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Analyzing the Impact of COVID-19 Control Policies on
Campus Occupancy and Mobility via WiFi Sensing
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AMEE TRIVEDI, University of Massachusetts Amherst, USA
EMMANUEL CECCHET, University of Massachusetts Amherst, USA
MICHAEL CHEE, Duke-NUS Medical School, Singapore
PRASHANT SHENOY, University of Massachusetts Amherst, USA
RAJESH BALAN, Singapore Management University, Singapore

Mobile sensing has played a key role in providing digital solutions to aid with COVID-19 containment policies,
primarily to automate contact tracing and social distancing measures. As more and more countries reopen
from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in
enclosed spaces. Many COVID-19 technology solutions leverage positioning systems, generally using Bluetooth
and GPS, and can theoretically be adapted to monitor safety compliance within dedicated environments.
However, they may not be the ideal modalities for indoor positioning. This paper conjectures that analyzing
user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain
safety compliance according to the public health guidelines. Using smartphones as a proxy for user location,
our analysis demonstrates how coarse-grainedWiFi data can sufficiently reflect the indoor occupancy spectrum
when different COVID-19 policies were enacted. Our work analyzes staff and students’ mobility data from
three university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United
States. Our results show that online learning, split-team, and other space management policies effectively
lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We
demonstrate how this data source can be a practical application for institutional crowd control and discuss the
implications of our findings for policy-making.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Ap-
plied computing → Health informatics.
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1 INTRODUCTION
Mobile sensing is increasingly employed to provide community support in security and safety
[18, 34] and, very quickly, proven helpful in the recent COVID-19 global pandemic. For example,
countries such as Singapore and South Korea promptly adopted mobile apps and sensors for various
pandemic responses, including contact tracing and guiding social distancing policies [16, 17, 46].
As our understanding of COVID-19 constantly expands, data-driven analytics have paved the way
to guide safe management measures by governments worldwide [15, 43]. Overall, these efforts have
aided in revising health guidelines and even re-openings to crowds [13]. Unfortunately, monitoring
the safety compliance of these policies can be a struggle for agencies, organizations, and institutions
as they rapidly change with new findings.
Sensing location information is fundamental in digital solutions responding to COVID-19. For

example, users’ current location within communal spaces infers crowd density, allowing operations
management to mobilize social distancing measures. Their location histories help identify places
at risk of virus exposure in contact tracing procedures. Much research analyzing location data
to combat COVID-19 has been conducted over this short term. Badr et al. analyzed mobile phone
signals from cell towers in 25 U.S. counties and found that mobility patterns strongly correlate with
the virus spread [4]. Positioning systems using Bluetooth and GPS immediately became pivotal
in digital contact-tracing apps to stop the viral spread [13]. Besides these mobile apps, crowd
monitoring solutions (CMS) are also relevant to monitor gathering in enclosed spaces [3, 25, 58].
Recent efforts utilizing CMS for COVID-19 include video images [5, 29, 48] and Bluetooth [62].
Fundamentally, these solutions can procedurally track occupants’ digital footprints of their physical
whereabouts. Bluetooth, drones, or thermal imaging cameras are less privacy-invasive than typical
video surveillance. However, institutions may lack operational readiness, requiring additional
device deployment in dedicated environments. A feasible solution is leveraging the existing WiFi
network typically available to occupants in educational institutions [54, 61]. These works proposed
inference methods to identify at-risk occupants or superspreader events based on their associations
with specific access points (APs) and contact graphs to reveal potential directional interactions
between individuals. The effectiveness of these techniques was demonstrated through simulated
examples.
In the same vein, our work seeks to investigate if location data that is passively sensed from

existing WiFi infrastructure can, in fact, show the real-world effects of various COVID-19 policies
on institutions when the pandemic broke out. Our goal is to show that coarse-grained WiFi data can
sufficiently reflect the spectrum in crowd change when different control policies are implemented
over time within an institution. Monitoring crowd change at three-level granularity (i.e., area, floor,
and building) can contribute to the institutions’ ability to report on actual space utilization in
addition to specific details, such as total building capacity, buildings’ floor-by-floor, and area metrics.
Besides being alerted of densely populated parts of the building, monitoring building occupancy
and mobility is critical in informing the maximum range of occupancy and assessing exposure
and vulnerabilities from occupants’ mobility across shared open spaces. We present findings from
analyzing anonymized and aggregated students and staff’s location data through collecting WiFi
logs directly from deployed campus WiFi infrastructures across three universities1. Two of these
campuses are in Singapore, and one is in the northeastern part of the United States of America. We
employ two key measures, 1) occupancy – the number of users represented by unique smartphone
device counts in each building and 2) mobility – the order of buildings visited by the user.
This analysis comprises data during the initial phases of COVID-19 for all universities in both

countries. Our results show occupancy and mobility changing with different levels of restrictions.

