DSDNet: Toward single image deraining with self-paced curricular dual stimulations
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Abstract

A crucial challenge regarding the single image deraining task is to completely remove rain streaks while still preserving explicit
image details. Due to the inherent overlapping between rain streaks and background scenes, the texture details could be inevitably
lost when clearing rain away from the degraded image, making the two purposes contradictory. Existing deep learning based
approaches endeavor to resolve the two issues successively in a cascaded framework or to treat them as independent tasks in a
parallel structure. However, none of the models explores a proper interaction between rain distributions and hidden feature
responses, which intuitively would provide more clues to facilitate the procedures of rain streak removal as well as detail
restoration. In this paper, we investigate the impact of rain streak detection for single image deraining and propose a novel deep
network with dual stimulations, namely, DSDNet. The proposed DSDNet utilizes a dual-stream pipeline to separately estimate
rain streaks and a loss of details, and more importantly, an additional mask that indicates both location and intensity of rains is
jointly predicted. In particular, the rain mask is involved in a tailored stimulation strategy that is deployed into each stream of
the proposed model, serving as guidance for allowing the network to focus on rain removal and detail recovery in rain regions
rather than non-rain areas. Moreover, we incorporate a self-paced semi-curriculum learning design to alleviate the learning
ambiguity brought by the prediction of the rain mask and thus accelerate the training process. Extensive experiments demonstrate
the proposed method outperforms the state-of-the-art methods on several benchmarks, including in both synthetic and real-world
scenarios. The effectiveness of the proposed method is also validated via joint single image deraining, detection, and
segmentation tasks.
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Rain causes degradation unavoidably when capturing
images in outdoor scenes. Such a kind of deterioration
would severely hamper the practicality of many image
processing and computer vision algorithms, which usually
take an assumption of a clear environment without
considering the condition of rain. Therefore, rain removal
technology has become a desired preprocessing step for
various applications, such as object detection (He et al.,
2017), video surveillance (Shehata et al., 2008), and visual
tracking (Comaniciu et al., 2003). Most deraining methods
aim to restore a clean image from its rainy observation with
a rain streak layer, under a plain degradation model. Due to
the two components (i.e., the clean background and the rain
streaks) both unknown, it is an ill-posed problem that makes
the deraining task extremely challenging.

Compared to video-based deraining problem (Tripathi
and Mukhopadhyay, 2014, Kim et al., 2015, Jiang et al.,
2017) which can exploit the intrinsic temporal information
embedded in neighboring frames as additional constraints,
the single image based deraining problem is naturally more
underdetermined. Existing single image deraining methods

can be roughly divided into two categories: model-based
and deep learning based methods. Model-based methods
(Kang et al., 2011, Chen and Hsu, 2013, Luo et al., 2015, Li
et al., 2016) utilize optimization frameworks with hand-
crafted priors for rain removal, such as low-rank
representation (Chen and Hsu, 2013), sparse coding (Luo et
al., 2015), and Gaussian mixture model (GMM) (Li et al.,
2016). However, these methods generally exhibit a slow
inference due to their high computational complexity. Also,
it is hard to design proper priors to characterize the degraded
images, especially in medium- and heavy-rain scenes, due
to the messy statistics (e.g., directions and shapes) of rain
streaks.

Deep learning based methods (Li et al., 2017, Yang et al.,
2017, Li et al., 2018, Ren et al., 2019), on the other hand,
have achieved conspicuous improvements via learning an
implicit mapping from rainy
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Fig. 1. A comparison of real-world rain images in the SPA-Data dataset. PSNR/SSIM
values are listed below the corresponding image. All the comparisons are limited by
either (i) an over-smoothing problem, as shown by the stem in the blue box, or (ii)
failing to remove rain streaks properly, as displayed by the region enclosed in the red
box. While with the proposed stimulation mechanism, our framework is more suitable
to cover both detail preserving and rain streak removal purposes, thus reaching better
deraining performance. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

images to their clean counterparts in an end-to-end manner. The pio-
neering work is proposed by Fu et al. (2017a) that utilizes a three-layer
CNN with extracted high-pass components of rainy images as input.
And it is later extended by replacing the simple convolutional layers
with Resblocks (Fu et al., 2017b). Consequently, many other formu-
lations have emerged, such as joint rain detection and removal (Yang
et al., 2017), generative learning that uses an additional regularization
for superior visualization (Zhang et al., 2019), and multi-scale informa-
tion aggregation that exploits the correlations of rain streaks for rain
removal (Jiang et al., 2020).

