 racks ×
44,640 minutes). The heat load is a comprehensive 
measure of the energy consumption rate in cooling 
the servers and accounts for nearly 40% of the total 
energy costs of the data center. Accordingly, we ex
tracted the heat load (in watts) recorded at the rack 
level, leading to the measure HeatLoadit, where i � 1, 
: : : , 20 and t � 1,…, 44,640. Because high server power 
consumption is associated with high heat load, which 
requires high amounts of energy to cool down the ser
vers, we observed high correlation between the server 
power use data and the heat load data (the Pearson cor
relation coefficient is 0.91). We thus combined these 
two major sources of energy consumption to obtain 
an aggregate measure TotalEnergyit � TotalPowerit +Heat 
Loadit, which serves as the dependent variable in our 
model.4

The third data set Jobs logs the job arrivals, job starting 
and completion times, and core allocations among the 
execution hosts at one-minute intervals. The descriptive 
statistics of jobs are given in Table A5 in the online 
appendix. Jobs could be assigned to cores over multiple 
servers, either within or cross racks. These assignments 
are recorded as multiple records pertaining to the same 
job, where each record corresponds to the core assign
ment to the job in a unique server. In total, there were 
252,016 such records for 162,799 jobs during the time 
period of this study. We obtained the total number of 
cores used in each unique server in every minute by 
aggregating the number of cores assigned to all the jobs 
running on the server concurrently. We then modeled 
the workload and load distribution factors in terms of 
the first four moments (as proxy of mean, variance, 
skewness, and kurtosis) of the load distribution over 
the set of servers in a rack. Let S denote the number of 
servers in a rack. Define core distribution vector xit �

{xi1t, : : : , xiSt} as an S-dimensional vector of total number 
of cores assigned in each server of rack i at time t. The 
four moments of the core distribution vector can be cal
culated as M1it �

PS
s�1 xist=S, M2it �

PS
s�1 (xist�M1it)

2 

=S, M3it �
PS

s�1 (xist�M1it)
3
=S, and M4it �

PS
s�1 (xist�

M1it)
4
=S. These moments measure the distribution of 

the number of cores used in the servers in a rack at any 
given time, which form the basis of our explanatory and 
prescriptive analyses.

Table A1 in Online Appendix B presents the descrip
tive statistics for the key variables based on minute-level 
data. The mean value for M1 is 18.38. Because the maxi
mum number of cores per server is 24, this implies an 
average of 77% utilization of the servers at any time of the 
day. The mean values of M3 and M4 are �314.3 and 
12,870.9, respectively, which suggest that the distribution 
of cores on average has relatively long left tails and is 
heavily tailed. This is consistent with our observation that 
the server utilization in the data center is mostly high, and 
many times the servers have been operating with a large 
number of running cores. Online Appendix B further pro
vides a detailed description of the NSCC architecture, user 
service management, energy system configuration, and 
the database schema, data extraction, and aggregation.

4. Impact of Load and Distribution
In this analysis, we first examine the causal influences of 
the moments of the core distribution vector on total energy 
consumption. We present a dynamic panel data model to 
identify these effects and demonstrate the robustness of 
the estimation results. We then validate the model’s predic
tive performance using in-sample and out-of-sample tests.

4.1. Model Specification
The unit of analysis in our model is a rack. The work
load defined by the moments of the core distribution 
vector of each rack follows a time series measured at 
one-minute intervals over the one-month period of 
this study. Based on the first three weeks of the work
load data, Table A2 in Online Appendix B shows the 
pairwise correlations among the four moments of the 
core distribution vector. We observed high correlation 
between M1 and M2, as well as M2 and M4. Further
more, the variance inflation factors (VIFs) based on a 
linear regression of total energy consumed on the four 
moments indicate that the VIF for M2 is greater than 
five, whereas the VIFs of M1, M3 and M4 are less than 
five. Based on these considerations, we removed M2 
from our model specification. Next, we observed inter
temporal correlations between energy consumptions 
in adjacent periods; we thus include an autoregressive 
term with one lag into the model. Indexing rack by i 
and time by t and denoting the total energy consumed 
(TotalEnergyit) as Yit, we have the following model spe
cification:

Yit � β0 + β1Yi,t�1 + β2M1it + β3M3it + β4M4it

+ β5controlsit + uit: (1) 

Prior studies find that power consumption of the phys
ical server is approximately linear in server utilization 
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(Chen et al. 2008, Tang et al. 2008, Huang et al. 2011). 
We used the first moment of workload distribution to 
represent server utilization, and the third and fourth 
moments to represent the shape of distribution. We 
also incorporated several appropriate controls in the 
model. We used rack type dummies to distinguish 
between CPU, GPU, and mixed racks. In our panel 
data, we observed that more jobs are completed on 
specific days than others, and in particular, could dif
ferentiate weekdays from weekends. We thus included 
a weekend dummy for this purpose. We have also 
checked other variables related to job characteristics 
(e.g., total number of server instances involved in inter
server communication of a job) and environmental 
control variables (e.g., rack cooling distribution unit 
pressure, facility pressure, facility water flow rate, 
exchanger water temperature difference). These vari
ables are either highly correlated with M1 or are statis
tically insignificant and do not contribute to model 
explanatory power. Hence, we did not include them in 
our final empirical model specification. The main rea
son, as we believe, is that server is the energy consumer 
in a rack. Therefore, server characteristics, including 
the well-documented workload-related measure M1 
and our proposed distributional measures M3 and M4, 
are key determinants of energy consumption.

4.2. Model Estimation
Using the minute-level data as our base model analysis, 
Table 1 compares various model specifications with dif
ferent controls at different levels of data aggregation.

Column (1) is the basic ordinary least squares (OLS) 
model that only uses the three moment variables and 
rack-type for estimation. Columns (2)–(7) present the 
basic OLS model plus autoregressive term with one 
lag, with different specifications on rack fixed effects 
and different levels of data aggregation from one minute, 
half hour, one hour, and two hours. We observe that all 
these different model specifications and data aggrega
tion levels produce consistent estimation of results. The 
moments M1, M3, and M4 have positive coefficients, 
and the effects are all significant, which demonstrate that 
(1) as the average server workload in a rack increases, 
energy consumption in a rack increases; and (2) as the 
third and fourth moments of the workload distribution 
among servers in a rack increases, energy consumption 
in a rack increases.

The lagged dependent variable (the first-order auto
regressive term) could lead to biased OLS model co
efficient estimates in dynamic models. To establish the 
causal impact of M1, M3, and M4 on energy consump
tion, we need to address the endogeneity concern. Nick
ell (1981) shows that the least square dummy variable 

Table 1. Model Estimation Results

Basic OLS OLS+AR(1) LSDVC

One minute Half hour One hour Two hours

Core allocation strategies (1) (2) (3) (4) (5) (6) (7) (8)

Intercept �3132*** �59.12*** 311.7*** �400.9*** �843.5*** �1650*** 2154***
(50.17) (10.03) (11.42) (99.48) (179.1) (315.6) (353.2)

M1 1169*** 22.36*** 23.37*** 86.41*** 173.2*** 341.6*** 365.6*** 359.4***
(1.778) (0.464) (0.476) (4.717) (8.571) (15.08) (15.34) (13.80)

M3 2.767*** 0.057*** 0.057*** 0.275*** 0.549*** 0.920*** 0.959*** 0.945***
(0.018) (0.004) (0.004) (0.037) (0.068) (0.122) (0.122) (0.126)

M4 0.113*** 0.002*** 0.002*** 0.013*** 0.022*** 0.034*** 0.024 ** 0.022 **
(0.001) (0.000) (0.000) (0.002) (0.004) (0.008) (0.008) (0.008)

AR(1) 0.981*** 0.977*** 0.931*** 0.872*** 0.759*** 0.713*** 0.716***
(0.000) (0.000) (0.003) (0.005) (0.008) (0.009) (0.007)

CPU Rack 11317*** 224.2*** 796.8*** 1394*** 2403***
(32.86) (7.094) (69.58) (123.9) (214.5)

GPU Rack 3179*** 62.50*** 225.2 ** 404.2 ** 723.4 **
(34.86) (6.995) (68.24) (121.2) (209.2)

Weekend Dummy 636.2*** 15.06*** 19.37*** 104.6*** 176.4 ** 299.4 ** 331.4*** 327.2 **
(15.00) (2.995) (2.995) (29.22) (51.93) (89.76) (88.55) (100.3)

Rack fixed effects No No Yes No No No Yes Yes
Observations 604,800 604,780 604,780 20,140 10,060 5,020 5,020 5,020
R2 0.7173 0.9886 0.9887 0.9634 0.9418 0.9122 0.9150 —
Adjusted R2 0.7173 0.9886 0.9887 0.9634 0.9418 0.9121 0.9146 —
Root MSE 5,245.0 1,045.2 1,044.2 1,860.1 2,334.1 2,845.5 2,804.3 2,797.3

Notes. Standard errors in parentheses. Bias correction is initialized by Anderson and Hsiao estimator and corrected up to order O(N�1T�2). 
Blank entries to indicate specific variables are not included.

