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Invalidator: Automated Patch Correctness
Assessment via Semantic and Syntactic

Reasoning

Thanh Le-Cong, Duc-Minh Luong, Xuan Bach D. Le, David Lo,

Nhat-Hoa Tran, Bui Quang-Huy and Quyet-Thang Huynh

Abstract—Automated program repair (APR) has been gaining ground recently. However, a significant challenge that still remains is

patch overfitting, in which APR-generated patches plausibly pass the validation test suite but fail to generalize. A common practice to

assess the correctness of APR-generated patches is to judge whether they are equivalent to ground-truth, i.e., developer-written

patches, by either generating additional test cases or employing human manual inspections. The former often requires the generation

of at least one test witnessing the behavioral differences between the APR-patched and developer-patched programs. Searching for

the witnessing test, however, can be difficult as the search space can be enormous. Meanwhile, the latter is prone to human biases

and requires repetitive and expensive manual effort.

In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches

via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures

program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program

and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a

APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In

case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled

patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to

leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test

cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a

program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on

real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting

for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines

by 14% and 19% in terms of Accuracy and F-Measure, respectively.

Index Terms—Automated Patch Correctness Assessment, Overfitting problem, Automated Program Repair, Program Invariants, Code

Representations

✦

1 INTRODUCTION

Automated program repair (APR) is a promising approach
to alleviate the onerous burden on developers to manually
fix bugs. Over the years, various APR techniques have been
proposed [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], with several breakthroughs
that inspired potential practical adoption of APR. Notably,
Facebook has recently deployed SapFix [18], the first-ever
industrial-scale automatic bug-fixing system, for suggesting
fixes to developers in real-world products. Despite these
recent successes, APR still suffers from a major challenge,
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namely test overfitting [19], [20], [21], in which a generated
patch may pass all test cases but still fails to generalize to
the intended behaviors of the program. According to Qi et
al. [3] 98% of the plausible patches generated by GenProg [1]
are overfitting.

Detecting overfitting patches is one key challenge that is
important not only to ensure fair comparisons between APR
techniques but also to enable the practical adoption of APR
by developers. Often, one APR technique claims to be better
than others only solely in terms of the number of bugs for
which it can generate “correct” patches. Furthermore, recent
research suggested that low-quality patches may negatively
affect developers’ performance [22]. A fundamental ques-
tion then arises,

”How can we determine whether a patch is correct?”

Unfortunately, even with the availability of the ground truth
(developer-patched) program, it is difficult to determine
whether an APR-patched program is correct. That is be-
cause, unless the APR-patched program and the ground
truth program are exactly syntactically the same, determin-
ing whether two programs are semantically equivalent is
indeed an undecidable problem [23].

http://arxiv.org/abs/2301.01113v2
ppyeo
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Recent approaches in automated program repair (APR)
have explored various techniques to assess the correctness
of APR-generated patches in comparison to developer-
written patches as ground truth. These approaches include
the use of test-suite augmentation and human manual
inspections. While being human manual inspections are
effective [24], they are prone to human biases, are expen-
sive, and require manual, repetitive tasks. On the other
hand, test-suite augmentation approaches, such as those
proposed by Xin et al. [25] and Xiong et al. [8], are fully
automated, but they require the generation of at least one
test case to observe behavioral differences between the APR-
patched program and the ground truth program. However,
a recent study [24] has shown that test-suite augmentation
approaches are often ineffective as the search space for
bug-witnessing test cases can be large. Even state-of-the-
art test case generation techniques, such as Randoop [26]
and DIFFTGEN [25], can only identify 22% of the overfitting
patches generated by APR tools [24]. Furthermore, Xin et
al. [25] reported that in many cases, the state-of-the-art test
generator EVOSUITE [27] failed to generate any test methods
that exercise the code changes introduced in the generated
patches, and thus failed to identify behavioral differences
between the patches and the ground truth.

In this paper, we introduce a novel technique called
INVALIDATOR that combines semantic and syntactic rea-
soning to automatically assess the correctness of patches
generated by APR techniques. INVALIDATOR leverages pro-
gram invariants to reason about program semantics and
pre-trained language models to capture program syntax by
learning language semantics from a large code corpus. Simi-
lar to other automated patch correctness assessment (APAC)
techniques, INVALIDATOR utilizes behavioral discrepancies
between the APR-patched and ground truth programs to
determine the patch’s correctness. However, conceptually,
INVALIDATOR is different from the strategy employed by
existing APAC techniques such as DIFFTGEN [25], PATCH-
SIM [28], or RANDOOP [26], [24]. These techniques generate
new tests to augment the current test suite, in which each
test generates one execution. As a result, the chance to hit an
execution that reveals a behavioral difference between the
APR-patched and ground truth programs is approximately
linearly proportional to the number of tests generated. In
contrast, INVALIDATOR only uses the current test suite and
infers program invariants that naturally generalize beyond
the test suite. The generalization of program invariants
allows INVALIDATOR to effectively and semantically rea-
son about program correctness. Additionally, INVALIDATOR

further augments program semantic reasoning by incorpo-
rating syntactic reasoning to enhance its effectiveness. We
describe the details of the semantic and syntactic reasoning
in INVALIDATOR below.

Given an APR-generated patch, the original buggy pro-
gram, and its correct (ground truth) version, INVALIDATOR

works in two main phases.
1© Semantic-based Classifier. The semantic-based classifier

is built based on two high-level intuitions. First, program
invariants that are maintained in both the buggy and cor-
rect (ground truth) versions of a program can serve as
the correct specifications of the program. Second, program
invariants that only exist in the buggy program but do

not exist in the correct version may represent the error
specifications of the program. INVALIDATOR determines that
a machine-generated patch overfits if the machine-patched
program: (1) violates correct specifications or (2) maintains
error specifications. Particularly, INVALIDATOR first auto-
matically infers likely invariants of each program based on
its original test suite by using DAIKON [29], a well-known
invariant inference tool. INVALIDATOR then constructs the
set of correct and error specifications, which serve as approx-
imate specifications for the program under test. Based on
the inferred specifications, INVALIDATOR determines that a
patch is overfitting if invariants inferred from the machine-
patched program either violate the correct specifications or
maintain error specifications.

2© Syntactic-based Classifier. In case the invariant-based
specification inference fails to determine an overfitting
patch, INVALIDATOR further the overfitting patches via lan-
guage semantic differences between the machine-generated
patch and its buggy and correct version. Specifically, IN-
VALIDATOR employs a pre-trained language model, namely
CODEBERT to extract source syntactic features from the
source code of each program. INVALIDATOR then measures
the differences by a set of comparison functions, e.g., sub-
traction or similarity. Finally, INVALIDATOR uses a trained
model from labeled data to estimate the likelihood of the
machine-generated patch being overfitting based on the
syntactic proximity.

We conducted our experiments on a dataset of 885
patches which include 508 overfitting patches and 377 cor-
rect ones generated for large real-world programs in the
Defects4J dataset. To investigate the effectiveness of our
approach, we compared INVALIDATOR against the state-of-
the-art APAC techniques, consisting of RGT [30], ODS [31],
BERT+LR [32], PATCHSIM [28], DIFFTGEN [25], ANTI-
PATTERNS [33], DAIKON [34]. Experiment results showed
that INVALIDATOR correctly classified 79% of overfitting
patches, accounting for 23% more overfitting patches being
detected as compared to the best baseline. INVALIDATOR

also remarkably outperforms the best baselines by 14% (0.81
vs. 0.68) and 19% (0.87 vs. 0.76) in terms of Accuracy and F1-
score, respectively.

In summary, we made the following contributions:

• We introduced INVALIDATOR, a novel technique
that uses both semantic reasoning (via program in-
variants) and syntactic reasoning (via source code
features) to automatically assess APR-generated
patches. Our empirical evaluation demonstrated that
our approach effectively detects 79% overfitting
patches with a precision of 97%.

• We introduced two overfitting rules that rely on
program invariants to assess APR-generated patches.
Our empirical evaluation demonstrated that these
rules can effectively identify 51% of overfitting
patches with a precision of 97%.

• We proposed using syntactic reasoning from the
program source code to augment semantic reasoning
from the two aforementioned overfitting rules. Our
empirical evaluation showed that syntactic reasoning
can boost the performance of our approach by 35%
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and 30% in terms of Accuracy and F1-score, respec-
tively.

• We conducted experiments on 885 machine-
generated patches for the Defects4J benchmark. The
experiment results showed that the unique combina-
tion of syntactic and semantic reasoning empowers
INVALIDATOR to achieve substantial improvements
(i.e., 19% and 14% for Accuracy and F1-score, respec-
tively) over state-of-the-art baselines.

The rest of this paper is organized as follows: Section 2
provides the background information on the overfitting
problem, APAC, and program invariants. Section 3 presents
a motivating example for our approach, followed by Sec-
tion 4 which describes our approach in detail. Section 5
presents our experimental setup and results. In addition,
Section 6 discusses the efficiency, potential applications, and
threats to validity of our approach. Section 7 provides an
overview of related work in this area. Finally, in Section 8,
we conclude our paper and discuss future work.

2 BACKGROUND

This section presents an outline of recent automated pro-
gram repair (APR) techniques and the overfitting problem
in APR and discusses techniques for assessing the correct-
ness of APR-generated patches. We subsequently discuss
program invariants and dynamic invariant inference.