1Privacy and ethical considerations for our work are defined in Section 2.4.
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For example, we observed a reduction in occupancy when online learning was gradually introduced
to some undergraduate classes. However, for on-campus staff and students, their mobility rate
remained high. In contrast, a significant decrease in mobility rate is observed during the remote
learning period. It is important to emphasize that this work neither solves a prediction problem
nor proposes an alternative to digital contact tracing. Instead, our findings show the efficacy of
WiFi sensing technique in regulating institutional compliance. The coarse-grained data analysis
prevails as a data-driven approach to minimize congregation, moderate building occupancy, and
crowd movement at an aggregated scale, preserving user privacy. Overall, this paper makes the
following contributions:

(1) It provides one of the first detailed looks at the effect of COVID-19 related policies on three
campus populations across two different countries. Our results show how the occupancy
and mobility metrics change across all three campuses as COVID-19 quarantine policies, of
increasing severity, are enacted.

(2) It provides evidence that passive monitoring of indoor occupancy and mobility patterns
using WiFi data could be useful to administrators in deciding the appropriate safe distancing
measures for similar disease outbreaks.

2 BACKGROUND ANDMOTIVATION
In what follows, we summarize prior work relevant to digital COVID-19 contact tracing and the
practical use of WiFi sensing in the existing literature to monitor indoor occupancy and mobility
for various applications.

2.1 COVID-19 College Outbreak
Close contact and congregations are discouraged during the pandemic since COVID-19 can spread
from person to person through respiratory droplets or by breathing in contaminated air. Some
studies have reported that the virus can remain airborne over longer periods, especially in indoor
spaces where it may likely have reduced ventilation [8]. The virus poses a direct threat to high
population density areas, particularly work and education environments. Now, more than ever,
precise indoor positioning capabilities are necessitated in these environments to model human
mobility and identify areas at risk of disease spread.

One of the earliest virus outbreaks among college students was determined in March 2020, when
64 students were diagnosed positive with COVID-19 as they returned to the United States from their
Spring break [32]. This outbreak was effectively controlled with swift cooperation and compliance
between the university and public health officials. However, by July 2020, it was reported that 6,600
COVID-19 cases linked to 270 colleges nationwide had begun to spread even before the Fall semester
– proving university campuses as highly vulnerable to the disease outbreak [51]. As universities
scrambled for campus closure, they were simultaneously pressured to respond to new public health
strategies and requirements [53], ranging from implementing restrictions on population movement
to creating makeshift quarantine sites [1].

More recently, the New York Times reported on the success of major Singapore universities pre-
venting the spread of COVID-19. Specifically, Singapore universities developed monitoring systems
to help residents comply with zone restrictions and other safety measures [52]. Simultaneously
in the US, the Centers for Disease Control and Prevention (CDC) has provided several revisions
on guidelines with which educational institutions must comply to reopen safely [7]. Among these
operation plans are decreasing occupancy in areas with limited indoor ventilation, staggering use,
and restricting occupancy rate in shared spaces. The complexity of adapting rapidly changing rules
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and monitoring institutional compliance offers unprecedented mobile sensing opportunities to aid
universities in making more informed decisions.

2.2 Digital Technologies for Monitoring COVID-19
Since its outbreak, the public health response to COVID-19 has quickly tapped into digital solutions
to support various use-cases from public awareness to management protocols for different end-user
groups such as the general public, facility administrators, and case investigators, respectively.
Fundamentally, these efforts rely on localization and tracking methods to reduce the virus spread.
This is particularly important as different countries, states, and even organizations enact a slew of
policies they believe are best for them [24].
Several COVID-19 trackers are available online, showing the number of infections per country

[6, 11, 56, 57], the spread rate [49], and possible ways to exit lockdown across the world [59]. At
present, many crowd surveillance solutions used to support COVID-19 safety compliance leverage
video, footfall counter, and a combination of IoT sensors to measure crowd density, monitor crowd
movement and the usage rate of facilities [22]. Real-time crowd density apps utilizing occupancy
sensors, cameras, and ticket validations are also piloted in European cities to help commuters make
well-informed decisions on the best travel routes and times [23].

