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VerifyTL: Secure and Verifiable Collaborative
Transfer Learning

Zhuoran Ma, Jianfeng Ma, Yinbin Miao, Ximeng Liu, Member, IEEE , Wei Zheng, Kim-Kwang
Raymond Choo, Senior Member, IEEE, and Robert H. Deng, Fellow, IEEE

Abstract—Getting access to labelled datasets in certain sensitive application domains can be challenging. Hence, one often resorts to
transfer learning to transfer knowledge learned from a source domain with sufficient labelled data to a target domain with limited
labelled data. However, most existing transfer learning techniques only focus on one-way transfer which brings no benefit to the source
domain. In addition, there is the risk of a covert adversary corrupting a number of domains, which can consequently result in inaccurate
prediction or privacy leakage. In this paper we construct a secure and Verifiable collaborative Transfer Learning scheme, VerifyTL, to
support two-way transfer learning over potentially untrusted datasets by improving knowledge transfer from a target domain to a source
domain. Further, we equip VerifyTL with a cross transfer unit and a weave transfer unit employing SPDZ computation to provide privacy
guarantee and verification in the two-domain setting and the multi-domain setting, respectively. Thus, VerifyTL is secure against covert
adversary that can compromise up to n− 1 out of n data domains. We analyze the security of VerifyTL and evaluate its performance
over two real-world datasets. Experimental results show that VerifyTL achieves significant performance gains over existing secure
learning schemes.

Index Terms—Transfer learning, Dishonest majority, Covert security, SPDZ, Convolutional neural network

F

1 INTRODUCTION

WITH the increasing deployment of Internet of Things
(IoT) devices and digitalization of our society, the

amount of digital data generated and collected will also
increase significantly. This also contributes to renewed in-
terest in Artificial Intelligence (AI), such as deep learning
techniques. For example, Convolutional Neural Network
(CNN) [1] has been widely used to facilitate image pro-
cessing, facial recognition and fingerprint identification. The
construction of data-driven CNN model typically requires
intensive data resources for analysis and recognition. How-
ever, sharing data across systems may not be easy in prac-
tice, for example due to security and privacy concerns [2],
[3], [4]. In additional, labeled datasets that can be used in
AI model training may also be limited in certain sensitive
application domains.

Transfer learning [5] can potentially be used to overcome
such a limitation, by transferring knowledge learned on one
dataset/application domain to another dataset/application
domain. However, as shown in Fig. 1, existing transfer
learning mechanisms have a number of limitations, such
as the following: a) In conventional transfer learning, a
source domain contributes knowledge to a target domain
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Fig. 1: Transfer learning framework.

with no payoff. However, such “selfless” behavior may
not be realistic, as data collection, curation, labeling, etc,
come at a cost. In other words, there may be a shortage
of source datasets that can be used for transfer learning. b)
The transferred knowledge may be vulnerable to inference
attacks (e.g., membership attacks [6] and reconstruction
attacks [7]), which can result in disclosure of the training
data [8]. Existing secure transfer learning schemes over
training data [9], [10], however, incur significant compu-
tation and communication overheads. c) There may exist
a covert adversary [11] in various data domains, which
attempts to corrupt the changing set of data domains. The
adversary can attempt to compromise the transfer learning
with negative transfer [12], [13], for example by executing
a malicious computation, and changing the computation
results for transfer learning. Thus, a covert adversary can
launch a malicious learning with dishonest majority [14]
by maliciously tuning transfer learning, resulting in transfer
learning behaving badly on specific attacker-chosen inputs.
Existing secure machine learning schemes are not generally
designed to the setting of dishonest majority.
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The lack of two-way transfer learning and dishonest
majority mitigation schemes motivate us to design a secure
collaborative training for transfer learning over multiple
data-poor domains for implementing covert security in this
paper. Specifically, in this paper, we present a secure and
verifiable collaborative transfer learning against covert ad-
versaries, hereafter referred to as VerifyTL. A summary of
our contributions is as follows:

• Two-way transfer learning. We present a collaborative
transfer learning framework over multiple data-poor
domains, which achieves two-way transfer learning
by eliminating the difference between a source do-
main and a target domain. To tune CNN models on
data domains, we provide flexible transfer for collab-
orative transfer units by setting different knowledge
contribution degrees in the respective data domains.

• Lightweight privacy preservation. We propose a
lightweight privacy preservation scheme by adopt-
ing a locally pre-trained model to extract representa-
tions of a data domain. The extracted representations
are transferred among data domains to minimize
the costs associated with the secure outsourcing of
sensitive training data over multiple domains.

• Verifiable learning. We design a SPDZ-based transfer
unit to improve security and support verification.
Specifically, we deploy a cross unit and a weave
unit, which are two kind of collaborative transfer
units, in two-domain setting and multi-domain set-
ting, respectively. The SPDZ-based transfer unit not
only securely transfers representations among data
domains, but also verifies the correctness of final
transferred representations with Message Authenti-
cation Code (MAC) to prevent malicious behaviors.

• Covert security. VerifyTL is a decentralized learning
system with covert security, in which a covert ad-
versary can corrupt n − 1 out of n data domains.
Each data domain only trusts itself to prevent the
corruption of dishonest majority.

In the next two sections, we will review the related
literature and introduce relevant background materials. In
Section 4, we will introduce the system model of VerifyTL,
the threat model of covert security, and the design goals.
In Section 5, we present the proposed VerifyTL, prior to
evaluating its security and performance in Sections 6 and
7. In the last section, we conclude this paper.

2 RELATED WORK

Transfer learning has been shown to have potential in the
settings where there is a lack of labeled data in one applica-
tion domain, but knowledge learned from other application
domain(s) can be transferred [5], [15]. Earlier approaches
mainly focus on transferring the training data from one or
more source domains to another [16], [17]. However, such
approaches either incur significant communication costs
during the transmission of large amounts of data from the
source domain or do not support heterogeneous transfer
among different feature distributions. The existing schemes
such as those presented in [18], [19] used a TrAdaBoost
approach, which reuses training data of source domains for

implementing knowledge transfer. However, TrAdaBoost
requires access to training data on both source and target
domains. Consequently, the target domain can learn the
training dataset of the source domain(s).

Oquab et al. [20], [21] proposed a CNN-based trans-
fer learning scheme that transfers image representations
learned with CNNs on large-scale annotated datasets to
other tasks with limited training data. Shin et al. [22] de-
signed a transfer learning method that transfers fine-tuning
CNN models pre-trained from natural image dataset to
medical image tasks for image diagnosis. Kendall et al. [23]
presented a principal approach to multi-task deep learning,
which weighs multiple loss functions by considering the
homoscedastic uncertainty of each source task. However,
these schemes only support one-way transfer learning (i.e.,
knowledge is transferred from a source domain to a task
domain). In the event where neither a source domain nor
a target domain can collect sufficient labeled data, knowl-
edge is required to be transferred between two data-poor
domains. Hence, two-way transfer learning methods such
as those presented in [24], [25] use a cross-stitch network
with CNN models for multi-task learning. These methods
enable dual knowledge transfers across domains by utiliz-
ing cross connections from one task to another and vice
versa. However, these two-way transfer learning methods
are confined to the two-domain setting, but not the multi-
domain setting. In addition, the transferred knowledge may
be revealed, for example by successfully carrying out an
inference attack over the data representations to reconstruct
the training data [6], [8]. In other words, there is a risk of
information leakage.