2.1 Automated Program Repair

Program Repair. Given a buggy program and a set of test
cases in which there exists at least one failing test, the overall
goal of automated program repair (APR) techniques is to
generate a patch that passes all the test cases while not
introducing new bugs. Generally, APR techniques can be
categorized into two main families, including search-based
repair and semantic-based repair. Search-based techniques
often use meta-heuristic algorithms, e.g. genetic program-
ming [1], random search [35], or learning algorithms such
as data mining and machine learning, e.g., [4], [36], [13],
and [8], to apply mutations and evolve the buggy program
until they find a patch passing the test suite. Semantics-
based repair techniques, e.g. ANGELIX [7], S3 [9], JFIX [37],
use semantic analysis, e.g. symbolic execution, and program
synthesis to construct patches that satisfy certain semantic
constraints. We will elaborate in detail on these techniques
in the related work section (Section 7).

Overfitting. One primary challenge in automated program
repair (APR) is that APR-generated patches can be tests-
adequate but may not generalize. This phenomenon, known
as the ’test overfitting’ problem, refers to situations where
APR-generated patches successfully pass all test cases but
are not semantically correct, as demonstrated in prior
work [3], [19], [20], [21]. Early APR techniques utilized an
existing test suite as an oracle to evaluate the correctness of
generated patches [38], [1]. Specifically, a patch is considered
correct if it successfully passes all test cases and incorrect
otherwise [38], [1]. However, recent studies [3], [19] showed
that this assessment method is insufficient to ensure the
correctness of generated patches, as the test suite used for

evaluation is often incomplete. Through manual analysis, Qi
et. al. [3] have shown that the majority of patches generated
by search-based APR techniques, such as GENPROG [1],
AE [39], and RSREPAIR [35] exhibit overfitting. Similarly,
through automated evaluation, Le et al. [20] also have
reported that semantic-based repair techniques, such as
ANGELIX [7] are no exception to the overfitting issue.

Automated Patch Correctness Assessment. Recently, re-
searchers have often adopted one of two approaches for
assessing the correctness of program repairs: (1) manual
annotation, where the authors of repair techniques man-
ually judge the correctness of APR-generated patches by
their own and competing approaches, or (2) automated
assessment, where an independent test suite is used to
automatically evaluate patch correctness. However, Le et
al. [24] showed that while a manual annotation is more
effective, it is also more expensive. In contrast, an automated
assessment does not require a manual effort but is less
effective [24]. Recent research efforts have been devoted to
automated patch correctness assessment (APCA) [25], [28],
[24]. Existing APCA techniques usually assume that ground
truth patches are available for comparison [25], [24], [40].
For example, Xin et al. [25], and Le et al. [24] generate
new test cases based on the program (i.e., ground truth)
to identify overfitting patches. Our proposed technique also
falls into this category, where we assume the availability of
ground truth patches. However, unlike existing test-based
approaches, our technique relies on program invariants to
judge the correctness of APR-generated patches.

2.2 Program invariants

Program invariants (invariants for short) is a term referring
to properties that hold at a certain program point or points,
which might be found in an assert statement, or a formal
specification [29]. For example, a program invariant can be
x >= abs (y) or size (A) == size (B). Among several of
their usages, program invariants can be used to detect mod-
ifications that violate the original properties of a program.

True invariants, however, are usually difficult to obtain
in real-world projects, and thus researchers often resort to
properties known as likely invariants, which hold for some
executions, but perhaps not all [41], [42]. Likely invariants can
be automatically inferred from execution traces by dynamic
invariant inference techniques which generalize from ex-
ecution traces using invariant templates. Previous studies
have demonstrated the effectiveness of likely invariants
in various tasks including complexity analysis [43], [44],
termination analysis [45], bug localization [46] and neural
network analysis [47], [48].

In this paper, we use Daikon [29] - a popular tool for
mining likely invariants, as our dynamic invariant inference
technique. Daikon observes the execution traces of pro-
grams and matches them against a set of templates to infer
likely invariants that hold on all or most of the executions.
From a large set of 311 templates (c.f. Details in Daikon
Manual Documentation 1), Daikon can detect a wide variety
of invariants that generalize well beyond the test suite used
to produce the execution traces [49].

1. http://plse.cs.washington.edu/daikon/download/doc/daikon/
Daikon-output.html#Invariant-list
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3 MOTIVATION

Let us now use an example to motivate our approach of
using program invariants to determine patch correctness.
The bug example in Figure 1 shows an APR-generated patch
(Figure 1a) and the ground truth developer-written patch
(Figure 1b).

(a) An overfitting patch generated by Kali [35]

(b) The correct patch written by human developers

Fig. 1: An overfitting patch generated by Kali and the
ground truth human-written patch for Math-84

In this example, the iterateSimplex() method con-
tains a bug that causes an endless loop (line 6 in Figure 1b)
when computing the next simplex of the multi-directional
optimizer. To fix this issue, a developer-written patch was
added (line 5 and lines 19-26 in Figure 1b) that stops the
loop once the algorithm converges. In contrast, the plau-
sible patch generated by Kali [35] (Figure 1a) inserts an
early return at lines 14-15, causing the failing test case to
plausibly pass. While the APR-patched program avoids the
endless loop, it ignores the main algorithm, which requires
many iterations to converge. Unfortunately, current state-
of-the-art test-based automatic program repair techniques,
such as RGT [30], DIFFTGEN [25], and RANDOOP [26],
have difficulty identifying behavioral differences between
the APR-patched program and the ground truth [20] due to
the large search space of bug-witnessing test cases.

Invariants come into play. Let us now look at how program
invariants can show that the APR-patched program is over-
fitting. The intended behavior of the program is for the algo-
rithm to terminate after several iterations once it converges,
regardless of the input. For the iterateSimplex method,

an invariant iterations > orig(iterations) is in-
ferred from both the buggy and correct versions of the
program. This invariant indicates that the value of the
iterations variable before calling the iterateSimplex
method (denoted as orig(...)) is smaller than the value
after execution. This variable measures the number of iter-
ations executed by the algorithm and reflects the fact that
the while loop (Line 4 in Figure 1b) should execute until the
multi-directional optimizer converges, which may require
many iterations.

However, in the APR-patched program, the while-
loop always terminates after the first iteration due to
the code snippet if (true) return; (line 14-15 in
Figure 1a). Consequently, an invariant iterations -

orig(iterations) - 1 == 0 is obtained for the APR-
patched program. This invariant indicates that the value
of the iterations variable is always incremented by
one after executing the iterateSimplex method. This
behavior shows that the APR-patched program is overfitting
and violates the intended behavior of the program, which
requires varying numbers of iterations to converge under
different inputs.

Our tool, INVALIDATOR, detects this overfitting behavior
of the APR-patched program by comparing the invariant
generated from the APR-patched program with that of the
buggy and ground truth programs. Specifically, INVALIDA-
TOR identifies that the APR-patched program maintains an
invariant that never holds in the buggy and ground truth
programs, indicating a behavioral divergence that could
lead to errors.

4 METHODOLOGY

Figure 2 illustrates the workflow of INVALIDATOR. First,
an APR-patched program is validated using a semantic-
based classifier. During this phase, INVALIDATOR assesses
the correctness of the patch based on correct and error
specifications, which are inferred by analyzing the differences
in behavior between the buggy program and its correct ver-
sion. These specifications are captured using automatically-
inferred program invariants. If the invariants inferred from
the APR-patched program violate the correct specification or
maintain the error specifications, the APR-patched program
is considered overfitting. If the inferred specifications fail to
identify an overfitting patch, INVALIDATOR uses a learning-
based model that leverages syntactic reasoning to estimate
the probability that the APR-patched program is overfitting.
We provide further details about INVALIDATOR below.

4.1 Semantic-based Patch Classifier

Figure 3 illustrates how INVALIDATOR employs a semantic-
based patch classifier to identify overfitting patches. First,
INVALIDATOR constructs approximate specifications of the
program under test by using a dynamic invariant infer-
ence tool, called DAIKON [29] (described in Section 4.1.1).
Then, based on the inferred specifications, INVALIDATOR

automatically classifies whether an APR-patched program is
overfitting (explained in Section 4.1.2). We provide detailed
explanations of each phase of INVALIDATOR below.
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Fig. 2: The workflow of INVALIDATOR

4.1.1 Invariant-based Specification Inference

The goal of invariant inference is to derive specifications
that can determine the correct and error behaviors of a
program. INVALIDATOR employs invariants to approximate
these specifications based on two key observations that
enable the detection of behavioral differences, as outlined
below:

Observation 1. Program invariants that are maintained in both
the buggy and correct (ground truth) versions of a program can
serve as the correct specification for the original program.

Observation 2. Program invariants that exist only in the buggy
program, but do not hold in the correct version, may represent the
error specification of the buggy program.

Based on the correct and error specification, INVALIDA-
TOR can heuristically assess the patch correctness. Below, we
formally define the correct and error behaviors, explain how
we construct them via invariant inference, and how they can
be used to determine overfitting patches effectively.

The correct behaviors of a program are defined based on
invariants in Definition 1. Correct behaviors reflect common
behaviors in both the original buggy program and the
correct (ground truth) program in which the bug is fixed
by developers. We use a set of invariants, denoted as C,
which commonly appears in both the buggy version and
the correct version of a program, to approximate the correct
behaviors of the program. The use of C reduces the false
positive rate (as we shall see in Section 5).

Error behaviors are defined in Definition 2, and capture
the behavioral divergence of the buggy program from the
correct program. The behavioral difference is reflected by a
set of program invariants E that hold in the buggy program
but do not hold in the correct version of the program.

