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Abstract—Auditing Data Provenance (ADP), i.e., auditing if
a certain piece of data has been used to train a machine
learning model, is an important problem in data provenance.
The feasibility of the task has been demonstrated by exist-
ing auditing techniques, e.g., shadow auditing methods, under
certain conditions such as the availability of label information
and the knowledge of training protocols for the target model.
Unfortunately, both of these conditions are often unavailable in
real applications. In this paper, we introduce Data Provenance
via Differential Auditing (DPDA), a practical framework for
auditing data provenance with a different approach based on
statistically significant differentials, i.e., after carefully designed
transformation, perturbed input data from the target model’s
training set would result in much more drastic changes in
the output than those from the model’s non-training set. This
framework allows auditors to distinguish training data from non-
training ones without the need of training any shadow models
with the help of labeled output data. Furthermore, we propose
two effective auditing function implementations, an additive one
and a multiplicative one. We report evaluations on real-world
data sets demonstrating the effectiveness of our proposed auditing
technique.

I. INTRODUCTION

In an era of accelerated digital transformation, data has been
widely recognized as an emerging asset class. Data provenance
[1], which is to understand where data comes from, how it is
collected and how it can be best used, has been assuming
ever-increasing importance. One problem in data provenance
attracting growing attention from both academia and industry
is Auditing Data Provenance (ADP), i.e., how to audit if a
given piece of data, referred to as auditing data [2]–[4], has
been used for training a machine learning model.

The problem of ADP distinguishes itself from related re-
search topics such as membership inference attacks with sig-
nificantly different motivations and solution priorities driven
by the growing needs of data-asset-based digital economy.
Two prominent examples are (I) Privacy and (II) Incentive
governance [5]. Let’s examine an example for each scenario:
(I) Privacy: Imagine a user’s data has been collected and
used to train a machine learning model without her knowl-
edge. To protect her data privacy, an objectively rigorous and
quantifiable auditing method is necessary to substantiate her
challenge in potential disputes. (II) Incentive governance: In
a setting where multiple parties each contributes and trades
data to collectively train models in a collaborative manner,
e.g., federated learning in a decentralized variant in which no
central entities are governing incentivization [5]. The incentive

allocation in such a scenario would necessarily entail auditing
the usage of all parties’ data to a sufficiently fine granularity
to guarantee trust and fairness.

From a taxonomy point of view, there are two directions
for this problem: One direction is based on model-specific
techniques. One example along this direction is to directly
audit the target model’s training process. Techniques, such
as regularization and data augmentation which “memorize”
information about the training data set in the model, have
been proposed without compromising model performance [6].
Unfortunately, most real auditing settings only allow access to
the output or the final parameters of the target model, rather
than the training process itself. Another example is to directly
design a criterion on the model output to compare training
data and non-training data with a preset threshold, e.g., the
prediction loss [7] or the prediction confidence (e.g., class
probability) [8]. Methods along this line suffer from limited
generality due to their reliance on specific criteria.

An alternative research direction is based on a shadow train-
ing technique, which has demonstrated successful application
in auditing deep learning models [2], [3]. The main idea
is to use multiple “shadow models” to imitate the behavior
of the target model. As the training data for the shadow
models are known, the target model can be trained using the
labeled outputs of the shadow models. While shadow training
technique is promising for a number of scenarios, it raises two
technical challenges:
• Shadow model generation.The creation of shadow mod-

els entails two necessary requirements: (I) The knowledge
of the training protocol for the target model; and (II) The
generation of training data for shadow models. Requirement
(I) is not always guaranteed in real applications. Requirement
(II) means it is necessary to generate multiple data sets based
on some heuristic rules.
• Cumulative errors. The final auditing results depend on

multiple intermediate results of machine learning models. It
may cause uncertainties in practice as error accumulates.

In this paper, we adopt a different approach by leveraging
the following observations: In general, a machine learning
model tends to fit the training data well with a relatively high
confidence, as, after all, the model has witnessed these data. If
we apply a carefully designed function, i.e. auditing function,
to transform both the training and non-training data before
feeding them as input to the target model respectively, the
training data side would result in a much greater difference in
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Fig. 1. The DPDA framework.

the target model’s output between the original input data and
the transformed one. This difference in the confidence of the
target model’s output between training and non-training data
is identified as the key to the DPDA auditing framework we
propose in this paper. As illustrated in Figure 1, the auditing
framework is constituted by introducing an auditing function,
which would be applied to the auditing data before feeding
into the target model in one path of the comparison.

Based on this framework, we propose two implementations,
an additive implementation (DPDA-ADD) and a multiplicative
implementation (DPDA-MUL). DPDA-ADD applies additive
transfer functions on input data to generate statistically sig-
nificant differences, i.e., the changes in model output on
training data are more significant than on non-training data.
Such additive transfer functions can be easily obtained by
maximizing the prediction error of the target model. DPDA-
MUL uses a projection function to more carefully emphasize
the differential between the training and non-training data,
which can be learned by an alternative optimization technique
to bridge the auditing model and the target model.

The proposed framework differs from the above mentioned
approaches in two key aspects. First, unlike model-specific
method, the proposed framework does not rely on specific
model output, it can therefore be applied to a wider range of
applications to multiple target models. Second, unlike shadow-
based method which learns a combination of multiple shadow
models to simulate target model, the proposed framework
derives a data transformed directly from data through one
auditing function, and the mechanism to auditing function is
simpler than all these shadow-based approaches.

Another fundamentally important issue re-examined in this
paper is the granularity of data that should be the subject
of auditing [9]. We argue that what should be used is the
notion of group-based data auditing, where a set of data
points collectively exhibit the characteristics of training or
non-training data, because it reflects better the auditing needs
of real applications. For example, in applications where a
model has been trained with users’ facial images or text
sets (e.g., tweets), the real question that matters is whether
a particular user’s data has been used in the training, rather
than whether a particular image or tweet of the user has been
used. A model should be judged to have already used a user’s
data if a subset sufficiently characteristic of the user has indeed
been used, even if some individual data points are left out in
the training.