However, most deep learning based methods still suffer from two
main issues: (1) failing to remove rain streaks accurately, particularly
in the case of heavy rain, and (2) generating an over-smoothed back-
ground with a loss of details. This is due to the ill-posed property of the
deraining problem, such that the deep models would be hindered by the
inherent overlapping between rain streaks and background scenes from
distinguishing either of them individually. Although recent methods
make some efforts toward both issues, limited effectiveness has been
accomplished. For example, Yang et al. (2017) propose to perform
joint rain detection, estimation and removal successively in a cascaded
framework. Nevertheless, the multi-task objective would create ambi-
guities in learning the shared parameters, leading to a trade-off between
rain streak removal and detail preserving. In contrast, just as pointed
out by Pan et al. (2018) that jointly estimating the structures and details
in a dual-branch structure can be highly effective for low-level vision
tasks, DRD-Net (Deng et al., 2020) uses a parallel pipeline to separately
estimate the rain streaks and the detail complement. But the effect of
rain streak detection for single image deraining is ignored. Specifically,

there have been no explorations regarding a suitable relationship be-
tween rain distributions and the hidden feature responses in a deep
model, which is all-important for the deraining task in two aspects: (1)
additional cues would be provided by rain distributions for the model
to predict rain streaks, and (2) concerning detail recovery, an ideal
network should concentrate more on rain regions, where the contextual
details are more likely to be damaged, rather than non-rain areas.
Several typical failures by previous works can be seen in Fig. 1. The lack
of information from rain distributions leads to incomplete removal of
rain streaks or an over-smoothing problem. Note that even a rain mask,
which indicates both location and intensity of rains, is caught in Yang
et al. (2017), it is simply leveraged via being concatenated with the
hidden feature maps, resulting in an underutilization of the auxiliary
information for guiding the rain removal process.

To address the above problems, in this paper, we propose a convo-
lutional neural network named DSDNet that separately estimates rain
streaks and the loss of details in a dual-stream pipeline. With the aid
of an additional prediction of a rain mask, extra information excavated
from rain distributions can be utilized to guide the process of both tasks.
In particular, to model a felicitous communication between the rain
mask and the rainy image features, we design a stimulation module that
respectively deployed into each stream of DSDNet. This strategy is to
stimulate the image features such that the feature responses located in
rain regions would be emphasized, while those belonging to non-rain
areas can be depressed. In this way, the proposed DSDNet can focus
more on the restoration of the rain region, therefore promoting a higher
accuracy for rain streak removal as well as better detail reinforcement.
In addition, we present a self-paced semi-curriculum learning mecha-
nism to alleviate the learning ambiguity caused by the prediction of the
rain mask. Extensive experiments conducted on synthetic rainy images
from three benchmarks show that the proposed DSDNet outperforms
the state-of-the-art deraining methods. Moreover, the potential gener-
alization ability of DSDNet is validated on two benchmarks collected
in real-world scenes. The superiority of the proposed method is also
demonstrated via the evaluation of joint image deraining, detection,
and segmentation tasks.

In summary, the contributions of this work are three-fold:

» We study an effective integration of regional cues for tackling the
ill-posed single image deraining problem. To this end, we tailor
a stimulation strategy that is embedded in both streams of the
proposed DSDNet. It introduces the entanglement between hidden
feature responses and the rain distribution, enabling an innova-
tive detect-derain-restore paradigm for single image deraining.
We present a self-paced semi-curriculum learning strategy intend-
ing to progressively decrease and finally get rid of the dependency
on the ground truth mask during training. It can thus facilitate the
mitigation of the ambiguity brought by the prediction of the rain
mask and accelerate the training process.

We perform favorably against the state-of-the-art single image
deraining methods on several benchmarks in both synthetic and
real-world scenarios. Also, the effectiveness of the proposed DS-
DNet is demonstrated via being spread to other applications, ie.,
detection, and segmentation.

The rest of this paper is organized as follows. Section 2 reviews
the existing related single image deraining methods. Section 3 elabo-
rates the proposed DSDNet. And Section 4 gives a detailed discussion
based on the experimental evaluations of the proposed method. Finally,
Section 5 concludes this paper.

2. Related work

Traditional model-based methods mainly delve into modeling op-
timization functions by enforcing various hand-crafted priors on the
degraded images. For example, Chen and Hsu (2013) proposed a low-
rank appearance model to represent and remove the spatiotempo-
rally correlated rain streaks. With a sparsity-based regularization, Luo



et al. (2015) proposed to separately estimate a rain streak layer and
a background layer. Li et al. (2016) utilized a sequence of Gaussian
mixture models to capture patch-based priors for accommodating mul-
tiple orientations and scales of the rain streaks. However, model-based
approaches usually suffer from high computational complexity, as well
as difficulty in designing efficient priors when facing a condition of
heavy rain.