Hence, in recent times, there have been attempts to
design privacy-perserving transfer learning approaches, for
example by utilizing homomorphic encryption [26], [27],
[28], [29] and Multi-Party Computation (MPC) [30], [31].
In [26], for example, the training data on each domain are
encrypted using homomorphic encryption, prior to been
utilized for machine learning. However, the communica-
tion overhead increases with the training data size, and
a large number of secure computations are required for
training over encrypted data (i.e., significant computation
cost). Other approaches, such as those of [28], [32], [29],
[27], transfer the model parameters instead of the training
data, in order to minimize communication overhead and
guarantee data privacy through the model. A homomorphic
encryption-based transfer learning scheme is proposed in
[28], which encrypts features extracted from user data and
outsourced to honest-but-curious servers. In [29], [27], the
source domains first pre-train individual models over train-
ing datasets, and then encrypt their model parameters for
implementing secure outsourcing. These schemes are secure
against passive adversaries under the assumption of honest-
but-curious entities, where these entities are required to
follow the predefined protocols. Ma et al. [32] designed a
privacy-preserving multi-party knowledge transfer scheme
based on decision trees, which preserves the privacy of
transferred knowledge from multiple source domains to a
target domain. However, in real-world applications, it is
not realistic to blindly trust that all entities will strictly
follow the protocols. For example, there is the risk of a
dishonest majority of source domains who are unwilling to
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share his/her knowledge and deviates from the predefined
protocols during the learning process. In such a scenario, the
honest-but-curious assumption will no longer hold; thus,
such approaches are potentially vulnerable to the setting of
dishonest majority [33], [29], [27].

To remove the unrealistic honest-but-curious assump-
tion, the concept of covert security is introduced, which can
prevent dishonest majority from deviating the predefined
protocols [11], [34]. For example, Zheng et al. [35] presented
coopetitive learning (i.e., cooperative and competitive) with
SPDZ [36] to implement covert security, where SPDZ is a
practical MPC protocol extended to the dishonest setting.
Sharma et al. [37] designed SPDZ-based transfer learning to
implement one-way transfer learning with unreliable enti-
ties for covert security. However, the scheme only transfers
knowledge from the source domain to the target domain in
one way, which is clearly unsuitable in data-poor domains
as all domains lack learned knowledge. A comparative
summary is presented in Table 1.

TABLE 1: Transfer learning approaches: A comparative
summary

Approach Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

[18] SVM One-way ! % % %

[21] CNN One-way % ! % %

[24] CNN Two-way % % % %

[28] CNN One-way ! ! Semi-honest %

[29] Deep learning One-way ! ! Semi-honest %

[35] Linear model % ! ! Covert !

[37] CNN One-way ! ! Malicious %

VerifyTL CNN Cross ! ! Covert !

Notes. Fun1: Machine learning model; Fun2: One-way or Two-way transfer
learning; Fun3: Whether supporting multiple parties or not; Fun4: Whether
achieving lightweight transmission or not; Fun5: Semi-honest or Malicious or
Covert security model; Fun6: Whether supporting verification or not.

3 PRELIMINARIES

We will now briefly describe CNN, transfer learning, and
the SPDZ protocol [38] in Sections 3.1 to 3.3.

3.1 Convolutional Neural Network (CNN)
We adopt a CNN as the base model N et that consists
of convolution layers, pooling layers and fully connected
layers. Let X 0 and XL = y respectively be the input and the
desired output, where L is the number of layers and X l is
the activation map of layer l ∈ {1, ..., L}.
• Convolution layer Conv: A Conv layer inputs fea-

ture maps X l−1 and adopts the sliding convolutional
kernels ker for feature extraction. Given an input
X l−1 ∈ Rhl×wl×cl in 3rd-order tensors (i.e., an array
of matrixes) with the height hl, width wl and chan-
nels cl. A ker maps X l−1 to a weighted-sum X l as
defined in X l = f(W lX l−1), where W l is a weight
set of the l-th Conv layer.

• Pooling layer Pool: A Pool layer reduces the data
dimensions and trainable parameters in the network,
and the neurons in this layer are the outputs of a
cluster of neurons at the previous layer.

• Activation function ReLU: The activation function
is denoted as a Rectified Linear Unit ReLU(x) =

max(0, x), which significantly accelerates the train-
ing phase and prevents overfitting.

• Full connection layer Full: A Full layer fully con-
nects all its neurons to each neuron at another layer.
Given an input X l−1, the l-th full connection layer
outputs X l = ReLU(W lX l−1 + bl), where bl is a bias
term.

3.2 Transfer Learning

Transfer learning is a machine learning technique that
focuses on acquiring knowledge over data domains (i.e.,
source domains) and repurposing it on a related data do-
main (i.e., target domain). Generally, transfer learning com-
prises the following three steps:

• Extract knowledge. A source model is first pre-trained
over a source domain, prior to extracting knowledge
from training data and repurposing for the target
domain.

• Transfer knowledge. A source domain transfers ex-
tracted knowledge to a target domain for the con-
struction of a target model.

• Tune target model. The target model needs to be re-
fined over the transferred knowledge and the target
domain’s training data for model optimization.

3.3 SPDZ Protocol

SPDZ protocol, a state-of-the-art MPC protocol, is design
to mitigate covert adversaries with secret sharing-based
MACs, and tolerate corruption of the majority of parties.
More specifically, the SPDZ protocol is divided into online
and offline phases. The offline phase performs all computa-
tionally expensive public-key operations to create and pre-
share triples. The online phase only involves lightweight
primitives. The advantages of SPDZ are summarized as
follows.

• Privacy. Given a plaintext x, it is converted into n ad-
ditive shares x(i) ∈ Z2κ , where x ≡

∑
x(i) mod 2κ,

κ ∈ {8, 16, 32, 64, 128, ...} is the security parameter.
The privacy of these shares x(i) is guaranteed by the
additive secret sharing.

• Verifiability. The correctness of all inputs and out-
puts in SPDZ is verified by the MAC-check mech-
anism [33] with additive secret shares of MACs over
the ring of integers Z2κ . For n parties, each party Di
owns an additive share αi ∈ Z2κ of the fixed MAC
key α, i.e., α = α1 + α2 + ... + αn. Here, we define
x ∈ Z2κ is [·]-shared when a party holds a tuple
(x(i), γ(x)(i)), where γ(x)(i) is an additive share of
the corresponding MAC value γ(x) as

γ(x) =
∑

γ(x)(i) mod 2κ = αx. (1)

4 SYSTEM AND THREAT MODELS, AND DESIGN
GOALS

In this section, we will describe the system and threat
models, and the design goals.
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4.1 System Model
As depicted in Fig. 2, the system model consists of n data-
poor domains (i.e., Di, i ∈ [1, n]). Due to the limitation
of training data, it is challenging to construct a high-
performance model over a single data domain. Therefore,
it is necessary to construct collaborative transfer learning by
exchanging extracted knowledge with each other. Note that
a data domain Di is not only a source domain for transfer-
ring individual knowledge to other domains, but it is also a
target domain to leverage exchanged knowledge from the
other domains. During the transfer learning phase, there
may exist dishonest domains. A dishonest majority of data
domains may undermine the learning phase by behaving
maliciously to learn the privacy of other domains. Since the
confidentiality of exchanged knowledge and learning com-
putation needs to be guaranteed, it is important to construct
secure and verifiable collaborative transfer learning.