The contributions of the paper are summarized as follows:
• We present a new framework DPDA for auditing data

provenance with a novel notion of differential-based
auditing function. Instead of auditing a specific target
model in the original input data space, the DPDA frame-
work distinguishes training data from non-training one by
comparing a statistical differential generated by the target
model between two input data spaces – the original one
and the one transformed by an auditing function. Our
framework can also adapt quickly to multiple machine
learning target models.

• We propose two augmented auditing functions. One is
additive implementation DPDA-ADD, the other is mul-
tiplicative implementation DPDA-MUL. The proposed
DPDA targets the group-based (or user-based) ADP
problem, such that the auditor can not only infer the
membership in a group of data points, but also the
membership out of group, delivering a stronger solution
than previous ones for the point-based problem as it easily
subsumes auditing individual data points.

• We choose three representative benchmark datasets and
one real-world application, varying from image to text
data sets, to comprehensively evaluate the performance.
The effectiveness of our proposed methods have been
consistently demonstrated across varied experiment set-
tings. We also study the influence of parameters in the
ADP problem and provide discussions for some important
aspects of our framework for future exploration.

II. RELATED WORK

Membership Inference Attacks (MIAs). The research on
auditing data originated from membership inference attacks
[10], which is to determine if a given data record is in the
model’s training data set assuming black-box model access
[2], [11]. While MIAs has been extensively studied in many
fields, e.g., computer vision [7], [8], [12], NLP [3], [9], [13]
and recommender system [14]. While MIAs aims to identify
training data from attackers’ perspective, ADP is motivated
differently by applications in data-asset-based digital economy
[15].

A major line of research is to retrain an inference model to
simulate the target model, and then use the inference model
to generate multiple results to make final predictions. In [4],
authors systematically study the impact of a sophisticated
learning-based privacy attacks. When given a differentially
private deep model with its associated utility, this paper
discusses how much we can infer about the model’s training
data. Hayes et. al. presented membership inference attacks
against Generative Adversarial Networks (GANs) [16]. The
idea is that, if a target model overfits the training data, training
data will correspond to a higher confidence value on model
output. In [3], authors discussed how deep-learning-based text-
generation models memorize their training data and provided
a solution for text-generation models. These methods are often
feasible in settings when certain conditions are satisfied such
as the availability of label information or the knowledge of
training protocols. However, in many real-life applications,
it is difficult , if not impossible, to satisfy these conditions



TABLE I
NOTATION.

Notation Description
M Target model
DT Training data of M
DO Non-training data of M
Di A group of data instances
|Di| Size of Di

A() Auditing function
Φ() Differential calculation
θ Target model parameter
W Auditing function parameter

and hence the severe performance degradation of the auditing
mechanisms. More recent work [17] analysed the feasibility
of membership inference when the model is overfitted or well-
generalized and reported a study that discovered overfitting to
be a sufficient but not a necessary condition for data auditing
to succeed.

Information Leakage. With the rise of privacy concern
for data, many works have been conducted to tackle the
problem of information leakage of machine learning model.
Information leakage can be grouped mainly into three types:
data leakage, model leakage and training environment leakage.
For example, in [18], authors demonstrated that embeddings,
in addition to encoding generic semantics, often also present
a vector that would leak sensitive information about the input
data. Deep learning models have been shown to have the abil-
ity of memorizing information [19]. Recent work [20] showed
that adversaries can extract training text from the output of
text generation models, indicating memorization threats to user
privacy. Note that this research area can be treated as a direct
strategy when the training process is available to auditors.

Differential Privacy (DP) [21] is studied to provide privacy
preservation against membership-inference attack in the model
inference stage. Many differentially private machine learning
algorithms can be grouped according to the basic approaches
they use to compute a privacy-preserving model [22]. Some
approaches first learn a model on clean data and then use
either the exponential mechanism or the Laplacian mechanism
to generate a noise model [23], [24]. Some mechanisms add
noise to the target function and use the minimum/maximum of
the noise function as the output model [25]. It also has been
applied to various machine learning models including tree-
based model [26], neural networks [27], [28], and federated
learning [29], [30]. In this paper, we draw on the idea of
differential and apply a statistically significant differential for
the ADP problem.

III. PROBLEM FORMULATION

To best serve the auditing purpose, the granularity of data
in this paper that an auditing algorithm is supposed to make
judgement upon should be at the group level, where such
a group is capable of capturing the characteristics of the
underlying entity generating the data. More formally, we
associate each entity e with a distribution Ae. A data set D
is denoted as D ← A if D is from distribution A. Two data
sets Di and Dj are said to be homomorphic under auditing

Training data

Non-training data

The difference between the target model (    )’s output 

of original data and the output of processed data.

Ideally, the training data 

points should be a larger 

difference value than 

non-training data points.
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Fig. 2. An illustration of differential mechanism.

if they are both from Ae, denoted as Di
∼= Dj . For example,

Di and Dj can be two sets of facial images of the same user
e. We show notation in Table I.

We formulate ADP as follows:
Definition 3.1: Auditing Data Provenance (ADP). Given

(I) a set of data distributions A = {A1, A2, ..., Am}, (II) a set
of groups of data instances D = {D1, D2, ..., Dn}, such that
for each group Di ∈ D, Di ← Ak for some 1 ≤ k ≤ m

and Di = {(xj , yj)}|Di|
j=1 , where xj ∈ Rd is a data instance

and yj ∈ Y = {1, 2, . . . , c} is its associated class label, and
(III) a machine learning modelM, which has been trained on
DT = {Dk1 , Dk2 , ..., Dkt}, DT ⊂ D, and its correspondent
class probability Pj = {p1, p2, . . . , pc} for each input data
instance xj , the problem of Auditing Data Provenance (ADP)
is to find a function f such that, for given any auditing data
group Di ∈ D,

f(Di,M) =

{
1, if ∃j, 1 ≤ j ≤ t, such that Di

∼= Dkj
, Dkj

∈ DT .
0, otherwise.