In recent years, deep neural networks have achieved tremendous
success in dealing with the single image deraining task. Fu et al.
(2017a) firstly proposed to use a simple three-layer CNN for rain
removal. Zhang et al. (2019) proposed a conditional generative adver-
sarial network (CGAN) with an additional regularization for a better
quality of visualization. To iteratively reconstruct the rainy images,
several works (Li et al., 2017; Yang et al., 2017) were proposed to
leverage recurrent networks to remove the rain streaks stage by stage.
As the dependencies of image features across different stages were
neglected by previous works, RESCAN (Li et al., 2018) and PReNet (Ren
et al., 2019) introduced advanced recurrent modules, i.e., convolutional
Long Short-Term Memory (convLSTM) and convolutional Gated Re-
current Unit (convGRU), to take the stage-wise result as input for the
further restoration process. To take advantage of spatial contextual in-
formation for learning more effective features, formulas like multi-scale
information aggregation (Zhang and Patel, 2018; Jiang et al., 2020),
squeeze-and-excitation (SE) operation (Yang and Lu, 2019; Deng et al.,
2020; Wang et al., 2020b), and spatial attention mechanism (Wang
et al., 2019) were also widely utilized. Note that all the above methods
were implemented using cascaded frameworks. Instead, DRDNet (Deng
et al., 2020) was proposed to use a parallel structure to respectively
tackle the rain streak removal and detail recovery problems. However,
it ignores the influence of rain distribution which is a critical factor
for rain removal. And in fact, all of the existing related methods show
limited performance without investigating a proper interaction between
rain distributions and feature responses, while the proposed DSDNet
uses a self-contained stimulation strategy to achieve this goal.

3. Method
3.1. Overview

Following the spirit of Pan et al. (2018), we consider resolving
rain streak removal as well as detail recovery problems in a dual-
stream pipeline. And therefore, a Dual Stimulated Deraining Network
(DSDNet) is established, which consists of a stimulated rain streak esti-
mation stream (RStream) and a stimulated detail reinforcement stream
(DStream). Fig. 2 illustrates the overall architecture of the proposed
DSDNet.

In particular, as the distribution of rain is undoubtedly influential
for both issues, our method additionally predicts a rain mask that
contains information on the location and intensity of rain. Specifically,
to reduce the system complexity, the rain mask is produced by the back-
bone of the RStream as a side output instead of introducing an extra
subnetwork. This is because the two tasks, i.e., rain detection and rain
streak estimation, are quite similar. And the mask is further fed into
two independent stimulation modules that are respectively embedded
in both streams, providing more constraints to stimulate hidden feature
responses. To alleviate the learning ambiguity, we also propose a self-
paced semi-curriculum learning strategy for the estimation of the rain
mask.

3.2. Network architecture

3.2.1. Stimulation module

The most possible reason for either an incorrect removal of rain
streaks or a loss of texture details is the ill-posed property of the
deraining problem. Nevertheless, there exists an implicit yet reasonable
constraint that the severity of the degradation is closely related to

the distribution (i.e., location and intensity) of rain. This motivates
us to treat the hidden feature responses differently according to a
predicted rain mask. Specifically, we implement a stimulation module
that respectively equipped in each stream of DSDNet to rescale the
extracted features, with guidance from the rain mask.

Given a sequence of feature maps F € REH*W generated by a
backbone network and a single-channel rain mask M € R™>*#*W where
the element values are ranged from 0 to 1 (0 indicates a non-rain area,
while 1 denotes the highest intensity of rains), the proposed stimulation
module SM(-) produces stimulated features SM(F, M) € RE*HXW yia
the following model:

SM(FM)=aOEM)OF+(1-a)OF, 1)

where © indicates an element-wise multiplication operation and «
denotes a learnable parameter. E(-) is an expansion operation, for
example, the stimulation maps E(M) € R®H*W is produced by a
C-times stack of the rain mask M along the channel dimension.

Note that as a representative one of the few deraining methods
associated with a subtask of rain detection, JORDER (Yang et al., 2017)
adopted to directly concatenate the rain mask with the hidden features,
which cannot fully utilize the information from the distribution of the
rains to improve the feature representations. Also, the goal of rain
detection would distract from its total objective due to the cascaded
structure design. In contrast, our DSDNet prefers to perform deraining
in a parallel pipeline with multiple aims. More importantly, the pro-
posed stimulation strategy, which serves as an ancillary regularization,
is capable of dynamically emphasizing the hidden features in rain
regions while deemphasizing those in the non-rain areas. In this way,
both rain streak estimation and detail reinforcement processes can be
benefitted.

3.2.2. Stimulated rain streak estimation stream

The goal of RStream is divided into two parts: The first one is to
detect rain streaks and render the result as a rain mask. With the aid of
the additional cues furnished by the mask, the other aim is to predict
the rain streak layer. Specifically, we first input a rainy image O to a
flat convolutional layer with a filter size of 3 x 3. To exploit both spatial
information as well as the channel dependencies, the extracted shallow
features are then fed into a series of SE-Resblocks (Li et al., 2018).
The last layer of the backbone of RStream is used for fusing the long-
range information from the first conv-layer, and the filter size is set to
3 x 3. Consequently, we hook up an outer conv-layer conjunct with
a Sigmoid layer to squeeze the preceded multi-channel feature maps
into a preliminary single-channel rain mask M ,, which is formulated
as follows:

M, = Sigmoid(Conv(R(0)), @

where R(-) indicates the backbone of RStream. Note that before being
fed into the proposed stimulation module to generate enhanced fea-
tures, the preliminary mask M, would be further updated to get the
rain mask M via a self-contained curriculum learning strategy. We will
expound this in Section 3.3.