Smartphone-based Location Sensing. One of the earliest analyses using mainly location data from
the user’s smartphone investigated the cluster of COVID-19 cases in an office block in South Korea
[46]. Confirmed case patients supplied their GPS information and were notified of the nearest
screening center to get tested. Mobile phones quickly became key for exposure notifications
and safety guidelines [4, 13, 31]. Simultaneously, Singapore mandated mobile check-ins at public
spaces, for example, a shopping mall and every store within it, for residents to log their entries
and exits using either a mobile phone or scanning their national identification card [16]. While
SafeEntry helps reduce manual logging effort for businesses, these procedures may be cumbersome
to customers. Other solutions include digital contact-tracing mobile apps. Using Bluetooth and
GPS, these apps track users’ digital footprints of their whereabouts. Fundamentally, institutions
can leverage such applications to manage their safety compliance. However, the sensing modalities
pose several challenges. First, institutions may lack operational readiness, requiring the deployment
of Bluetooth beacon devices in environments. Second, GPS struggles with indoor positioning from
receiving inaccurate satellite signals. A viable solution is leveraging WiFi networks that are already
deployed in institutions and are the most widely used facility by occupants.

2.3 Leveraging WiFi-based Location Sensing
Low user compliance in Bluetooth smartphone sensing for COVID-19 has strongly motivated our
research to understand the usefulness of WiFi sensing as a complementary modality for future
contact tracing efforts.

2.3.1 Indoor Crowd Monitoring Systems. The research community has long contributed to accurate
and sustainable crowd monitoring systems (CMS). They include proposing the use of video surveil-
lance [25, 45], RF [3] and Bluetooth devices [58]. Recent CMS for COVID-19 include using drones
[29], cameras [48], thermal imaging [5] and Bluetooth beacons [62]. Unfortunately, many challenges
persist in achieving lasting real-world impact due to factors such as the cost of deployment and
maintenance and cloud processing requirements.

WiFi sensing has lately revealed success in tracking indoor user mobility patterns for CMS [14].
Given widespreadWiFi availability, these solutions are to understand consumer buying behaviors at
shopping malls [20], visitor analytics at airports and convention centers [27], and students’ health
and work performance from deriving behavioral routines and social interactions on campus [47, 60].
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Recent applications for COVID-19 include leveraging WiFi sensing to identify at-risk occupants
or superspreader events based on their associations with specific access points (APs) [54] and
directional interactions between individuals [61]. The effectiveness of these techniques, however,
was demonstrated through simulated examples.

Fundamentally, solutions to manage crowds measure the flow rate of people from one location to
another; however, the location granularity for these modalities differ. For example, Bluetooth contact
tracing mobile apps or camera-based CMS provide finer-grained inter-user distance trajectories.
While WiFi sensing cannot provide such granularity (note: we discuss this as part of limitations in
Section 8), picking up on nomadic movements between areas on a floor between buildings within a
vicinity can produce digital footprints useful for identifying flagged paths of potential exposure
within and across buildings. Through real-world examples, we show how simply monitoring indoor
occupancy and mobility of occupants in three universities with WiFi can reflect the spectrum of
crowd change when different COVID-19 policies were introduced.

2.3.2 Network-centric Sensing. Mobile phones have become ubiquitous in our daily lives, presenting
many opportunities for behavioral sensing. Prior studies on using the “phone as a sensor” have
gained new behavioral data [19, 44, 55]. For example, smartphone use is prevalent among university
students constituting the largest demographic of smartphone users [12]. At the same time, WiFi-
based networks have achieved near-ubiquitous coverage in campus buildings and outdoor spaces,
accommodating increasing student demands for learning and leisure activities [9]. The ubiquitous
availability of “phone as a sensor” for user behavior and WiFi-based networks as the sensing
medium provides an ideal technology platform for our work.
Mobile phone sensing comes in two forms: client-based and network-based. In client-based

approaches, sensing is performed directly from the phone. Such sensing requires either OS support or
a client-sidemobile app (running continuously in the background) to perform sensingmeasurements.
GPS is an example of a client-side sensing method using the OS (and GPS chip) to localize the
phone. Bluetooth operates in similar ways and has been used for proximity sensing in digital
contact tracing tools during the COVID-19 pandemic. On the other hand, network-based phone
sensing involves using the wireless network for sensing measurements. Many of these approaches
are passive – which means they do not require active user involvement and can be performed via
passive observations of the device. Network approaches have been used for indoor positioning
systems (IPS) where multiple WiFi access points (APs) within range of the phone can “triangulate”
the phone’s location [26].