(1)
When f(Di,M) = 1, we say model M has used data set Di

for training, denoted as Di ∈A DT .
Alternatively, we can define this problem as a ranking

problem as follows:

max
g

g(Di, Dj)

s.t. Di ∈A DT , Dj /∈A DT

Di, Dj ∈ D, 1 ≤ i, j ≤ n

(2)

where g(·, ·) represents a similarity function that calculates the
difference between two data groups, e.g., Euclidean distance
or Cosine distance, etc. The optimization problem is to find
a similarity function to maximize the difference between data
belonging to the target model M’s training and non-training
data. We also notice that it is evident that the group-based ADP
subsumes auditing individual data points when |Di| equals 1.

Notice that in general, we can define O as a distribution
distance function such that O(Ai, Aj) is the distance between
any two group distribution, e.g., Kullback-Leibler Divergence
or Wasserstein distance. It is hard to discriminate between
two data groups if the value of O is small, namely the two
are highly similar. After all, the more similar training and non-
training data groups are, the harder auditing problem becomes.
In this paper, we also have provided a discussion on the issue
of similarity in Section VIII.

In addition, the ADP problem is distinguished by two
important conditions: the black-box condition and the white-
box condition:



• The black-box condition (BB). Auditors have no access
to M, i.e., no information other than model output can be
accessed on model structure or model parameters.
• The white-box condition (WB). Auditors have access to

all information ofM, i.e., model structure, model parameters,
and model output, etc.

IV. PROPOSED FRAMEWORK

A. Design Ideas

Our main idea is to propose a differential mechanism to
distinguish training and non-training data by the output of the
target model. The intuition is that training data directly impacts
final model parameters. Carefully-designed modification on
training data, if successfully transforming training data to one
more similar to non-training ones, should result in greater dif-
ferences in the model output, compared against the differences
in model output resulted from the same modification on non-
training data as, essentially, little changes have been made in
terms of the nature of the input data. As illustrated in Figure 2,
simply put, the differential mechanism calculates the difference
between the target model’s output on original auditing data and
the output on transformed auditing data. Ideally, training data
should generate a larger difference value (represent by blue
color) than non-training data.

An extreme yet straightforward case is using differential
mechanism on instance-based machine learning models, espe-
cially those supervised learning models by storing all training
instances. [31], [32]. If we take a binary classification model
for example, the model must output 1 for training data points,
and 0 for non-training data points. It follows that, when given a
piece of auditing data, if it indeed belongs to training data, the
perturbation added by an auditing function would change the
model output from 1 to 0, resulting in a difference of 1. On the
other hand, if the auditing data belongs to non-training data,
the model output remains 0 after the perturbation, resulting in
a difference of 0.

Meanwhile, there are some studies on quantifying the
change of the model output by adding a perturbation, e.g.,
sensitivity analysis [33]–[35].

Lemma 1: [33] Consider a Gaussian perturbation ∆x ∼
N (0, εI), the Frobenius norm of the class probabilities Ja-
cobian ||J(x)||F = ∂M/∂xT, we adopt the Frobenius norm
|| · ||F estimates the average case sensitivity M around x:

E∆x[||M(x)−M(x+ ∆x)||22] ∼= E∆x[||J(x)∆x||22]

= ε||J(x)||2F.

Lemma 2: [35] To link the loss function to the output’s
sensitivity to its input, a first order Taylor expansion can be
used to show the sensitivity:

M(x+ ∆x)−M(x) ∼= ∆x · ∇TxM(x).

Shu et. al. [34] compared network sensitivity between training
and testing sets, and demonstrated the existence of difference
between the two sets. They contribute to the justifiability
of the differential mechanism underlying ADP to consider

(a) GoogLeNet on CIFAR10. (b) GoogLeNet on FansionMNIST.

(c) AlexNet on CIFAR10. (d) AlexNet on FansionMNIST.

Fig. 3. The results of differential mechanism. The Y-axis is a difference
value between the output of processed data point and original data point. We
use average result of all training or non-training data points per class. We
check 95% confidence intervals, and report the p-values obtained via t-tests
to assess the statistical significance of differences between the average results
of all training and non-training data points. ∗ : p < 0.05; ∗∗ : p < 0.01;
∗ ∗ ∗ : p < 0.001.

difference between training and non-training data by the output
of the target model.

To further verify the differential mechanism, we examine
two popular deep learning structures: GoogLeNet [36] and
AlexNet [37] on FashionMNIST and CIFAR-10 to observe
the effectiveness of our proposed differential mechanism. The
experiment is as follows: we select two popular deep learning
structures: GoogLeNet and AlexNet on FashionMNIST and
CIFAR-10 as observed experiments. Firstly, all auditing data
(both training data and non-training data) are processed by
adding Gaussian noise. Secondly, we calculate the difference
value per class between the output of processed auditing data
points and original auditing data points and report the average
results. Note that this calculation has been done on training
and non-training data separately. p − value shows that there
exists a gap of statistical significance between the differences
of model output on training and non-training data. The results
in Figure 3 show that training data corresponds to a larger
difference value than non-training data in most cases. This
observation demonstrates the effectiveness of our proposed
differential mechanism.

