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ABSTRACT
Graph-structured data widely exist in diverse real-world scenarios,
analysis of these graphs can uncover valuable insights about their
respective application domains. However, most previous works
focused on learning node representation from a single fixed graph,
while many real-world scenarios require representations to be
quickly generated for unseen nodes, new edges, or entirely new
graphs. This inductive ability is essential for high-throughtput ma-
chine learning systems. However, this inductive graph representa-
tion problem is quite difficult, compared to the transductive setting,
for that generalizing to unseen nodes requires new subgraphs con-
taining the new nodes to be aligned to the neural network trained
already. Meanwhile, following a message passing framework, graph
neural network (GNN) is an inductive and powerful graph repre-
sentation tool. We further explore inductive GNN from more spe-
cific perspectives: (1) generalizing GNN across graphs, in which
we tackle with the problem of semi-supervised node classification
across graphs; (2) generalizingGNN across time, inwhichwemainly
solve the problem of temporal link prediction; (3) generalizing GNN
across tasks; (4) generalizing GNN across locations.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Neural networks.
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1 INTRODUCTION
Graph-structured data widely exist in diverse real-world scenarios,
such as social networks, e-commerce graphs, citation graphs, and
biological networks. Analysis of these graphs can uncover valu-
able insights about their respective application domains [1]. And
effective analytics can bring benefits for lots of applications, i.e.,
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node classification, node recommendation, link prediction and so
on. For instance, by analysing a graph of social network (e.g., Face-
book/Twitter/Wechat), we can classify users, recommend friends,
and predict whether an interaction will happen between two users.

Although graph analytics is beneficial and essential, most ex-
isting graph analytics approaches suffer the high space and com-
putation cost. To conduct the expensive graph analytics, lots of
approaches have been proposed, including the new space-efficient
graph storage [6], the distributed graph data processing framework
(e.g., GraphX [3], GraphLab [8]), and so on.

Additionally, graph representation learning provides an effective
way to the graph analytics problem. To be more specific, graph
representation learning transforms a graph into a low dimensional
space in which the graph information is preserved as much as
possible. After representing a graph into a set of low dimensional
vectors, the downstream graph algorithms can then be computed
efficiently.

However, most previous works focused on learning node rep-
resentation from a single fixed graph, while many real-world sce-
narios require representations to be quickly generated for unseen
nodes, new edges, or entirely new graphs. This inductive ability
[4] is essential for high-throughtput machine learning systems, op-
erating on evolving graphs and constantly meeting unseen nodes
(e.g., posts on Wikipedia, users and items on Amazon). Besides, an
inductive approach can also facilitates generalization across graphs
with the same form of features: for instance, one can train a neu-
ral network on protein-protein interaction graphs derived from a
model organism, and then easily produce node representations for
graphs from the new organisms, by using the trained model.

This inductive graph representation problem is quite difficult,
compared to the transductive setting, for that generalizing to unseen
nodes requires new subgraphs containing the new nodes to be
aligned to the neural network trained already.Meanwhile, following
a message passing framework, in which each node receives, maps
and aggregates messages from its neighboring nodes in multiple
layers to generate its own embedding vector, graph neural network
(GNN) [12] is an inductive and powerful graph representation tool.
And my main exploration is improving the generalization of GNNs.

2 PRESENTEDWORK

Generalizing GNN across graphs. For semi-supervised node clas-
sification [5] across graphs, recent graph neural networks (GNNs)
integrate node features with network structures, thus enabling
inductive node classification models that can be applied to new
nodes or even new graphs in the same feature space. However,
inter-graph differences still exist across graphs within the same
domain. Thus, training just one global model (e.g., a state-of-the-art
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GNN) to handle all new graphs, whilst ignoring the inter-graph
differences, can lead to suboptimal performance. In this work, we
study the problem of inductive node classification across graphs.
Unlike existing one-model-fits-all approaches, we propose a novel
meta-inductive framework called MI-GNN [11] to customize the in-
ductive model to each graph under a meta-learning paradigm. That
is, MI-GNN does not directly learn an inductive model; it learns
the general knowledge of how to train a model for semi-supervised
node classification on new graphs. To cope with the differences
across graphs, MI-GNN employs a dual adaptation mechanism at
both the graph and task levels. More specifically, we learn a graph
prior to adapt for the graph-level differences, and a task prior to
adapt for the task-level differences conditioned on a graph. Exten-
sive experiments on five real-world graph collections demonstrate
the effectiveness of our proposed model.

Generalizing GNN across time. For temporal link prediction
[2], in which a future edge containing old or new nodes will be
predicted. However, most existing works resort to taking discrete
snapshots of the temporal graph, or are not inductive to deal with
new nodes, or do not model the exciting effects which is the abil-
ity of events to influence the occurrence of another event. In this
work, We propose TREND [10], a novel framework for temporal
graph representation learning, driven by TempoRal Event and Node
Dynamics and built upon a Hawkes process-based graph neural
network (GNN). TREND presents a few major advantages: (1) it
is inductive due to its GNN architecture; (2) it captures the excit-
ing effects between events by the adoption of the Hawkes process;
(3) as our main novelty, it captures the individual and collective
characteristics of events by integrating both event and node dy-
namics, driving a more precise modeling of the temporal process.
Extensive experiments on four real-world datasets demonstrate the
effectiveness of our proposed model.

3 ONGOING AND PROPOSED RESEARCH

Generalizing GNN across tasks. Web text classification is a fun-
damental research problem with many real-world applications,
such as predicting the topics of online articles and the categories
of e-commerce product descriptions. However, the so-called low-
resource text classification, given no or few labeled samples, presents
a serious concern for supervised learning. Meanwhile, many Web
texts are inherently grounded on a network structure, such as a
hyperlink/citation network for online articles, and a user-item pur-
chase network for e-commerce products. These graph structures
capture rich semantic relationships, which can potentially aug-
ment low-resource text classification. In this work, we propose
a novel model called Graph-Grounded Pre-training and Prompt
tuning (G2P2) to address low-resource Web text classification in
a two-pronged approach: During pre-training, we propose three
graph interaction-based contrastive strategies; during testing, we
explore prompt tuning with graph contexts-based initialization. Ex-
tensive experiments on four real-world datasets demonstrate the
strength of G2P2 in zero- and few-shot text classification in Web
applications.

Generalizing GNN across locations. The social networks in
different locations show different structures and semantics. There

is a need to make different GNNs for different graphs. Meanwhile,
graphs in real world tend to have large scales, e.g., having more than
one million nodes or edges. Hence, that training different GNNs
for different graphs is not practical. In this work, we resort to the
prompt learning [7] and designs customized prompts for graphs in
different locations. Without training on each graphs, we still can
get different GNNs by integrating different prompts with just one
GNN.

4 RESEARCH ISSUES FOR DISCUSSION
Firstly, how do we design prompts for different downstream tasks,
e.g., node classification, graph classification to align them with the
pre-trained GNN? Since the label-free pre-training task, like link
prediction, is often different from downstream tasks, there is a gap
between them.

Secondly, how do we design pre-training strategy as well as
corresponding prompts for graph anomaly detection [9] in different
locations? Anomaly detection is different from the common node
classification task, e.g., linked normal and abnormal nodes should
have different embeddings in anomaly detection while linked nodes
tend to get similar embeddings in common cases. Besides, graphs
in different locations prefer different GNNs.
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