Client-Centric Network-Centric
Attributes (Bluetooth/GPS) (WiFi)
User Input App installation, allow permissions None required
Data Collection Direct from user device WiFi infrastructure
Environment Indoor and outdoor Indoor and limited outdoor
Sensing Frequency App-dependent Limited to target environment
Availability BLE beacon instrumentation WiFi network deployment
Location Accuracy Fine-grained Coarse-grained, AP-level
Power Consumption High impact from apps Minimal impact from usual

running in the background WiFi signal scanning
Compatibility App and device dependent Device-dependent
Privacy/Security App-dependent (types of data, Only WiFi network events are

data collection practices) collected. Identifiers are hashed.
Table 1. Comparison between two forms of mobile sensing – client vs. network-centric. Highlighted rows
indicate the key adoption challenges to overcome.
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As discussed in Section 3.2, the ability to use WiFi as a network-side positioning system is a key
technology enabler for our research. Specifically, when a (user’s) smartphone connects to an access
point, it follows that its current location is within the vicinity of a nearby AP. Since enterprise
WiFi networks log each connection made by mobile devices to each of their APs, this log can be
analyzed to infer crowd movement patterns across campus and the occupancy levels in different
buildings (based on the number of smartphones connecting to each AP).

Table 1 summarizes the comparison between Bluetooth/GPS-based sensing (client-centric), more
commonly adopted by present solutions, and WiFi-based sensing (network-centric) technique. Our
choice for sensing must be straightforward in overcoming the key adoption challenges faced by
existing client-centric applications. Specifically, the sensing approach must:
(1) Take The Path Of Least Resistance: Users need not install a dedicated mobile application

or allow device permissions, such as what is required for Bluetooth or GPS-based sensing
applications. Our technique can automatically discover and scan connected devices without
explicit user interaction, making it much easier to deploy at scale.

(2) Bypass User Device for Data Collection: In the same way that no user action is required
above, no user device will be accessed for data collection. Instead, WiFi network events, such
as “syslog” and “RTLS events” will be collected directly from the WiFi infrastructure. Many
enterprise networks already commonly use these events for IT security and performance
monitoring.

(3) Immediately Operate in EnclosedAreas:Operability, especially in indoor spaces, remains
a challenge by GPS-based techniques due to inaccurate satellite signals. Bluetooth-based
applications heavily depend on setting up BLE beacons within the vicinity. In contrast,
wireless networks are increasingly popular and available, specifically in work and education
environments. Sensing location, however, is limited to users within the target environment.

2.3.3 Challenge #1: No WiFi Network. WiFi-based sensing is not without several challenges. A
key assumption of our work is ubiquitous network coverage, in that WiFi coverage is present in
all spaces where mobile sensing needs to be performed. With increasing and improving WiFi
deployments on college campuses to meet student demands [9], it is reasonable to assume a near-
universal WiFi coverage inside campus buildings. However, WiFi availability outdoors can vary
with AP placements that are typically indoors. It is important to note that our goal is to monitor
safety compliance following current public health guidelines, specifically in enclosed areas where
COVID-19 spread will pose more risk to occupants.

2.3.4 Challenge #2: Disconnected Users. The other key assumption is ubiquitous phone availability,
in that every campus user has a smartphone with them at all times. This directly implies that our
sensing mechanism will overlook a user with no phone. Nevertheless, much research has argued
for a high percentage of smartphone users, particularly on college campuses [12].
Additionally, smartphone users utilizing cellular data will present as unconnected mobile de-

vices in our approach. Despite widely available cellular data coverage, the WiFi network is still
a preferred alternative provisioned for many online activities that demand low latency and high
bandwidth networks. These activities include video/ music streaming and online gaming, which are
enthusiastically engaged by students. A different source of unconnected mobile devices is visitors.
While visitors of the university may not utilize the campus WiFi, their device remains visible to
the WiFi network. This is because both iOS and Android devices are set to scan for available WiFi
networks periodically (even though no connection is established), albeit with an anonymous MAC
address. Logs of unconnected devices make precise monitoring challenging, but these records can
still present as coarse-grained information approximating visitor occupants. Nonetheless, a natural
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course of handling crises such as COVID-19 is clamping down on visitors (e.g., cancel open-houses
and conferences) to prevent the spread outside the population. Our work proceeds to manage the
occupancy and mobility of university residents who must resume their day-to-day work/school
practices. Note that moving forward, we refer to unconnected devices as ‘unassociated devices.’

2.3.5 Challenge #3: Coarse-grained Location. A final challenge is coarse-grained positioning because
WiFi networks can only yield positions at the granularity of AP location. While precise location (and
proximity) information is important for digital contact tracing, this requirement is not necessary to
achieve our goal. Our focus is on analyzing aggregated occupancy trends and the overall mobility
patterns across the campus environment, to which coarse-grained position information is more
than adequate.