Finally, once the features are stimulated, they would be sent into a
3 x 3 conv-layer for reconstructing a three-channel rain streak layer S.
This process can be calculated as follows:

S = Conv(SM »(R(0), M), &)

where SM i(-) denotes the stimulation module embedded in RStream.

As thus, we can calculate a coarse deraining result B, via the
following formulation:
B =0-3S5. 4

coarse
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Fig. 2. The overall architecture of our DSD-Net. It consists of two parallel streams: stimulated Rain Streak Estimation Stream (RStream), and stimulated Detail Reinforcement Stream
(DStream). RStream in the upper part is used for both rain region detection and rain streak prediction. The lower part is DStream which aggregates the contextual information to
restore the lost details. Particularly, the tailored stimulation module is exhibited inside the red dotted box. The generated rain mask would be respectively fed into dual stimulation
modules to guide rain streak estimation as well as detail reinforcement processes. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

3.2.3. Stimulated detail reinforcement stream

The coarse deraining result may incur a loss of details. Apart from
the ill-posed property of the problem, the limited receptive field may
also be one concern. To boost the quality of the coarse result, we
typically construct a DStream to predict the lost details. Since dilated
convolution has shown a preferable performance in recent works (Yang
et al., 2017; Li et al., 2018), here we simply employ several multiscale
dilated blocks (Yang et al., 2017) as the base of the backbone. Such
a kind of block is conducive to amplifying the receptive field as well
as leveraging multiscale information, so as to promote the aggregation
of spatial contextual information and facilitate the detail reinforce-
ment process. Note that except for the basic blocks, all the remaining
structure of DStream is the same as RStream.

During the detail reinforcement stage, we first add the coarse de-
raining result B,,,,,, to its corresponding rainy image O, mainly for a
complement of details provided by the former one. Then we inject this
sum into DStream D(-) to obtain the details D, which can be formulated
as follows:

D = Conv(SM ,(D(O + B,,,,.,), M)), 5)

where SMp(-) indicates the stimulation module deployed in DStream.
In the end, the fine deraining result B/, is given by

Bfine = Bcaarse +D. (6)
3.3. Self-paced semi-curriculum learning

Note that the rain mask that fed into the stimulation module can
be obtained in advance by other upstream detection methods, as long
as it can precisely represent the distribution of rains. Nonetheless, to
increase the flexibility of the proposed DSDNet, we choose to jointly

estimate the rain mask and rain streaks in RStream. A subsequent issue
is created that the learning ambiguity would be aggravated due to a
multi-objective prediction. To solve this, inspired by the curriculum
learning technology (Bengio et al., 2009) that training a framework
with an easy start and gradually increasing the difficulty to expedite
a better convergence, we particularly propose a self-paced curriculum
learning strategy to update the rain mask.

Specifically, the rain mask M is calculated from a trade-off between
the ground truth mask M, and the preliminary mask M,, which is
formulated as follows:

M=poM,+(1-pHoM, %)

where f is a curriculum rate that varies with the training difficulty
changes. Note that the ground truth mask M, we used is the difference
between the rainy image and its corresponding rain-free image in the
luminance channel of a YCbCr color space, since it is not provided
by most existing datasets. We further give the exact definition of the
curriculum rate, that is

r L, Ymax < Emask’
&~V mi
ﬂ = V’::i—}’m"i:n Ymin < [:mask < Ymax» (8)
0, [’mask < Ymin»

where L, is a loss term regarding the estimation of the rain mask that
would be discussed in the next section, y,,, and 7,,,, are two constants
that selected empirically.

Eq. (8) forces that the curriculum rate progressively decays from
1 to O during training. It implies that, the update of the rain mask
M relies more on the ground truth mask M, during the beginning
of training for alleviating a learning ambiguity, and then increasingly
shifts toward the preliminary mask M ,. When the loss term reaches a



low plateau, the required mask M would be equal to M, such that
getting rid of the dependency of the ground truth mask.

To some extent, our model can be seen as a paradigm with multiple
knowledge representations (Yang et al., 2021; Luo et al., 2017) for
single image deraining. First, in contrast with the extracted image
features which are flowed in the backbone network, the rain mask
involved in the proposed stimulation module can be seen as a lower-
level abstraction that provides privileged information to promote both
procedures of rain streak estimation and detail reinforcement. Sec-
ond, the dual-stream structure establishes an entanglement between
the rain streaks and the latent clean image and explores reciprocal
enhancements for each other.

