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Lightweight and Non-invasive User Authentication on Earables

Changshuo Hu" Xiao Ma*
Singapore Management Singapore Management
University University
changshuohu@smu.edu.sg xma9612@gmail.com
ABSTRACT

The widespread adoption of wireless earbuds has advanced the
developments in earable-based sensing in various domains like
entertainment, human-computer interaction, and health monitor-
ing. Recently, researchers have shown an increased interest in user
authentication using earables. Despite the successes witnessed in
acoustic probing and speech based authentication systems, this pa-
per proposed a lightweight and non-invasive ambient sound based
user authentication scheme. It employs the difference between
the in-ear and out-ear sounds to estimate the individual-specific
occluded ear canal transfer function (OECTF). Specifically, the {out-
ear, in-ear} scaling factors at different frequency bands are captured
via linear regression and treated as the OECTF for user authentica-
tion. The proposed system is validated using 12 subjects under six
different noisy environments and achieves a Balanced Error Rate
(BER) of 4.84%. The particularly lightweight system can be easily
deployed in earbuds and paves the pathway for more personalized
services.

1 INTRODUCTION

Recent years have witnessed a rapid growth of wireless earbuds
in the consumer market, thanks to the appealing user experience
of active noise cancellation. People use them for various purposes,
e.g., entertainment, online education, and meeting, in daily life.
By authenticating the wearer, some additional services can be en-
abled, such as keeping the smartphone unlocked, recommending
personalized music genres, or customizing acoustic characteristics
to fit each individual’s hearing sensitivity/experience at different
frequencies [19]. For instance, Huawei FreeBuds 3 incorporated a
bone conduction sensor to capture the voiceprint for user authen-
tication, which allows for phone unlocking and online payment.
However, the bone conduction sensor is usually more costly and
requires additional space and proper mounting on the earbuds to
ensure good signal quality.

In academia, different earbuds authentication schemes without
requiring the integration of extra sensors have been investigated
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(basically, only utilizing the speaker and microphone sensor on ear-
buds), which can be grouped into two categories: acoustic probing
(ultrasound [13, 18] or audible sound [7]) and speech [6] based au-
thentication. The underlying principle of probing-based approaches
is the unique geometry of each individual’s ear canal [17]. By emit-
ting audible/inaudible chirps to measure the unique transfer func-
tion between the transmitted and received signals, the ear canal
geometry can be captured to identify the user. Speech-based ap-
proaches are based on the unique vocal/skull structure of people
that leads to different speech characteristics. The unique vocal
structure can be captured by the air-conducted speech recorded
with out-ear microphones [10, 16], while the skull structure can
be sensed by bone-conducted speech recorded with in-ear micro-
phones [6].

However, these approaches have some inherent limitations that
hinder their adoption in commercial earbuds for wide applications.
Concretely, the probing-based scheme requires the active trans-
mission of audio chirps, which incurs sophisticated processing
pipelines, including probing signal generation, adaptive gain control
to deal with speaker’s frequency selectivity, precise coordination of
the transmitted and received pulses, interference elimination from
direct-path propagation, etc [7]. Moreover, continuously emitting
ultrasound signals in the ear canal might have some health risks [7]
and transmission of audible chirps might result in an unpleasant
user experience. For speech-based methods, the user has to produce
some speech so that the unique bone structure can be measured,
which induces extra human effort and may not be applied in sce-
narios where talking is prohibited (e.g., library). In addition, the
external noise from the environment can affect the authentication
performance [21].

In this work, we present a lightweight and non-invasive scheme
for user authentication using earbuds. Fundamentally, our approach
is based on the unique ear canal geometry and eardrum impedance
for each individual [8]. However, instead of using acoustic chirps
to probe the uniqueness, we leverage the in-ear and out-ear micro-
phones on the earbuds to jointly detect the frequency responses
caused by ear canal geometry, referred to as Occluded Ear Canal
Transfer Function (OECTF)!. Specifically, the out-ear microphone
measures any environment sounds, while the in-ear microphone
measures its modulated (by the occluded ear canal) version. By
mapping the scaling factor between the out-ear and in-ear signals
at different frequencies using linear regression, the unique geome-
try information of the ear canal can be captured and represented by
the individual-specific linear regression coefficients (i.e., OECTF).