2.4 Privacy and Ethical Considerations
Despite the noble intentions of combating COVID-19, most digital solutions present the challenges
of user privacy. WiFi-based sensing is no different, particularly since users’ WiFi network data will
automatically be collected and analyzed within the vicinity. Unlike most mobile sensing efforts for
COVID-19, we hope to determine WiFi-based sensing as a feasible way for institutions to monitor
and maintain compliance with current public health standards – this monitoring is accomplished
at an aggregated scale and does not require identifying individual users occupying the facility. All
identifiable information of users is anonymized and cannot be reverse-engineered. The main data
source for our analysis, at present, is already being collected by network security administrators.
Nonetheless, several privacy safeguards already exist to be put into practice. They are:

(1) No access to user device: Many users are likely unaware of the types and frequency of
data being collected from their mobile devices. Indeed, no data will be transmitted directly
from the user’s device through WiFi sensing. Instead, our analysis will strictly utilize WiFi
network data that is already collected by deployed wireless infrastructures. The frequency
of data collection is constrained to the time users are within the vicinity. All identifiable
information in the WiFi network data, particularly the MAC ID and username (if any), is
anonymized using the SHA-2 hash.

(2) Established network security protocol: The National Institute of Standards and Technol-
ogy (NIST) recommended that enterprise network security analysis is the best practice to
build strong cybersecurity and protect an organization. Indeed, a variety of security logs,
including WiFi network data, are already being used for auditing, supporting investigations,
and identifying operational trends [28]. The need for this security protocol has led to laws
and regulations compelling organizations to protect user privacy. Utilizing the same data
source for COVID-19 safety compliance will follow the same established security standards.

(3) Emergency use authorization: It is important to note that our analysis, purposed for
institutional safety compliance, is presented at an aggregated scale and does not include
pinpointed behaviors. However, this information may be deemed critical to further a contact
tracing investigation. In such an event, emergency disclosures will be handled by an autho-
rized official. We believe a formal operational protocol to assess risk variations must be in
place before any information disclosure. Only when an individual is identified as at-risk can
a public health case investigator obtain a de-anonymized copy of the information.

Data Ethics. All data used in this paper was obtained directly from the campus infrastructure
and bounded by the computing agreements agreed to by each WiFi user when they received
their WiFi credentials. These agreements allowed us to use their data for aggregate analysis as
long as individual identifiers were not used. As such, every MAC address obtained from the WiFi
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infrastructure was hashed using a consistent 1-way hash function, and no specific user details (e.g.,
login IDs) were used. All of the analysis used by this paper focuses on large aggregates with no
analysis of specific individuals performed.

3 DATA COLLECTION AND METHODOLOGY
Our approach is using WiFi data to infer occupancy and mobility. In what follows, we state our
assumptions and pre-processing steps prior to clarifying the key measures.

3.1 Data Collection
Our data sets were collected directly from the productionWiFi networks of three different university
campuses. Two of these campuses (SMU and NUS) are in Singapore, and the last one (UMASS) is in
the Northeastern portion of the United States of America. Two campuses are full-sized residential
campuses with over 200 buildings each and ≈40K to 50K students and staff, while the last university
is a small non-residential establishment with ≈ 10,000 students and staff spread across seven
buildings.

Campus No. Buildings No. Students No. Staff No. APs
Singapore Management University – SMU 7 ≈9,000 ≈1,000 ≈800
National University of Singapore – NUS ≈240 ≈40,000 ≈10,000 ≈13,000

University of Massachusetts Amherst – UMASS ≈230 ≈30,000 ≈8,000 ≈5,500
Table 2. Details of each campus studied

All three universities run Aruba-equipment supplied WiFi networks, with one university also
running a Cisco-equipment supplied WiFi network in addition to an Aruba network. For the Aruba
networks, we pulled the WiFi data directly from the infrastructure using either real-time location
services (RTLS) APIs [2] or by reading the system logs directly. For the Cisco network, we pulled
WiFi data directly from the network using the Cisco Connected Devices (CMX) Location API v3 [10]
(recently rebranded as Cisco DNA Spaces). In all cases, we obtained the following information: for
all associated WiFi devices, the timestamp when the associated device was seen, the BSSID of the
Access Point (AP) that saw the device, and the hashed client MAC address of the associated device.
For two of the campuses, we can also obtain the same information (time seen, BSSID that saw the
device, and hashed client MAC) for unassociated devices as well – i.e., devices with WiFi on that
are just scanning.
We have associated device data from Feb 2020 onwards for all three campuses, allowing us to

clearly view campus occupancy and mobility patterns across campus before, during, and after
COVID-19 related measures were implemented. Table 2 provides details of each of the three
campuses as well as the data collected.