Definition 1. (Correct specification) Consider a buggy program
B and its correct/ground truth version G. The correct specification
of G is approximated by a set of invariants C such that C |= B

and C |= G, where X |= Y denotes a semantic logical consequence
relation in which all properties satisfying X also satisfy Y.

Fig. 3: APAC via invariant-based specification inference.
IC, IB and IP are sets of invariants inferred from correct
program, buggy program and APR-patched program, re-
spectively.

Definition 2. (Error specification) Consider a buggy program B

and its correct/ground truth version G. The error specification of
B is approximated by a set of invariants E such that E |= B and
E 6|= G, where X |= Y denotes a semantic logical consequence
relation in which all properties satisfying X also satisfy Y.

Let us now explain how we construct the specifica-
tions that approximate the correct and error behaviors of
a program as depicted in Figure 3. Note that we use both
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the buggy and correct programs to infer the specifications.
For each program, denoted as prog, INVALIDATOR records
executions across both sets of failing test cases F and set of
related passing test cases P. Typically, passing test cases P

reflect the correct specification of a program while failing
test cases F reflect the error specification of the program.
Thus, INVALIDATOR maintains the execution traces of the
two test sets F and P separately to construct specifications
for correct and error specification later on.

To construct these specifications, INVALIDATOR lever-
ages DAIKON [29] to infer likely invariants based on the
execution traces. DAIKON first captures runtime values of
variables at specific points in a program, such as the points
at which a method is entered or exited, and then it uses
a set of templates that satisfy the runtime values to infer
likely invariants, which are properties that hold over all of
the executions. We refer to the invariants inferred from the
passing and failing test cases of a program prog as IFprog and

IPprog, respectively.
We use B and G to respectively denote the original

buggy and correct (ground truth) versions of a program.
To approximate the correct specification of G, INVALIDATOR

infers invariants from the passing test cases on B and G,
denoted as IP

B
and IP

G
respectively. The correct specification

C of G is then constructed by intersecting the two sets of
invariants IP

B
and IP

G
and taking the resulting invariants

as an approximation for the correct specification of G. To
approximate the error specification E in B, INVALIDATOR

first infers invariants from the failing test cases on both
B and G, denoted as IF

B
and IF

G
respectively. The error

specification E is then constructed by taking the invariants
that are in IF

B
but are not in IF

G
. In summary, the correct

specification C represents the expected specification in B and
G, while the error specification E represents the behavioral
difference of B compared to G.

INVALIDATOR uses the constructed specifications C and
E as inputs to its patch classifier, which we describe in
Section 4.1.2, to identify overfitting patches. Note that the
INVALIDATOR classifier considers invariants inferred from
all methods executed by a given test suite, rather than
only invariants inferred from buggy methods (i.e., methods
modified by human developers in the correct program) as
in prior works [50], [34]. We discuss the effectiveness of the
classifier using these two granularities in detail in Section 5.

4.1.2 Patch Classifier

The patch classifier takes as input an APR-generated patch,
the constructed specifications including correct specification
C and error specification E to determine whether the patch
is overfitting.

Our approach to identifying patch correctness is based
on two key observations:

Observation 3. A patch should be considered overfitting if it
violates any of the correct specifications described in C.

Observation 4. A patch should be considered overfitting if it
maintains any of the error specifications described in E .

The above observations can be translated into the two
following rules that allow INVALIDATOR to determine
whether an APR-patched program is overfitting. Consider

Algorithm 1: Invariant-based Specification Infer-
ence. B is the original buggy program, P is an
APR-patched program, and G is the correct/ground
truth program by developers

Input:
• IP

P
: invariant inferred from passing tests on P

• IF
P

: invariant inferred from failing tests on P

• IPB : invariant inferred from passing tests on B

• IFB : invariant inferred from failing tests on B

• IP
G

: invariant inferred from passing tests on G

• IF
G

: invariant inferred from failing tests on G

Output: True: P is overfitting, False: Otherwise

1 C ← IP
G
∩ IP

B
⊲ Correct specification

2 E ← IF
B
\IF

G
⊲ Error specification

3 foreach inv in C do

4 if inv /∈ IP
P

then
5 return True
6 end
7 end
8 foreach inv in E do

9 if inv ∈ IFP then
10 return True
11 end
12 end
13 return False

B to be a buggy program and G to be the human-written
correct version of the program. Let P be an APR-patched
program to be assessed for overfitting, and IP be the set of
invariants inferred from P. A patch is considered overfitting
if it satisfies either of the following conditions:

• Overfitting-1: The patch violates the specifications
representing correct specification C for B and G.
More formally, ∃inv ∈ C : inv /∈ IP

• Overfitting-2: The patch maintains any error behav-
iors described in E for B. More formally, ∃inv ∈ E :
inv ∈ IP

In the Overfitting-1 rule, we consider any APR-patched
program P to violate the correct specification if the set
of invariants inferred from P, denoted as IM , excludes
any invariants that are in the correct specifications C. This
helps guard against cases where the patch deletes some
functionalities of the original program and thus excludes
the specifications corresponding to the functionalities. In the
Overfitting-2 rule, any patch that still maintains an invariant
representing error specification in the original buggy pro-
gram B is considered overfitting.

Note that, INVALIDATOR needs to compare an invariant
to another to determine whether a patch falls into either
of the overfitting rules we defined above. INVALIDATOR

achieves this by comparing invariants syntactically and
semantically. If two invariants are not syntactically the same,
INVALIDATOR leverages an SMT solver, i.e., Z3 [51], to deter-
mine if they are semantically equivalent. Generally, two log-
ical formulaeA and B are equivalent if (A ⇒ B)∧(B ⇒ A).
For example, a >= b and b <= a are syntactically different
but are determined to be semantically equivalent by Z3; Z3
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determines that the formulae (a >= b ⇒ b <= a) ∧ (b <=
a⇒ a >= b) are satisfiable, and hence a >= b is equivalent
to b <= a.

4.1.3 Optimization via test selection

Our observation is that not all test cases are relevant to the
bug at hand. Therefore, before running DAIKON, INVAL-
IDATOR performs test selection, as described in Algorithm 2
to select a subset of passing test cases that are related to the
bug to collect execution traces. This way, the reduced test
suite helps INVALIDATOR optimize for running time without
compromising its accuracy.

Algorithm 2: Test selection

Input:
• P: program
• P: set of modified methods
• T: set of test cases

Output: Related tests

1 R← ∅ ⊲ Set of related tests
2 foreach test in T do
3 t← Coverage(P, test) ⊲ Test coverage if t cover

at least one method ∈ P then
4 R← R ∪ {test}
5 end
6 end
7 return R

4.2 Syntactic-based Patch classifier

In case INVALIDATOR fails to reason about patch correctness
via invariant-based specification inference (described in Sec-
tion 4.1), INVALIDATOR resorts to estimating the probability
that an APR-patched program is overfitting by measuring
the syntactic proximity of the patch to the buggy and
ground truth programs. Given an APR-patched program
P, INVALIDATOR first measures the syntactic differences
between P and the buggy program B, denoted as D(P,B),
and between P and its ground truth program G, denoted
as D(P,G). INVALIDATOR employs a pre-trained language
model, i.e., CODEBERT [52], to extract syntactic features of
these programs and then uses comparison functions [53] as
distance measures to identify syntactic differences between
them. Finally, INVALIDATOR uses a machine learning model
to predict patch correctness. Figure 4 illustrates the classi-
fication pipeline of our syntactic-based classifier. Below, we
explain each component of the pipeline in detail.

4.2.1 Feature Extraction

The feature extraction layers aim to extract embedding vec-
tors (a.k.a. features) that represent the syntactic information
of buggy, patched, and correct programs. To achieve this,
we utilize CODEBERT [52], a powerful pre-trained model
for general-purpose representations of source code that has
demonstrated its effectiveness on various software engi-
neering tasks [52], [54], [55], [56]. CODEBERT takes a code
fragment as input and uses a tokenizer (i.e., the Roberta
tokenizer) to tokenize the code into a sequence of tokens.

Fig. 4: Model architecture of the syntactic classifier. eb, ep,
and ec are representations of the buggy program, patched
program, and ground truth program, respectively. D(P,B),
D(P,G) are distances from patched program to buggy pro-
gram and correct program

It then passes the sequence through a pre-trained multi-
layer bidirectional Transformer [57] to obtain a correspond-
ing numerical vector. Specifically, given a code fragment,
INVALIDATOR employs CODEBERT to represent the code
fragment as the vector defined as follows:

ecode = 〈v1, v2, . . . , vk〉 (1)

where k = 768 is the embedding dimension of CODEBERT.
For convenience, we denote eb, ep, and ec as representations
of the buggy program, patched program, and correct pro-
gram, respectively.

4.2.2 Distance Measure

The goal of the distance measure layers is to build the vec-
tors that capture the syntactic differences between the APR-
patched program, buggy program, and correct program.
Inspired by prior works [32], [58], we leverage comparison
functions [53] to represent various types of syntactic differ-
ences. The distance measure layers take as input the embed-
ding vectors of the buggy program, patched program, and
correct program (denoted by eb, ep, and ec, respectively) and
output the vectors that represent the syntactic difference of
the APR-patched program compared to the buggy program
and correct program. These vectors are then concatenated to
represent distance vectors, which have 2×k+2 dimensions
where k is the dimension of code embeddings (i.e., 768).
In this paper, we use four comparison functions, consist-
ing of cosine similarity, Euclidean distance, element-wise
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subtraction, and multiplication. We briefly explain these
comparison functions below.