3.4. Objective function

We mainly consider the consistencies in three aspects for optimiz-
ing the proposed model, and design an objective function with three
components: a pixel consistency loss L, between the final result
By, and its corresponding ground truth clean image B,, a rain streak
consistency loss £,,;, between the predicted rain streak image .S and
the corresponding ground truth rain streaks .S, and a mask consistency
loss L,,,,x between the rain mask M and its corresponding ground truth
rain mask M,. The total objective £ is defined as follows:

L= AI[’pier + /‘IZErain + ’13[’mask' (9)

Regarding image processing tasks, mean square error (MSE) is one
of the most commonly used loss functions. We use such a plain mea-
surement to formulate each term of our objective, which is as follows:

N . 2

£pi)(el = 2 “Bl ine Bfg” 5 (10)
i=1
.

Lon=Y, ”s -5 | , an
i=1
IN . 112

£maxk=Z”M’_MlgH 3 (12)
i=1

where i denotes the index of training samples, and N is the total
number of samples. A;, 4,, and A5 indicate the balance factors with
respect to each component.

4. Experiments

In this section, we first clarify the experimental settings used for
evaluating the proposed DSDNet. And then, we demonstrate an ab-
lation study to examine the effectiveness of different components in
our framework. Subsequently, we present the assessments of DSDNet
regarding both synthetic and real-world scenarios. Finally, we spread
our model to other applications, i.e., detection and segmentation, to
manifest a more comprehensive evaluation.

4.1. Experimental settings

4.1.1. Experimental data

For the case of synthetic image deraining, we utilize three bench-
mark datasets to evaluate the proposed DSDNet: Rain200L (Yang et al.,
2017), Rain200H (Yang et al., 2017), and Rain1400 (Fu et al., 2017b).
Rain200L is a light rain dataset that consists of 1800 image pairs for
training and 200 image pairs for testing. Rain200H is a heavy rain
dataset that also includes 1800 training samples and 200 testing sam-
ples. And Rain1400 includes 14 000 rainy images which are synthesized
from 1000 clean images with 14 kinds of rain streaks, among which 100
clean images (1400 rainy images) are chosen for testing and others are
used for training.

Regarding real image deraining, two real-world datasets are fur-
ther leveraged to validate the robustness of our approach, ie., SPA-
Data (Wang et al., 2019) and Real-Internet (Wang et al., 2019). SPA-
Data includes 638 492 rainy/clean training pairs and 1000 testing pairs,
while Real-Internet is with 146 rainy images from the Internet collected
by Wang et al. (2019). Note that the testing images from Real-Internet
have no clean ground truths.

Regarding the practicality of DSDNet in the applications of detection
and segmentation, we use two synthetic datasets COCO350 (Jiang et al.,
2020) and BDD150 (Jiang et al., 2020) for investigation. They are
randomly selected from COCO (Caesar et al., 2018) and BDD (Yu et al.,
2018), respectively, with diverse rain streak directions and intensities
synthesized by Photoshop.

4.1.2. Implementation details

Our model is implemented with the PyTorch framework and trained
on an NVIDIA GeForce GTX 1080Ti GPU. During training, we utilize
Adam (Kingma and Ba, 2015) as the optimizer and a batch size of 8.
The learning rate is initialized to 2 x 10~* and remained the same in
the first 20 epochs. And it then linearly decayed to zero from the 21st
epoch to the 200th epoch.

In the experiments, the numbers of the SE-Resblocks and the multi-
scale dilated blocks in the backbones are both set to 16. To obtain the
best performance, we empirically set the parameters as y,,;, = 0.005,
Ymax = 0.1, 4y =1, 4, = 0.1 and 43 = 0.1. The input images are randomly
cropped with a size of 128 x 128 before being fed into the network.

4.1.3. Comparisons and measurements

We compare our method with several state-of-the-art methods, in-
cluding RESCAN (Li et al., 2018), PReNet (Ren et al., 2019), SPANet
(Wang et al., 2019), JORDER-E (Yang et al., 2019), DRD-Net (Deng
et al., 2020), MSPFN (Jiang et al., 2020), RCDNet (Wang et al., 2020a),
and MPRNet (Zamir et al., 2021). Unless stated otherwise, all the
reported results are evaluated from the models trained by the corre-
sponding dataset in their default settings for fairness.

Regarding the results from the datasets in which the ground truth
images are available, we utilize PSNR and SSIM as the measurements.
And we use SSEQ, ENIQA, and BRISQUE to measure the visual quality
of the results from the other datasets. Note that all the metrics are
calculated in the RGB color space.

4.2. Ablation study

In this subsection, we explore the effectiveness of each component
in the proposed network. We design six comparisons and test their
performances on Rain200L, Rain200H, and Rain1400. Specifically, the
settings of different models are defined as follows:

* RS: Only RStream is used to derain.

+ DS: Only DStream is used to derain.

* RS+SM: Incorporating the proposed stimulation module into
RStream to remove rain streaks with additional cues provided by
rain mask.

DS+SM: Incorporating the proposed stimulation module into
DStream to remove rain streaks with additional cues provided by
rain mask.