3.2 Using WiFi Positioning System
3.2.1 Key Assumptions. As described in Section 2.3, our analysis is based on the key assumption
that most of our users frequently utilize campusWiFi on their own smartphones. A separate analysis
on our US campus, UMASS, reported approximately 90% university residents carrying a smartphone
with them at all times; specifically, our WiFi network events revealed 30,084 users comprising
24,791 student users and 5293 staff/faculty. The remaining 10% neither owned a smartphone nor
chose to use the campus WiFi. Like COVID-19 digital contact-tracing apps, a critical obstacle in
enabling an effective crowd monitoring solution is mass user adoption. While our key assumption
naturally disregards a small percentage of users, the approach can achieve a critical mass of data
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and ascertain some occupancy and mobility measures among smartphone users. In what follows,
we describe how different mobile users can be tracked.

3.2.2 Pre-processing. We maintain similar pre-processing steps to extract information on human
mobility for all campuses. For all WiFi enterprise networks deployed in the three universities,
each AP on the network internally keeps a log of association, disassociation, authorization, and
un-authorization activities with the devices that help us compute occupancy at various locations.
An AP system log or “syslog” comprises a sequence of timestamped events. Each of these events
follows the format:
hh:mm:ss <controller_name> <process_id> <event_subtype> <MAC_addr> <event_body>

For each event in syslog, an event_subtype representing the network event type is specified.
This code can be recorded as six event types. They are association, disassociation, re-association,
authentication, deauthentication, and drift events. Based on time (i.e., timestamp) and AP location,
defined by controller_name and event_body, we can compute connection sessions per device across
all APs [54]. For each device, we create a timestamp indexed sequence of sessions to acquire device
trajectories. Combining these data sets helps us to characteristically produce user-profiles (e.g.,
authenticated users as university residents) and activities (i.e., occupancy at a dedicated location or
transitioning between locations). Note that MAC_addr is anonymized, as described in Section 2.4.

3.2.3 On-campus Deployment. We illustrate how network events (when the smartphone is con-
nected to the campusWiFi) will produce time-based traces in Figure 1. A deployment of an enterprise
WiFi network consists of many access points (AP), optimally spread across buildings and floors.

Fig. 1. Infer occupancy and mobility based on smartphone WiFi connectivity to the nearest AP at floor-level.

When a user first utilizes the campus WiFi network on their own smartphone, authentication will
occur (through their student ID and password), resulting in an authentication and deauthentication
log messages. Note, however, student identification is hashed to preserve user privacy (see Section
2.4). Simultaneously, this action triggers the device to connect with the nearest AP, generating
association log messages. The device continues to stay connected to the AP until the user moves;
in this case, the connection switches to the next nearest AP to where the user is now situated.
Accordingly, disassociation, re-association, and drift log messages will be generated when the
user’s device moves out of range, reconnects from ‘sleeping.’ Throughout the whole time, the user
maintains the same network connection to the campus WiFi, only switching APs.
In Section 2.3.2, we discuss the challenges of accounting for unconnected devices, specifically

devices that remain connected to their personal cellular network. This group of users will still be
accounted for as long as their devices are scanning for WiFi network (i.e., unassociated devices). It
is important to note, however, our main analysis only consists of associated devices, representing
university staff and students.
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There are two other sources of error from utilizing this technique. First, a smartphone may
maintain its existing connection to an AP due to good signal strength even though the user has
moved. This error makes no impact on occupancy since we are counting on per floor/building
basis, but will produce small errors on mobility. Second, a user may connect multiple devices
(e.g. smartphone, laptop, wearable) to an AP at once. However, duplicated events can be removed
[54], while device types can be further filtered to only collect one specific type if needed. This
methodology has been validated by others [20, 33, 54, 60] and used for similar applications of mall
analytic and queue management [26].

3.3 Inferring Occupancy and Mobility Using WiFi Logs
A campus network comprises several user types such as faculty, staff, students, on-campus student
residents, and visitors. The syslog authentication event consists of login types, thus helps differen-
tiate a faculty/staff from a student. We further subdivide user groups based on the following rules.
Students who spend more than 5 hours at an on-campus residential dormitory will be classified as
on-campus student residents. Visitors are classified in several ways. First, records of anonymous
MAC addresses are regarded as visitors (see Section 2.3.2). Second, users recorded with only a
one-time login or devices with only several days of login over the course of the semester are most
likely visitors. This heuristic is necessary to filter out users attending one-time events such as
hack-a-thons, open houses, and conferences held on campus.
In Sections 4 and 5, respectively, our analyses will include reports of location occupancy at

three-level granularity: area, floor, or building occupancy based on a collection of WiFi access
points (i.e., AP location). For example, a large room such as a common dining hall can have more
than one WiFi AP, while one AP can be at the intersection of different rooms. The coarse-grained
information based on AP location amounts to inaccuracies in determining room-level information,
especially if the room is small. Thus, an area can consist of a collection of small rooms (e.g., see
Figure 1, GSR2-2, 2-3, 2-4 is regarded as a single area) or a singular large room (e.g., Figure 1,
SR2-1). Accordingly, floor occupancy is the total of all areas on each floor, and building occupancy
is occupancy on all floors in each building. We show in Section 4.2 the changes in occupancy rate
over different COVID-19 phases, specifically for these areas.