*p < 0.05; **p < 0.01; ***p < 0.001.
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(LSDV) estimator is inconsistent for finite T in autore
gressive panel data models. The widely used instrumen
tal variable (IV) and generalized method of moments 
(GMM) consistent estimators such as the Arellano-Bond 
estimator also suffer from a small sample bias due 
to weak instruments. Bruno (2005) shows that bias- 
corrected LSDV (denoted as LSDVC) estimators are pre
ferred over the original LSDV, IV, and GMM methods. 
We ran the fixed effects LSDVC dynamic panel data 
regression to take into account unobserved individual 
heterogeneity and to obtain unbiased model estimates.

Column (8) of Table 1 presents the LSDVC model 
results. Compared with column (7), we see that the co
efficient estimates for M1, M3, M4, and AR(1) terms 
are very close to each other. This shows that the poten
tial biases from the OLS estimation do not seem to be 
significant in our data. The main reason, as we believe, 
is that we have relatively large T (e.g., T � 252 in two- 
hour aggregation), which helps alleviate the concern 
of biased estimates. Furthermore, the OLS and LSDVC 
models yield similar root mean squared error (MSE; 
2,804.3 and 2,797.3, respectively), which implies that 
the two models yield similar in-sample performance.

4.3. Model Performance
The various empirical model analyses in Table 1 demon
strate robustness of our model insights. The reliability of 
the proposed model in estimating energy consumption 
is further assessed using an in-sample and out-of-sample 
data analysis as follows. The first three weeks of data 
comprising of 30,240 minute-level observations for each 
rack constitutes the in-sample panels. The data from the 
fourth week comprising of the following 10,080 minute- 
level observations for each rack constitute the out-of- 
sample panels.5 Using the model estimates from column 
(2) in Table 1, the model accuracies with the respective 
in-sample and out-of-sample data sets have been deter
mined. For each rack i � 1, : : : , 20, the estimation of total 
energy consumption is as follows.

Ŷit � β0 + β1Yi,t�1 + β2M1it + β3M3it + β4M4it

+ β5controlsit (2) 

In Equation (2), Yi,t�1 is the observed energy consump
tion in period (t� 1), and the other variables are as 
defined before. It intuitively reveals two broad workload- 
related effects on energy consumption—The total energy 
consumed by a rack is the sum of two parts: the baseline 
energy consumption by all its idle cores and the addi
tional energy consumption by its running cores. We de
note these effects as the baseline consumption effect and the 
running cores effect, respectively. The baseline consump
tion effect is accounted in Equation (2) by the sum of the 
constant β0, the autoregressive consumption component 
β1Yi,t�1, and the rack- and time-fixed effects β5controlsit. 
The running cores effect is accounted by the sum of the 

total workload β2M1it and its distribution given by 
(β3M3it + β4M4it). The baseline consumption and the 
running cores effects together yield a complete model for 
the total energy consumption in a rack.

Under the two-hour, one-hour, half-hour, and one- 
minute data aggregation, we first performed in-sample 
and out-of-sample estimation of energy consumption for 
each rack. We then summed up the estimation over all 
20 racks at each time point to obtain the total energy con
sumption at any given time. Consistent with Table 1, 
and also visually shown in Figures A2 and A3 in Online 
Appendix C, under these four levels of aggregation, the 
in-sample estimations achieve the root mean squared 
error (RMSE) of 2,845.5, 2,334.1, 1,860.1, and 1,045.2 and 
the mean absolute percentage error (MAPE) of 7.82%, 
5.68%, 3.94%, and 1.77%, respectively. The out-of-sample 
estimations yield the RMSE of 2,499.7, 2,320.7, 1,959.6, and 
1,083.5 and MAPE of 7.58%, 4.95%, 3.91%, and 1.96%, 
respectively.6 This shows that the model accuracy signifi
cantly improves with decreasing levels of data aggregation.

Furthermore, different core allocation strategies would 
result in different core distribution vectors, and their 
moment measures at each point of observation are the 
energy-estimating variables in our model. Accordingly, 
we can envision a wide range of allocation strategies from 
complete packing to full load balancing of cores among 
the physical servers in a rack. Among the universal set of 
all core allocation strategies, complete packing and full 
load balancing are two bounding strategies that define 
two extreme core distributions. Figure A4 in Online Ap
pendix D presents visualizations of the moments of the 
core distribution vectors with observed workload data in 
our data sets and under the two bounding strategies. 
These visualizations show that the sample data covers a 
wide range of vectors between the two bounding strate
gies and hence would be a good sample representation of 
core distribution vectors resulting from the universal set 
of allocation strategies. All together, the previous analyses 
empirically establish the internal and external validity of 
the estimation model and provide strong evidence that 
the estimation model is robust to different levels of data 
aggregation and can produce reliable prediction of en
ergy consumption under a wide range of core allocation 
strategies.

5. Prescriptive Analytics for 
Energy Efficiency

In the following, we first discuss a class of representa
tive core allocation strategies. We then develop over
arching energy-optimization models that yield optimal 
core distribution vectors for racks to minimize total 
energy consumption in the data center. Subsequently, 
we develop a bicriteria optimization model to derive 
efficient solutions that capture tradeoffs between energy 
conservation and job performance optimization.
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5.1. Core Allocation Strategies
As discussed in the previous section, the total enregy 
consumption of a rack consists of the baseline con
sumption effect and the running cores effect. For a 
given workload in a rack, the baseline consumption is 
a constant, and the running cores effect depends on 
the core allocation strategy. Specifically, energy con
sumption depends on two key factors: total workload 
measured by M1 and workload distribution among 
servers measured by M3 and M4. M3 and M4 are dif
ferent measures of the imbalance in the workload dis
tribution among the servers with respect to a standard 
even load distribution. As M3 becomes either highly 
positive or highly negative, workload tends to get 
concentrated in a few servers. When M3 is close to 
zero, workload is more evenly distributed. Similarly, 
when M4 becomes very high, workload is concentrated 
in a few servers, and when it gets close to zero, it is 
more evenly distributed. We introduce two baseline 
bounding core allocation strategies, packing and load 
balancing, to represent the least and most balanced 
workload distributions, respectively. The packing strat
egy aims to improve server utilization by minimizing 
the total number of servers used to execute a given set 
of jobs, leading to greater imbalance of workload distri
bution. In contrast, the load-balancing strategy aims to 
better distribute the workload by minimizing the differ
ence between the allocated cores to each server. The 
range of values of M3 and M4 under packing is far 
greater than those under load balancing (see Figure A4 
in the online appendix). Hence, the two strategies repre
sent extreme levels of workload distributions.