* RS+DS: Combining RStream and DStream to jointly remove rain
streaks and recover image details.

RS+DS+SM: Incorporating the stimulation module into RStream
and DStream respectively.

RN+DN+SM+SSL: Our final DSDNet which additionally exploits
a self-paced semi-curriculum learning strategy.

Table 1 lists all the quantitative results. First, baseline performances
towards rain streaks removal and details reinforcement are given by
RS and DS. After introducing the stimulation module into RS and DS
respectively, average PSNR improvements of 0.18 dB and 0.24 dB are



Table 1

Ablation study of different network designs.

Method Rain200H Rain200L Rain1400
PSNR (dB) SSIM Time (h) PSNR (dB) SSIM Time (h) PSNR (dB) SSIM Time (h)
RS 27.92 0.8624 2.5 37.87 0.9823 2.38 31.43 0.9178 6.65
DS 28.31 0.8746 6.0 37.72 0.9822 7.54 31.50 0.9199 18.38
RS+SM 28.27 0.8725 3.6 37.94 0.9824 3.85 31.54 0.9182 11.49
DS+SM 28.69 0.8809 7.0 37.91 0.9824 9.44 31.65 0.9222 22.40
RS+DS 28.55 0.8779 12.0 37.92 0.9819 13.89 31.60 0.9206 28.11
RS+DS+SM 28.85 0.8885 14.6 38.05 0.9828 16.25 31.76 0.9234 34.24
RS+DS+SM+SSL 28.91 0.8895 6.0 38.06 0.9827 10.56 31.94 0.9263 22.82
Table 2
Quantitative evaluations for synthetic image deraining on three benchmark datasets. The top-3 performances are marked in red, blue,
and green.
Method Venue & Year Rain200L Rain200H Rain1400 Average
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM
RESCAN ECCV18 37.09 0.9787 26.64 0.8363 30.91 0.9090 31.55 0.9080
PReNet CVPR19 36.69 0.9799 27.96 30.56 0.9136 31.74 0.9276
SPANet CVPR19 35.87 0.9762 25.86 0.8530 28.90 0.8875 30.21 0.9056
JORDER-E PAMI19 37.75 0.9825 27.88 0.8730 31.11 0.9158 32.25 0.9238
DRD-Net CVPR20 37.15 0.9811 28.17 0.8701 29.11 0.8912 31.48 0.9141
MSPFN CVPR20 30.12 0.9166 25.53 0.7969 31.14 0.9137 28.93 0.8757
RCDNet CVPR20 38.41 0.9839 28.71 0.8875
MPRNet CVPR21 38.21 0.9842 0.8806 31.88 0.9277 32.79 0.9308
DSDNet 28.91 0.8895 31.94 0.9263 32.97 0.9328

achieved. This implies that the guidance of rain distributions provided
by the stimulation module can significantly boost the performances of
baselines. Moreover, we observe that combining RS and DS surpass
that using only either by average PSNR improvements of 0.28 dB and
0.18 dB, revealing that the two subnetworks with different structures
can learn the complementary information to promote the deraining
performance. On this basis, it is not surprising that an average increase
of 0.20 dB in PSNR is further accomplished by embedding the stimu-
lation modules into each subnetwork. Finally, it can be seen that our
curriculum learning strategy mainly helps to accelerate the training,
despite only slight improvement gains in the measurements. Fig. 3
shows the visual results of the ablation study on Rain200H. We can see
that the deraining result of our DSDNet (RS+DS+SM+SSL) is the most
visibly plausible one in that the background (sky) is purer compared to
the other results.

4.3. Experiments on synthetic data

Table 2 reports the quantitative evaluation for synthetic image
deraining on three benchmark datasets. In particular, DSDNet exhibits
powerful ability when dealing with heavy-rain scenes (Rain200H and
Rain1400), with increases of 0.20 dB and 0.06 dB in PSNR compared to
that of the second best method MPRNet. This implies that a stimulation
module design that yields a prediction of dense rain distributions
can facilitate rain streak estimation and detail restoration. Another
interesting observation is that, when coping with light-rain situations
(Rain200L), our method seems not to achieve the desired performance
(in third place). We speculate that this is due to the information yielded
by a sparse rain distribution being deficient, which sometimes may
even mislead the learning process. Nevertheless, it still can be seen that
the proposed DSDNet reaches superior performance on average against
all the competitors.

We visualize the restored results from the test datasets by differ-
ent comparisons in Fig. 4. It can be observed that our DSDNet can
sufficiently remove the rain streaks and subtly recover the details
on different rain conditions compared with other methods. Moreover,
thanks to our stimulation mechanism, the DSD-Net can be enforced to
focus on the rain regions to obtain better deraining performance as well
as alleviate an over-smoothing problem that existed in most deraining
methods.

Table 3
Quantitative evaluation for real-world image deraining on the SPA-Data dataset. The
top-2 performances are marked in red and blue.

