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Abstract—We present a multi-modal human instruction com-
prehension prototype for object acquisition tasks that involve
verbal, visual and pointing gesture cues. Our prototype includes
an AR smart-glass for issuing the instructions and a Jetson TX2
pervasive device for executing comprehension algorithms. With
this setup, we enable on-device, computationally efficient object
acquisition task comprehension with an average latency in the
range of 150-330msec.

Index Terms—Human-AI Collaboration, Referring Expression
Comprehension, Visual Grounding, Multi-Modal Networks, Per-
vasive Systems

I. INTRODUCTION

Target acquisition is a common task in Human-Robot in-
teraction which involves an AI agent or a robot to identify
a target object referred through a natural human instruction.
When issuing instructions, humans typically use a combination
of verbal and gestural cues to identify the target object. In
such cases, a common interaction could be captured in an
ego-centric viewpoint (As seen from the perspective of the
human agent who is issuing the instruction). Comprehending
such natural multi-modal instructions using an AI agent is
crucial in multiple applications such as virtual shopping assis-
tants, industrial collaborative robots and social robots assisting
elderly people. Algorithms designed for comprehending these
instructions typically use Referring Expression Comprehen-
sion (REC) DNN models such as [1]–[6]. In addition, weer-
akoon et al. [7] showed that employing an additional pointing
gesture improves comprehension accuracy significantly, fur-
ther emphasizing the benefit of enabling multi-modal human
instruction comprehension. Recent trends in AR (Augmented
Reality) and VR (Virtual Reality) technologies have paved the
way for the introduction of several smart-glass devices such
as Microsoft Hololens [8]. Although these smart glasses are
equipped with computing resources, executing these complex
and large multi-modal DNN algorithms on-device is non-
viable with current hardware specifications. To counter that,
we introduce a prototype for on-device execution of such
comprehension models. Key to our prototype is a hybrid setup
with AR-powered smart glass for capturing human instruction
and an additional embedded computing device for executing
the DNN comprehension models. In particular, our prototype

Fig. 1. Overall architecture of the proposed comprehension pipeline

consists of a Hololens device running an AR application
which records audio, video and depth sensor frames of issued
instruction from the ego-centric viewpoint. These captured
multi-modal sensor data are then transferred to an NVIDIA
Jetson TX2 [9] for identifying the target object. Jetson TX2
executes a DNN comprehension engine which combines vi-
sual, verbal and gestural cues and yields the bounding box
coordinates of the target object. The bounding box coordinates
are then transferred back to the Hololens for visualization.
With this proposed hybrid setup, we enable real-time and
computationally efficient execution of object acquisition task
comprehension with latency in the range of 150-330msec.

II. COMPREHENSION PIPELINE

A. Hardware Components

Figure 1 depicts the overall architecture of the system.
Primarily, we use two hardware components in our proto-
type. Human instructions are captured by using a Microsoft
Hololens device from the ego-centric viewpoint. Hololens is
an AR smart-glass device with a number of sensors includ-
ing an RGB camera, short depth sensor and IMU sensors.
In addition, Hololens runs on a customized Windows OS,
allowing some computational capabilities. We use Hololens’s
embedded microphone, RGB and short depth sensor to capture
user’s verbal instruction, visual information and pointing ges-
ture respectively. Current hardware specifications of Hololens
are inadequate to run our computationally intensive DNN
comprehension pipelines. Hence, we employ NVIDIA TX2
as an additional embedded device specifically to comprehend
the human instructions captured by the Hololens device. TX2



Fig. 2. AR Application: Virtual objects viewed via the Hololens along with
the verbal instruction and depth sensor output

device is one of the fastest and power efficient embedded AI
computing devices with 256 NVIDIA cuda cores, Dual-Core
NVIDIA Denver 2 64-Bit CPU, Quad-Core ARM® Cortex®-
A57 MPCore and 8GB of LPDDR4 Memory. We will now
introduce the rest of the components of the proposed prototype
in the following sections.

B. Recording and Transmitting User Instructions at Hololens

We developed an AR application using Unity which exe-
cutes on Hololens for showcasing a typical table-top object
acquisition task. As shown in Figure 2, user wearing the
Hololens will see an AR environment with different coloured
virtual objects placed on a table. The user then issues a verbal
instruction along with an accompanied pointing gesture to pick
a particular object from the set of virtual objects. This captured
user instruction is then transmitted over TCP network to the
TX2 device.

C. Voice-to-Text Engine

Transmitted audio instruction is processed at the Jetson TX2
to convert to text using a real-time speech-to-text model called
Picovoice cheetah [10]. Cheetah model allows accurate and
on-device speech-to-text conversion while being compact and
computationally efficient.