We propose a simple threshold approach to switch 
between packing and load balancing to dynamically 
achieve energy-efficient resource allocations. Its ratio
nale is as follows. If the total workload in a rack is 
higher than a threshold value, then most servers 
would be working at high core utilization levels; in 
this case, it will clearly be advantageous to pack jobs 
because the effect of total load would essentially dom
inate the effect of load distribution on total energy 
consumption, whereas at the same time extracting the 
full performance benefits of packing. However, if the 
total workload is lower than the threshold value, then 
the effect of load distribution dominates that of the 
total load on energy consumption, and load balancing 
could yield significant energy savings. Motivated by 
this, we develop a threshold strategy where packing 
is used when the total workload exceeds a threshold 
and load balancing otherwise. Online Appendix E 
provides empirical support for the threshold strategy 
from our supercomputing data. We next theoretically 
explore how the threshold—a cross-over point in the 
total workload that signals this switch—depends on 
the general data center configuration.

Consider a rack configuration consisting of S servers, 
each having a maximum of N cores. Let K � SN denote 
the maximum core capacity for the rack. We denote the 
total load of a rack as X ∈ [0, K]. Let M3q(X) and M4q 
(X), q ∈ {P, L}, represent the respective moment para
meters under packing (P) and load-balancing (L) strate
gies, respectively. We define Eq(X) � β3M3q(X) + β4M4q 
(X), q ∈ {P, L}, where β3 and β4 are the positive coeffi
cients estimated from Equation (1). The following prop
osition establishes the condition for the existence of the 
cross-over point and shows how it can be identified if it 
exists. If it does not exist, then load balancing will be 
superior to packing under all total load conditions. The 
proof of the proposition is given in Online Appendix F.
Proposition 1. Define X1 � K=2 and X2 � argminM3P(X). 
If and only if EL(X2) > EP(X2), there exists a cross-over 
point τ ∈ [X1, X2] that defines the threshold strategy, where 
τ can be determined by M3L(τ)�M3P(τ)

M4L(τ)�M4P(τ)
��

β4
β3

.
Proposition 1 reveals several important insights that 

can be used to guide the data center administrators to 
identify the threshold. First, there is a critical evaluation 
point X2 � argminM3P(X), which defines the least imbal
anced load that can be achieved under the packing strat
egy. Thus, EP(X2) is the lowest energy consumption that 
can be achieved under the packing strategy. If the energy 
consumption under the packing strategy at X2 cannot 
outperform the load-balancing strategy, that is, EL(X2) ≤
EP(X2), then packing strategy can never outperform 
load-balancing strategy at any load level. Second, we 
show that the threshold τ should be bounded if it exists. 
The cross-over point should occur after the half load of a 
rack (X1) but before the lowest energy consumption load 
under the packing strategy (X2). Finally, assuming τ is 
continuous, the cross-over point can be identified by 
solving EL(τ) � EP(τ), which leads to M3L(τ)�M3P(τ)

M4L(τ)�M4P(τ)
��

β4
β3

. 
However, because the load takes integer values in prac
tice, the cross-over point is identified in the neighbor
hood of this solution.

Next, we propose an energy-optimization strategy that 
yields the distribution of workload among servers at 
any time that minimizes the expected total energy con
sumption of a rack. Using the optimal workload distri
bution, jobs can then be assigned to cores within the 
optimal use levels of the servers. The threshold strategy 
is easy to implement and incurs low computational 
load, whereas the energy-optimization strategy would 
achieve the highest energy savings. Both the threshold 
values under the threshold strategy and the optimal 
solutions under the energy-optimization strategy are 
derived from the calibrated empirical models developed 
in Section 4. Without loss of generality, we develop the 
optimization models for a homogeneous set of racks, 
either CPU or GPU type. Our proposed methods are 
general and can be applied to any rack type, including 
the mixed rack containing both types of servers.
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5.2. Energy-Optimization Model
For notational simplicity, let i � 1, : : : , I denote the seq
uence of racks in the data center and s � 1, : : : , S denote 
the sth server in a rack. Define cit as rack i’s load at time 
t, which is the total number of cores required for all jobs 
allocated to rack i at time t. Let xist be an integer variable 
representing the number of cores allocated to rack i, 
server s, at time t, which should be no larger than the 
server’s maximum core capacity N. Given any rack i, 
our objective is to determine the load distribution in 
that rack that minimizes its total expected energy con
sumption. For a given cit, M1it �

cit
S is fixed, regardless of 

the way the cores are allocated to jobs over its physical 
servers. Furthermore, because the autoregressive com
ponent and the other controls have fixed values in 
Equation (2), it suffices to minimize (β3M3it + β4M4it) to 
obtain the energy-optimal load distribution at time t. 
The within-rack energy-optimization problem for rack i 
at time t under the CS policy is as follows:

Model [WO]. 
min

xist
β3M3it + β4M4it

s:t:
XS

s�1
xist � cit

(3) 

0 ≤ xist ≤ N, for s � 1, : : : , S
xist integer: (4) 

The coefficients β3 and β4 are estimated from Equation 
(2). In our empirical investigations, we have used the 
estimates using minute-level data aggregation given 
in column (2) of Table 1. Constraint (3) ensures that 
the total demand for cores at time t is exactly satisfied 
in the core allocations over the servers, and Constraint 
(4) enforces the core capacity limit of each server. 

Substituting M3it and M4it into the objective function 
yields 

PS
s�1

β3
S xist�

cit
S

� �3
+
β4
S xist�

cit
S

� �4
h i

. This objective 
function is nonlinear and solving the optimization prob
lem is strongly NP-hard. Therefore, following Croxton 
et al. (2003), we use a piecewise linear approximation of 
this nonlinear function and solve the resulting optimi
zation problem. The problem reformulation and solu
tion are presented in Online Appendix G.

In the NSCC context, I � 16, S � 72, and n � 24 for the 
CPU rack configuration, and I � 3, S � 36, and n � 24 for 
the GPU rack configuration. Let K denote the maximum 
core capacity for any rack type. Then we have K � SN �
1,728 possible values of the demand for cores in a CPU 
rack at any time t, and for a GPU rack, we have K � 864 
values of cores demand; that is, cit ∈ {1, : : : , K}. The 
model [WO] can be presolved for each value of cit, and 
the resulting energy-optimal solutions x∗ist, s � 1, : : : , S, 
can be saved in a (K × S) core distribution matrix Z, where 
each row corresponds to a cit value and represents its 
optimal core distribution vector. This vector provides 
optimal use bounds on the total number of cores to be 
allocated to jobs in each server under energy-optimal 
conditions. The core distribution matrix would instanta
neously yield the energy-optimal allocation to an auto
mated job scheduler or even serve as a ready-reckoner 
for a human administrator. Furthermore, alongside the 
core distribution matrix, the optimal energy consump
tion due to the running cores effect can be computed 
from the optimal solution of model [WO] as W∗(cit) �

β2M1it + β3M3it + β4M4it � β2
cit
S +
PS

s�1

h
β3
S (x

∗
ist�

cit
S )

3
+
β4
S 

(x∗ist�
cit
S )

4
i

and can be stored in a (K × 1) running cores 
energy consumption vector W. Figure 2(a) presents plots 
of W∗(cit) over the entire range of cit values for a CPU and a 

Figure 2. Energy Consumption Calibrations 

(a) (b)
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GPU rack, respectively. Similarly, Figure 2(b) plots (W∗
(cit)=cit) over this full range for each rack type. These plots 
serve as calibration charts for optimal energy consumption 
under every possible total load conditions for a rack.

Not surprisingly, Figure 2(a) shows that W∗(cit) in
creases in the total number of running cores cit on a rack. 
Furthermore, Figure 2(b) shows that the energy con
sumption per running core is a nonlinear “U-shaped” 
function of cit, and this is attributed to the cubic and quar
tic terms of (W∗(cit)=cit). We observe that the energy con
sumption per running CPU (GPU) core is the lowest 
when the total load of a CPU (GPU) rack is around 1,045 
(532) cores. This also suggests that the most energy- 
efficient allocation of the total workload to a rack should 
be in the neighborhood of these values. This insight leads 
to the idea of cross-rack optimization where the workload 
is partitioned among the racks in a way to yield optimally 
energy-efficient workload allocation to each rack so that 
the total energy cost of all racks can be minimized.