Fig. 2. Daily occupancy trends for two common areas, the concourse (blue) and the main eatery (red), based
on associated devices (line) and unassociated devices (dashed line) on school days prior to the COVID-19
outbreak. Both areas are located on the same floor within a building at SMU campus.

3.3.1 Definition: Occupancy. We determine occupancy as the average number of people in a
dedicated area of single building floor, as shown in Figure 2. By taking the average occupancy at
building level per day, our features can avoid the problem of missing data, common in longitudinal
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data collection procedures. The number of people is defined by unique device counts (smartphones)
logged in our WiFi network records. The groups of people can also be known by identifying
associated devices (for university residents) and unassociated devices (for visitors). For example, the
SMUconcourse and main dining hall record approximately 100-200 visitors pre-COVID (January 6 to
January 16, 2020). This separation is necessary, especially since our universities are open campuses,
providing pedestrian access to the public. Such information can aid institutions in identifying what
percentage of occupants are university residents should they backtrack along the flagged path and
areas vulnerable to exposure.

Fig. 3. Heat map of a floor in Building 2 of SMU campus. Left shows the occupancy in the early morning,
while right map shows occupancy during a regular school hour.

Examining our data from a different perspective, occupancy reveals cues about clusters on
different areas of each floor building per hour. Figure 3 depicts a floor map in Building 2 at two
time periods, one in the early morning and the other during school hours. By directly pulling a
collection of network event logs from APs surrounding Study Area 1, we can determine 2 unique
devices connected between 3:00 AM - 4:00 AM, indicating low building occupancy. In contrast,
logs between 1:00 PM - 2:00 PM on a Monday show the expected high occupancy (e.g., 73 device
connections at Study Area 1) throughout the hour.

1

23

4

5

Manual

WiFi

9:15 9:30 9:45 10:00 10:15 10:30

1 2 3 4 5

Time of the day

(a) (b)

Fig. 4. (a) Floor map with AP locations within the UMASS campus (b) Temporal lag between WiFi extracted
trajectory and ground truth manual log
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3.3.2 Definition: Mobility. Mobility is defined as the average number of areas visited by a user per
hour; once again, an area is defined by building level, measured for each floor comprising a collection
of rooms on that ground. Figure 4 shows the floor map of a campus building in UMASS, comprising
individual office units, classrooms, and open spaces. As a user moves around the floor through AP
1 to 5 - indicated by the red arrow line in figure 4(a), we observe changing network events from the
device, generating association and disassociation events across different APs. The WiFi trajectory
from one AP to another allows us to determine a user being ‘stationary’ or ‘transitioning’ between
areas on the same floor. Figure 4(b) shows the temporal lag recorded for one user from switching to
AP2 as he transitions. While temporal lags are likely to happen when APs are positioned close to
one another, these inaccuracies will not affect our analysis in capturing building-level transitions.

Fig. 5. Chord diagram representing the number of devices recorded to move from one building to another at
different times of the day. The diagram displays all seven buildings within the SMU campus.

In the context of COVID-19, one of the concerns is identifying possible transmission routes
within and across the institution’s buildings. Figure 5 comprises two chord diagrams representing
the number of users recorded moving to and fro across seven different buildings within the SMU
vicinity. The left diagram illustrates much traveling into Building 7 from all other buildings during
lunch hour, 12:00 PM to 1:00 PM. For example, 259 device transitions were made from Building
2 alone. In contrast, we observe more transitions distributed across buildings between 2:00 PM
to 3:00 PM. For example, occupants recorded to be in Building 2 during that hour had visited
Building 7 (288), 5 (170), and 6 (64 devices) before their transition. With some buildings being
a single commonplace for occupants across campus to gather at different times of the day, this
information can aid institutions to implement COVID-19 policies, for example, deploying social
distancing support for regulating crowd control.
Conclusively, these statistics gathered from WiFi network logs can provide occupancy and

mobility information, allowing us to monitor high foot traffic areas within the universities. In the
next section, we investigate the adequacy of WiFi data in revealing the spectrum of changes in
occupancy and mobility when the COVID-19 safety measures were enforced.
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Singapore Phases Date Started Safety Measures
Pre COVID-19 Before Awareness on personal hygiene
(𝑃𝑆0) 19 Feb, 2020 SMU moves some classes online
Phase 1 (𝑃𝑆1) 19 Feb, 2020 National threat level raised to orange [40]