The entities in our system model perform the follow-
ing steps. First, each domain Di pre-trains a model N eti.
To train the l-th layer, N eti extracts knowledge over the
original data. The extracted knowledge is denoted as data
representations, where it is then split into n shares and
broadcasted to other n−1 domains (Step 1©). During the col-
laborative transfer learning phase, a transfer unit realizes se-
cure collaborative transfer learning among n domains, and
verifies the computation process to prevent n− 1 corrupted
domains (Step 2©). Then, the transferred representations are
returned to other data domains for tuning each local model
(Step 3©). Steps 1©- 3© iterate over multiple data domains
until a local CNN model is constructed (Step 4©).

4.2 Threat Model
In our threat model, a set of mutually distrustful data do-
mains D needs to securely implement an agreed computa-
tion protocol over their secret inputs. The protocol should be
securely executed to implement covert security. It indicates
that a changing number of corrupted domains cannot learn
additional information, or even lead to incorrect results. To
faithfully simulate the adversarial setting, the threat model
is defined in the presence of covert adversaries [39].

Covert security model. Covert adversaries may arbi-
trarily deviate from the agreed protocol, and at the same
time attempting to avoid being caught. Generally, covert ad-
versaries lie between the following two adversary models,
namely: the semi-honest model and the malicious model.

• Semi-honest model. In the passive adversarial setting, a
semi-honest adversary faithfully follows predefined
protocols but may attempt to infer sensitive infor-
mation from the other domains. Such an adversary
cannot collude with other semi-honest domains.

• Malicious model. In the active adversarial setting, a
malicious adversary can lead corrupted data do-
mains by arbitrarily deviating from the pre-defined
protocol. A group of corrupted data domains can be
an arbitrary proportion of D, even n− 1.

Note. The malicious model is stronger than the semi-
honest model. However, a semi-honest model is not a spe-
cial case of the malicious model [38]. The reason is that an
adversary in the ideal malicious model can tamper with

Fig. 2: System model.

inputs and outputs, but an adversary in the ideal semi-
honest model is not capable of doing so.

4.3 Design Goals
To achieve secure and verifiable collaborative transfer learn-
ing over multiple data-poor domains, VerifyTL is designed
to realize the following goals:

• Covert Security. To achieve privacy preservation, any
data domains in VerifyTL should not learn any other
information (including the private inputs and inter-
mediate operations) from the execution process, even
in the presence of n− 1 corrupted domains.

• Verifiability. Considering that data domains are
mutually-untrusted, VerifyTL should verify the cor-
rectness of execution process.

• Effectiveness. Each data domain should play the roles
of both source domain and target domain in the col-
laborative transfer phase, which aims to contribute
its knowledge to others and tune its CNN model over
the transferred knowledge.

5 PROPOSED VERIFYTL
Here, we first summarize a technical overview of VerifyTL,
and then design the secure cross unit to implement VerifyTL
in the two-domain setting, finally propose the secure weave
unit to extend VerifyTL to the multi-domain setting.

5.1 Technical Overview
The main motivation behind collaborative transfer learning
is that a source domain has no profits during transfer
learning. Thus, we utilize the collaborative transfer learning
to realize two-way transfer, which can contribute multi-
domain transferred knowledge to tune CNNs. The core of
VerifyTL relies on the following observations:

• Data representations on CNNs contain extracted
knowledge of original datasets.

• According to the correlation extent between two do-
mains, each data domain can set different contribu-
tion degree to tune its CNN model over transferred
representations from other domains.

• A covert adversary can corrupt any data domains,
which leads to privacy leakage and malicious com-
putation over dishonest majority.
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Fig. 3: Overview of VerifyTL system.

In this section, we design the underlying countermea-
sures based on above observations to achieve VerifyTL:

• Data representations contain sensitive information of
training data, and thus it is necessary to provide
security guarantees.

• In each data domain Di, a degree vector Θi is used
to control different contribution degrees of other
domains to implement flexible transfer learning.

• Collaborative transfer units, i.e., two-domain unit
(cross unit) and multi-domain unit (weave unit) are
proposed to provide secure and verifiable compu-
tation for the collaborative transfer learning against
dishonest behaviours.

Fig. 3 illustrates the main process of VerifyTL. Assume
that there are n data domains, each of which owns a lo-
cal training dataset. All data domains agree on the same
CNN architecture in advance. Each data domain initializes
a CNN model on training data, a pooling layer in a CNN
model extracts activation maps as the the inputs of secure
collaborative transfer learning. The SPDZ-based cross and
weave units are responsible for maintaining secure and
verifiable collaborative transfer. To address the issue of
privacy leakage, we propose ΠSPDZ

CrossUnit and ΠSPDZ
WeaveUnit to pro-

tect the transferred data representations and intermediate
computation results under the settings of two-domain and
multi-domain, respectively (Step 1©- 4©). To avoid the threat
of malicious behaviors, we design a MACCheck mechanism
to verify the correctness of inputs and computation results
(Step 5©). The notation definitions are listed in Table 2. The
details are described in the following sections.

5.2 Construction of Secure Cross Unit

Here, we design the cross unit to train networks over
data representations transferred between two data domains
(i.e., D1 and D2). A cross unit is employed to implement
collaborative transfer learning over activation maps after a
pooling layer. Fig. 4 plots the specified process of cross unit
between two CNN models N et1 and N et2.
Representation Extraction (Step 1©): Assume that the ar-
chitecture of a CNN model contains two pooling layers.
Each data domain pre-trains individual CNN model with
the same architecture over its training data. At each layer
of the network, activation maps [40], [41] are proposed as

TABLE 2: Notation descriptions

Notations Descriptions
[x]-shared Each data domain holds a tuple (x(i), γ(x)(i))
D The data domain set with the size of n
X l Activation map of l-th layer
N(0, 1) The distribution of zero mean and unit standard deviation
X̃ l Transferred activation map of l-th layer
p Precision
L Number of layers
hl, wl, cl the height, width and channels of X l

Θ, Θi Degree matrix and degree vector of Di

V Vector of elements at a certain location in all maps
N eti CNN network of the i-th data domain
Wi Model parameters {W l

i }Ll
L Loss function
α Global MAC key
γ(x) = αx MAC value of x
⊗ SPDZ multiplication computation over integers

data representations of training data. The overwhelming
majority of modern CNN architectures achieve activation
maps through a ReLU, which imposes a hard constraint on
the intrinsic structure of the maps. The activation map at the
l-th layer is denoted as X l ← Rhl×wl×cl . Then, each data
domain implements collaborative transfer learning. After a
pooling layer, a cross unit ΠSPDZ

CrossUnit is adopted to transfer
activation maps between two data domains.
Quantization (Step 2©): In a CNN network, activation
maps are normalized with batch normalization [42], and
the distribution of each activation map is N(0, 1). How-
ever, activation maps cannot be directly encoded and op-
erated in SPDZ libraries and thus require pre-process. We
adopt an approximation method to convert floating-point
numbers to fixed-point numbers with a precision p, where
p is the number of bits of approximation precision and
the upper bound of the approximation [1 − 2p,−1 + 2p].
For example, given a message m1 and m2, the encoded
numbers are defined as m′1 = Q(m1, p) = bm12pe and
m′2 = Q(m2, p) = bm22pe. Specifically, the result of mul-
tiplication operation in SPDZ can change the precision of
m′1 × m′2 to 22p while the result of an addition operation
m′1 + m′2 = (m1 + m2)2p in SPDZ is uninfluenced. This is
because the SPDZ computation runs over encoded numbers,
multiplication operations lead to the expand of precision
as m′1 × m′2 = m12p × m22p = m1m222p. Therefore, it is
necessary to keep a precision consistent with a truncation
T (m′1m

′
2, p) = bm

′
1m

′
2

2p e after each multiplication operation,
where T (x, p) = min(max(b x2p e,−1 + 2p), 1− 2p).