Element-wise subtraction. We perform element-wise sub-
traction for the embedding vectors of the APR-patched
program and the buggy program and the correct program
as follows:

esub
1

= ep − eb

esub
2

= ep − ec

Element-wise multiplication. We perform element-wise
multiplication for the embedding vectors of the APR-
patched program and the buggy program and the correct
program as follows:

emul

1 = ep ⊙ eb

emul

2 = ep ⊙ ec

where ⊙ is the element-wise multiplication operator.

Euclidean Distance. We capture the distance between the
embedding vectors of the APR-patched program and the
buggy program and the correct program based on Euclidean
distance as follows:

eeuc1 = ‖ep − eb‖

eeuc2 = ‖ep − ec‖

where ‖·‖ is the Frobenius norm.

Cosine Similarity. We capture the similarity between the
embedding vectors of the APR-patched program and the
buggy program and the correct program based on Cosine
similarity as follows:

esim1 =
epeb

‖ep‖ ‖eb‖

esim2 =
epec

‖ep‖ ‖ec‖

where ‖·‖ is the Frobenius norm.

Distance vector. Finally, we concatenated the vectors result-
ing from applying these three different comparison func-
tions to represent the syntactic distances from the patched
program to the buggy program and correct program as
follows:

D(P,B) = esub1 ⊕ emul
1 ⊕ eeuc1 ⊕ esim1

D(P,C) = esub2 ⊕ emul
2 ⊕ eeuc2 ⊕ esim2

where ⊕ is the concatenation operation, D(P,B) and
D(P,G) are distances from patched program to buggy pro-
gram and correct program.

4.2.3 Predictor

Given the above distance vectors, we leverage a machine-
learning model to predict patch correctness from labeled
data. Following the finding of Tian et al. [32] that Logistic
Regression applied to BERT embeddings yields the best per-
formance in predicting patch correctness, we consider the
Logistic Regression algorithm as our predictor. Logistic re-
gression is a well-known machine learning (ML) algorithm
that predicts patch correctness based on a linear transform
and logistic loss function.

4.2.4 Correctness Prediction

INVALIDATOR classifies a patch as correct or overfitting
based on prediction score, i.e., the probability that a given
patch is overfitting, produced by an ML-based predictor.
Let P(m) denotes the prediction score of an APR-generated
patch m. We determine the correctness of a given patch m
using the following formula:

correctness (m) =

{

correct P(m) ≤ T

overfitting P(m) > T

where T is our classification threshold.

5 EMPIRICAL EVALUATION

TABLE 1: Dataset for evaluating automated patch correct-
ness assessment techniques

Dataset Correct patches Overfitting patches Total
Xiong et al. [28] 30 109 139
Wang et al. [50] 216 450 666
DEFECTS4J [59] 223 0 223
Final dataset 377 508 885

TABLE 2: The statistics of evaluation and training dataset

Dataset Correct patches Overfitting patches Total
Training 331 340 671
Validation 16 59 75
Evaluation 30 109 139

In this section, we empirically evaluate INVALIDATOR on
a dataset of patches generated by well-known automated
program repair techniques for bugs in large real-world Java
programs. We discuss the dataset, experimental settings,
and metrics in Section 5.1. Section 5.2 lists our research
questions, followed by our findings in Section 5.3.

5.1 Experimental Settings

5.1.1 Dataset

To evaluate the effectiveness of automated patch correct-
ness assessment (APCA) techniques, we have collected a
dataset of APR-generated patches whose correctness labels
were manually identified by independent developers and
researchers. We used 220 patches released by Xiong et
al. [28] and 902 patches released by Wang et al. [50]. Fol-
lowing previous works [25], [32], we only consider patches
from four widely-used projects in DEFECTS4J: Chart, Time,
Lang, and Math. This resulted in a dataset of 139 patches
from Xiong et al.’s dataset and 666 patches from Wang
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et al.’s dataset. Additionally, to address data imbalance
issues where very few APR-generated patches are labeled
as correct, we supplemented the dataset with developer-
written patches from the DEFECTS4J dataset following [32].
This resulted in a dataset of 1028 patches, including 469
correct patches and 559 overfitting patches.

We consider 666 patches from Wang et al.’s dataset and
223 developer’s patches from DEFECTS4J [59] as the training
and validation set and 139 patches from Xiong et al. [28]
as evaluation set following previous work [32], [28], [32],
[31]. Note that, there may be duplication between Wang
et al. ’s dataset, Defects4J’s patches, and Xiong et al.’s
dataset. To avoid data leakage, we removed the duplicated
patches from the training and validation set. Particularly, we
removed a patch if it is syntactically equivalent to a patch in
the evaluation set. As a result, we obtained 746 (out of 889)
patches for the training and validation phase. This included
347 correct patches and 399 overfitting patches. We use 90%
of these patches (90% × 746 = 671 patches) for training our
learning model and the remaining 75 patches for validation.

Table 1 shows the details of the patches considered in
our experiments, and Table 2 provides information on the
characteristics of our training, validation, and evaluation
datasets.

5.1.2 Evaluation Metrics

By using the dataset described in Section 5.1.1, we assess
the effectiveness of automated patch correctness assessment
(APCA) techniques by comparing the labels produced by
APCA versus the ground truth labels. Furthermore, we aim
to assess how many patches an APCA technique produces
that match that of the ground truth labels. Specifically, we
use standard metrics of classification problems [60], [61],
Recall (Equation 2), Precision (Equation 3), Accuracy (Equa-
tion 4), and F1-score (Equation 5); they are defined by the
following metrics:

• True Positive (TP): a generated patch is labeled as
“overfitting” by both an APCA technique and the
ground truth.

• False Positive (FP): a generated patch is labeled as
“overfitting” by an APCA technique but is labeled as
“correct” by the ground truth.

• True Negative (TN): a generated patch is labeled
as “correct” by both an APCA technique and the
ground truth.

• False Negative (FN): a generated patch is labelled as
“correct” by an APCA technique, but is labelled as
“overfitting” by the ground truth.

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

F1 =
2 x Recall x Precision

(Precision + Recall)
(5)

Among these evaluation measures, Recall verifies
whether an approach can successfully classify overfitting

patches. A higher Recall is demanded by developers as
we do not want to waste their efforts on analyzing a
substantial number of overfitting patches [22]. Meanwhile,
Precision measures the proportion of discarded patches by
an approach that is genuinely overfitting. A higher Precision
is desired by program repair research as we do not want to
discard correct patches [31].

However, the comparison of APAC techniques that relies
only on Recall or Precision may be incomplete. For example,
an APAC technique can only consider patches as overfitting
if it violates strict conditions (e.g., a high confidence value)
to achieve a higher Precision, which could result in a low
Recall. On the contrary, an approach can classify all patches
as overfitting to achieve perfect Recall, which results in
low Precision. To address these issues, we consider F1-score
and Accuracy as additional evaluation metrics to measure
the performance of APAC techniques following previous
studies [30], [62], [63]. F1-score seeks a balance between
Recall and Precision while Accuracy is the comprehensive
evaluation of all TP, FP, TN, and FN.

Besides, we also consider Area Under the Curve ( de-
noted as AUC), which is defined as follows.

AUC =
S0 − n0(n0 + 1)/2

n0n1

(6)

where n0 and n1 are the numbers of overfitting and correct
patches, respectively, and S0 = Σri, where ri is the rank
of the ith overfitting patch in the descending list of output
probability produced by each model.

AUC is a widely-used metric to evaluate the effectiveness
of threshold-dependent classifiers [64], [65]. In our paper,
AUC is essential to compare the performance of syntactic-
based classifiers.

5.1.3 Implementation Details

For INVALIDATOR, we implement the proposed approach
using Python programming language. For the CODEBERT
model, we use HuggingFace’s Transformers framework 2

as recommended by their authors in CODEBERT’s GitHub
repository 3. With respect to the threshold T of the syntactic-
based classifier, we set the default threshold at 0.975. To
choose a classification threshold, we constraint the threshold
to avoid filtering out any correct patches as following prior
works [28], [32]. Note that, we tune our classification thresh-
old on an independent validation set (see details in Sec-
tion 5.1.1) instead of the evaluation set as prior works [28],
[32] to avoid overfitting. We also investigate the impact
of the threshold on the performance of INVALIDATOR in
Section 5.

With respect to baseline techniques, we collect results
of ODS, PATCHSIM, ANTI-PATTERNS, and BERT + LR

from prior works [31], [28], [32]. For DIFFTGEN and GT-
INVARIANT, we run their implementation to obtain their
prediction for Xiong et al. dataset due to the lack of the
result in the literature.

5.2 Research Questions

Our evaluation aims to answer these research questions:

2. https://huggingface.co/docs/transformers/index
3. https://github.com/microsoft/CodeBERT
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RQ1: How effective is our approach to validate patches generated
by automatic repair tools?
The research question concerns the ability of INVALIDATOR

for identifying overfitting patches generated by automated
program repair techniques. To demonstrate the value of
our approach for automated patch correctness assessment
tasks, we conduct an experiment in a dataset of 885 APR-
generated patches (as described in Section 5.1.1) in terms
of Precision, Recall, Accuracy, and F1-score. Then, we com-
pare our approach to state-of-the-art baseline techniques,
namely:

• RGT: Ye et al. [30] proposed to use a testing pro-
cedure, named Random Testing with Ground truth
(RGT) [66], for APAC. Particularly, RGT automat-
ically generates tests based on developer-patched
programs, which encodes the correct program be-
havior. And then if any automatically generated test
fails on an APR-patched program, RGT considers the
program as overfitting.