B. DPDA

Based on the differential mechanism concept, we propose a
data provenance framework via differential auditing (DPDA),
and introduce an auditing function to implement the differen-
tial mechanism as discussed in the previous section. As shown
in Figure 1, DPDA comprises two main steps: (I) Auditing
data is first processed by the auditing function; (II) The
difference is calculated for the target model’s output between
original data and processed data. Finally, the difference is



evaluated to decide whether or not the auditing data belongs
to training data.

In DPDA, the auditing function is chosen as a mathematical
function formally defined as follows:

Definition 4.1: Auditing Function (AF): Given an auditing
data point x ∈ Rd, the auditing function, denoted as A(),
is defined as a bijective function such that A(x) ∈ Rd and
∀x, x′ ∈ Rd, A(x) = A(x′) 7→ x = x′.
For example, if A() is an additive transformation, we have
A(x) = x+ η, η ∈ Rd.
Auditing Function Design. The key to DPDA is to design
an auditing function to embed the auditing data into a new
space such that it maximizes the differential between training
and non-training data, and characterizes the relation between
the task of auditing data and the original task of target model.
In this paper, we propose three auditing function design as
follows. It should be noted that the choices of auditing function
design are not limited to these.

(1) Offset Form. Offset form is the most common way to
do data transformation. Considering a data point x ∈ Rd, an
offset z ∈ Rd and a scale β ∈ R, an auditing function in offset
form is represented by A(x) = βx+ z.

(2) Projection Form. Given a data point x ∈ Rd and a
matrix V ∈ Rd×d, the projection form is defined as A(x) =
V x.

(3) Non-linear Form. Non-linear transfer is widely used
in machine learning algorithm design, like tree-based data
transfer model [38] or activation function [39].

Note that while (1) and (2) have the advantage of being easy
to interpret and fast to use, non-linear forms, on the other hand,
are more capable to model real-world data in many cases, due
to the greater complexity. In the following, we explore two
implementations under this framework: one additive and one
multiplicative.

V. ADDITIVE IMPLEMENTATION

We first present an additive auditing function implementa-
tion by a simple offset method as follows:

A(x) = x+ εη (3)

where ε is a slack variable and η is an offset. Note that the
purpose of introducing η is to generate a larger difference
between training data and non-training data.

In general, as the target model has seen the training data,
its output on training data should have higher confidence, i.e.,
it should be able to correctly predict data points from training
data with high probability. Consequently, for an auditing data
point x that is in the training data, if we can induce the
processed input A(x) to be misclassified, the target model
output on x and A(x) should then be more likely to generate a
larger difference than the case if x is from non-training data.
We would now consider how to induce misclassification on
processed data points A(x).

To that end, we review the adversarial example learning
perspective [40]. An adversarial example is a widely-used way
to conduct an attack. Attackers alter inputs by adding small,

Algorithm 1 Additive Implementation
Input: D = {D1, D2, . . . , De} - auditing data, M - target

model
Output: Dt - training data

1: if M is not available then
2: O ← M(D), # Calculate the output.
3: Mr ← train a model on {D,O}
4: end if
5: for i = 1, ..., e do
6: D′i ← A(Di), # using Eqn.(3)
7: Si ← Φ 〈M(D′i),M(Di)〉
8: end for
9: if ∀j Sj > threshold then

10: Dj ← training data
11: else
12: Dj ← non-training data
13: end if

often imperceptible, perturbations to force a learned classifier
to misclassify the resultant adversarial inputs, which would
still be correctly classified by a human observer [41], [42].
Goodfellow et.al. [43] provided a strategy to use the linear
view to generate adversarial inputs. Let θ be the parameters of
a model, x be the input to the model, y be the label associated
with x, J(θ) be the cost to train the model, ε is a slack variable
and the adversarial example can be defined by

x
′

= x+ ε · sign[∇xJ(θ)] (4)

Following this idea, we set η in Eqn. (3) as the sign of the
target model’s cost function gradient

η = sign[∇xJ(θ)]. (5)

This setting would maximize the loss function and result in
the greatest misclassification for the auditing data processed
by A().

Algorithm 1 illustrates the sketch of the additive implemen-
tation. Lines 5-13 show the case when the target model is
under the white-box assumption. When the target model is
under the black-box assumption, we need to build an extra
machine learning model to imitate the prediction behaviors of
the target model. We employ a simulation model trained by
auditing data and its model output (e.g., SVM-based model).
Then we use this simulation model to calculate η. The process
is described in Algorithm 1 Lines 1-4.
Threshold determination. In Algorithm 1 Line 9, a threshold
is needed in Algorithm 1 to decide whether the auditing
data belongs to training data. As mentioned in previous
discussions, we expected that training data have a larger
value of differentials than non-training data, that is to say,
{S1, S2, . . . , Se} should form two groups in distributions. We
adopt the following method [44] to identify the best threshold
to separate the two groups. We first generate a list Q of all
values in {S1, S2, . . . , Se} in descending order. A threshold
τ in this list yields two sub-lists, Ql and Qr respectively
as the left sub-list and the right sub-list. The following
criterion minimises the difference in standard deviations σ(·):



τ̂ = arg minτ |σ(Qr) − σ(Ql)| The threshold τ̂ is used to
differentiate between training and non-training data, the former
corresponding to larger values and the latter smaller ones. The
details are provided in the Algorithm 2 and an example are
showed in the section VII-B.