Secure and Verifiable Cross Unit (Step 3©): After the l-th
pooling layer, given two activation maps X l1,X l2 of N et1
and N et2, a cross unit yields transferred activation maps
X̃ l1 and X̃ l2, the specific computation is shown as[

x̃1

x̃2

]
=

[
Θ1 · V
Θ2 · V

]
=

[
θ11, θ12

θ21, θ22

] [
x1

x2

]
.

We describe these computation parameters as follows.

• Traversing activation maps X l1,X l2 ← Rhl×wl×cl ,
then we obtain hl × wl × cl vectors V = (x1, x2)T ,
where the elements x1 ∈ X l1, x2 ∈ X l2 are the
location-specific elements.
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Fig. 4: An example of cross unit. “Conv1” means the 1-
st convolutional layer, “Pool1” represents the 1-st pooling
layer, x1 and x2 is the location-directed element in activation
maps X l1 and X l2, respectively.

• The degree matrix Θ ∈ [0, 1] is a symmetric matrix
which weighes the degree of shared representations
and specified representations. Θ1 = (θ11, θ12) is the
degree vector of D1, while Θ2 = (θ21, θ22) is the
degree vector of D2. Specifically, the higher values
of θ11, θ22, the more specified representations of data
domains D1 and D2. Similarly, the higher values of
θ12, θ21 (θ12 = θ21), the more representations are
shared between D1 and D2.

• The computation results x̃1 ∈ X̃ l1 and x̃2 ∈ X̃ l2 rep-
resent the corresponding position in the transferred
activation maps.

In the following, we improve SPDZ protocol to securely
compute vector multiplication against dishonest majority.
The details will be described together with MAC check
mechanism.
MACCheck: Assume that some values of m have been
[·]-shared and partially opened, then all data domains D
receive additive shares of m. However, an adversary can
attempt to corrupt the inputs by replacing different and
inconsistent attacker-chosen inputs. It is unconfirmed that
these shares [m] and the opened value m are correct. Before
returning a opened value, it is necessary to verify these
shares and opened value with γ(m) = αm based on Eq. 1,
where α is the global MAC key. A MAC-check mechanism
is defined in Algorithm 1, which guarantees the correctness
of an opened value by verifying the relation among secret
shares and MAC shares.

As a motivating example, given the shares [m](i), each
domain Di receives the i-th share of m denoted as [m](i),
and agrees on a random vector r ← Zn2κ . Then, each domain
Di computes c←

∑|D|
j=1 rj ·m(j) by adding a random mask

tom(j) and γ(c)(i) ←
∑|D|
i=1 rj ·γ(m(j))i. Finally, all domains

implement MAC check with both c and γ(c)i. If the MAC
check fails, then ⊥ is outputed and the computation process
aborts. Otherwise, all domains open m←

∑|D|m(i) over m
and γ(m(i)).
VectorMul: To implement secure multiplication over secret
shares of two vectors (e.g., Θ and V), each data domain

Algorithm 1: MACCheck

Input: Each Di has a local MAC key α(i) and γ(mj)
(i)

and a public set {m(1),m(2), ...,m(n)}
Output: Success or failure.

1 Di agrees on a random vector r ← Zn
2κ , and all domains

obtain the same vector;
2 Di computes the public value c←

∑n
j=1 rj ·m

(j),
γ(c)(i) ←

∑D
i=1 rj · γ(m(j))(i) and σ(i) ← γ(c)(i) − α(i)c;

3 Di broadcasts σ(i), and all domains receive a set
{σ(1), σ(2), ..., σ(n)};

4 if Σn
i=1σ

(n) 6= 0 then
5 return ⊥ and abort.

Di executes SPDZ multiplication operations ⊗ over shares
x(i) ∈ V(i) and θ(i) ∈ Θ(i). Moreover, SPDZ creates and
shares tuples ([a], [b], [c]) in the offline phase, where c = ab,
and a, b, c ∈ Z2κ . We illustrate the specific processes as
follows.

• A triple (a, b, c) is involved, where c = a · b. Each
domain Di first operates the masked shares of µ(i) =
x(i) − a(i) and ν(i) = θ(i) − b(i) over received shares
a(i), b(i), x(i) and θ(i). Then, the masked shares are
broadcasted to all domains. Thus, each domain can
open values of µ and ν. Subsequently, each party Di
computes z(i) = c(i) + µb(i) + νa(i).

• Besides, to output a share [z], it is required to imple-
ment MACCheck to verify both the input and output.
If the MACCheck fails, then all domains receive ⊥
and abort. Otherwise, the final result z of domains is
opened with verified shares as

z = µν + Σ
|D|
i=1zi = µν + c+ µb+ νa

= c+ (x− a)b+ (θ − b)a+ (x− a)(θ − b) = xθ.

As a toy example of SPDZ-based vector multiplication,
given two vectors V = (x1, x2)T and Θ1 = (θ11, θ12),1 the
result z is produced as

z = Θ1 × V =
[
θ11, θ12

] [x1

x2

]
= θ11⊗x1 + θ12 ⊗ x2.

Cross unit ΠSPDZ
CrossUnit: As both activation maps and degree

matrix Θ include sensitive information of a data domain,
SPDZ protocols are adopt to execute secret sharing with
a bit of random masks injected into each computation
to prevent data leakage between both domains. All
domains quantize elements x ∈ V and θ ∈ Θi in
vectors with Q(x, p) and Q(θ, p) before implementing
secret sharing, then broadcast secret shares x(i), θ(i) to
other data domains, e.g., a value m is [·]-shared as [m] =
{m(1),m(2), ...,m(n), α(1), α(2), ..., α(n), γ(m)(1), γ(m)(2), ...,
γ(m)(n)}, where γ(m) = αm =

∑n
i=1 γ(m)(i).

In a cross unit, it involves vector multiplication as Vector-
Mul(Θi,V) to guarantee the correctness of the whole process
against covert adversaries, which is demonstrated as

Θ× V =

[
θ11, θ12

θ21, θ22

] [
x1

x2

]
=

[
VectorMul(θ1,V)
VectorMul(θ2,V)

]
=

[
θ11x1 + θ12x2

θ21x1 + θ22x2

]
=

[
x̃1

x̃2

]
.

1. The symbol “T” is the vector transpose.
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Fig. 5: The structure of weave unit.

The computation results x̃i ← T (x̃i, p) returned with a
truncation represent the same location in the transferred
activation maps X̃ li .
Tune model(Step 4©): To build a transfer model, the global
object of collaborative transfer learning is to tune local
models {N eti}ni as follows.

argmin
W1,W2

L(W1) + L(W2)

s.t. W1 ∈ N et1,W2 ∈ N et2.

Forward pass: Upon obtaining the transferred X̃ li , each do-
main Di implements X̃ l+1

i = f(W l
i X̃ li ) and outputs predic-

tion XL after L layers.
Backward pass: For minimizing loss function L measuring
the difference between predictions XL and ground-truth
labels y, the objective function can be optimized by the back-
propagation method. During the tune process of trained
networks, the global object is divided into local optimization
over a single domain Di. The gradients of data representa-
tions are back-propagated, the derivatives of loss function L
in a cross unit are defined as[ ∂L

∂X̃ l1
∂L
∂X̃ l2

]
=

[
θ11, θ21

θ12, θ22

] [ ∂L
∂X l1
∂L
∂X l2

]
, θ12 = θ21.