• ODS: Ye et al. [31] proposed ODS, an overfitting
detection system. ODS builds machine learning clas-
sifiers based on 4,199 manually-crafted features for
classifying overfitting patches;

• BERT + LR: Tian et al. [32] proposed a learning-based
APAC technique that utilizes BERT [67] and Logistic
Regression to learn representations of code changes
from historical data to predict the correctness of
APR-generated patches. In this paper, we refer to
their technique as BERT + LR;

• PATCHSIM: Xiong et al. [28] proposed a dynamic
APAC technique based on the similarity of execu-
tion trace similarity. In this paper, we refer to their
technique as PATCHSIM;

• DIFFTGEN: Xin et al. [25] proposed an APAC tech-
nique that identifies overfitting patches through test
case generation. DIFFTGEN is the closest baseline
related to our approach. Both INVALIDATOR and
DIFFTGEN assume the ground truth patches are
available;

• ANTI-PATTERNS: In [33], the authors proposed seven
generic categories of program transformation to de-
tect overfitting patches. In this paper, we refer to their
technique as ANTI-PATTERNS;

• GT-INVARIANT: Recently, Yang and Yang [34] dis-
covered that the majority of overfitting patches ex-
hibit distinct runtime behaviors captured by the in-
variants generated by GT-INVARIANT [29]. Building
on this insight, Wang et al. [50] propose a straight-
forward heuristic that considers an APR-generated
patch as overfitting if any of its inferred invariants
differ from those of the correct program. In this
paper, we adopt their technique and refer to it as
GT-INVARIANT.

RQ2: How effective is our syntactic-based classifier?
This research question investigates the effectiveness of

our syntactic-based classifier in assessing patch correctness.
Toward this, we conduct experiments to answer two sub-
questions:

• RQ2.1: How does our syntactic-based classifier compare
to existing techniques? In this research question, we

compared our syntactic-based classifier to existing
techniques, including ODS and BERT+LR in terms
of Precision, Recall Accuracy, and F1-score as RQ1.
Besides, we also compare the performance of these
techniques on AUC, a widely-used metric to evaluate
the effectiveness of threshold-dependent classifiers.

• RQ2.2: How do our syntactic features compare to existing
features? In this research question, we investigate
the effectiveness of our syntactic features extracted
from CODEBERT, compared to syntactic features ex-
tracted from existing methods, i.e., ODS and BERT.

RQ3: How does the classification threshold affect the overall
performance?

INVALIDATOR employs a classification threshold to de-
termine whether a patch is overfitting, based on the pre-
diction score of machine learning-based predictors. For
the first two research questions, we set the classification
threshold at 0.975, which yielded the highest precision on
the validation dataset for INVALIDATOR. In this research
question, we investigate the impact of threshold sensitivity
on INVALIDATOR’s performance. To this end, we conduct
experiments to address two sub-questions:

• RQ3.1: How does the classification threshold affect the
overall performance of INVALIDATOR? We systemati-
cally set different values for this threshold and in-
vestigate how it affects the results of INVALIDATOR.

• RQ 3.2: How does threshold sensitivity affect the per-
formance of our approach compared to other threshold-
dependent techniques such as PATCHSIM or ODS? This
research question aims to investigate the impact of
threshold sensitivity on the performance of INVAL-
IDATOR compared to existing techniques.

RQ4: Which components of INVALIDATOR contribute to its
performance?

This research question aims to analyze the contribution
of different components of INVALIDATOR to its overall per-
formance. Firstly, we investigate the impact of semantic and
syntactic classifiers on INVALIDATOR’s performance. Next,
we examine the impact of design choices for each compo-
nent, including the granularity of invariants and overfitting
rules, on the performance of INVALIDATOR. Specifically, we
address three sub-questions as follows:

• RQ4.1: How do semantic and syntactic classifiers affect
the performance of our approach? INVALIDATOR con-
tains two main components: semantic and syntactic
classifiers. In this research question, we perform an
ablation study by dropping each classifier to evaluate
the contribution of each classifier to INVALIDATOR’s
performance.

• RQ4.2: Does using invariants inferred from executed
methods improve the performance of INVALIDATOR com-
pared to using invariants inferred from buggy methods
only? By default, INVALIDATOR considers invariants
inferred from all methods executed by a given test
suite, rather than only using invariants inferred from
buggy methods as done by prior works [50], [34]. In
this research question, we investigate the effective-
ness of these two granularities.
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TABLE 3: Comparison of the effectiveness of INVALIDATOR with the state-of-the-art techniques. The bold numbers denotes
the best result for Accuracy and F1-score.

Techniques TP FN FP TN Recall Precision Accuracy F1-score
ANTI-PATTERN 27 82 1 29 0,25 0,96 0,40 0,39
DIFFTGEN 16 93 0 30 0,15 1,00 0,33 0,26
PATCHSIM 62 47 0 30 0,57 1,00 0,66 0,73
GT-Invariant 59 50 7 23 0,54 0,89 0,59 0,67
BERT + LR 43 66 0 30 0,39 1,00 0,53 0,57
ODS 70 39 5 25 0,64 0,93 0,68 0,76
RGT 70 39 5 25 0,64 0,93 0,68 0,76
INVALIDATOR 86 23 3 27 0,79 0,97 0,81 0,87

• RQ4.3: How do overfitting rules affect the performance
of our semantic classifier? By default, our semantic
classifier uses a combination of the Overfitting-1 and
Overfitting-2 rules described in Section 4.1.2 to iden-
tify overfitting patches. In this research question, we
compare these two overfitting rules individually to
evaluate their impact on INVALIDATOR’s effective-
ness.

5.3 Findings

5.3.1 RQ1: Effectiveness

We report the comparison of our approach, INVALIDA-
TOR against baseline techniques consisting of RGT [30],
ODS [31], BERT+LR [32], PATCHSIM [28], DIFFTGEN [25],
ANTI-PATTERNS [33], GT-INVARIANT [34] on 139 APR-
generated patches collected by Xiong et al. [28]. Table 3
presents the detailed results with respect to evaluation
metrics given in Section 5.1.2, including Recall, Precision,
Accuracy, and F1-score. We highlight the best result for each
evaluation metric as bold numbers. The bold red number
denotes the metrics for which the INVALIDATOR shows the
highest results among the techniques.

Overall, INVALIDATOR successfully identifies correctly
86 out of 109 overfitting patches and misclassified 3 out of
30 correct patches, equivalent to scores of 0.79, 0.97, 0.81,
and 0.87 in terms of Recall, Precision, Accuracy, and F1-score,
respectively. This implies that INVALIDATOR outperforms all
baselines in Recall, Accuracy, and F1-score and obtains a good
Precision of 0.97. We present more details below.

Accuracy. Table 3 shows that INVALIDATOR correctly identi-
fies 86 out of 109 overfitting patches and 27 out of 30 correct
patches, resulting in an Accuracy of 0.81. This indicates that
INVALIDATOR outperforms the best baselines (ODS and
RGT) by 19% and shows improvements of 23% to 146%
compared to the other baselines.

F1-score F1-score. INVALIDATOR outperforms the two best
baselines (i.e., ODS and RGT) by 14%. Specifically, IN-
VALIDATOR outperforms BERT+LR, PATCHSIM, DIFFTGEN,
ANTI-PATTERNS, and GT-INVARIANT by 54%, 20%, 239%,
120%, and 29%, respectively. This is mainly because INVAL-
IDATOR successfully identifies 79% of overfitting patches,
whereas the best baselines filter out only 64% of overfitting
patches while still maintaining an acceptable precision of
0.97.

Recall. With respect to Recall, INVALIDATOR achieves im-
provements of 23% (0.79 vs. 0.64) compared to the best
baselines (i.e., ODS and RGT). Specifically, INVALIDATOR

outperforms RGT, ODS, BERT+LR, PATCHSIM, DIFFTGEN,
ANTI-PATTERNS, and GT-INVARIANT by 23%, 23%, 100%,
39%, 438%, 219%, and 46%, respectively. This is mainly be-
cause INVALIDATOR leverages both syntactic and semantic
reasoning while other techniques consider only syntax or
semantics alone.