Specifically, the cross-rack energy optimization uses a 
two-stage core allocation strategy. In the first stage, we 
solve a cross-rack energy-optimization problem [CO] using 
the already calibrated running cores energy consumption 
vector W to determine the optimal number of cores to be 
allocated in each rack. Therefore, different from model 
[WO], where cit is a constant, it is a decision variable in 
model [CO]. In the second stage, given the optimal cit from 
the first-stage model, we directly use the calibrated core 
distribution matrix Z to determine the optimal number of 
cores to be assigned to each server within each rack. We 
present the cross-rack energy-optimizatation model [CO] 
in Online Appendix H. Online Appendix I further dis
cusses the computational performance of the [WO] and 
[CO] models.

5.3. Energy-Performance Tradeoffs
The distribution of cores across servers to a job will affect 
its performance. Because the cores in the same server 
share the internal RAM using a connecting bus, the com
munication overhead among cores residing within the 
same server is minimum. As a job is spread across multi
ple servers, the interserver core-to-core communication 
overhead may affect job execution and performance 
(Meng et al. 2015). Furthermore, each HPC application is 
different, and their computational and intercore commu
nication loads are nontransparent to the data center man
agers. Moreover, each job is typically run only once, and 
there are no empirical data on how different core distri
butions on physical servers could impact a given job’s 
completion time. Hence, we used a worst-case model of 
the communication overhead as a measure of perfor
mance in our analysis.

Denote Jit as a set of jobs running in rack i at time t. 
Assume that job j ∈ Jit requires nj cores. Denote zjst as 

the number of cores allocated to server s for job j in 
period t. The total number of core-to-core communica

tion pairs is 
�nj

2
�
�

nj!

2!(nj�2)!. The number of intraserver 

core-to-core communication pairs on server s is 
� zjst

2
�

. 
Therefore, the total number of interserver core-to-core 
communication pairs associated with job j at time t is 

computed as ISCjt �
�nj

2
�
�
PS

s�1

� zjst
2
�

. This model as

sumes every core communicates with every other core 
and is clearly the worst-case communication scenario.

We propose a bicriteria model that involves simulta
neously minimizing the energy cost and the communi
cation overhead described previously. Without loss of 
generality and for the sake of simplicity, we consider 
within-rack optimization. The energy cost is f1(β3 
M3it + β4M4it), where the function f1 follows the en
ergy estimation Equation (2). Similarly, the perfor
mance cost is modeled as f2

�P
j∈Jit

h�nj
2
�
�
PS

s�1 � zjst
2
�i�

, where f2 is a function of the communication 
overhead. Again, without loss of generality, because f1 
and f2 are nondecreasing functions of their respective 
arguments, we use these functions in our empirical 

studies as simply (β3M3it + β4M4it) and 
�P

j∈Jit

h�nj
2
�
�

PS
s�1

� zjst
2
�i�

, respectively. Furthermore, because the 

two criteria are in different units of measurement, they 
are normalized first. The normalization procedure is 
detailed in Online Appendix J. Using a convex combi
nation of the two criteria with a weight λ ∈ [0, 1] on 
the energy cost and (1�λ) on the performance cost, 
we formulate the bicriteria energy-performance trade
off optimization [EPT] model under the CS policy as 
follows:

Model [EPT]. 
min
zjst≥0

λf1(β3M3it + β4M4it) + (1� λ)f2

X

j∈Jit

� nj

2

�
�
XS

s�1

� zjst

2

�
" #0

@

1

A

s:t:
XS

s�1
zjst � nj, for j ∈ Jit

(5) 

X

j∈Jit

zjst ≤ N, for s � 1, : : : , S (6) 

The first set of demand constraints allocate cores to 
jobs while satisfying each job requirement in set Jit. 
The second set of supply constraints ensure the total 
number of cores assigned to jobs in server s do not 
exceed the maximum number of cores in the server. 
Note that cit �

P
j∈Jit

nj. When λ � 1, the objective 
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function of [EPT] purely focuses on energy consump
tion and this general model reduces to the (normalized) 
within-rack optimization model. Although model [WO] 
optimizes capacity allocation at aggregate server level, 
whereas model [EPT] optimizes the core assignments at 
individual job level, the two models give the same opti
mal solution when λ � 1. When λ � 0, the objective 
function of model [EPT] purely focuses on job perfor
mance, and the decision problem minimizes the total 
interserver core-communication costs of all jobs. When 
λ ∈ (0, 1), the general model [EPT] takes into account 
the tradeoffs between energy consumption and job per
formance. Solutions to problem [EPT] with values of 
λ ∈ [0, 1] yield the efficient frontier of solutions to the 
bicriteria problem.

6. Computational Experiments: Energy 
Optimization

We carried out extensive computational studies to evalu
ate the energy savings from our proposed methodologies. 
We evaluate four core allocation strategies: packing, load 
balancing, threshold, and energy optimization. We fur
ther consider two types of job allocation policies to be 
used within any of these strategies: CS and NCS. The 
implementation of these strategies and policies can be in 
either a single rack or across all the racks in the data cen
ter. These result in a total of 4 × 2 × 2 � 16 combinations 
of experimental conditions that we have used to evaluate 
the proposed prescriptive models. Online Appendix K 
presents the implementation details of the core allocation 
strategies, and Online Appendix L presents the complete 
set of algorithms. All the optimization models were 
solved using Gurobi 9.0 (Gurobi Optimization LLC 2020).

Using the empirical model for energy consumption in 
Equation (2), we first provided comprehensive calibrations 

of energy consumptions with packing and load balan
cing vis-à-vis the optimal energy consumption levels under 
the full range of workload conditions. These calibra
tions provided a basis for the threshold methodology 
that yields near-optimal energy consumption levels in 
the entire workload range. We then analyzed the per
formance of the energy-optimization model under both 
CS and NCS policies based on both simulated data sets 
with different job requirements distributions and the 
real data set provided by NSCC. We further empirically 
identified key factors affecting job completion times 
and demonstrated that the main insights hold in the 
presence or absence of the job completion time effects. 
We present these rsults in the following discussion.

6.1. Calibration of Energy Consumption
We have the maximum capacity of 1,728 and 864 cores 
in a CPU and GPU rack, respectively. Figure 3 shows 
the difference in the predicted energy consumption (using 
Equation (2)) between the packing/load-balancing stra
tegies and the energy-optimization strategy (based on 
model [WO]) for each rack type and under each workload 
level.

We observe that, when the total workload of a rack 
(CPU or GPU) is relatively low, the energy-optimization 
strategy leads to significant energy savings compared 
with the packing strategy, whereas load balancing yields 
near-optimal energy consumption. This is because the dis
tribution effect dominates the workload effect under low 
workload conditions. Packing leads to highly skewed 
distribution that brings significantly negative effect on 
energy consumption. When the total workload of a rack 
is comparatively high, the energy-optimization strategy 
achieves higher energy savings over the load-balancing 
strategy, whereas packing yields near-optimal energy 

Figure 3. Total Energy Savings Between Energy-Optimization and Packing/Load-Balancing Strategies 

(a) (b)
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consumption. This is because the workload effect domi
nates the distribution effect under high workload condi
tions. In such situations, energy optimization would lead 
to both high average server utilization and less skewed 
distribution of workload. The workload distribution un
der these two strategies becomes closer to what can be 
achieved under energy optimization. Therefore, the en
ergy consumption rate differences among the three strate
gies reduce.

We further observe from Figure 3 that the calibra
tion curves for load balancing and packing intersect 
when the total load is 1,141 (569) cores for CPU (GPU) 
racks at 66.0% (65.9%) core utilization. We denote these 
cross-over points as τCPU and τGPU, respectively.7 These 
cross-over points define the threshold strategy: When 
the total load of a rack is less than the threshold, load bal
ancing should be followed; otherwise, packing should be 
adopted. Online Appendix M provides more details for 
identifying the cross-over points within and across racks.