Remarks. Compared with previous transfer learning
schemes with one-way transfer, we implement collaborative
transfer between two data domains with ΠSPDZ

CrossUnit, which
can protect transferred knowledge between two domains,
and implement verification to prevent malicious behaviours
of certain data domain in the presence of covert adversaries.
During the whole process, each data domain is not only a
source domain to transfer individual extracted representa-
tions, but also a target domain to construct individual CNN
model over transferred representations of others. However,
the cross unit only supports the two-domain setting. Thus, it
is significant to design a secure and verifiable collaborative
transfer scheme under multi-domain setting.

5.3 Construction of Secure Weave Unit

To implement the multi-domain transfer learning, we
present a weave unit to transfer representations among
n domains, where n − 1 out of n domains can collude
with each other. The key idea is to combine as many data
representations as possible to transfer over n data domains.

As depicted in Fig. 2, the n × n degree matrix of Θ =
{Θi}ni (a degree vector Θi = (θi1, ..., θin) ) is denoted as2

2. The values of θij and θji are the correlational relationships be-
tween Di and Dj , i.e., θij = θji. Thus, Θ is a symmetric matrix.


θ11, θ12, ..., θ1n

θ21, θ22, ..., θ2n

...
θn1, θn2, ..., θnn

 .
The elements θ11, θ22,..., θnn in the diagonal line of the
matrix are denoted as θs that describes the degree of spec-
ified representations over individual data domains. The
other elements are denoted as θt that describes the degree
of transferred representations over other data domains. To
implement flexible transfer learning, θtij is defined as the
degree of transferred representations between Di and Dj , a
higher value of θtij means that more data representations of
Dj are transferred to Di, where θtij = θtji .

Specially, a weave unit is defined as
x̃1

x̃2

...
x̃n

 =


θs1 , θt12 , ..., θt1n
θt21 , θs2 , ..., θt2n

...
θtn1

, θtn2
, ..., θsn

 ·

x1

x2

...
xn

 ,
where V = (x1, x2, ..., xn), xi ∈ X li are the elements of the
same location in activation maps, i ∈ [1, n]. x̃1 is the result
of the corresponding position in the transferred activation
map X̃ l1, which is computed as

x̃1 = Θ1 · V = θs1x1 + θt12x2 + θt13x3 + ...+ θt1nxn.

A specified weave transferred result x̃1 is determined by θs
and θt. With a higher value of θs, the trainedN et focuses on
more data representations from individual images. With a
higher value of θt, N et is tuned over more transferred data
representations from other domains.
Secure and Verifiable Weave Unit ΠSPDZ

WeaveUnit: To guarantee
the security in the presence of dishonest majority, the algo-
rithm ΠSPDZ

WeaveUnit is presented. The whole process involves
the predefined MACCheck and SPDZ multiplication, which
is divided into several phases in Fig. 6.

6 SECURITY ANALYSIS

In this section, we first give the security definition, and then
analyze our proposed scheme to evaluate whether it satisfies
the privacy requirements in Section 4.2 under the following
security definitions.

6.1 Security Definition

We follow the security definition formalized in [38], [43], the
security of a protocol π is defined as the indistinguishability
between the real-model executed by an adversary A and an
ideal functionality with a simulator S , which is formalized
as REALπ,A

c≡ IDEALπ,S .
Real-world model REAL: The n-party protocol π is exe-
cuted over data domains D. Each data domain Di provides
the public inputs Inputpi = (X pi , Θp

i ) and secret inputs
Inputsi = (X si , Θs

i ), then the public output Outputpi and
secret output Outputsi are produced with random masks
ri ∈ Z2κ (i ∈ [1, n]). Besides, there exist some subsets of
multiple independent covert adversaries {A1,A2, ...,An},
where Ai can corrupt a data domain Di, and the number of
adversaries can be a majority of domains.
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Implementation of ΠSPDZ
WeaveUnit

For a data domain Di ∈ D (i ∈ [1, n]):
Phase 0 (Initialization):

1) Initialize the CNN model N eti over individual training data.
2) Set the degree vector Θi = (θi1, θi2, ..., θii, ...θin), (θij ∈ [0, 1]).

After l-th pooling layer in N eti
Phase 1 (Secret sharing):

1) Extract representation as the activation map X li .
2) Quantize the elements in X li and Θi with a precision p.
3) Implement secret sharing over all elements in Xi and Θi, e.g., a message m is split into n shares, m(n) =

m−
∑n−1
j=1 rj , m

(j) = rj (j ∈ [1, n− 1]) with n− 1 random numbers rj .
4) Broadcast shares X (j)

i and Θ
(j)
i to each data domain Dj ∈ D.

Phase 2 (Weave unit):
Receive shares X (i)

j of activation maps from other domain Dj ∈ D.
Trace each activation map xj ∈ X (i)

j (j ∈ [1, n]).

1) A vector V(i) = (x
(i)
1 , x

(i)
2 , ...x

(i)
i , ...x

(i)
n )T is obtained with the location-specified elements x(i)

j from X (i)
j (j ∈

[1, n]).
2) Compute z̃(i) ← VectorMul(Θ(i)

j ,V(i)).
3) Receive shares of computation result Ṽ(j) from each data domain Dj ∈ D.
4) Verify the final result by MACCheck(z̃(1), z̃(2), ..., z̃(n)), if the result is ⊥, then abort computation. Otherwise,

accept the final result z̃ =
∑n
j=1 z̃

(j), where z̃ = (z̃1, z̃2, ...z̃n)T , z̃ is the result of the same location in the
transferred map X̃ li .

Phase 3 (Tune model): The objective of weave transfer learning is to minimize joint losses L(W ) over n domains, which
is defined as

argmin
W

L(W ) =
n∑
i=1

L(Wi) s.t. Wi ∈ N eti.

Besides, the derivatives of loss function L is defined for training propose, which is illustrated as
∂L
∂X l1
∂L
∂X l2
...
∂L
∂X ln

 =


θs1 , θt21 , ..., θtn1

θt12 , θs2 , ..., θtn2

...
θt1n , θt2n , ..., θsn



∂L
∂X̃ l1
∂L
∂X̃ l2
...
∂L
∂X̃ ln

 .
To construct the collaborative transfer learning over multiple domains, Di is required to implement local optimization
by building its CNN model N eti.

Fig. 6: Detailed descriptions of ΠSPDZ
WeaveUnit.

Here, let Dc ⊂ D be the corrupted data domains and
Dh ⊂ D be the honest data domains, where D = Dc ∪ Dh.
In REAL, with the given inputs, the output of the protocol π
after a real-model execution is defined as follows:

REALπ,A = {REALπ,Ai(Dc, κ,Xi,Θi, ri)}i∈[1,n],

where κ is security parameter, X = {X1, ...,Xn} and Θ =
{Θ1, ...,Θn} are the set of activation maps and the set of
degree vectors from all data domains, respectively.
Ideal-world model IDEAL: The function f is exe-
cuted as a probabilistic n-party function in Proba-
bilistic Polynomial Time (PPT), which is defined as
f(κ, Inputs1, Inputp1, ..., Inputsn, Inputpn, r), and r is a set of ran-
dom masks. In IDEAL, all domains send individual inputs
to a trusted third party T that executes f over these inputs

and returns (Outputpi ,Outputsi ) to Di. After an ideal-model
execution with the presence of PPT simulators Si (i ∈ [1, n]),
the view is defined as

IDEALf,S = {IDEALf,Si(Dc, κ,Xi,Θi, ri)}i∈[1,n].