Precision. In terms of Precision, INVALIDATOR achieves a
score of 0.97, outperforming ANTI-PATTERNS, ODS, RGT,
and GT-INVARIANT, which have Precision scores of 0.96,
0.93, 0.93, and 0.89, respectively. However, INVALIDATOR

slightly underperforms BERT+LR and PATCHSIM in terms
of Precision. This may be because BERT+LR and PATCHSIM

avoid filtering out correct patches by directly tuning the
threshold of their classifier on the evaluation set, which
could lead to overfitting on the set. In contrast, we tune
our classification threshold on an independent validation
set (as presented in Section 5.1.3) to avoid overfitting, which
leads to lower precision than BERT+LR and PATCHSIM on
the evaluation set. Meanwhile, DIFFTGEN has a perfect
Precision (i.e., 1.0), but it is much less effective in filtering
out overfitting patches, as reflected by its low Recall of 0.25

Fig. 5: Intersection on the correctly classifier overfitting
patches by INVALIDATOR, ODS and RGT

Complementarity with ODS and RGT. We also perform a
detailed analysis on the overfitting patches correctly classi-
fied by INVALIDATOR, ODS, and RGT. Figure 5 shows the
intersection of their correctly classified overfitting patches.
We can see that these techniques only detected 31/109
overfitting patches together, accounting for less than 40% of
the overfitting patches correctly classified by each technique.
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(a) An overfitting patch generated by Nopol [5]

(b) The correct patch written by human developers

Fig. 6: An overfitting patch generated by Nopol and the
human-written patch for Math-58

Meanwhile, INVALIDATOR, RGT, and ODS individually de-
tect 10, 7, and 5 overfitting patches that are not detected by
one another, respectively. More interestingly, the overfitting
patches correctly classified by the three techniques cover
most of the overfitting patches (107/109). These results
suggest that the three techniques are complementary and
can be used together to obtain a better patch correctness
assessment.
Case study of unique overfitting patches. To provide
further insights into our approach, we manually analyzed
unique overfitting patches that can be detected with the
help of the novel techniques in INVALIDATOR. In Figure 6,
we present an example of an overfitting patch generated
for the bug Math-58, which is detected as overfitting by
INVALIDATOR but not RGT and ODS. In the bug, the fit()
method (line 3 in Figure 6b) is utilized to fit a Gaussian
function to the observed points. Ideally, the method should
ideally catch the exceptions of observed points having a
negative standard deviation and return NaN values. To
achieve this, the method must call method fit2() to
initialize a new Gaussian function and catch the excep-
tions before calling method fit3() to fit the Gaussian
function. However, in the buggy version, fit() directly
initializes a new Gaussian function and calls fit3() (line
5 in Figure 6b), which results in the buggy version missing
the observed points having a negative standard deviation
and throwing NotStrictlyPositiveException. As we
can see in Figure 6a, Nopol fixes the bug by adding the
condition param[2] == 0 (line 6), which ensures that the
NotStrictlyPositiveException (line 8) is unreach-
able when the observed points have a negative standard
deviation. This leads to the failing test case being plausibly
passed, but the program is still incorrect. However, as it
is no longer possible to trigger this error, RGT, which
relies on test case generation, fails to detect the different
behaviors between the overfitting patch and the correct
patch. In contrast, INVALIDATOR, which relies on program
invariants, still can correctly detect the overfitting patch.
Indeed, in both buggy program and Nopol’s patched pro-
gram, INVALIDATOR found the invariant f.getClass()
== Gaussian$Parametric.class at the entry point

of method fit3(), indicating that the Gaussian func-
tion is directly initialized in method fit(). Meanwhile,
the Gaussian function should be initialized in fit2()

reflected by an invariant of the developer-patched pro-
gram f.getClass() == GaussianFitter$1.class at
the entry point of method fit3(). We can see that Nopol’s
patch satisfies our Overfitting-2 rule, i.e., maintaining error
behavior. Therefore, INVALIDATOR can correctly classify the
patch as overfitting. Another example can be seen in Sec-
tion 3, in which an overfitting patch generated by Kali [35]
cannot be detected by RGT, but can be detected by INVAL-
IDATOR as the patch violates our Overfitting-1 rule, i.e., it
violates correct behavior.

Answers to RQ1: INVALIDATOR yields very promis-
ing performance on assessing the correctness of
APR-generated patches (Accuracy at 0.81 and F1-
score at 0.87) and outperforms the best baseline by
19% and 14% in terms of Accuracy and F1-score,
respectively. Besides, the complementary use of the
three best-performing techniques can cover 107/109
overfitting patches.

5.3.2 RQ2: Effectiveness of syntactic-based classifier

[RQ2.1: Our syntactic-based classifier vs. existing tech-
niques]
In this sub-question, we compare the performance of our
syntactic-based classifier with two existing learning-based
APAC techniques: ODS and BERT+LR. Table 4 presents
the effectiveness of our approach and two baselines on six
evaluation metrics including Accuracy, F1-score, and AUC.
The experimental results demonstrate that INVALIDATOR

significantly outperforms two baselines over six evaluation
metrics. Particularly, INVALIDATOR yields an Accuracy of
0.73 and F1-score of 0.80, outperforming the best baseline,
i.e., ODS, by 6% and 5%, respectively. Note that ODS re-
quires manual efforts to extract hand-crafted features while
our patch classifier automatically extracts features based
on labeled datasets. Compared to BERT+LR, which also
uses automatically-extracted features, our syntactic classifier
shows substantial improvement of 38% and 41% in terms of
Accuracy and F1-score, respectively. Moreover, INVALIDATOR

also improves ODS and BERT+LR by 6% and 16% over
AUC, indicating that our syntactic classifier has a better
discriminative capability than existing techniques regardless
of thresholds.

Answers to RQ2.1: Our syntactic-based classifier
significantly outperforms existing techniques over
all evaluation metrics. Notably, our classifier also
improves the best baseline by 6% in terms of AUC,
indicating it is more effective than existing tech-
niques regardless of thresholds.

[RQ2.2: Our syntactic features vs. existing syntactic fea-
tures]
In this sub-question, we compare the performance of our
syntactic features extracted from CodeBERT with existing
ones extracted from ODS and BERT regarding our syntactic-
based classifier. To ease our presentation, we refer to the
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TABLE 4: Comparison of the effectiveness of INVALIDATOR’s syntactic-based classifier with the state-of-the-art techniques.
The bold numbers denotes the best result for Accuracy, F1-score and AUC.

Techniques TP FN FP TN Recall Precision Accuracy F1-score AUC
BERT+LR 43 66 0 30 0.39 1.00 0.53 0.57 0.77
ODS 70 39 5 25 0.64 0.93 0.68 0.73 0.84
INVALIDATORSyn 74 35 3 27 0.68 0.96 0.73 0.80 0.89

TABLE 5: Comparison of the effectiveness of CODEBERT features with ODS and BERT features. The bold numbers denotes
the best result for Accuracy. F1-score and AUC.

ground truth Techniques TP FN FP TN Recall Precision Accuracy F1-score AUC
BERTwo−gt 33 76 2 28 0.30 0.94 0.44 0.46 0.71

No ODSwo−gt 25 84 0 30 0.23 1.00 0.40 0.37 0.77
CodeBERTwo−gt 36 73 2 28 0.33 0.95 0.46 0.49 0.83
BERTgt 68 41 5 25 0.66 0.92 0.69 0.77 0.83

Yes ODSgt 30 79 0 30 0.8 0.94 0.43 0.43 0.81
CodeBERTgt 74 35 3 27 0.68 0.96 0.73 0.77 0.89

features as CodeBERT’s, ODS’s, and BERT’s features, re-
spectively. Table 5 presents the effectiveness of six variants
of the syntactic-based classifier using three syntactic fea-
tures: ODS’s, BERT’s, and CodeBERT’s features with and
without ground truth knowledge. The evaluation results
showed that CODEBERT’s features significantly outperform
ODS’s and BERT’s features. Particularly, with ground truth
knowledge, BERT’s features show an improvement of 9%,
8%, and 7% regarding Accuracy, F1-score, and AUC, re-
spectively. Meanwhile, the improvements without ground
truth knowledge are 5%, 7%, and 17%. Besides, we also
can see that our classifier with ground truth knowledge
improves the variants without the knowledge regardless of
syntactic features over three metrics: Accuracy, F1-score, and
AUC. The improvement is especially substantial regarding
threshold-dependent techniques, i.e., Accuracy and F1-score.
These results indicate the advantage of adding ground truth
knowledge for syntactic-based classifiers.

Answers to RQ2.2: CodeBERT’s features are the
most suitable features for our syntactic-based classi-
fier. Besides, ground truth knowledge is helpful for
syntactic-based classifiers.

5.3.3 Threshold Sensitivity

[RQ3.1: The impact of threshold sensitivity on the perfor-
mance of INVALIDATOR]
Recall that INVALIDATOR uses a threshold, which ranges
from 0 to 1, to classify whether a patch is overfitting
based on a prediction score produced by Machine Learning
predictors as defined in Section 4.2.4. In this sub-question,
we investigate the performance of INVALIDATOR in terms
of Recall, Precision, F1-score, and Accuracy with different
classification thresholds in range (0, 1). The impact of the
classification threshold on the performance of our approach
is illustrated in Figure 7.

We can see that the Recall holds steady at around 1.0
when the classification thresholds are in the range of (0.0,
0.65), then slightly decreases to about 0.94 (at the threshold
of 0.85) before dropping to about 0.53 at the maximum
threshold of 1.0. On the contrary, as the classification thresh-
old increases, the Precision gradually increases from 0.79 to
0.97. Notably, INVALIDATOR’s precision is always higher

Fig. 7: The performance of INVALIDATOR with different
classification thresholds on the evaluation set

than 0.8 and around 0.9 at most of the thresholds. These
results indicate that the assessment of INVALIDATOR is
reliable.

With respect to Accuracy and F1-score, the performance
of INVALIDATOR shares a similar trend on these metrics
according to the variation of the classification threshold. In
detail, Accuracy and F1-score consistently increase from 0.79
and 0.89 to 0.92 and 0.95, respectively, when the threshold
increases from 0.0 to about 0.6. Then, these metrics slightly
decrease to 0.84 of Accuracy and 0.89 of F1-score at the thresh-
old of 0.9 before dropping to below 0.7 at the maximum
threshold of 1.0.

In summary, our results suggest that the classification
threshold has a limited impact on the F1-score and Accuracy,
despite its influence on Recall and Precision. Practitioners
and researchers can therefore select a threshold that aligns
with their needs, without compromising the discriminative
ability of APAC techniques, as reflected by F1-score and
Accuracy.