To empirically validate the threshold strategy and 
insights revealed by the calibration chart in Figure 3, 
we randomly choose a rack and construct subsamples 
with low load and high load. For each observed load, 
we obtain the theoretical core allocation vectors under 
pure packing and pure load balancing. We then extract 
the actual (observed) core allocation vector and calcu
late the pairwise Euclidean distances between packing 
(P), load balancing (L), and observed (O) strategies, 
denoted as DPL, DPO, and DLO, respectively. We focus 
on observations with DPL > η to ensure packing and 
load balancing strategies can be sufficiently distin
guished. We then classify an observed core allocation 
strategy as being proximal to packing if DLO�DPO

DPL
> ɛ; 

that is, when the observed core allocation is suffi
ciently closer to packing than load balancing relative 
to its maximum distance to the two strategies (i.e., the rel
ative difference is positive and larger than a threshold). 
Similarly, we classify the observed core allocation strat
egy as being proximal to load balancing if DPO�DLO

DPL
> ɛ. 

Otherwise, we deem the allocation strategy to be a mixed 
strategy. Online Appendix E provides the detailed proce
dure for sampling, classification, and empirical model 
estimation. Table A7 provides strong evidence that load 
balancing outperforms packing when the load is low, 
and packing outperforms load balancing when the load 
is high, justifying the theoretical insights revealed by the 
threshold strategy.

The threshold strategy is intuitively appealing be
cause, when the total resource demand of a rack is rela
tively low, the number of jobs is significantly smaller 
than the number of servers, and packing would yield 
extremely unbalanced workload distribution. Accord
ingly, energy savings outweigh the performance con
sideration, and the load-balancing strategy is used. On 
the contrary, when the total resource demand of a rack 

is high, almost all servers are occupied with high utili
zation. Packing strategy well aligns performance with 
energy saving considerations, and hence, the packing 
strategy is adopted. Clearly, the threshold strategy com
bines the best of the packing and load-balancing stra
tegies by appropriately trading off job performance 
against energy consumption.

6.2. Simulation Experiments
The workloads in data centers exhibit dynamic patterns. 
Although our HPC data center operates at an average 
of 77% utilization in our study period, past studies 
have shown that utilization rates in many data centers 
are quite low, resulting in poor use of resources (Pawl
ish et al. 2012). To assess the energy efficiency of the 
core allocation methodologies over a period of time as 
workloads vary, we carried out a set of simulation 
experiments as follows. We simulated rack operations 
for a three-week period comprising of 30,240 minutes of 
service. The core loading for each minute was randomly 
generated from an underlying Uniform, Normal, or 
Beta distribution. With the Uniform distribution, ran
dom loadings have been generated from U[0, 1728] and 
U[0, 864] for CPU and GPU racks, respectively. Under 
the Normal distribution, we experimented with mean 
values of 360, 864, and 1,269 for CPU racks and 192, 
432, and 624 for GPU racks to reflect light (22% utiliza
tion), normal (50% utilization), and heavy (78% utiliza
tion) load conditions, respectively. We set the standard 
deviation at high or low levels as 500, 200, 250, and 100 
for CPU and GPU racks, respectively. For Beta distribu
tion, we first simulated data by choosing B(0.5,2), B(2,2), 
and B(2,0.5) to represent 20%, 50%, and 80% utilization 
load conditions, respectively. We further fit the Beta dis
tribution with our real sample data from different racks 
over the three-week period and chose three representa
tive workload patterns with B(1.75, 1.96), B(0.43, 0.22), 
and B(1.87, 0.22) at average utilization of 47%, 66%, and 
90%, respectively.

In every minute of the data center operation simu
lated, we computed the total energy costs under each 
core allocation strategy for a rack: packing (P), load bal
ancing (L), threshold (T), and energy optimization (O). 
We aggregated the energy costs under each strategy 
over the three-week period, denoted as ˆTEq, q ∈ {P, L, T, 
O}. As in the calibration studies, we determined the per
centage of energy savings of the optimization strategy 
over the other given strategies, given as ∆q � ( ˆTEq�

ˆTEO)= ˆTEO, q ∈ {P, L, T}. The mean percentage savings 
over the set of simulations under Uniform, Normal, and 
Beta distributions are summarized in Tables 2 and 3, 
respectively.

We observe that, under all distributions, the expected 
energy savings of the energy-optimization strategy over 
the packing strategy are significantly larger than those 
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with the load-balancing strategy, which in turn, are larger 
than those with the threshold strategy. This clearly shows 
that the threshold strategy performs very well even under 
dynamically varying load conditions. In the presence 
of workload dynamics, the packing strategy performs bet
ter when the load is heavy (70%–90% utilization for 
1.26%–10.23% energy savings), and the load-balancing 
strategy performs better when the load is light (around 
20% utilization for 0.69%–2.57% energy savings). In con
trast, the threshold strategy yields near-optimal energy 
consumption performance under all dynamic workload 
conditions. Only 0.33%–3.14% energy savings can be 
gained via within-rack optimization over the threshold 
strategy. In addition, within-rack optimization can achi
eve higher energy savings for GPU racks than CPU racks 
under all three types of distributions. The insights gained 
under dynamic workload distributions are consistent 
with the theoretical energy calibrations presented in 
Figure 3.

6.3. Experiments with NSCC Data Sets
In this section, we present our experiments with 
NSCC data sets. First, assuming core allocations will 
not affect the job completion times, we evaluated the 
model performance using the full set of 16 experimen
tal settings in Section 6.3.1. However, there is a con
cern that different core allocations may affect a job’s 

completion time due to the changes in its interserver 
core-to-core communication requirements. This concern 
cannot be fully addressed unless we rerun all the jobs 
again under each core allocation strategy. This is not fea
sible in a data center environment. Furthermore, the com
munication requirements of an HPC application depend 
entirely on its developers, and the data center administra
tors have neither the knowledge nor the control over 
them. Therefore, we first developed a model to fit the 
observational job stream data to analyze how the job- 
related characteristics could affect the job completion 
times, based on which we then estimated the energy con
sumption under different core allocation strategies in Sec
tion 6.3.2. We present these two sets of experiments in the 
following discussion.

6.3.1. Core Allocations Not Affecting Job Completion 
Times. We first extracted the total energy consumed 
by each rack and aggregated all racks to obtain the 
total energy consumption in the data center over the 
three-week period, denoted as TE � 282,042:7 kWh. 
This serves as a baseline comparison. Based on the 
real job streams observed in the data center over the 
three weeks from the NSCC data set Jobs, we allocated 
the cores to jobs at each scheduling time. We esti
mated the energy consumption under each of the 16 
methodologies in each minute using Equation (2). We 

Table 2. Expected Energy Savings of Energy-Optimization Model Under Uniform/Normal Distributions (High and Low 
Variances)

CPU rack GPU rack

Uniform Normal Uniform Normal

Distribution U[0, 1728] N(360, 500
200) N(864, 500

200) N(1269, 500
200) U[0, 864] N(192, 250

100) N(432, 250
100) N(624, 250

100)

Core utilization 50.0% 20.8% 50.0% 73.4% 50.0% 22.2% 50.0% 72.2%
Packing 13.12% 25.83% 14.17% 6.72% 20.70% 47.52% 22.16% 10.23%

40.76% 14.03% 2.02% 87.69% 20.30% 3.17%
Load balancing 1.60% 1.34% 1.80% 1.88% 2.54% 2.57% 2.87% 2.77%

0.69% 2.09% 2.20% 1.69% 3.34% 3.16%
Threshold 1.01% 1.17% 1.34% 1.14% 1.67% 2.25% 2.13% 1.71%

0.69% 1.96% 1.11% 1.69% 3.14% 1.66%

Table 3. Expected Energy Savings of Energy-Optimization Model Under Beta Distributions: Simulation and Parameter Esti
mates from Sample Data

CPU rack GPU rack

Simulated distributions B(0:5, 2) B(2, 2) B(2, 0:5) B(0:5, 2) B(2, 2) B(2, 0:5)
Core utilization 20.0% 50.0% 80.0% 20.0% 50.0% 80.0%
Packing 25.26% 14.29% 2.91% 58.22% 22.61% 3.93%
Load balancing 0.93% 1.85% 1.23% 2.23% 2.95% 1.69%
Threshold 0.79% 1.36% 0.63% 1.89% 2.17% 0.83%
Data-estimated distributions B(1:75, 1:96) B(0:43, 0:22) B(1:87, 0:22) B(1:75, 1:96) B(0:43, 0:22) B(1:87, 0:22)
Core utilization 47.0% 66.0% 90.0% 47.0% 66.0% 90.0%
Packing 16.04% 5.55% 1.26% 25.34% 7.71% 1.63%
Load balancing 1.78% 0.83% 0.68% 2.90% 1.15% 0.89%
Threshold 1.33% 0.47% 0.33% 2.17% 0.64% 0.40%
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then aggregated the estimated energy consumption over 
the three-week period to get the total estimated energy 
consumption under each methodology, denoted as ˆTE in 
general, for the sake of brevity. The relative energy sav
ing percentage is computed as ∆ � (TE� ˆTE)=TE for 
each methodology. A positive value of ∆ implies energy 
savings, and larger its value, the higher the total energy 
savings. Table 4 presents the energy saving percentages 
obtained from this study.