!Note that conventional ear canal transfer function depicts the propagation property
of a sound from the entrance of the open ear to the ear drum. In our case, when the
ear canal is occluded by the earbuds, the property changes and therefore we call it
occluded ear canal transfer function.
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During real-world authentication, the OECTF is applied to the in-
stantaneous out-ear signal to obtain its estimated in-ear version,
which is then compared against the real signal captured by the
in-ear microphone. If the similarity is higher than a predefined
threshold, the wearer is accepted as the authentic user, and vice
versa.

To demonstrate the feasibility of the proposed system, we devel-
oped a prototype to record data from 12 subjects under six noise
environments. The experimental results show that our system can
achieve 4.84% BER. Moreover, the proposed authentication scheme
is lightweight in terms of algorithm complexity and power con-
sumption, and requires no effort (e.g., speaking) from the user.

In summary, we made the following contributions:

e We proposed a novel, lightweight, and non-invasive user
authentication scheme for earbuds, by jointly utilizing the
out-ear and in-ear microphones to capture the unique ear
canal geometry.

o We demonstrated the feasibility of the proposed scheme with
real-world data from 12 subjects, with an average authenti-
cation BER as low as 4.84%.

2 IN-EAR SOUND VS. OUT-EAR SOUND

An example of the in-ear and out-ear sounds collected under three
different scenarios (i.e., woman singing, man singing and traffic
sound) is presented in Figure 1. Both time domain (left column) and
frequency domain (middle and right columns) are displayed. From
the time domain, it can be observed that the in-ear microphone gen-
erally receives a lower amplitude signal than the out-ear, due to the
earbuds obstructing the external sound. In terms of the frequency
domain, we observe a clear energy decrease in high-frequency
bands (over 1kHz) of the in-ear sound compared to the out-ear one
for all three varieties of sounds. This is due to the occlusion of ear
canal that suppresses the frequency component at high frequencies.
On the other hand, the closed ear canal chamber also amplifies the
low frequencies, so that the energy loss due to earbuds obstruction
is compensated to some extent.

We can conclude that there is a mapping (e.g., energy scaling)
between the in-ear and out-ear sounds at different frequency bands,
which is fundamentally due to the modulation of the occluded ear
canal. Thus, we hypothesize that if the scaling factors are (1) distinct
for different people and (2) consistent for the same person under
different conditions, such that {out-ear, in-ear} mapping could be
utilized as a unique feature for wearer authentication. Next, we will
present our system that realizes and validates the hypothesis.

3 SYSTEM DESIGN

3.1 Overview

Figure 2 shows the overview of the proposed authentication system,
consisting of enrollment and authentication. During enrollment,
users are required to record some environmental sounds while
wearing the earbud to estimate the individual-specific occluded ear
canal transfer function (OECTF). In detail, the out-ear and in-ear
sound data will first be pre-processed and converted to frequency
domain using Fast Fourier Transform (FFT). As some frequencies
may not exist for certain sound types, an energy detection module
is followed to select the frequency components with acceptable
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Fig. 1: Time domains and frequency spectrum of the in-ear and out-
ear signals of three different environmental sounds.

energy according to the out-ear sound, and the corresponding in-ear
frequency components will also be selected. Then, these {out-ear, in-
ear} pairs will be used to infer the OECTF through linear regression.
During the authentication phase, our system collects both in-
ear and out-ear environmental sounds silently. According to the
individual-specific OECTF, the out-ear sound can be converted into
its in-ear modulated version, and further compared with the real in-
ear data collected by in-ear microphone. A high similarity between
them indicates an acceptance of the authentication and vice versa.

3.2 User Enrollment

3.2.1 Pre-processing. The pre-processing steps are applied to both
in-ear and out-ear signals.

Data Segmentation and Downsampling: The collected sounds
are first segmented into one-second chunks. Since the frequency
range of most environmental sounds is below 4 kHz, we further
downsample both the out-ear and in-ear sounds to 8 kHz to reduce
computational overhead while retaining the useful information.

Fast Fourier Transform (FFT): FFT is employed to convert
the sounds in time domain to the frequency domain. To obtain
more fine-grained information, a high-resolution FFT with 4096
points is adopted, resulting in a frequency resolution of around
2 Hz. Notably, in order to combat the influence of unexpected
noise on a certain frequency bin, we group consecutive frequency
bins into a frequency band. Specifically, the energy of every 16
(selected empirically to balance the trade-off between frequency
resolution and complexity) continuous frequency bins is averaged
and considered as band energy. As a result, 128 frequency bands
are calculated to cover the range of 0~4 kHz and each band covers
a range of 31.25 Hz.