Hybrid model HYB: In the (g1, g2, ..., gl)-hybrid model,
the protocol π is executed in the real-world model, except
that data domains access to the trusted third party T for
evaluating n-party functions g1, g2, ..., gl, while these ideal
evaluations are executed in the ideal-world model.

HYBg1,g2,...,glπ,A = {HYBg1,g2,...,glπ,Ai (Dc, κ,Xi,Θi, ri)}i∈[1,n].

Here, the security of a protocol π is required with the real-
world execution or a (g1, g2, ..., gl)-hybrid execution of an
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ideal function f without leaking any sensitive information
to A.

Based on above models, the formal security definition is
provided as follows.

Definition 1. The n-party protocol π can securely imple-
ment n-party function f in a (g1, g2, ..., gl)-hybrid model
with an adversary A that can corrupt a subset of Dh, there
exists an ideal-model simulator S such that

IDEALf,S(Dc, κ,X ,Θ, r) c≡ REALf,A(Dc, κ,X ,Θ, r).

6.2 Security Proofs

Based on above security definition, we theoretically prove
that the security of the proposed system is computationally
indistinguishable in following theorems.

Theorem 1. Let the secure cross unit be a protocol that
securely computes a functionality ΠSPDZ

CrossUnit between two
data domains (D1 and D2) in the presence of a covert
adversary.

Proof. We consider the case with a semi-honest adversary
and a malicious adversary, respectively.
Semi-honest setting. Here, we respectively analyze the
security under two following settings with above real vs.
ideal model.

One semi-honest party (Dc
1,Dh

2): In this setting,D1 is semi-
honest that follows the protocol but may try to learn private
information of D2, and the honest D2 is denoted as Dh

2.
Here, the simulator S1 of the adversary A1 is constructed to
play the role of D1 by interacting with the other domain D2.
During the process of ΠSPDZ

CrossUnit, each domain implements
secret sharing over individual activation maps X and the
degree vector Θi, and then these shares are broadcasted to
other domains as the inputs of ΠSPDZ

CrossUnit. Since the values
of these shares are masked with random numbers r ← Z2κ ,
e.g., a value x =

∑2
i=1 x

(i) mod 2κ, where x(1) = x − r,
x(2) = r, the actual values of the inputs cannot be recovered
with the protection of random mask r. To implement Vec-
torMul over shares of activation maps X and degree vector
Θi, each domain performs local computation of addition
and multiplication operations over these shares, these local
computation results [z] are broadcasted to open the final
result. As the computation parameters [z] are still masked
with random numbers, once A1 receives these intermediate
parameters, it is still impossible to obtain the actual values
of intermediate parameters [z]. It is obvious that the views of
the semi-honest adversary A1 are indistinguishable in both
real and ideal model, as represented in

IDEALS1(X ,Θ,D)
c≡ REALA1

(X ,Θ,D).

In the same way, it is proved the security in the setting of
(Dh

1,Dc
2).

Two semi-honest parties (Dc
1,Dc

2): In this setting, both D1

and D2 are semi-honest, the simulators S1 and S2 are con-
structed to play the roles of D1 and D2, respectively. During
the process of interacting with the other domain in ΠSPDZ

CrossUnit,
all the inputs and intermediate parameters are [·]-shared
before being broadcasted to the other domain. The privacy
of the inputs and intermediate results can be protected as

the views of both A1 and A2 are indistinguishable between
the real and ideal model, which is represented as

IDEALS1,S2(X ,Θ,D)
c≡ REALA1,A2(X ,Θ,D).

Based on the above analysis, we conclude that our proto-
col ΠSPDZ

CrossUnit can securely implement under the setting of
(Dc

1,Dh
2) and (Dc

1,Dc
2), which satisfies privacy requirements

of semi-honest adversarial model Adv.
Malicious setting. Then, we denote fSPDZ for the secu-
rity analysis with a malicious adversary A. fSPDZ is an
ideal function that implements the SPDZ-based cross unit
ΠSPDZ

CrossUnit. Let a secure cross unit be a protocol that securely
computes a protocol ΠSPDZ

CrossUnit in the (fSPDZ)-hybrid model
between two data domains (D1 and D2) against a malicious
adversary statically corrupting n− 1 out of n data domains.

To prove the security of ΠSPDZ
CrossUnit in the (fSPDZ)-hybrid

model, we construct a simulator S to prove that the simula-
tor’s view is indistinguishable from the view of real-world
model, the specified process is demonstrated as follows.

1) S extracts the local activation maps after the building
of a CNN model. These activation maps are adopted for
interactive data representations between two data domains.

2) S simulates the pre-process phase by receiving the
inputs (i.e., activation maps Xi and a degree vector Θi)
from the adversary A, and generates additive shares before
broadcasting them to the other domain.

3) S executes the ideal functionality VectorMul over these
inputs from A. In VectorMul, S simulates the honest parties
with correct computation of vector multiplication over se-
cret shares. During these phases, S simulates several times
of SPDZ multiplication “⊗”, where all inputs and intermedi-
ate parameters are masked with statistically indistinguish-
able uniformly random numbers r ∈ Z2κ . Thus, the real
distributions of these inputs and intermediate parameters
in the simulator S are statistically indistinguishable from
the view of REAL.

4) S opens the final result over shares with the MAC-
Check mechanism by simulating fSPDZ. S receives the global
MAC key α, then splits α into two random shares, one
of which is sent to the other domain. For each input
share [m](i), S generates MAC shares γ(m)(i) to verify
whether secret shares and MAC shares satisfy the invariant
α(
∑
m(i))−

∑
γ(m)(i). The malicious data domain also pro-

vides additive shares and MAC shares for the verification of
a final result. If the validation fails, then MACCheck aborts
the computation. Otherwise, S obtains the final result for
the adversary A.

5) S follows the training process by tuning local model
for the construction of a CNN.

Based on the above analysis, the view of an adversary
A is indistinguishable between IDEAL and REAL with the
underlying SPDZ computation, which is represented as
IDEALΠSPDZ

CrossUnit,S(X ,Θ,D)
c≡ REALΠSPDZ

CrossUnit,A(X ,Θ,D).

Theorem 2. Let the secure weave unit be a protocol that
securely computes a functionality ΠSPDZ

WeaveUnit among multiple
data domains in the presence of covert adversaries.

Proof. We separately analyze ΠSPDZ
WeaveUnit with the semi-

honest setting and malicious setting.



10

Semi-honest setting. Let A be an augmented semi-honest
adversary and S be a simulator that is guaranteed to the
security of ΠSPDZ

WeaveUnit [43]. We construct the simulator S can
do everything what a data domain Di can do. Here, it is an
extension of Theorem 1 under the multi-domain settings.
Malicious setting. In the malicious ideal-model, each data
domain Di holds an activation map Xi (Di ∈ D). There is
a PPT simulator S can select and change the inputs for a
corrupted data domain, the main idea is that S executes a
series of modifications to our protocol. In our HYB model,
hyb denotes a modification to the predefined protocol, the
specified process is shown as follows.

In the hyb, S changes all secret shares (i.e., shares of an
activation map Xi and a degree vector Θi) sent by honest
data domains to other domains with shares of random
values. It is obvious that the adversary A cannot learn
extra shares of MAC key α(i). However, all honest do-
mains execute MACCheck over shares x(i) of the final result
and corresponding MAC key shares αi in Phase 2, where
x =

∑
x(i) mod 2κ, α =

∑
α(i) and γ(x)i = αix

(i). Each
data domain verifies the opened result x with MACCheck
by judging if this is true:

γ(x) =
∑

γ(x)i =
∑

α(i)x(i) mod 2κ = αx.