There are several interesting findings and policy 
implications. First, not surprisingly, other things being 
equal, the energy savings under the NCS policy are 
lower than those under the CS policy. This is because 
the CS policy implementation assumes full control of 
resources, whereas the NCS policy limits this resource 
adjustment flexibility and cores can only be released 
when jobs complete.

Second, we observe that the packing strategy performs 
the worst. The marginal costs/savings under packing is 
almost negligible in all cases. This intrinsically reveals 
that the NSCC data center’s automatic Altair PBS Pro 
scheduler, which is the industry-leading HPC workload 
manager and job scheduler, mostly focuses on job perfor
mance rather than energy optimization. The small nega
tive savings reveal the slight improvements over the 
pure packing strategy that were achieved by the data 
center managers’ manual interventions in run-time job 
scheduling. In our interviews with the data center ad
ministrators, they acknowledged that sometimes human 
interventions that override automatic scheduler alloca
tions have been carried out to avoid overloading some 
servers. This is corroborated by our experimental find
ings that showed less than 1% improvement in energy 
consumption. These results also reveal that such inter
ventions are infrequent and have been carried out only 
when deemed necessary.

Third, in contrast, the load-balancing strategy and the 
threshold strategy could achieve 1.86% and 2.35% en
ergy savings, respectively. The threshold strategy mar
ginally outperforms load-balancing strategy in most 
cases. As expected, the threshold strategy has an advan
tage over the pure load-balancing strategy because it 
can switch between packing and load balancing to help 
reduce energy consumption when warranted. However, 
in the case of cross-rack allocation under the NCS policy, 

the threshold strategy does not outperform the load- 
balancing strategy in energy consumption. The main 
reason is because the NCS policy requires fixed core 
allocation for a job from start to finish. More opportuni
ties of core redistribution across racks are restricted at 
the instant the switch is warranted.

Fourth, the energy-optimization models perform the 
best in energy savings under all scenarios. In addition, 
because cross-rack optimization provides more flexibil
ity for core redistribution, it can provide higher energy 
savings of 3.81% (CS) and 2.74% (NCS) compared with 
only within-rack optimization (2.95% and 2.45%, respec
tively). The level of energy saving is justified by our the
oretical calibration. Because the mean number of cores 
allocated per server is 18.38 and on average the servers 
have been running at a high utilization level of about 
77% during our study period, Figure 3 shows that the 
packing strategy mostly employed by the commercial 
PBS Pro scheduler would yield near-optimal energy 
consumptions at such high utilization levels. This ex
plains why we do not observe very high improvements 
in energy consumption by optimization over that actu
ally consumed during the period of this study.

Assuming that all the servers are run at the average 
utilization of 77% throughout the year, the estimated 
3.81% energy saving from optimization would result in 
a minimum annual savings of 186,772.7 kWh of energy 
consumption. However, server utilization levels are sea
sonal and fluctuate continuously between low and high 
throughout the year. As we show in Table 3, the esti
mated percentage of energy savings would be much 
higher under lower levels of core utilization. Hence, 
with varying levels of core utilization in the data center 
throughout the year, we expect annual savings to accrue 
at significantly higher levels of magnitude through en
ergy optimization.

6.3.2. Core Allocations Affecting Job Completion Times. 
We first conduct an explanatory analysis to under
stand the key factors that influence the job completion 
times, based on which we estimate the new job com
pletion times resulting from different core allocation 
strategies. Consequently, the total workload of a rack 
at time t could be affected, which subsequently could 
affect the estimated energy consumption of a rack. We 

Table 4. Estimated Energy Savings Under Different Methodologies

Computational steering (CS) Noncomputational steering (NCS)

Core allocation strategies Within-rack Cross-rack Within-rack Cross-rack

Packing �0.56% 0.82% �0.03% �0.91%
Load balancing 1.86% 1.85% 1.85% 1.15%
Threshold 2.35% 1.89% 2.02% 0.99%
Energy optimization 2.95% 3.81% 2.45% 2.74%
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demonstrate that our main insights are robust even if 
different core allocation strategies would cause varia
tions of the job completion times.

6.3.2.1. Explanatory Analysis of Job Completion Times. 
We estimated a regression model that specifies the 
impact of core scheduling and job characteristics on job 
completion times using the available sample data. The 
estimation is as follows. We extracted job-related char
acteristics and rack-level and job-level communication 
overhead measures from 162,799 jobs that we collected 
in our NSCC sample. The first set of variables is related 
to job-specific requirements, including the total number 
of cores required (NumCore), the duration of the job, the 
resource type, and job arrival time. Because NSCC has 
used different queues to manage jobs with different 
length and core requirements, in the absence of queue 
information and to account for unobserved factors influ
encing job allocation, we used the four quartiles of the 
job duration data as cutoff points (i.e., 16, 81, and 188 
minutes) to classify all jobs into four groups indicated 
by group dummies (Group1–Group4). In terms of re
source type and job arrival time, we included dummies 
for whether the job demands CPU (TaskCPU), GPU 
(TaskGPU), or large memory (TaskLMN) resources and 
whether the job arrives during weekends (Weekend). The 
second set of variables is related to communication over
head. If the cores required for a job are allocated across 
multiple racks, it may incur some cross-rack communica
tion overhead. We thus measured the number of racks a 
job is allocated to (NumRack). In addition, the number of 
concurrent running jobs and the total workload at rack 
level may affect the communication of cores within ser
vers in a rack because all jobs share the same network 

switches within the rack. For each job over its duration 
on a specific rack, we measured the average number of 
concurrent running jobs in the rack per minute (Avg
NumJob) and the average number of running cores per 
allotted server in the rack per minute (AvgLoad), respec
tively. Furthermore, the job-level communication overhead 
is measured by the logarithm of interserver core-to-core 
communication pair (ISC) defined in Section 5.3.

Using the logarithm of job completion time in min
utes (JobTime) as the dependent variable, we estimate 
different OLS model specifications in columns (1)–(3) 
by incorporating the various sets of variables. Column 
(4) is our full model with the interaction term. The 
estimated results are shown in Table 5.