Metric MPRNet PReNet SPANet JORDER-E
PSNR (dB) 32.73 39.44 38.53 40.48
SSIM 0.9398 0.9813 0.9875 0.9818
DRD-Net MSPFN RCDNet DSDNet
PSNR (dB) 35.91 39.59 38.55 40.62
SSIM 0.9595 0.9789 0.9763 0.9818

4.4. Experiments on real-world data

To validate the robustness of the proposed method, we conduct
experiments on real-world image deraining. Fig. 5 illustrates the visual
comparisons on the SPA-Data dataset in different scenarios, includ-
ing nature, fence, urban, and building. We can see that for the real
rain patterns, our DSD-Net also shows superiority compared to other
methods. Particularly, for the regions with rain streaks, our method
restores fine details while for the regions without rains, our method
would not blur the background details. For example, in the first row
of Fig. 5, DSDNet successfully preserves the stem of the plant in the
blue bounding box while other methods inaccurately remove it as rain
streaks. This is also proved by the quantitative evaluation summarized
in Table 3. The metrics of the proposed method beat all the other
methods, demonstrating its effectiveness in real-world scenarios.

We also perform another evaluation on the Real-Internet dataset.
Note that all the comparisons are trained on Rain200H dataset. We
select four hard samples with various rain streaks and complex back-
grounds to verify the generalization ability of all the methods and
display the results in Fig. 6. We can see that most of the competitors can
remove the rain streaks well but simultaneously blur some background
details, such as the veins of the leaves in the fourth row of Fig. 6. In
contrast, our DSDNet can preserve most of the details meanwhile re-
moving rain streaks more accurately. Note that despite DSDNet, which
also adopts a parallel structure, can achieve a similar qualitative result
enclosed in the red box with ours (the fourth row), more rain prints can
be found in its recovered background. This indicates the effectiveness
of our stimulation module which considers rain distribution as auxiliary
information for image deraining. The quantitative results are reported
in Table 4.
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Fig. 3. Visual comparisons on Rain200H of different models in ablation study. PSNR/SSIM are listed below the images.
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Fig. 4. Visual comparison of synthetic rainy images in the Rain200L, Rain200H, and Rain1400 datasets. From (a) to (g): (a) input rainy image, (b) PReNet (Ren et al., 2019), (c)

DRD-Net (Deng et al., 2020), (d) RCDNet (Wang et al., 2020a), (e) MPRNet (Zamir et al.,

4.5. Evaluation on other applications

In this subsection, we investigate the practicality of the DSDNet by
spreading it to other computer vision tasks. The overall process is that,
first, we restore the rainy images from COCO350 and BDD150 datasets
by using all the state-of-the-art comparisons. Then we feed the results
into two popular algorithms for two typical purposes: YOLOv3 (Red-
mon and Farhadi, 2018) for object detection and RefineNet (Lin et al.,
2017) for semantic segmentation. Tables 5 and 6 shows the quantitative

2021), (f) Ours, and (g) ground truth image. PSNR/SSIM are listed below the images.

evaluation of synthetic image deraining as well as the subsequent
detection and segmentation. Visual comparisons are shown in Fig. 7.
We can find that rain streaks can greatly degrade the quality of
images, leading to poor detection accuracy and segmentation precision.
The detector usually misses the targets or outputs some uncertain
results when suffering from rain. However, when we feed the rain-
free images produced by our DSDNet into the detector, the detection
precision is improved by 21.55% which performs best against other
competing deraining methods. When it comes to semantic segmenta-
tion, the DSDNet also achieves superior performance with 54.03% mPA
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Fig. 5. Visual comparison of real rainy images in the SPA-Data dataset. From (a) to (g): (a) input rainy image, (b) DRD-Net (Deng et al., 2020), (c) MSPEN (Jiang et al., 2020),
(d) RCDNet (Wang et al., 2020a), (e) MPRNet (Zamir et al., 2021), (f) Ours, and (g) ground truth image. PSNR/SSIM are listed below the images. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Visual comparison of real rainy images in the Real-Internet dataset. From (a) to (g): (a) input rainy image, (b) SPANet (Wang et al., 2019), (c) DRD-Net (Deng et al.,
2020), (d) RCDNet (Wang et al., 2020a), (¢) MPRNet (Zamir et al., 2021), and (f) Ours.
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Fig. 7. Visual comparison of recovered images for detection and semantic segmentation. From (a) to (g): (a) rainy image, (b) SPANet (Wang et al., 2019), (c) DRD-Net (Deng
et al., 2020), (d) RCDNet (Wang et al., 2020a), (e¢) MPRNet (Zamir et al., 2021), (f) Ours, and (g) ground truth image. The first and second rows are the results for detection by
YOLOvV3 (Redmon and Farhadi, 2018) on the COCO350 dataset. The third and fourth rows are the semantic segmentation results obtained from RefineNet (Lin et al., 2017) on

the BDD150 dataset.