3.3 Energy detection

As some of the environmental sounds only contain frequency com-
ponents at certain ranges, part of the bands may not have adequate
energy, thus are not reliable to compute the OECTF. Therefore, an
energy detection module is developed to filter out the frequency
bands with low magnitude and only retain the frequency bands
with high energy. Out-ear sound is used for energy detection, as all
frequency components are salient compared to in-ear sound that
shows a significant attenuation in the high frequency range. In a
certain band, if the energy of the out-ear sound is higher than the
base value measured under the quiet environment by a threshold
thy (0.2 is selected empirically in our dataset), we accept the fre-
quency band and find its corresponding band in in-ear sound to
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Fig. 3: (a) The number of available {out-ear, in-ear} pairs in each
frequency band, and (b) scatter plot of the pairs in 4 frequency bands
and the fitted lines with linear regression.

form an {out-ear, in-ear} pair. For each one-second segment, we
would expect an {out-ear, in-ear} pair at each frequency band ideally.
However, after energy detection, some frequency bands with low
energy cannot form such a pair, resulting in a different number
of {out-ear, in-ear} pairs at different frequency bands. Figure 3(a)
plots the distribution of the number of pairs from our dataset for
one subject. We can have at least 150 pairs for linear regression,
guaranteeing reliable OECTF calculation.

3.4 OECTF Calculation

Figure 3(b) is a scatter plot of the {out-ear, in-ear} pairs for four
different frequency bands. As the data includes different sound
types and a variety of different sound segments, the magnitude for
out-ear and in-ear sounds can cover a relatively wide range.

It is clearly observed that the mapping between out-ear and in-
ear sounds is approximately linear for each band. Therefore, we
exploit linear regression model to fit {out-ear,in-ear} mappings for
each band. In detail, we fit a linear relation between out-ear and
in-ear magnitude as:

Sto=a xSL, +bie[1,128], (1)
where i represents the frequency band, Sy, and S, represent the
out-ear and in-ear sounds, a’ and b? are the linear regression coeffi-
cients, represented as the straight lines in Figure 3(b). Empirically
we found that b’ is approximately zero for all frequency bands.
Thus, we ignore b’ and only vectorize the 128 a as the OECTF.

To understand whether derived OECTF is salient enough to
capture the individual differences in the ear canal geometry for user
authentication, we conduct two additional analyses to verify: (1) the
scaling factors between the out-ear and in-ear sounds belonging to
the same subject are consistent; and (2) the scaling factors belonging
to different subjects show considerably dissimilar patterns. For the
first argument, we divide one subject’s data into four segments,
and estimate its OECTF for each segment, as shown in Figure 4(a).
For the second argument, we compare the OECTF for four different
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Fig. 4: (a) Scaling factors for four segments from the same subject,
and (b) Scaling factors from four different subjects.
subjects as shown in Figure 4(b). We can observe that for the same
subject, the scaling factors are more consistent indicating a high
intra-subject similarity, while for different subjects, the scaling
factors are more distinguishable indicating a high inter-subject
dissimilarity. Thus, to this end, we can conclude the feasibility of
our system for user authentication.

3.5 Authentication

Once the OECTF is calculated, the system can authenticate users
by collecting their in-ear and out-ear data silently. Specifically, the
out-ear sound can be converted to the in-ear sound via OECTF, and
compared against the real in-ear sound to decide whether accepting
or not. However, the frequency components of one sound segment
may not cover all the 128 bands. Particularly for certain sound types,
the bandwidth may be limited, resulting in many low-amplitude
or zero-amplitude bands. As a result, the corresponding {out-ear,
in-ear} pairs do not match the scaling factors in the true OECTF,
leading to inaccurate estimation. Therefore, only the bands with
energy above a certain threshold (th;) will be adopted for OECTF
authentication. Then, if the Euclidean distance between the true
and estimated in-ear energy is less than a threshold thy, the user
will be accepted, and vice versa. Additionally, we proposed a voting
mechanism to further improve the prediction result. In detail, we
separately predict 3 continuous segments and apply majority voting
to make the final decision.