Since S can only change the content of secret shares, it
cannot modify an additive share of the corresponding MAC
value γ(x), which is computed by using additive shares
of MAC key αi on each data domain Di. MACCheck can
enable each domain to correctly compute in the weave unit.
If the inputs and opened values don’t pass the MAC check,
then all domains will receive “⊥” and abort computation.
Otherwise, the final computation results are returned to the
weave unit.

Therefore, the simulator S has completed the simulation
process, where S successfully simulates IDEAL without
leaking original values of activation mapsX and degree vec-
tors Θ for all data domains Di ∈ D. Thus, it indicates the in-
distinguishability between this hybrid HYB and real model
REAL based on above analysis, which is represented as
IDEALΠSPDZ

WeaveUnit,S(X ,Θ,D)
c≡ REALΠSPDZ

WeaveUnit,A(X ,Θ,D).

7 PERFORMANCE EVALUATION

In this section, we discuss experimental setup and evaluate
VerifyTL on real-world datasets, and we compare VerifyTL
with existing solutions.

7.1 Experimental Setup
The experiments were executed in Java and were imple-
mented on a six-core 2.80GHz machine with Inter i5-8400H
processor, 16GB RAM, running Ubuntu, and VerifyTL is
evaluated in parallel. We begin the experiments by introduc-
ing training datasets. The communication among different
data domains relies on TCP with authenticated channels
(through TLS).

Datasets. We evaluated our methods over two different
real-world datasets.

• MNIST3. MNIST contains 60K training samples and
10K test samples. Each sample is a grayscale of 10

3. http://yann.lecun.com/exdb/mnist

different handwritten digits formatted as 28 ∗ 28
images.

• Fashion MNIST4. The size of training data is 60K,
and the size of test data is 10K, while a fashion
MNIST instance is a 28 ∗ 28 image contains 10 labels
as “T-shirt”, “trouser”, “pullover”, “dress”, “coat”,
“sandal”, “shirt”, “sneaker”, “bag”, and “boot”.

Network. We adopt LeNet [44] as our CNN architecture.
The CNN model is denoted as Network I, which consists
of L = 7 layers such as 1 input layer, 2 convolution layers
Conv, 2 pooling layers Pool, 1 full connection layer Full
and 1 output layer. The details are shown in Table 3.

TABLE 3: Network I architecture

Layer Parameters Connections Output Unit
Conv1 156 89, 856 24 ∗ 24 ∗ 6 5 ∗ 5 ∗ 6
Pool2 12 4, 320 12 ∗ 12 ∗ 6 2 ∗ 2 ∗ 1
Conv3 1, 516 97, 024 8 ∗ 8 ∗ 12 5 ∗ 5 ∗ 12
Pool4 32 960 4 ∗ 4 ∗ 12 2 ∗ 2
Full5 1, 930 1, 930 10 ∗ 1 ∗ 1 12

Notes. The size of the output and unit on each layer is denoted as
hl ∗ wl ∗ cl. The unit is a convolution kernel on a Conv layer, it is a
pooling unit on a Pool layer, and it is neurons on a Full layer. Full5
layer contains 1,930 trainable parameters and 10 neurons from the
design of the output layer.

Parameters. We set up the parameters in VerifyTL with
a security parameter κ = 128, precision p = 28 and the size
of data domains n varies in the range [2, 10]. All domains
adopt the same CNN model N et, where batch size = 128,
learning rate = 0.01, dropout = 0.8.

7.2 Effectiveness
Fig. 7 evaluates the test accuracy of VerifyTL according to
the following factors. We adopt the 10-fold cross validation
technique for CNN accuracy.

Degree Vector. Fig. 7(a) depicts the test accuracy of
a data domain D1 by varying with the value of degree
vector Θ1, where the size of training data of D1 is 1K,
and the size of training data of D2 is 5K, and VerifyTL
runs over two data domains D1, D2. We discover that
the accuracy increases with a bigger value of θ12. The
reason is that a bigger θ12 means more knowledge can be
employed from D2 to D1, and D2 owns larger training
data for the accuracy improvement on D1. The training
accuracy is stable when Epoch = 10, the accuracy is 97.6%
of Θ1 = (θ11 = 0.9, θ12 = 0.1), the accuracy is 93.4%
of Θ1 = (θ11 = 0.5, θ12 = 0.5), the accuracy is 91.3% of
Θ1 = (θ11 = 0.1, θ12 = 0.9), respectively.

Transfer Unit. Fig. 7(b) describes the variation of the
test accuracy with a cross unit ΠSPDZ

CrossUnit, which is adopted
after Pool2, Pool4, and Pool2&Pool4. The size of training
samples on each domain is 1K. We discover that ΠSPDZ

CrossUnit
adopted after Pool2 has almost the same the accuracy
as ΠSPDZ

CrossUnit adopted after Pool4, while ΠSPDZ
CrossUnit after

Pool2&Pool4 has better accuracy than others. Since there
are more data representations are involved in the CNN
building on two data domains, ΠSPDZ

CrossUnit is adopted after
all pooling layers Pool2&Pool4 to guarantee accuracy.

4. https://www.kaggle.com/zalando-research/fashionmnist
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(a) (b) (c) (d) (e)

Fig. 7: Accuracy of VerifyTL on MNIST: (a) Accuracy of D1, with different degree vector Θ1. (b) Accuracy for a cross unit
after Pool1, Pool2 and Pool1&Pool2. (c) Accuracy of VerifyTL for different size of data domains. (d) Accuracy for VerifyTL
and plaintext . (e) Accuracy for different networks.

Based on above evaluations, in our default evaluation,
we consider that the number of data domains n ∈ [2, 10],
and 1K training samples on each data domain Di. We set
the elements in a degree vector Θi, where θt = 0.1, θs =
1−Σθtij . A transfer unit is adopted after each pooling layer
(i.e., Pool2&Pool4). Besides, without emphasis, we employ
the Network I architecture in VerifyTL.

Data Domains. Fig. 7(c) shows that the test accuracy
varies with the increasing size of data domains n ∈ [2, 5].
We observe that the test accuracy increases with the growth
of n. When n = 5, the accuracy is 98.2%. This is because
that more data representations are transferred among data
domains with the increase of n. Thus, more knowledge can
be adopted to improve accuracy on each data domain.

Plaintext Comparison. We show the accuracy comparison
between VerifyTL and the proposed scheme over plaintexts
(Fig. 7(d)). We note that the accuracy of VerifyTL is similar to
that of plaintexts with negligible accuracy difference. When
n = 2, the accuracy of VerifyTL is 90.4%, while the accuracy
over plaintexts is 90.6%. This is because VerifyTL enables
the privacy and verification over secret shares by adopting
the approximation method to convert a rational number to
the integer field, which may incur computation errors.

Network architecture. We evaluate the impact of different
network architectures on the accuracy of VerifyTL. Fig. 7(e)
illustrates the test accuracy for different network architec-
tures, where Epoch = 10 and n = 5. We tested our evalu-
ation over three kinds of network architectures (Network I,
II, III), where Network II has the simplest architecture, while
Network III has the most sophisticated one. The details are
represented in Tables 3 – 5. We notice the accuracies on all
Network I, II, III of VerifyTL have significant improvement
than those without transfer units. It is consistent with our
scheme that VerifyTL is applicable to different kinds of CNN
architectures.