14

(a) F1-score

(b) Accuracy

Fig. 8: The performance of INVALIDATOR, ODS, BERT+LR
and PATCHSIM with different classification thresholds

Answers to RQ3.1: Despite the change of Precision
and Recall, INVALIDATOR still achieves promising
overall performance, i.e., F1-score and Accuracy at
above 0.8, over a large range of classification thresh-
old, i.e., (0.1 - 0.9), on both validation and evaluation
set.

[RQ3.2: INVALIDATOR vs. Existing threshold-dependence
techniques]

In this sub-question, we compare the performance,
reflected by F1-score and Accuracy), of four threshold-
dependence techniques consisting of INVALIDATOR,
ODS [31], BERT+LR [32] and PATCHSIM [28] with nine
different thresholds in the range of (0.1, 0.9). The impact
of the classification threshold on the performance of
threshold-dependence techniques is illustrated in Figure 8.
The results yield two main findings. First, the classification
threshold has a limited impact on the performance of

INVALIDATOR and PATCHSIM. Meanwhile, BERT+LR and
ODS only achieve good performance in the threshold range
of (0.1, 0.4) before witnessing a significant decrease of both
F1-score and Accuracy when the threshold increases from
0.4 to 0.9. The finding indicates that INVALIDATOR and
PATCHSIM are more stable than BERT+LR and ODS with
respect to the variation of classification threshold. Second,
INVALIDATOR, with an arbitrary threshold, performs better
than the best result of each baseline. The finding indicates
that INVALIDATOR is the most effective technique among
threshold-dependence APAC approaches.

Answers to RQ3.2: INVALIDATOR is the most
effective and stable technique among threshold-
dependence APAC approaches.

5.3.4 Ablation Study

[RQ4.1: The impact of semantic-based and syntactic-based
classifiers on the performance of INVALIDATOR] In this
experiment, we evaluate the relative contribution of IN-
VALIDATOR’s semantic versus structural classifier for patch
correctness assessment. Table 6 shows the results of our
experiments. INVALIDATORsem, INVALIDATORsyn refer to
semantic and syntactic-based classifiers, respectively. In the
ablation study, we can observe that INVALIDATOR without
these classifiers suffer from different degrees of performance
loss. Specifically, removing INVALIDATORsyn leads to a de-
crease of 26% and 23% in terms of Accuracy and F1-score;
meanwhile without INVALIDATORsem, INVALIDATOR’s per-
formance also drops by 11% and 8%, respectively. Also,
we can see that our syntactic-based classifier shows a bet-
ter performance than our semantic-based classifier. This is
mainly because our semantic-based classifier can only detect
56 overfitting patches compared to 74 of our syntactic-based
classifiers. One potential reason behind the phenomena is
that our semantic-based classifier depends on our current
test suite, which may be an incomplete and invariant gen-
erator, i.e., Daikon. Therefore, though our semantic-based
classifier can reveal hidden behavior differences between
the APR-patched and ground truth programs to detect over-
fitting patches, its effectiveness can still be bounded by the
abovementioned factors. However, the semantic-based clas-
sifier is still important for our approach to dealing with the
threshold sensitivity of syntactic-based classifiers. Indeed,
our semantic-based classifier is threshold-independent, al-
lowing its performance to be considered a lower bound for
the performance of INVALIDATOR. Therefore, INVALIDATOR

still can work well with a strict classification threshold, mak-
ing INVALIDATOR become the most stable technique among
threshold-dependence APAC approaches, as we can see in
the RQ 3.2. These results suggest that both semantic and
syntactic-based classifiers are essential for the performance
of INVALIDATOR.

Answers to RQ4.1: Our ablation study shows that
both semantic and syntactic-based classifiers con-
tribute to the effectiveness of INVALIDATOR.

[RQ4.2: The impact of invariant granularity on the perfor-
mance of INVALIDATOR]
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TABLE 6: Ablation Study. The INVALIDATORSyn and INVALIDATORSem denotes INVALIDATOR’s syntactic and semantic
classifiers, respectively. The bold numbers denotes the better result in each evaluation metric

Techniques TP FN FP TN Recall Precision Accuracy F1-score
INVALIDATOR 86 23 3 27 0,79 0,97 0,81 0.87
-w/o INVALIDATORSyn 56 53 2 28 0,51 0,97 0,60 0.67
-w/o INVALIDATORSem 74 35 3 27 0,68 0,96 0,73 0.80

TABLE 7: Overall performance of INVALIDATOR’s semantic
classifier with different invariant granularity: buggy meth-
ods and executed methods. The bold numbers denotes the
better result in each evaluation metric

Granularity Recall Precision F1-score Accuracy
Buggy methods 0,35 0,95 0,51 0,47
Executed methods 0,51 0,97 0,67 0,60

In this sub-question, we investigate the performance of our
semantic classifier with invariant inferred from two different
granularities: buggy methods and executed methods, i.e.,
methods executed by test cases. As shown in Table 7, the
invariants inferred from executed methods can boost the
performance of our semantic classifier in APAC by 28%
at Accuracy and 31% at F1-score. The key reason for the
improvement is that behavioral differences between APR-
generated patches and correct patches exist in methods
called by a statement of buggy methods. Hence, the supple-
ment of invariant inferred from all executed methods helps
our semantic classifier to detect more overfitting patches.

Answers to RQ4.2: The supplement of invariant in-
ferred from all executed methods helps our semantic
classifier boost the performance by 31% at Accuracy
and 35% at F1-score

[RQ4.3: The impact of different overfitting rules on the
performance of INVALIDATOR]

In this sub-question, we investigate the impact of each over-
fitting rule on the performance of our semantic classifier.

Fig. 9: The impact of overfitting rules on the performance of
INVALIDATOR’s semantic classifier

As shown in Figure 9 the Overfitting-1 and Overfitting-2 con-
tributes 24 and 42 overfitting patches, respectively, among
56 patches detected by our semantic classifier. Moreover,
there are 8 overfitting patches violating both overfitting
rules. The results indicate that Overfitting-2 rule contributes
to our semantic classifier much more than Overfitting-1.

Answers to RQ4.3: Overfitting-2 rule contributes to
INVALIDATOR much more than Overfitting-1 (42 vs.
24 overfitting patches).

6 DISCUSSION

6.1 Time efficiency

With respect to time efficiency, we limit 5 hours for invariant
inference for each patch in our dataset. In case invariants
of a patch cannot be generated on time, we directly pass
the patch to our syntactic classifiers. Meanwhile, assessing
the correctness of 139 patches in our evaluation dataset,
i.e., Xiong et al. dataset INVALIDATOR took 15.5 hours (i.e.,
about 7 minutes for each patch). The results show that
the assessment time of INVALIDATOR is reasonable but
the invariant inference is time-consuming. However, the
invariant inference is partially reusable as users can reuse
the generated invariants for buggy and patched programs
for each patch. Moreover, users can change the time limit
for invariant inference if they only have a limited bud-
get. However, even in the worst case, the performance of
INVALIDATOR will only drop to the performance of our
syntactic classifier, which still outperforms the state-of-the-
art baselines. We leave the improvement on time efficiency
of invariant inference for future work.

6.2 Potential Application

Although the reliance on ground truth patches limits our
applications on pure APR problem settings, INVALIDATOR

may be not only useful in patch correctness assessment
but also in APR on problem settings where ground truth
programs are available. For example, in the context of re-
gression bug fixing [68], [69], a potential ground truth could
be the original version before applying a bug-inducing com-
mit. Besides, automated patch correctness assessment with
ground truth cannot be directly used in automated program
repair, it has been shown to be helpful in the training phase
of learning-based program repair, in which the ground truth
patches are available [15].

6.3 Threats to validity

External validity. Threats to external validity correspond to
the generalizability of our findings. Our study considers 885
patches generated from 21 popular APR techniques. This
may not represent all APR techniques and thus may affect
the generalizability of our study. We tried to mitigate this
risk by selecting a data set that is commonly used for patch
correctness assessment in the APR community [28], [24],
[50], [70]. Another threat to external validity is that patches
in our dataset are only generated for the Defects4J dataset.
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This may not represent all bugs in real-world projects and
thus may affect the generalizability of our findings. Unfor-
tunately, besides Defects4j, there is only one labeled dataset
for patch correctness assessment, i.e., QuixBugs.QuixBugs,
however, only contains small programs (approximately 35
lines of code on average) that implement basic algorithms
such as Depth First Search or Knapsack. These programs
differ from our focus in the paper: industrial programs.
Meanwhile, obtaining ground truth labels for patches for
industrial programs datasets such as Bears and Bugs.jar
requires extensive human efforts [24]. Therefore, we would
like to leave the evaluation for future work.

Internal validity. Threats to internal validity refer to pos-
sible errors in our implementation and experiments. To
mitigate this risk, we have carefully re-checked our imple-
mentation and experiments.

Construct validity. Threats to construct validity correspond
to the suitability of our evaluation. The main threat in our
study is that the correctness of the patches may be subject
to subjective bias because they were manually labeled by
human annotators, as mentioned in Section 2.1. To mitigate
this risk, we collected classification results from reliable
sources that are widely used in the research community.