D. Key Frame Extractor

Hololens sends the captured RGB video frames along with
the corresponding depth frames to the TX2 device. However,
not all of these frames are necessary to capture the target
object. Figure 3 shows a series of depth frames captured while
a user is issuing an instruction. A typical scenario involves,
a) user moving his pointing hand towards the target, b) user
steadily pointing towards the target and c) user retracting his
pointing hand from the target. A key-frame is defined to be the
duration in which the user’s pointing hand is steadily pointing
towards the target object. Identification of these key-frames
are done through a lightweight classification network with 3-
CNN layers and a consequent 2-neuron fully connected output

Fig. 3. A series of captured depth frames while issuing an instruction

layer with a softmax activation function. This network takes
the depth sensor stream as input and identifies depth key-
frames and the corresponding image frames. This network is
trained for 10 epochs by using a balanced corpus (4000 depth
images, 70% used for training and 30% used for testing) of
depth frames that are labelled to be either key-frames or not
key-frames. This module incurs a latency of 15msec while
achieving a classification accuracy of 89.91% on the test split.
Rest of the comprehension engine is only executed on these
identified key-frames.

E. Comprehension Engine

For the comprehension engine we employ a REC model,
which takes the converted text instruction from Voice-to-Text
Engine, RGB and depth key-frames to predict the bounding
box of the target object. Early work on REC [1], [2] pro-
poses several DNN models suitable for comprehending object
acquisition task instructions. However, these works generally
utilize multiple stages and incur significantly higher com-
putational requirements on a resource-constrained pervasive
device. Contrary to these models, [3] proposed a single-stage
architecture termed RealGIN capable of significantly reducing
the computational requirements and enabling on-device infer-
encing on Jetson TX2. However, RealGIN model only accepts
verbal and visual image as its input. To further accommodate
the additional pointing gesture, [6] proposed RealG(2)In-Lite
model; a compact and computationally efficient model which
additionally accepts a short depth frame for accommodating
pointing gesture input. For our comprehension engine, we will
be employing both these models as variants in our prototype.
Finally, the predicted bounding box coordinates will be sent
back to the Hololens through the TCP network. Let us now
further examine the two DNN model variants used in our
prototype.

1) RealGIN: This model only supports verbal and visual
cues. RealGIN consists of a bi-directional LSTM network [11]
for extracting language features, RESNET [12] network-based
backbone for extracting visual features, several language-



TABLE I
PERFORMANCE COMPARISON OF REALGIN AND REALG(2)IN-LITE ON

JETSON TX2 DEVICE

Model Accuracy (%) Latency (msec) Energy (mJ)
RealGIN 81.7 330 2310
RealG(2)In-Lite 78.8 155 852.5

guided attention layers to fuse language and visual features and
a regression network for generating bounding box coordinates.
A major percentage of RealGIN’s computations are used for
the RESNET-based visual backbone.

2) RealG(2)In-Lite: This model was proposed to further
reduce the computational complexity of RealGIN and also to
accommodate the additional pointing gesture via depth frame
input. RealG(2)In-Lite additionally accepts a depth frame as an
input which is concatenated along with the RGB frame. To re-
duce the computational complexity at the visual backbone, this
variant uses a Shufflenet network [13] for extracting the visual
features. For identifying the pointed location, RealG(2)In-Lite
consists of a 2-layer regression network branch. Regressed
pointed location from this branch is then used as an input
for a gesture-guided attention layer to assign higher attention
weights to the region where the user has pointed. The re-
mainder of the language pipeline, language-guided attention
layers and regression network for generating bounding box
coordinates are identical to that of RealGIN model.

F. Empirical Results

Table I shows the comprehension accuracy vs average
latency and energy consumption of RealGIN and RealG(2)In-
Lite. Here, accuracy was measured on the COSM2IC dataset
[6] with the same accuracy metric that was used in their
evaluation. Based on this accuracy, it is evident that both these
model variants achieve roughly comparable accuracy. How-
ever, we observed that RealG(2)In-Lite runs around 2x faster
than RealGIN. Moreover, RealG(2)In-Lite consumes close to
4x less energy than the RealGIN model. Thus, it is evident that
RealG(2)In-Lite is significantly more computationally efficient
than RealGIN.

III. CONCLUSION

With our hybrid setup of Microsoft Hololens and Jetson
TX2, we have demonstrated the ability of real-time execution
of object acquisition task comprehension. Object acquisition
tasks typically involve multiple modalities with verbal instruc-
tion, visual scene image and pointing gestures. To demonstrate
such a scenario, we developed an AR application running on
Hololens device which projects a set of virtual objects on to
a table-top. A user wearing the smart-glass issues a verbal
instruction along with an accompanied pointing gesture which
is then transmitted over to the TX2 device for comprehension.
At the TX2 device, we employ two key comprehension models
RealGIN and RealG(2)In-Lite to predict the bounding box
coordinates of the target object. Consequently, our proposed
system achieves task comprehension with an average latency
of 150-330msecs. Although our current prototype does not yet

represent a complete wearable device (due to the requirement
of an additional embedded device for running DNN models),
we expect that future advances in smart glasses may allow
running these complex DNN models without the necessity of
additional computing devices.
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