4 PROTOTYPING AND DATA COLLECTION

Although the in-ear microphone has been embedded in many off-
the-shelf earbuds, its raw data is inaccessible due to the lack of
APIs. Thus, we built a prototype, as shown in Figure 5(a), to collect
the data for evaluation. Specifically, we printed a 3D earbud shell
and integrated an in-ear microphone (in the front of the earbud
cavity and facing toward the ear canal) and an out-ear microphone
(in the bottom of the earbud stem and facing outward). Then, the
two microphones were connected to a Bela Mini Board [1] with
audio jacks and sampled at 44.1 kHz.
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Fig. 5: (a) The designed earbuds prototype and data recording board,

(b) illustration of a participant wearing the earbuds for data collec-
tion.

We recruited 12 subjects (9 males and 3 females) for data col-
lection?. In detail, we selected 6 common environmental sounds 3
that cover different frequency ranges to obtain a complete OECTF
curve. Then, the subjects wore the developed earbud and sit still
while a laptop was playing these environmental sounds. Figure
5(b) illustrates the experiment setup. Each sound was played for
2 minutes for each subject. In total, we collected 12 X 6 X 2 = 144
minutes raw audio data.

As presented in Section 3.2, we downsampled the raw data to
8 kHz, and split them into one-second segments, resulting in 8,640
segments. For each subject, we split the segments of every environ-
mental sound into 70% training, 10% validation, and 20% testing.
The training segments are utilized to derive the OECTF curve, and
the validation segments are used to determine the threshold thy for
accepting and rejecting a user. Specifically, the threshold is selected
when the system obtains an equal False Acceptance Rate (FAR) and
False Rejection Rate (FRR), as discussed next.

5 EVALUATION
5.1 Metrics

We use two typical metrics in an authentication system, False Ac-
ceptance Rate (FAR) and False Rejection Rate (FRR), to evaluate
our approach. FAR is the probability that an imposter is wrongly
accepted as a legitimate user, which reflects the security level of the
system. While FRR is the probability that a legitimate user is falsely
rejected, which reflects the user experience of the legitimate user.
In addition, the average of FAR and FRR is defined as the Balanced
Error Rate (BER) and used to indicate the overall authentication
performance. FAR, FRR, BER are computed as below,
Fp FRR FN FAR+ FRR

FAR = , ,BER= ———,
FP+TN

= 2
FN+TP 2 @

where TP, FP, TN, and FN represent true positive, false negative,
true negative, and false positive, respectively.

5.2 Authentication Performance

After obtaining the OECTF of each subject using the 70% training
data, we iteratively treat one subject as the legitimate user and the
rest are imposters. The resulting FAR and FRR are averaged over all
subjects and presented in Table 1. First, we can observe the error
ZEthical approval for carrying out the data collection has been granted by the corre-
sponding institution.

3Including male song, female song, air conditioning, traffic noise, restaurant back-
ground noise, and ocean wave sounds.
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Table 1: Overall performance over validation and test sets.

Test (20%)
FRR
6.77%
5.46%

Validation (10%)
FAR | FRR | BER
7.54% | 7.54% | 7.54%
4.77% | 4.77% | 4.77%

FAR
7.87%
4.22%

BER
7.32%
4.84%

Without Vote
With Vote

mmm Validation_FRR
Validation_FAR

B Test FRR

mmm Test_FAR

17.5
_15.0
125
10.0

7.5

Error rate(%

5.0
25
0.0

1 2 3 4 5 6 7 8 9 10 11 12
Subject ID

Fig. 6: Individual authentication performance with majority vote
(zeros indicates the corresponding error rate is 0).

rates obtained on the validation set and test set are almost equiva-
lent, implying that the threshold thy determined by the validation
set can be generalized to unseen user data. Second, the proposed
vote strategy can further improve the authentication performance,
resulting in a BER of 4.84%, which is comparable to other more
sophisticated approaches [6, 7, 18]. Note that the threshold is ob-
tained by balancing the FAR and FRR in the validation set, while
their values change slightly after applying the same threshold to a
different set.

Figure 6 plots the detailed error rates for each individual. We can
see that the performance varies among subjects, which is possibly
due to that the OECTFs of some subjects show higher similarity with
others so it is a harder task for systems to distinguish among them.
Specifically, using the Euclidean distance to measure the similarity,
Subject 1 shows relatively poorer performance than others. We also
explored the use of cosine distance for similarity measurement and
found that the error rate for Subject 1 is reduced by 6%. However,
cosine distance performs worse on rest of the subjects compared
to Euclidean distance, which indicates that the optimal metric to
measure similarity needs to be further investigated and such a
metric might be user-dependent.