Algorithm 2 Determining Threshold
Input: Q - the list of value s in B, m - size of Q, τ? - initialize

to a larger value. σ(·) - standard deviations calculation
Output: t? - threshold

1: for i = 1, ...,m do
2: Ql ← Q[1 : i]
3: Qr ← Q[i : m]
4: τ ← |σ(Q[1 : i])− σ(Q[i : m])|
5: if τ < τ? then
6: t? ← Q[i]
7: τ? ← τ
8: end if
9: end for

VI. MULTIPLICATIVE IMPLEMENTATION

In this section, we introduce the multiplicative auditing
functions. We have shown in Eqn. (2) that the ADP problem
can be treated as a ranking problem. It follows that it can be
turned into a differential optimization problem, and we can
search for auditing function A() by the following objective
function:

max Φ 〈M(A(Dt)),M(Dt)〉 − Φ 〈M(A(Do)),M(Do)〉 (6)

where M(·) is the target model output, A(·) is the auditing
function, Dt is M’s training data, Do is the non-training
data and Φ(·, ·) represents the differential calculation function.
Since Eqn. (6) would aim for the maximum difference, the
training and non-training data would therefore exhibit signifi-
cant gaps for the differential results.

Specifically in this work, we define a multiplicative imple-
mentation by a projection as follows:

A(x) = Wx, (7)

where W ∈ Rd×d. Thus, Eqn. (6) can be transformed to the
following problem:

max Φ 〈M(W (Dt)),M(Dt)〉 − Φ 〈M(W (Do)),M(Do)〉 (8)

Optimization. It is important to note that Eqn. (8) requires
optimization on Dt and W simultaneously. We employ an
alternating optimization algorithm to solve it. We initialize
labeled auditing data for learning W by the following steps:
Randomly initialize W , and calculate the value Φ of auditing
data D. Then calculate a threshold (as mentioned in the section
V) to separate the value Φ, and label training data Dt and
training data Do. The optimization procedure is as follows:

(1) We consider W as a variable. Dt and Do are set
as described above. The gradient descent technique is then
applied to efficiently solve Eqn. (8).

(2) After W is obtained, we calculate the value Φ of D.

Algorithm 3 Multiplicative Implementation
Input: {D1, D2, . . . , De} - auditing data,M - target model,

Dc - initialization of training data.
Output: Dt - training data

1: repeat
2: calculate W by using Eqn. (9)
3: Si ← {Φ 〈M(WDi),M(Di)〉}ei=1

4: if ∀j Sj > threshold then
5: Dj ← training data
6: else
7: Dj ← non-training data
8: end if
9: until Maximum number of iterations.

(3) Calculate the threshold (Algorithm 2) to separate the
value Φ of auditing dataset D. The larger ones are set as Dt,
the others as Do.

(4) Use the newly updated Dt and Do to calculate W .
The procedure stops when the terminating condition is satis-
fied, i.e., a predetermined maximum number of iterations.

Note that we can apply the gradient descent algorithm to
efficiently update W as follows:

W ′ = W − ε∂J(W )

∂W
(9)

where

∂J(W )

∂W
=[M(WDt)−M(Dt)]M

′
(WDt)Dt

− [M(WDo)−M(Do)]M
′
(WDo)Do

(10)

The sketch of the process is described in Algorithm 3. Note
that whenM′

is not available under the black box assumption,
a simulation model can be employed.

VII. EXPERIMENT

A. Experiment Setup

Data Sets. We use four datasets to compare the perfor-
mance of all methods: MNIST, 20 Newsgroups, CIFAR-10
and VGGFace.
Competing Algorithms. A brief description of each of the
methods used in the experiment is given as follows

(1) Confidence Criteria (CC): CC means we directly
design a criterion on the model output (e.g., the perdition class
probability). The criterion is like a preset threshold, the data
with higher probability is treated as training data.

(2) Shadow Learning Technique (SLT) [2]: SLT intro-
duces multiple shadow models and an attack model to address
the data auditing problem. The shadow model is to recognize
differences in the target model’s predictions on the inputs that
it has trained on versus the inputs that it has not trained on.
The attack model is treated as a classifier to distinguish the
output of shadow model.

(3) DPDA-RN (RN for short): DPDA with the additive
implementation but by setting random values.

(4) DPDA-ADD (ADD for short): DPDA with the additive
implementation.



TABLE II
RESULTS OF DIFFERENT TARGET MODELS ON DIFFERENT DATA SETS.

MNIST 20 Newsgroups CIFAR10
Algorithm F-measure AUC F-measure AUC F-measure AUC

SVM-based model

CC 0.412 ± 0.02 0.513 ± 0.01 0.401 ± 0.02 0.535 ± 0.01 0.534 ± 0.02 0.535 ± 0.01
SLT 0.612 ± 0.05 0.805 ± 0.04 0.715 ± 0.03 0.711 ± 0.05 0.704 ± 0.05 0.750 ± 0.03
RN 0.536 ± 0.03 0.550 ± 0.02 0.433 ± 0.02 0.565 ± 0.02 0.586 ± 0.03 0.526 ± 0.02

ADD 0.695 ± 0.04 0.822 ± 0.06 0.660± 0.02 0.735 ± 0.02 0.700 ± 0.02 0.803 ± 0.04
MUL 0.719 ± 0.06 0.821 ± 0.05 0.723 ± 0.02 0.750 ± 0.02 0.726 ± 0.02 0.801 ± 0.04

Tree-based model

CC 0.423 ± 0.02 0.533 ± 0.01 0.339 ± 0.01 0.554 ± 0.02 0.540 ± 0.04 0.573 ± 0.04
SLT 0.696 ± 0.03 0.711 ± 0.04 0.655 ± 0.02 0.684 ± 0.02 0.744 ± 0.02 0.753 ± 0.05
RN 0.671 ± 0.05 0.654 ± 0.06 0.632 ± 0.06 0.652 ± 0.06 0.651 ± 0.07 0.673 ± 0.04

ADD 0.675 ± 0.03 0.652 ± 0.05 0.653 ± 0.03 0.654 ± 0.02 0.675 ± 0.02 0.654 ± 0.05
MUL 0.695 ± 0.01 0.712 ± 0.04 0.666 ± 0.02 0.704 ± 0.03 0.760 ± 0.03 0.772 ± 0.02