Table 4
Quantitative evaluation for real-world image deraining on the Real-Internet dataset.
All the comparisons are trained on the Rain200H dataset. And all the metrics are the

Table 6
Quantitative evaluation on BDD150. All the comparisons are trained on the Rain200H
dataset. The top-3 performances are marked in red, blue, and green.

lower the better. The top-2 performances are marked in red and blue. Method PSNR (dB) SSIM mPA (%) mioU (%)
Method SSEQ! ENIQA| BRISQUE| Rain Input 16.81 0.6764 38.06 28.38
RESCAN 27.9040 0.1895 30.6595 RESCAN 19.18 0.7762 46.09 36.39
PReNet 28.0166 0.1816 30.9984 PReNet 19.71 0.7926 46.98 34.31
SPANet 29.7238 0.1980 31.8892 SPANet 20.30 0.7936 47.66 35.49
JORDER-E 28.3976 0.1886 31.7157 JORDER-E 19.34 0.7564 47.30 34.85
DRD-Net 27.3162 0.1733 28.8796 DRD-Net 20.00 0.8016 49.57 38.46
MSPFN 32.7218 0.2000 35.4624 MSPFN? 20.75 0.8564 53.47 39.74
RCDNet 28.8457 0.1907 32.0494 RCDNet 19.88 0.8095 48.69 36.60
MPRNet 28.5558 0.1871 32.4257 MPRNet 18.89 0.7740 47.02 36.80
DSDNet 26.7733 0.1731 29.3061 DSDNet 20.38 0.8011 49.18 37.05
DSDNet" 21.41 0.8687 54.03 41.51
Table 5 2Denotes that the method is trained on the dataset used in Jiang et al. (2020).

Quantitative evaluation on COCO350. The IoU threshold is set to 0.5. All the
comparisons are trained on the Rain200H dataset. The top-3 performances are marked
in red, blue, and green.

Table 7
Running time of the comparisons for deraining of the images from COCO350 with a

Method PSNR (dB) SSIM Precision (%) Recall (%) size of 640 x 480.

Rain Input 13.24 0.5429 37.82 39.80 Method RESCAN SPANet JORDER-E
RESCAN 15.12 0.6065 46.08 48.48 Runtime ©) 0153 0.362 0.321
PReNet 15.60 0.6080 46.42 48.64

SPANet 16.12 0.6195 47.21 49.63 DRD-Net RCDNet DSDNet
JORDER-E 15.30 0.6029 49.28 51.27 Runtime (s) 0.442 0.416 0.694
DRD-Net 15.85 0.6265 51.97 53.88

MSPEN® 15.95 0.6398 56.35 58.23

RCDNet 15.27 0.6204 50.78 52.85

MPRNet 14.94 0.6048 47.77 49.65 It can be observed that DSDNet requires a bit more time for infer-
DSDNet 16.16 0.6279 53.51 55.30 ence than the other methods. This may be caused by the cost of the
DSDNet* 16.61 0.6704 59.37 60.76

2Denotes that the method is trained on the dataset used in Jiang et al. (2020).

and 41.51% mIoU. The results show that the rain-free images produced
by DSDNet retrieve more details (higher PSNR/SSIM) and credible
information to effectively promote the performance of detection and
semantic segmentation.

4.6. Running time

To evaluate the practicality of the proposed method, we summarize
the average running times of RESCAN, SPANet, JORDER-E, DRD-Net,
RCDNet, and our DSDNet in Table 7. All these experiments are per-
formed on the COCO350 dataset in which the size of the test images is
640 x 480, with an NVIDIA 3090 GPU.

proposed stimulation modules. On the other hand, the running time of
our model is quite acceptable considering a trade-off between deraining
performance and complexity.

4.7. Limitation

Although we demonstrate the cruciality of the interaction between
the rain distribution and the hidden feature responses of the model
for single image deraining, it would be limited by the accuracy of the
prediction of the rain mask. Also, our model still needs the ground truth
mask at the beginning of training. Therefore, it is interesting to explore
the possibility of introducing self-supervised learning based strategies
in the future.



5. Conclusion

In this paper, we explore the utility of rain region masks and
propose a novel stimulation module to incorporate rain region masks
into rain streak removal and detail restoration. We construct a dual-
stream network to jointly estimate rain streaks and restore details with
the guidance of the rain region masks. The stimulation module enables
the network to focus on the rain regions which helps to get better
deraining results as well as alleviate the over-smoothing problem in
rain-free regions. To handle the ambiguity of rain region detection,
we design a self-paced semi-curriculum learning strategy to gradually
increase the difficulty of the learning process by replacing the ground
truth rain region mask with our predicted mask under the control of the
well-designed curriculum rate. Extensive quantitative and qualitative
results on synthetic and real-world datasets indicate that our method
outperforms the state-of-the-art single image deraining approaches and
demonstrates effectiveness in different rain conditions.
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