Figure 7 plots the detailed error rates for each noise type. We
can observe that different noise types (i.e., real-life scenarios) lead
to varying authentication performance, depending on the proper-
ties of the noise. In detail, air-conditioning, restaurant, and traffic
sounds are relatively stable in the temporal dimension so the cal-
culated scaling factors over one second are more reliable. While
the volume of songs and ocean waves might vary significantly
over time, resulting in a dramatic change of the strength in certain
frequency bands and therefore poor authentication performance.

5.3 System Performance

We measure the run-time overhead (latency and energy consump-
tion) of the proposed system on two platforms: Raspberry Pi (RasPi)
and Arduino Nano. Specifically, real-time authentication is decom-
posed into three stages: pre-processing, energy detection, and sim-
ilarity calculation. From Table 2, we can observe that (1) the au-
thentication can be completed within 10 ms on RasPi-level device,
guaranteeing the real-time operation, (2) most of the overhead
comes from pre-precessing as we applied a high-resolution FFT.
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Table 2: System performance of the proposed method.

Device |Parameter Pre-. Energy Slmllar#y Total
processing | detection | calculation
Latency(ms) 8.16 0.12 0.87 9.15
RasPi |Power(W) 1.23 0.63 1.06 -
Energy(mJ) 10.04 0.09 0.92 11.05
. |Latency(ms)| 590.39 0.29 1.69 595.97
Arduino 15 W 0.17 0.13 0.14 -
Nano
Energy(m]) | 100.37 0.04 027  |100.68

However, Arduino incurs extremely high latency for FFT as the
library is not optimized for fast execution. Although the system
performance of existing probing and speech based approaches is
not compared, we believe our system is much more efficient given
the intuitively lightweight operations. Moreover, RasPi and Ar-
duino are general development boards without power optimization,
the power consumption would decrease with dedicated microcon-
trollers and circuit design.

6 RELATED WORK

Recently, earable-based authentication has received increasing at-
tention in academia. Various modalities and bio-metrics have been
proposed and demonstrated. The fundamental principles to distin-
guish users can be classified into three categories: (1) unique ear
canal geometry, (2) unique bone structure, and (3) unique brain
activity during a certain cognitive task. Ear canal geometry based
approaches require the active transmission of audible or inaudible
chirps and measure the geometry difference using the echos [7, 13].
In contrast, bone structure based methods usually employ human-
generated body sounds, such as speech [6, 9, 20] and walking-
induced vibrations [5, 12], to infer the unique frequency modula-
tion after bone conduction. For brain activity-based approaches,
the user is asked to perform a specific task during which the elec-
troencephalogram (EEG) response is captured to differentiate peo-
ple [4, 14, 15]. Our work falls under the category of ear canal ge-
ometry based principle. However, instead of using audio chirps to
probe the geometry features, we leverage the difference between
signals captured by in-ear and out-ear microphones to infer the
user-specific ear canal characteristics.

7 DISCUSSION AND FUTURE WORK

In this work, we presented a novel, lightweight, and non-invasive
strategy to authenticate the earbuds wearer. By sensing the ambient
sounds, it jointly employs the in-ear and out-ear microphones to
detect the unique geometry of human ear canal, without the need
for active audio chirps emission or human speech. Albeit great
performance, this is just a feasibility study and there remain a few
limitations and potential solutions for future exploration.
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majority vote.

Compatibility with music playback. The proposed approach
operates under ambient external noise with frequencies between
0-4 kHz, which is overlapped with typical sounds during music
playback or voice calls. As a result, how music playback affects
our authentication system is unclear. Note that the same issue
applies to speech based authentication systems [6, 9]. We plan to
explore in two directions. First, since the delivered music is known
to the earbud system, it would be possible to design some filtering
algorithms to eliminate the interference of the music. Second, as
in-ear microphone will also modulate the played music, we plan
to discover another transfer function between in-ear and out-ear
microphones during music playing. Then, the authentication system
can switch between the two modes under different scenarios.