TABLE 4: Network II architecture

Layer Parameters Connections Output Unit
Conv1 520 299, 520 24 ∗ 24 ∗ 20 5 ∗ 5 ∗ 20
Pool2 40 14, 400 12 ∗ 12 ∗ 20 2 ∗ 2 ∗ 1
Full3 288, 000 288, 000 10 ∗ 1 ∗ 1 100

7.3 Efficiency

Theoretical Analysis. We analyze the computational com-
plexity and communication complexity of a secure and

TABLE 5: Network III architecture

Layer Parameters Connections Output Unit
Conv1 156 122, 304 28 ∗ 28 ∗ 6 5 ∗ 5 ∗ 6
Pool2 12 5, 880 14 ∗ 14 ∗ 6 2 ∗ 2 ∗ 1
Conv3 1, 516 151, 600 10 ∗ 10 ∗ 16 5 ∗ 5 ∗ 16
Pool4 32 2, 000 5 ∗ 5 ∗ 16 2 ∗ 2 ∗ 1
Conv5 48, 120 48, 120 120 ∗ 1 ∗ 1 5 ∗ 5 ∗ 120
Full6 10, 164 10, 164 10 ∗ 1 ∗ 1 84

verifiable transfer unit.
Computational complexity. In a secure and verifiable trans-

fer unit, the computational complexity mainly relies on
VectorMul as the setup stage is operated offline, thus com-
putation and communication overheads are ignored. Since
the computational complexity of VectorMul depends on the
size of vectors Vi and Θi, n times SPDZ multiplication
operations are involved in a VectorMul, which costs O(n)
in a SPDZ multiplication with linear opearations. Thus,
VectorMul costs O(n2) time over all domains. As the size
of transferred activation maps is X l ← Rhl×wl×cl , the size
of transferred degree vector Θi is n, it involves hl × wl × cl
times VectorMul, thus a secure and verifiable transfer unit
costs O(n2 ∗ hl ∗ wl ∗ cl) time over all domains.

Communication complexity. A secure and verifiable col-
laborative transfer unit has communication complexity
O(n2(hl ∗ wl ∗ cl + n)): Since the communication com-
plexity relies on the size of activation maps and the num-
ber of data domains, each data domains communicates
O(n(hl ∗ wl ∗ cl + n)) data items, where the size of a
transferred activation map is hl ∗ wl ∗ cl, the size of a
transferred degree vector is n.

Experimental Analysis. Fig. 8 demonstrates the execution
time of the following sections of VerifyTL, which is an
average over 100 trials.

VectorMul. Fig. 8(a) shows the running time of VectorMul
with the semi-honest model and covert security model,
respectively. We observe that the running time increases
with the growth of data domains D. Since a bigger size of
vector X l and Θi is involved, more times of SPDZ multi-
plication are executed. Also, VectorMul costs more overhead
in our covert security model to guarantee the verification
of computation results compared with VectorMul without
MACCheck in the semi-honest setting. This is expected, as
verification process is required to spend execution time. It
creates a tradeoff between security and efficiency as a covert



12

(a) (b) (c) (d)

Fig. 8: Performance of VerifyTL: (a) Running time of VectorMul. (b) Running time of transfer unit. (c) Training time of
VerifyTL with number of data domains (d) Training time of VerifyTL and plaintext (n = 2).

model provides a higher security level than a semi-honest.
When n = 10, VectorMul in our threat model costs 6.93 ms,
while VectorMul in semi-honest model costs 2.14 ms. Thus,
the increase of verification time is within an acceptable limit
for implementing the covert security model.

Transfer Unit. In Fig. 8(b), we discover that the execution
time of a transfer unit is affected by the size of data domains
and the size of inputs. The running time of a transfer unit
after Pool2 is more than that of it after Pool4. The reason is
that the input of a transfer unit after a Pool2 layer is XPool2
with the size of 12 ∗ 12 ∗ 6, while the input of a transfer unit
after a Pool4 layer is XPool4 with the size of 4 ∗ 4 ∗ 12, thus
more elements are involved in a transfer unit after Pool2
for SPDZ computation. When n = 10, a transfer unit after
Pool2 costs 5.98 s, while a transfer unit after Pool4 costs
1.33 s.

VerifyTL. Fig. 8(c) depicts the influence of the size of data
domains on the training time. We notice that the training
time of VerifyTL is increased as the growth of data domains.
It represents that more activation maps are transferred to
tune more local CNN model with the increase of D. When
Epoch = 15, the training time is 117.7 min with n = 5,
while the training time is 67.1 min with n = 2.

In Fig. 8(d), we notice that the running time of VerifyTL
is larger than that of the proposed scheme over plaintexts,
where n = 2. When Epoch = 10, the training time is
44.8 min and that of plaintexts is 19.2 min. This is because
VerifyTL implements a transfer unit over secret shares with
SPDZ computation to guarantee privacy and verification.

7.4 Comparative Evaluations
We compare VerifyTL with original learning without trans-
fer units [44], federated learning [45] and cross-stitch trans-
fer learning [24], where federated learning is a kind of
distributed machine learning scheme.

Based on Table 6, we conclude that VerifyTL provides a
stronger security model and achieves outstanding accuracy
results that can rival with other approaches. The accuracy
of the original learning with a Network I model without
any collaborative transfer units is compared with VerifyTL.
VerifyTL implements a significant accuracy improvement
and provides privacy and verification with an acceptable
training time. Also, compared with [24], VerifyTL maintains
outstanding accuracy and extends cross transfer learning
from the two-domain setting to the multi-domain setting

TABLE 6: Test accuracy and training time comparison

Method Accuracy Training time Threat model
Original learning 74.6% (73.6%) 0.32 h —
Cross-stitch [24] 87.4% (86.8%) 0.37 h —
Federated learning [45] 92.3% (90.2%) 14.8 h Semi-honest
VerifyTL 98.2% (97.6%) 1.31 h Covert

Notes. Black text is test accuracy on MNIST, red text is test accuracy
on Fashion MNIST, where the size of training data on each domain is
1K samples, andEpoch = 10. Original learning is a Network I model
trained solely on a single data domain without any collaborative
transfer units, where n = 1. In [24], n = 2. In [45] and VerifyTL,
n = 5.

with strong privacy preservations, where [24] runs over
plaintexts without privacy preservations. Besides, VerifyTL
performs better than federated learning [45] in both security,
efficiency and effectiveness. In federated learning [45], a
data domain is required to securely outsource trainable
parameters at each layer to a semi-honest central server.
There are total 3,646 parameters in a Network I model, which
costs huge computation overhead for secure outsourcing.
The reason for the computation overhead is that [45] is
based on Paillier cryptosystem, which involves more ex-
pensive exponent arithmetic to guarantee the privacy by
encrypting the large size of transmitted CNN parameters
during each training epoch. Unfortunately, federated learn-
ing cannot support covert security, of which the correctness
of behaviours among distributed data domains and the cen-
tral server cannot be guaranteed. Once a covert adversary
corrupts n−1 data domains, it will lead to incorrect training
to undermine the accuracy.

8 CONCLUSION

In this paper, we proposed a secure and verifiable collab-
orative transfer learning (VerifyTL) scheme. The scheme
facilitates the collaborative transfer over extracted knowl-
edge among multiple data domains in a strong privacy pre-
serving manner, and allows verification against dishonest
majority for implementing covert security. We mathemati-
cally proved the security of VerifyTL, as well as evaluating
its performance using two real-world datasets MNIST and
Fashion MNIST, i.e., the performance gains with VerifyTL
up to + 23.6% for MNIST and +24.0% for Fashion MNIST
compared with original learning.
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