NN-based model

CC 0.493 ± 0.01 0.565 ± 0.03 0.432 ± 0.02 0.515 ± 0.02 0.478 ± 0.02 0.523 ± 0.01
SLT 0.743 ± 0.03 0.811 ± 0.02 0.693 ± 0.01 0.701 ± 0.01 0.721 ± 0.02 0.798 ± 0.03
RN 0.521 ± 0.01 0.554 ± 0.02 0.442 ± 0.01 0.542 ± 0.01 0.571 ± 0.01 0.563 ± 0.01

ADD 0.739 ± 0.04 0.792 ± 0.02 0.703 ± 0.03 0.724 ± 0.02 0.726 ± 0.04 0.803 ± 0.03
MUL 0.782 ± 0.03 0.802 ± 0.01 0.723 ± 0.02 0.751 ± 0.02 0.719 ± 0.01 0.810 ± 0.04

ADD and MUL have #wins/#draws/#losses 3/3/0 6/0/0 5/1/0

(5) DPDA-MUL (MUL for short): DPDA with the multi-
plicative implementation.
Experiment Settings. All experiments are implemented in
Python on Intel Core CPU machine with 128 GB memory and
NVIDIA RTX 3090 GPU. The following implementations are
used: In CC, the confidence of one instance is set by the largest
value of its estimated label probability. In SLT, the codes are
developed based on the original paper1. We employ 50 shadow
model and one attack model which is SVM2 with RBF kernel
and other parameters are set by default values. In DPDA-RN,
random values are set by Gaussian noise. The parameter ε
in DPDA-ADD is set by [e−8, e8]. In particular, we can use
data similarity as a measure to guide the setup: the higher the
data similarity, the smaller the value ε. In DPDA-MUL, W is
initialized to a semi-positive definite matrix.
Evaluation Metrics. We use F-measure and AUC3 to mea-
sure performance. As mentioned in the definition of ADP,
auditing data are in the form of groups. We conduct both AUC
and F-measure on group-based dataset as follows: First, each
auditing data is fed as input for prediction, and we calculate the
average results of each group. Then, the AUC or F-measure
results are calculated in those group results. Note that each
group contains the same type of data, i.e., either all training
data or all non-training data.

B. Results on synthetic data

We take SVM-based, Tree-based and NN-based model as
the target model and train them on a two-dimensional synthetic
dataset with 100 data points. Figure 4 shows SVM-based
model results. We indicate two kinds of data in green and
red respectively, and mark training data by “black star”. The
auditing problem is to identify the “black star” training data
given all data points as the input auditing data.

Figure 4(a) shows the target model by a solid black line and
a simulation model by blue dotted lines. The effectiveness of

1https://github.com/spring-epfl/mia
2https://scikit-learn.org/stable/modules/svm.html
3https://en.wikipedia.org/wiki/Receiver operating characteristic

(a) Auditing data and target model. (b) Results under WB condition.

(c) Results under BB condition. (d) Threshold setting.

Fig. 4. An illustration on SVM-based model.

the proposed method is demonstrated by the auditing results
as labeled with red circles in Figure 4, in which (b) shows the
white-box condition and (c) shows the black-box condition. In
addition, we show the threshold setting in Figure 4(d). The 100
data points in the synthetic data set are divided into training
and non-training groups with the ratio of 1:1. Figure 4(d)
shows an example of the distribution for τ (= |σ(Qr)−σ(Ql)|)
curve. Note that the lowest point provides a clear guide to
separate the auditing data into the two parts of training and
non-training, and it is close to the optimal value of 50.

C. Results on benchmark datasets

Setting. Each dataset is used to simulate the following au-
diting environment. We first randomly select two classes, and
instances of these two classes are selected as an auditing data
set, which are then randomly divided into training data and
non-training data with the ratio between them being roughly



1:1. The training set is then used to train a target model to
be audited. Subsequently the auditing data are grouped into
multiple subsets, each containing the same type of data, i.e., all
training data or all non-training data. All experiments are under
the BB assumption. Target models are SVM-based models,
Tree-based models and NN-based models respectively: SVM-
based models are set by a least squares SVM classifier; Tree-
based models use random forest with completely random
trees; NN-based models are set by two fully connected layers
and a SoftMax layer. Parameters of target models are set by
default according to their official code package. We run 30
independent experiments with different simulations on each
dataset.
Summary. Table II provides more comprehensive results on
SVM-based, Tree-based and NN-based target model. Our
proposed DPDA models, both DPDA-ADD and DPDA-MUL,
have produced higher AUC performance in all data sets than
all other methods. The closest contender SLT, which is based
on shadow model technique, is weaker than DPDA. DPDA-
RN is based on random perturbation and its performance falls
behind DPDA in all data sets. The performance of CC ranks
at the bottom. An analysis is provided below:
• CC performs worse than others in all data sets. This

shows that efforts to directly use the prediction probability
are unsuccessful for the ADP problem. There are a couple of
reasons for this, e.g., the distribution of the model output could
be dense and therefore makes the separation of training and
non-training data difficult. It is thus concluded that CC is not
a good choice for this task.
• SLT requires training multiple shadow models and an

attack classification model. It is important to note that its
performance highly dependents on shadow model results.
Unsatisfactory results of shadow model will severely limit
the attack model’s ability for classification. In addition, SLT
needs label information for training shadow models, which
is often hard to obtain in real applications. Nevertheless, the
experimental results show that it still performs worse than the
DPDA framework in two out of three data sets.
• RN presents worse performance than other DPDA models

except on the tree-based model. The under-performance of
auditing functions of random values drives home the effec-
tiveness of the two augmentations we proposed for auditing
functions.
• Both ADD and MUL are demonstrated to be competitive

methods for the ADP problem. While MUL achieves a higher
performance, ADD excels with its lower computational cost in
an extensive parameter search and easier implementation. The
choice between them in real applications should be a result of
comprehensive consideration on case-dependent factors.