Tightness of earbuds. Our approach relies on the frequency
correlation between the in-ear and out-ear sounds, which only
exists when the ear canal is sealed property. However, users might
wear the earbuds in different ways in daily usage, thereby affecting
the sealing quality. To explore the impact of earbuds tightness on
the authentication performance, we conducted an experiment with
two subjects by manually adjusting the tightness under three levels:
tight (insert the earbuds deeply in the ear canal), normal (typical
wearing depth with comfort), and loose (slightly fit to the ear canal
but might fall off upon movements). The average BERs for the three
levels are 5.19%, 5.13%, and 8.84% respectively, which suggests that
wearing the earbuds too tight will not affect the performance, while
loose fitting will result in higher authentication errors. In addition,
the in-ear microphone can also collect some body sounds such
as heartbeat and jaw movements [2]. However, as demonstrated
in 3, 11], these sounds are below 100 Hz, while our authentication
mainly utilizes frequencies from 100-4000 Hz. So the impact of such
artifacts is negligible.

Requiring a strong ambient sound. Our system relies on the
scaling factors of the external sound to map the wearer’s ear canal
geometry. To calculate the scaling factor, we have to ensure the
strength of the in-ear microphone signal is above noise level, i.e., in-
ear microphone can still hear a weak version of the external sound.
Consequently, the ambient sound should be relatively strong, which
limits the application scenarios. To investigate the minimal sound
level required for operation, we test the authentication performance
with one subject under various noise levels ranging from 30 dB
to 90 dB. As shown in Figure 8, the authentication performance is
excellent and stable when the noise level is higher than 60 dB. The
error rate starts to increase with 50 dB noise strength, while the
system is completely untrustable with 40 dB and lower noise levels.
To solve this issue, we can switch to complementary modes such
as (1) music-based transfer function as discussed above given that



music is played most of the time, (2) speech-based authentication,
or (3) probing-based authentication.

Obtaining a more precise and fine-grained OECTF. Cur-
rently, we collected environment sounds under six common sce-
narios in daily life and utilized them to derive the OECTF for each
individual. During data analysis, we spotted two issues: (1) as shown
in Figure 3(a), each environmental sound will not contain all fre-
quency components between 0-4 kHz. Thus, depending on the
amount of data used for training, some frequency bands might have
very few valid {out-ear, in-ear} pairs to learn the OECTF, leading to
unreliable regression, and (2) as shown in Figure 3(b), the ampli-
tudes of some {out-ear, in-ear} pairs are very similar (e.g., the blue
dots distributed like a cluster instead of a line) because such fre-
quency component has a stable volume in the training data, leading
to inaccurate regression. To solve them, we plan to investigate from
two aspects. First, from the data perspective, instead of collecting
real-world sounds, we will try to synthesize sounds that contain
all frequencies so that sufficient pairs at different frequency bands
can be used to obtain a more fine-grained OECTF. Second, from
the algorithm perspective, we can carry out more appropriate and
sophisticated regression techniques (e.g., polynomials) to find a bet-
ter transfer function to fit the data. In addition, different frequency
bands are considered independently in the current system, we plan
to explore the correlation between adjacent frequency components
and further develop algorithms to jointly optimize the mapping
between out-ear and in-ear sounds over a wider frequency range.

Improving authentication performance. In our current test
setting, each frequency bands are treated equally. However, the
sensitivity at different frequency bands in human ear canal is differ-
ent. For example, human are more sensitive in perceiving sounds
between 2 kHz to 5 kHz. A smaller amplitude variation within
this band might be easily perceived. Therefore, the mapping be-
tween the out-ear and in-ear sounds at this frequency range might
be more saliently different among different individuals. Assigning
more importance to these frequency bands could potentially en-
hance the difference among individuals for better authentication
performance. Specifically, we can adopt weighting strategies by
assigning different weights to different frequency bands to amplify
the inter-user uniqueness. In addition, similar to active-probing
based techniques, our design is device-dependent due to the dis-
tinct frequency responses of earbud microphones. Consequently,
re-enrollment is required when the user switches to a new device.

Performance comparison with probing-based approaches.
We demonstrated a completely different mechanism for user au-
thentication on earbuds. Specifically, previous probing-based ap-
proaches leverage high spatial resolution achieved through audio
chirps (a sweeping signal with a single frequency at one time) to
estimate ear canal geometry, while our method relies on the wide
bandwidth of environment sounds (multiple frequencies at one
time) to capture the in-ear and out-ear correlation. Thus, how the
two mechanisms perform compared to each other is unclear. How-
ever, our current authentication performance cannot be compared
directly with the results reported in probing-based papers [7, 13, 18],
as the subjects and data collection procedures are different. To do
a fair comparison, we plan to upgrade our prototype (integrate a
speaker) and collect data (both passive and probing-based) simulta-
neously on the same set of subjects for evaluation.
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