Based on the adjusted R2 values, column (4) has the 
best goodness-of-fit performance among all model spe
cifications. The results indicate that the effect of the 
number of cores required by a job on its completion 
time is significant, but its effect is very small. Compared 
with jobs in the first group as a baseline, jobs belonging 
to other groups require longer running time with a 
monotonic increasing trend. Jobs demanding GPU or 
large memory resources run a relatively longer time 
than jobs that only need CPU cores. Jobs arriving over 
the weekend and allocated to multiple racks require 
longer execution time. In addition, the estimated coeffi
cients for ISC and the interaction terms indicate that job 
groups moderate the heterogeneous effects of ISC on 
job completion times. The interserver core-to-core com
munication has a small negative effect on job comple
tion times for jobs in the first three groups but a large 
positive effect in Group4. Consistent with our empirical 
data analysis, it is reasonable to expect that jobs that 
run for longer durations would be affected more by 

Table 5. Explanatory Analysis of Job Completion Times

(1) (2) (3) (4)

Intercept 1.6680(0.0032)*** 1.6339(0.0087)*** 1.6404(0.0088)*** 1.6988 (0.0087)***
NumCore 0.0001(0.0000)*** 0.0001(0.0000)** �0.0000(0.0000) 0.0002(0.0000)***
Group2 2.0618(0.0042)*** 2.0634(0.0043)*** 2.0623(0.0043)*** 2.0405(0.0043)***
Group3 3.0969(0.0042)*** 3.1000(0.0044)*** 3.0987(0.0044)*** 3.0649(0.0044)***
Group4 4.3603(0.0042)*** 4.3620(0.0043)*** 4.3595(0.0043)*** 4.2821(0.0044)***
TaskGPU 0.0794(0.0081)*** 0.0654(0.0084)*** 0.0622(0.0084)*** 0.0800(0.0083)***
TaskLMN 0.2884(0.0239)*** 0.2858(0.0243)*** 0.2863(0.0243)*** 0.3082(0.0239)***
Weekend 0.1148(0.0033)*** 0.1141(0.0033)*** 0.1154(0.0033)*** 0.1075(0.0033)***
NumRack 0.0513(0.0065)*** 0.0437(0.0065)*** 0.0160(0.0065)*
AvgNumJob �0.0001(0.0000)** �0.0000(0.0000) 0.0000(0.0000)*
AvgLoad �0.0006(0.0003)* �0.0008(0.0003)** �0.0013(0.0003)***
ISC 0.0084(0.0011)*** �0.0521(0.0016)***
ISC × Group2 0.0233(0.0023)***
ISC × Group3 0.0447(0.0026)***
ISC × Group4 0.1174(0.0018)***
Observations 162,799 162,799 162,799 162,799
R2 0.8767 0.8767 0.8768 0.8801
Adjusted R2 0.8767 0.8767 0.8767 0.8801

Notes. Standard errors in parentheses. Blank entries to indicate specific variables are not included.
*p < 0.05; **p < 0.01; ***p < 0.001.
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the communication overhead, especially the interserver 
core-to-core communication measured by ISC in our 
model.

6.3.2.2. Energy Savings Estimation. When consider
ing the effect of core allocation on job completion times, 
we can only focus on NCS policy implementation because 
core allocation to a job is not fixed over time under the CS 
policy. To avoid the confounding effect brought by cross- 
rack core allocation, we focus on within-rack implementa
tion to estimate the energy savings.

Based on the same job streaming data from July 1 to 
21, 2018, we implemented the four core allocation 
strategies with varying job completion times. If a job’s 
ISC resulting from a core allocation strategy changes, 
then the estimated job completion time also changes. 
Therefore, the departure epoch of each job under each 
core scheduling strategy could be affected, which sub
sequently affect core availability and core allocation 
for newly arrived jobs. Hence, given the arrival stream 
of jobs in the data set, we estimated their completion 
times under each core allocation strategy by taking 
into account each job’s ISC using the model specifica
tion in column (4) of Table 5. To illustrate in this con
text, when the threshold strategy is used to schedule 
arriving jobs, about 0.1% of all jobs remain at the same 
job completion times as with the observed values, 
while 44.3% of the jobs have increased durations by 
87.0 minutes on average, and 55.6% of the jobs have 
decreased durations 108.5 minutes on average. Putting 
all jobs together, the overall core distributions over 
the servers at each time interval was determined. 
Using this, the total energy consumption under each 
core scheduling strategy was finally determined using 
our energy estimation Equation (2). We then compute 
the percentage of energy savings of the optimization 
strategy over packing, load-balancing, and threshold 
strategies as in Section 6.2. Table 6 presents a comparison 
of the estimated energy savings when core allocation 
affects the job completion times and when it does not.

Clearly, the optimization strategy performs the best. 
Table 6 shows that threshold strategy performs the 
next, followed by load balancing and packing. This per
formance ordering of the core allocation strategies is 
consistent in the presence or absence of the job comple
tion time effects. However, we should caution the 

readers that what matters is the relative ordering of the 
strategies. The estimated energy savings when consid
ering the effect of core allocation on job completion 
times is subject to the empirical estimation of this effect, 
which is data dependent. Online Appendix N provides 
additional experiments based on dynamic workloads 
simulated from distributions fitted by the NSCC data. 
The estimated energy savings under different core allo
cation strategies show robust insights as in our main 
simulation experiments.

7. Computational Experiments: 
Energy-Performance Tradeoffs

In this section, we extend our evaluation to simultaneously 
consider both energy consumption and job performance. 
We first demonstrate the general energy-performance 
tradeoffs under different total workloads. We then per
form a bicriteria evaluation of the core allocation strategies. 
Finally, we develop a decision tree guideline for stra
tegic and operational choices in data center resource 
management for green computing while considering 
job performance.

7.1. Tradeoffs Under Different Workloads
The efficient frontier is a set of Pareto optimal solutions to 
problem [EPT] as the decision weight of energy cost λ 
varies. For this study, we extracted sample data from the 
NSCC data set by choosing all observations with 346, 864, 
and 1,382 CPU cores and 168, 432, and 696 GPU cores, 
representing low (19%–20% utilization), medium (50% 
utilization), and high (80%–81% utilization) load condi
tions, respectively. This resulted in a total of 141 observa
tions. For each observation, based on the raw data of 
workload and associated job requirements, we solved 
model [EPT] by varying the weight λ ∈ [0, 1] with a step 
size of 0.1. The optimal solution to each instance of model 
[EPT] solved yielded its corresponding normalized en
ergy cost and performance cost measures. For a given 
workload cit and λ value, the energy and performance 
costs for each instance solved in that category would be 
different because their job requirements, and hence their 
core allocations would be different. Therefore, we aver
aged the energy costs and performance costs under each 
workload and λ value category. Figure 4 presents the effi
cient frontier of energy-performance tradeoffs under low, 
medium, and high workloads for both CPU and GPU 
racks. As λ decreases, the energy cost increases and the 
performance cost decreases, demonstrating the tradeoffs. 
The data center administrator can choose λ according 
to the desired level of tradeoff between the two objec
tives in allocating cores to jobs under different workload 
conditions.

The total workload, core allocation strategy and the 
tradeoff between energy and performance costs consti
tute a trifecta of considerations in allocating cores to 

Table 6. Estimated Energy Savings of the 
Energy-Optimization Strategy

Core allocation 
strategies

When core allocation 
does not affect job 
completion times

When core allocation 
affects job 

completion times

Packing 2.54% 4.16%
Load balancing 0.61% 1.18%
Threshold 0.44% 0.75%
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jobs. However, the choice of an appropriate λ requires 
an exploration of the preference structure of the data 
center administrator. This could impose significant cog
nitive load and may not even be viable. In practice, data 
center administrators prefer to adopt easy-to-implement, 
simple, and effective strategies for implementation. We 
next evaluate the performance impacts of the energy- 
optimization model and the packing and load-balancing 
strategies.

First, we solved model [EPT] using λ � 1. This is the 
pure energy-optimization strategy that yields the minimum 
total energy cost of a rack. Next, we solved model [EPT] 
using λ � 0. This is the pure performance-optimization strat
egy that yields the minimum total performance cost of a 
rack. Figure A11 in Online Appendix O compares the two 
strategies under energy and performance costs. Consider
ing the energy-performance tradeoff, it is preferrable to 
use the energy-optimization strategy in low workload 
conditions and the performance-optimization strategy in 
high workload conditions.

The energy costs under packing and load-balancing 
strategies demonstrate the same pattern as in Figure 3. 
Figure A12 in Online Appendix O compares the per
formance costs of the two strategies. We observe that 

packing always outperforms load balancing under all 
workload conditions. Therefore, when the total work
load in a given rack is higher than the threshold, pack
ing is preferred over load balancing because there is a 
natural alignment of both energy and performance 
optimization under packing. However, when the total 
workload in a given rack is lower than the threshold, 
load balancing performs better in energy conservation 
but packing performs better in performance, so there 
is a clear tradeoff between the two strategies. Overall, 
these experiments provide additional support to our 
main insights regarding the choices of different core 
allocation strategies in data center operations.