D. Results on a real-world application

Gender estimation is an important and challenging task
in many real-world applications. Over the past few years,
most methods used deep learning models to estimate gen-
der achieved respectable results [45]–[47]. In this section,
we evaluate DPDA and contenders on auditing a gender

Training Data Auditing Data Auditing Results

Person 1 Training

Person 2 Training

Person 3 Non-training

Fig. 5. The illustration of the gender estimation dataset.

(a) F-measure. (b) AUC.

Fig. 6. The results on auditing a gender classifier.

estimation model. The gender estimation model is set by a
famous computer vision machine learning model, ResNet18
[48], including 18 layers deep neural network. And it is trained
on VGG-face dataset [49]. The aims of this section are to
examine the ability of DPDA to (i) adapt to a real-world group-
based auditing problem; and (ii) achieve a good performance.

Setting. In the experiment, we used 20 people with 20k
images as training data to train a gender estimation classifier.
The auditing data consist of these 20 people’s images which
include some training images and some other images which
haven’t been used to train. In the auditing data, images of each
people are naturally regarded as a group Di. As an example
shown in Figure 5, person 1 and person 2 have been used to
train the target model, their images are shown in Figure 5. In
the auditing data, the images from person 1 and person 2 are
both treated as training, even some images haven’t been used.
Due to the data of person 3 without participating training target
model, the images of person 3 are treated as non-training. This
is a real application under the group-based assumption. All
experiments are under the black-box assumption. Parameters
of target models are set by default according to their official
code package.

Summary. Figure 6 shows the auditing results over different
epochs. In the different epochs, target model ResNet18 has dif-
ferent performance, namely accuracy is [0.64,0.78,0.79,0.82]
on [100,200,500,1000]. Firstly, because the proposed method
DPDA takes into account the global auditing results in a group,
avoiding the effect of outliers, ADD performs better results
than all three methods under the group-based auditing assump-
tion. Secondly, SLT is a point-based auditing algorithm which
requires to have multiple shadow models in order to simulate
the target model. Despite this advantage, it still performed
worse than ADD. Meanwhile, the other two baselines also
perform worse than ADD. Overall, the experimental results



(a) Different sizes of
classes

(b) Different sizes of
data.

(c) Different numbers of
features of auditing data.

Fig. 7. Parameter analysis result.
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Fig. 8. (a) The differential mechanism on different epochs. (b) The relation
of data similarity, data memorization and ADP problem.

here demonstrate the reasonableness and feasibility of this
method on the group-based auditing problem.

E. Parameter analysis

We present a study of parameters in DPDA, i.e., the number
of classes in auditing data set, the size of auditing data set and
the number of features of auditing data. We evaluate them one
at a time on varied settings with other parameters fixed.

Figure 7(a) describes the number of different sizes of classes
in auditing data set and Figure 7(b) describes the results of
the sizes of auditing data set. We show the results of MUL on
MNIST data set. Note that similar results are also observed
under the ADD implementation. There are a downward trend
for performance as the number of classes and the size of data
increase. That said, the denser data distribution may yield
a higher degree of data similarity, and make it significantly
more difficult to audit data. Figure 7(c) shows the number of
features of auditing data. We test varied sizes of the feature
vector on the 20 Newsgroups data set. Results show that the
different sizes of feature vector have a relatively small impact
on performance.

VIII. DISCUSSION

(1) Auditing Data Distribution. One challenge of the
auditing problem is how to effectively handle the situation
when there exists a high degree of similarity between train-
ing and non-training data points. Intuitively, it is hard to
discriminate training and non-training data points if the two
are highly similar. Table III depicts the relation between data
similarity and differential mechanism. The table shows results
on CIFAR10 data set with the target model set as GoogleNet.
For each class, we calculate the average pair-wise Euclidean
distance between training and non-training data points, i.e., the
smaller the distance value, the more similar the two data sets.

For class ‘frog’, there is a high degree of similarity between
training and non-training data points (as shown with the lowest
value of 54.21). In this case, while the accuracy achieves 80%,
the differential mechanism generates the worst result, i.e., it
corresponds to the largest p-value. These data indicate that the
high degree of similarity poses a big challenge to DPDA.

We put forward a plan to address this issue as our future
work – auditing functions can be treated as a transfer function
in that it shifts the original data space to a new space where it
is easier to solve the problem of the high degree of similarity.
Alternatively, a method like Generative Adversarial Networks
[50] can be used to achieve this transfer, which offers a better
capture and understanding of the distribution of training and
non-training data.

(2) Data Memorization. Data memorization refers to a
model’s capacity to remember its input data, especially its
training data [51]. In DPDA, data memorization of the target
model is another important factor for the effectiveness of
the differential mechanism. Figure 8 (a) plots the differential
mechanism along different training epochs. It can be observed
that the performance of target model is often poor due to
under-fitting in early epochs of model training. It is fair to say
that the target model has poor memorization on training data
during this period. It follows that the difference between the
model output of training and non-training is not sufficiently
significant, resulting in larger p-values. However, it can be
clearly observed that, as the number of epochs increases,
the target model’s memorization of training data gets better
and better, resulting in smaller and smaller p-values. This
demonstrates that, the better the data memorization of the
target model, the more effective the proposed differential
mechanism for the ADP problem.

In conclusion, we describe the relation of data similarity,
target model memorization and differential mechanism in 8
(b). In face of data with high similarity and model with
poor memorization, it is hard for the differential mechanism
to handle the ADP problem. In contrast, for data with low
similarity and model with good memorization, the differential
mechanism would work well.