7 RELATED WORK

7.1 Automated Program Repair

Our study investigates patches generated by several pop-
ular APR techniques, including GENPROG [1], KALI [3],
NOPOL [5], HDREPAIR [4] and ACS [8]. GENPROG and
KALI are heuristic-based techniques that construct a search
space by using mutation operations and then leverage ge-
netic programming to find the solution. NOPOL uses Sat-
isfiability Modulo Theories to synthesize repair for buggy
conditional statements. HDREPAIR mines historical bug-fix
patterns to guide the heuristic search. ACS attempts to gen-
erate high-quality repairs for buggy conditional statements
by using historical fix templates. Beyond these techniques,
recently, CAPGEN [71], SIMFIX [72], FIXMINER [36], and
TBAR [12] have been proposed to fix bugs automatically
based on frequent fix patterns. Other approaches (e.g.,
SEQUENCER [13], DLFIX [73], COCONUT [74]) propose to
generate patches by using deep learning models.

7.2 Overfitting Problem

Early APR techniques widely leverage test suites, which
are often practically weak and incomplete, as an oracle to
guarantee patch correctness. This leads to the overfitting
problem, in which APR-generated patches pass the val-
idation test suite but are still incorrect [19]. Many APR
techniques, e.g., GENPROG [1], RSREPAIR [35], AE [39], and
ANGELIX [7] have been shown to suffer from the overfitting
issue [3], [20].

The overfitting problem has progressively been an im-
portant challenge in APR. Monperrus et al. criticized that
the conclusiveness of techniques that keep patches and their
correctness labels private is questionable [75]. Le et al. also
suggested making publicly available to the community au-
thors’ evaluation on patch correctness [24]. Since then, APR

techniques have publicly released their results and labels of
APR-generated patches. Authors of APR techniques often
assess patch correctness by either using: (1) an independent
test suite different from the test suite used for repair to
test the generalizability of the generated patches [24], or
(2) manual inspection to compare APR-generated patches
with the ground truth [71], [36], [12], [76]. Le et al. show
that automated validation via an independent test suite is
less effective than manual validation, but there is a potential
risk of human bias when using manual validation [24]. Also,
manual validation requires repetitive and expensive tasks,
which automated validation can complement.

In this work, we use a data set of 885 APR-generated
patches for large real-world programs whose correctness
labels have been released by recent popular work [77], [28],
[24], [70], [50]. The correctness labels of the patches have
been carefully examined by the community, e.g., researchers
and independent developers, and thus serve as reliable
ground truth labels to assess the effectiveness of APAC
techniques that we will discuss next.

7.3 Automated Patch Correctness Assessment

To avoid the potential bias of manual patch validation,
several techniques have been proposed to predict patch cor-
rectness automatically. These techniques can be categorized
into different directions: (1) semantic-based APAC and (2)
syntactic-based APAC. In this section, we briefly review
well-known techniques for each direction.

7.3.1 Semantic-based APAC

With respect to semantic-based APAC, the closely related
works to our work are DIFFTGEN [25] and RGT [30] Similar
to our work INVALIDATOR, the techniques identify patch
correctness by relying on perfect oracles such as correct pro-
grams provided by human developers. To do so, DIFFTGEN

uses EVOSUITE, an automated test generation technique
to generate an independent test suite from the developer-
patched (ground truth) program. DIFFTGEN considers an
APR-generated patch as overfitting if there are any behav-
ioral differences between the APR-patched program and the
ground truth program. The fundamental difference between
these approaches and INVALIDATOR’s semantic-based clas-
sifier is that, instead of generating additional test cases,
INVALIDATOR only uses the original test suite and infers
program invariants to generalize the desired behaviors of
the program under test. This way, INVALIDATOR generates
more abstract program specifications in the form of program
invariants to effectively guard against unintended behaviors
of the programs under test.

Yu et al. [40] also generated additional test cases from the
developer-patched program to detect two kinds of overfit-
ting issues: incomplete fixing and regression introduction.
However, their approach only works on semantic-based
APR techniques while INVALIDATOR can identify overfitting
patches generated by all APR approaches. Recently, Yang
and Yang explored that the majority of the studied plausible
patches (92/96) expose different modifications of runtime
behaviors captured by the program invariants, compared to
correct patches [34]. However, this work does not propose
any techniques to validate APR-generated patches. Based
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on the findings of Yang and Yang, Ye et al. [78], and Wang et
al. [50] have also used a simple heuristic based on DAIKON’s
invariants to identify patch correctness. These heuristics
consider a patch as overfitting if it violates any invariants
inferred from the developer-patched program. However,
developers may add other functions which are unrelated
to actual bugs, leading to redundant invariants. Hence, this
overfitting behavior is weak and sensitive; that is the reason
why they produce many false positives [78]. Meanwhile, IN-
VALIDATOR identifies patch correctness based on carefully
designed overfitting behaviors by comparing invariants in-
ferred from both buggy programs and developer-patched
programs so that our technique essentially only produces a
low false-positive rate, as shown in our evaluation.

Less relevant to our approach in this work are several
techniques attempting to identify patch correctness with-
out knowing perfect oracles. Yang et al. [79] proposed
OPAD, which employs test-suite augmentation based on
fuzz testing and uses the crash-free behavior as the ora-
cle to detect overfitting patches. This approach, however,
only identifies certain types of overfitting patches such as
OPAD (as shown in Xiong et al.’s evaluation [43]). Xiong
et al. [28] proposed PATCHSIM to heuristically identify
patch correctness based on the similarity of test case exe-
cutions. It first uses a test generation tool, i.e., RANDOOP,
to generate new test inputs. It then automatically classifies
the generated test cases into passing or failing based on the
similarity of execution traces. Finally, it uses an enhanced
test suite to determine whether an APR-generated patch is
overfitting based on its behaviors on passing and failing
test cases. Similar to DIFFTGEN, PATCHSIM requires the
generation of external test cases while INVALIDATOR only
uses the original test suite and infers program invariants to
generalize the desired behaviors of the program under test.

7.3.2 Syntactic-based APAC

With respect to syntactic-based APAC, the closely related
works to our work are BERT+LR proposed by Tian et
al. [32]. BERT+LR assumes that correct codes differ sub-
stantially from incorrect codes and uses code representa-
tion techniques to differentiate between them. Specifically,
BERT+LR embeds a patched code and a buggy code into
numerical vectors using BERT [67] and then uses Logistic
Regression to estimate the similarity between them. Finally,
a patch is considered incorrect/overfitting if the similarity is
lower than a certain threshold. However, determining a suit-
able threshold is challenging because the difference between
correct and incorrect codes can vary among programs. In
contrast, our approach considers the similarity of a patched
program to its ground truth and buggy program. Our
syntactic-based classifier relies on the intuition that a cor-
rectly patched code is more similar to the developer-patched
code (ground truth) than a buggy code. Thus, the similarity
between a patched and ground truth code serves as a “soft
threshold” that can be adjusted for different programs. As
a result, our approach is more flexible than BERT+LR and
achieves better performance, as demonstrated in Section 5.3.
Additionally, our syntactic-based classifier incorporates new
syntactic features from CodeBERT [52], which has been
shown to be more effective than BERT features.

Other works rely on hand-crafted code features to val-
idate the generated patch, including ANTI-PATTERNS and
ODS. Tan et al. [33] propose anti-patterns (i.e., specific static
structures) to filter out overfitting patches. Ye et al. [31]
leverage 4199 code features extracted from buggy code and
generated patches as input to machine learning algorithms
(i.e., logistic regression, KNN, and random forest) to rank
potentially overfitting patches. However, this work requires
manual hand-crafted features that were carefully (manually)
engineered, while our approach automatically extracts fea-
tures via a pre-trained language model.

Different from the aforementioned approaches from both
semantic and syntactic-based APAC, our approach lever-
ages both semantic information, i.e., program invariants,
and syntactic information, i.e., CodeBERT features, to reason
about patch correctness.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed INVALIDATOR, a novel auto-
mated patch correctness assessment technique using se-
mantic and syntactic reasoning via program invariants
and program syntax. INVALIDATOR first infers program
specifications in the form of program invariants, guarding
against correct and error specifications of a program under
test. Based on the inferred specifications, INVALIDATOR

effectively identifies whether an APR-generated patch is
overfitting. In case the above invariant-based specification
inference fails to determine an overfitting patch, INVAL-
IDATOR further uses a machine learning model to estimate
the probability that the APR-generated patch is overfitting.
To do this, INVALIDATOR first uses CODEBERT, a well-
known pre-trained model of code, to represent the lan-
guage semantics of program syntax via a vector of num-
bers and then measures syntactic differences between APR-
generated patches and their buggy and correct versions.
Based on syntactic differences, INVALIDATOR uses a trained
model from labeled patches to estimate the likelihood of
an APR-generated patch being overfitting. We compared
INVALIDATOR against state-of-the-art automated patch cor-
rectness assessment techniques from a popular dataset of
885 APR-generated patches for large real-world projects in
DEFECTS4J. Experiment results showed that INVALIDATOR

outperforms state-of-the-art baselines.
In future work, we plan to extend INVALIDATOR with

other ground truths which are available (e.g., such as the
original version of the program before applying a bug-
inducing commit). Moreover, the effectiveness of INVALIDA-
TOR demonstrates that program invariants can effectively
capture the runtime behaviors of the program. Therefore,
another potential direction may be finding a way to take
advantage of the program invariants in enhancing auto-
mated program repair directly. Finally, we plan to integrate
INVALIDATOR as a part of the training process to further
improve learning-based program repair, as inspired by Re-
wardRepair [15].

9 DATA AVAILABILITY

INVALIDATOR is publicly available at https://github.com/
thanhlecongg/Invalidator. All materials including imple-
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mentation, datasets, and experimental results are also pub-
lished via https://doi.org/10.5281/zenodo.7699142
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