7.2. Implementation Guidelines
Although our experimental results show that the CS 
policy achieved higher energy savings than the NCS 
policy, data center managers need to be cognizant of 
its potential negative impact on job interruption. To 
this end, we propose an integrated approach to imple
menting the CS and NCS policies as follows. The 
arrival or completion of a job signals a change to the 
current core distribution. This can be operationally 
accomplished using the virtually noninterruptive NCS 

Figure 4. Energy-Performance Efficient Frontier Under Low, Medium, and High Workloads 

(a) CPU Rack with Low Workload (b) CPU Rack with Medium Workload (c) CPU Rack with High Workload

(d) GPU Rack with Low Workload (e) GPU Rack with Medium Workload (f) GPU Rack with High Workload

18 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
.5

5.
10

0.
18

0]
 o

n 
28

 M
ay

 2
02

3,
 a

t 1
8:

59
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



policy. We term the events triggering this action as 
NCS Epochs. Conversely, independent of job arrivals or 
departures, CS can be performed at specific times to 
redistribute cores for all running jobs with a view to 
achieve the required balance between energy and per
formance costs. The CS interventions can be per
formed periodically at either fixed intervals or flexible 
intervals of time. We term the times that signal such 
CS interventions as CS Epochs. Hence, there will be a 
series of NCS epochs between successive CS epochs 
over time. Figure 5 presents guidelines structured as a 
decision tree for implementing these strategic and 
operational choices.

Under the CS epoch, CS optimization can focus on 
energy costs (λ � 1), performance costs (λ � 0), or 
some combination (0 < λ < 1). In the latter case, the 
system administrator needs to determine the preferred 
weight λ by examining the energy-performance effi
cient frontier and evaluating the different options it 
presents. Under the NCS epoch, there are two cases 
depending on the type of events. If it is a job departure 
event, then no action is needed. If it is a job arrival 
event, then the system administrator needs to decide 
whether to perform NCS optimization or use a simple 
threshold-based heuristic approach to schedule incom
ing job(s).

8. Discussion and Conclusion
HPC that drives large-scale research and operation- 
intensive applications has developed into a substantially 
large sector in the data center industry. This research is 
motivated by the increasing need for energy-efficient 
operations in HPC data centers worldwide and is devel
oped from and validated by NSCC’s large-scale databases 
on job requirements, computing resource management, 
and energy consumption. We first present an explan
atory model to identify key factors that affect an HPC 
data center’s energy consumption and then demonstrate 
our model’s high predictive performance. We further 

develop prescriptive models for energy-efficient and 
performance-efficient operations.

The major contributions of this research are four- 
fold. First, using a dynamic panel data analysis we 
establish the causal effects of the level of workload 
and its distribution over the servers of a rack on the 
rack’s total energy consumption. We extend the exist
ing literature by showing that not only server utiliza
tion, but also the variability in workload distribution 
matter in energy consumption. Understanding the 
effects of workload distribution on energy consump
tion has enabled the development of new strategies to 
increase the data center’s overall energy efficiency.

Second, we propose prescriptive models for energy- 
efficient workload management. In our prescriptive analyt
ics framework, we focus on four core allocation strategies 
(packing, load balancing, threshold-based switching, en
ergy optimization), two implementation policies (with and 
without computational steering), and job scheduling at 
two levels (within-rack and cross-rack). Based on our 
empirical estimation of the energy consumption under dif
ferent strategies, we calibrate the energy savings under 
all total workload conditions. The calibrations can be 
either used as a ready-reckoner by a human data center 
administrator or be embedded within an automated 
scheduling software to make optimal decisions on work
load allocation.

Third, we find evidence that the packing strategy is 
preferred when the total workload on a rack is higher 
than a threshold and a load-balancing strategy is pre
ferred when it is lower. Our experimental studies 
reveal that a strategy of switching between packing 
and load balancing according to this threshold on 
total workload would yield near-optimal energy con
sumption under all total workload conditions. These 
findings are robust when jobs’ completion times can 
be affected by different core allocation methodologies.

Fourth, we consider the trifecta of factors—the total 
workload, core allocation strategy, and the tradeoff be
tween energy and performance costs in allocating cores to 
jobs. We develop a bicriteria optimization model to evalu
ate the potential tradeoffs between energy consumption 
and job performance. An analysis of this model has led to 
the development of implementation guidelines framed as 
a decision tree for strategic and operational choices in 
data center resource management for green computing 
while concomitantly considering job performance. The 
insights and results from this research significantly con
tribute to energy-efficient data center operations and 
would guide the design and development of commercial 
scheduling systems for HPC data centers.

The stability and reliability of the empirical models 
are shown through extensive in-sample and out-of- 
sample testing. Given that the system under study is 
an engineering system, its behavior under similar con
ditions are predictably repeatable. In this regard, we 

Figure 5. Implementation Guidelines 
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contrast this engineering system from other social science 
applications involving human behaviors that are both 
difficult to predict and repeat. The online product recom
mendation systems is a classic example. In such social 
applications, knowledge on human behavior is continu
ously revealed through data collected over time, and it is 
important to correspondingly update the parameters of a 
model fitting the data as human behaviors change and 
evolve. Maintaining this currency is important in apply
ing the model to runtime instances such as making cor
rect recommendations to a user based on his past actions 
and preferences. It also requires maintaining a balance 
between costs of knowledge obsoleteness and model 
recalibrations over time (Fang et al. 2013). Unlike these 
systems, the engineering systems such as data centers 
yield stable, reliable, and repeatable model parameters 
over time.

Some of the important directions for future research are 
as follows. First, we primarily focus on green computing 
and energy-efficient data center operation in this research. 
In the future, based on the predicted demand patterns 
(e.g., relatively stable or fluctuating), the scheduling algo
rithm may switch between energy-optimal mode and 
performance-optimal mode, where the energy-mode aims 
to achieve energy efficiency, whereas the performance- 
mode prioritizes applications based on their execution 
requirements. Second, there is an emerging trend on 
leveraging human-AI intelligence to improve organiza
tional decision making. Future work may develop so
phisticated machine learning models, combining deep 
learning or reinforcement learning methods with human 
insights to better understand the relationships among job 
characteristics, performance and energy impacts, and fur
ther embed the learned knowledge into the core allocation 
and job scheduling strategies. Finally, along with the 
strong demand for data center services, there are potential 
improvements in the efficiency of servers, storage devices, 
network switches and data center infrastructure. A com
prehensive study of energy-efficient data center configura
tions and operations are interesting topics for future 
research.
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Endnotes
1 See https://www.marketsandmarkets.com/Market-Reports/Quantum- 
High-Performance-Computing-Market-631.html.
2 See https://www.statista.com/statistics/500458/worldwide-datacenter- 
and-it-sites/.
3 See https://www.readex.eu/.
4 Energy is the total amount of work performed by a rack over a 
period of time, whereas power is the rate at which the work is per
formed by the rack. If measured by unit times, the value of energy 

and power becomes equal. In this paper, we use the rate measure 
(watts) in energy consumption for ease of comparison.
5 In addition to this 75%–25% split into in-sample and out-of-sample 
data, we also carried out other data partitioning consisting of the first 
14, 18, and 24 days of the data in-sample and the rest out-of-sample, 
respectively. These represent 50%, 64%, and 86% splits of the data into 
training and test sets, respectively. Results in Online Appendix C show 
that the performance of our model is robust against the different data 
partitions we implemented and tested in our experiments.
6 As shown in Tables A3 and A4 in the online appendix, other data 
partitioning also achieved similar model performance.
7 Because S � 72 (or 36) and N � 24 for CPU (or GPU) racks, by 
Proposition 1, X1 � 864 (or 432) and X2 � 1368 (or 672) for CPU (or 
GPU) racks. We see that 864 < 1,141 < 1,368 and 432 < 569 < 672, so 
τCPU and τGPU fall within their respective intervals prescribed by 
our theoretical proposition.
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