IX. CONCLUSIONS

This paper investigates an important problem in data prove-
nance, i.e., algorithmically check if a piece of data has been
used to train a machine learning model. We introduce a new
auditing framework DPDA based on the idea of differential
and propose two implementations of the auditing function, ad-
ditive implementation and multiplicative implementation. Ex-
tensive experiments on real-world data sets have demonstrated
the effectiveness of both the proposed methods. We provide
discussions for some important aspects of our framework in
the ADP problem.
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X. SUPPLEMENTARY MATERIALS

A. Experiment Setup

Data Sets. We use four datasets to compare the perfor-
mance of all methods:

(1) MNIST4: The MNIST is an image dataset of handwrit-
ten digits. It contians 10 classes and 784 features;

(2) 20 Newsgroups5: The dataset collates approximately
20,000 newsgroup documents partitioned across 20 different
newsgroups. The Word2vec is used to prepossess text data.

(3) CIFAR-106: It is a standard classification dataset con-
sisting of 32×32 color images belonging to 10 different object
classes.

(4) VGGFace7: The dataset consists of the crawled images
of celebrities on the Web. There are 2622 celebrities in the
dataset.
Evaluation Metrics. We use F-measure to measure the
performance. This measure produces a combined effect of
precision (P) and recall (R) of the auditing performance,

F-measure =
2 ∗ P ∗R
P +R

.

F-measure = 1 if the method identifies all training data with
no false positives.

We also employ AUC8 (“Area under the ROC Curve”)
to access performance. An ROC curve (receiver operating
characteristic curve) is a graph showing the performance of a
classification model at all classification thresholds. This curve
plots True Positive Rate (TPR) and False Positive Rate (FPR).

B. Results on synthetic data

1) SVM-based model: SVM is a discriminative classifier
which classifies new data points by calculating an optimal sep-
arating hyperplane9. In two dimensional space this hyperplane
is a line dividing a plane into two parts each defining a class
for data points within it. In this paper, we illustrate with a least
squares SVM classifier10. Given a set of instance-label pairs
(xi, yi), i = 1, · · · , l, xi ∈ Rd, yi ∈ {−1,+1}, it solves the
following optimization problem: minw

1
2w

Tw + C
∑l
i=1 ξ

2,
subject to the equality constraints: yi(wxi+b) = 1−ξi, where
C > 0 is a penalty parameter. We set the partial derivatives
of x on the cost:

∂J(w)

∂x
= 2[1− wx)]w.

Then, we can calculate η by Eqn.(5).

4http://yann.lecun.com/exdb/mnist/
5http://qwone.com/ jason/20Newsgroups/
6https://www.cs.toronto.edu/ kriz/cifar.html
7https://www.robots.ox.ac.uk/ vgg/data/vgg face/
8https://en.wikipedia.org/wiki/Receiver operating characteristic
9Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks.

Machine Learning 20, 3 (1995), 273–297.
10Johan A. K. Suykens and Joos Vandewalle. 1999. Least Squares Support

VectorMachine Classifiers.Neural Processing Letters 9, 3 (1999), 293–300.

2) Tree-based model: We discuss random forest model with
completely-random trees as target model in this part11. random
forest model is usually trained with the “bagging” method.
The general idea of the bagging method is that a combination
of learning models increases the overall result. Each tree
in the classifications takes input from samples in the initial
dataset. Features are then randomly selected, which are used
in growing the tree at each node. Every tree in the forest should
not be pruned until the end of the exercise when the prediction
is reached decisively.

Note that because the random forest is a non-linear form,
it is not easy to use the gradient to calculate η. In this paper,
we attempt to set Gaussian noise perturbation as η to observe
this result. Figure 9 shows the complete illustrations.

3) Neural network-baesd: A neural network (NN) is a
technique that uses a hierarchical composition of n para-
metric functions to model an input x. Each function fi for
i ∈ 1, · · · , n is modeled using a layer of neurons, which are
elementary computing units applying an activation function to
the previous layer’s weighted representation of the input to
generate a new representation. Each layer is parameterized by
a weight vector θi impacting each neuron’s activation. Such
weights hold the knowledge of a NN model and are evaluated
during its training phase, as detailed below. Thus, a NN defines
and computes:

M(x) = fn(θn, fn−1(θn−1, · · · f2(θ2, f1(θ1, x)))) (11)

At each layer: yj = f(
∑3
i=1 wijxi + b), where Wij , xi and

yj are the weights, input and output respectively. We show a
two-linear-layer NN example as follow:

M(x) = w2(w1x+ b1) + b2

= w2w1x+ w2b1 + b2
(12)

The above equation can be view as an SVM-based model.
We, therefore, apply the same way to calculate η. Figure 10
shows NN-based model results.

Figure 11 shows the results of multiplicative implementation
on synthetic data data, the experiment setup is the same as
Section VII-B. (a)-(c) are results under black-box condition.

11Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, et. al. 2008.
Top 10 algorithms in data mining. Knowledge and Information Systems 14,
1 (2008), 1–37.



(a) Auditing data. (b) Results on white-box condition. (c) Results on black-box condition.

Fig. 9. An illustration on the Tree-based model. Training data are marked by black star marks training data. Red circle is the auditing results. (b) is result
under white-box condition, (c) is result under black-box condition.

(a) Auditing data and hyperplane. (b) Results on white-box condition. (c) Results on black-box condi-
tion.

Fig. 10. An illustration on the NN-based model. Training data are marked by black star marks training data. Red circle is the auditing results. (b) is result
under white-box condition, (c) is result on black-box condition.

(a) Results on SVM-based model. (b) Results on Tree-based model. (c) Results on NN-based model.

Fig. 11. An illustration on the results of multiplicative implementation. Black star marks training data. red circle marks auditing results. (a) is SVM-based
model result, (b) is tree-based model result, (c) is NN-based model result.
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