14-days home quarantine enforcing if returning from
China [42]
All core curriculum moved to online learning for NUS
In-class mid-term assessment cancelled for NUS
both SMU and NUS implement a 1 meter safe distancing
policy
SMU closes all sports facilities
Classes >= 50 students moved to online learning for SMU
and NUS

Phase 2 (𝑃𝑆2) 22 Mar, 2020 All travel cancelled unless mandatory
All visitors to Singapore issued 14 day Stay Home order [21]
SMU enforcing A/B shifts where all students & staff
must alternate being offsite every other week

Phase 3 (𝑃𝑆3) 3 Apr, 2020 Full shift to online learning for all schools at all levels [41]
All exams moved online at SMU and NUS
Pass / Fail option offered to students at SMU and NUS
SMU only allowing key personal on campus
NUS allowing most employers to work from home

Phase 4 7 Apr, 2020 Full country-wide stay at home quarantine [37]
(𝑃𝑆4, ongoing) Nobody allowed on campus for SMU. All buildings closed.

Only approved students allowed to stay in dorms at NUS
Approved students allowed to travel to NUS to study
Measures extended until Jun 2020 [39]

Table 3. Five phases of COVID-19 related safety measure enacted in Singapore and at SMU and NUS

4 MOBILITY AND OCCUPANCY ANALYSIS FOR SINGAPORE UNIVERSITIES
We examine the changes in occupancy density and movements on-campus to determine the
effectiveness of various safety measures put in place at significant times points of COVID-19. These
time points are summarised in Table 3.

4.1 Overall Control Policy
Singapore was first alerted of ‘severe pneumonia’ cases in Wuhan city on 2nd January, 2020. From
that point on, Singapore’s Ministry of Health (MOH) has mandated a series of escalating control
policies to prevent high infection rates of COVID-19 while minimizing significant disruptions to
the daily routines of its residents. The first case of COVID-19 in Singapore was reported on 22nd
January, and more cases started appearing over the next few days. As shown in the subsequent
phases (𝑃𝑆1 to 𝑃𝑆4, lockdown2), Singapore’s MOH took increasingly strong measures to contain
the spread of infection. These measures included mandatory stay-at-home quarantine orders for
visitors, moving all academic programs online, to enforcing country-wide stay-at-home orders.
Additionally, numerous facilities across Singapore were re-purposed as quarantine centres. For this
analysis, several dormitory blocks at the NUS campus were re-purposed for this use in early May
2020 [50].

2The stringency of ‘lockdown’ in Singapore was relatively modest compared to those in China, Italy, and Australia, where
people could not dwell or travel beyond their immediate neighborhood.
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4.2 Impact of Different Policies on Occupancy
We first computed the drop in campus occupancy in Singapore as each phase of COVID-19 related
policies were enacted. Figure 6 plots the unique device counts for one building within the Singapore
universities, SMU and NUS, over the COVID-19 phases, 𝑃𝑆0 to 𝑃𝑆4. We observed there was a
more than 90% percentage drop from phase 𝑃𝑆0 to 𝑃𝑆3 and beyond for SMU when the university
implemented an almost full work-from-home policy (𝑃𝑆3) followed by the nationwide lockdown
(𝑃𝑆4). Despite taking the same set of measures, NUS was successful in reducing occupancy to
only 75% at 𝑃𝑆3, and 98% by the lockdown. For SMU, the drop was almost 100% by Phase 4 (𝑃𝑆4)
as nobody, except for security staff, was allowed onto campus whereas NUS still allowed a few
thousand students to stay in the dorms. Figure 7 charts the occupancy rate at room-level and
floor-level for SMU. A drastic drop in occupancy can be observed as soon as in Phase 1 (𝑃𝑆1) when
large classes were shifted to online learning—the space utilization specifically for the seminar
rooms (SR) 2.1 to 2.4, which are regularly used for holding classes, decreased by more than 50% on
average. Additionally, overall occupancy declined the most for levels 2 and 3, consisting mostly of
seminar rooms. While no one was not allowed to work on campus during 𝑃𝑆4, clearances were
granted and arranged for personnel to bring their workstations home. Note that the occupancy of
12 at study area 2 during 𝑃𝑆4 did not last for more than 15 minutes.

Fig. 6. Building-level occupancy for one school building for each university, SMU (blue) and NUS (orange),
plotted from 𝑃𝑆0 to 𝑃𝑆4.

To understand this change of occupancy in more detail, Figure 8 shows the percentage change
in space occupancy for different types of areas located at three buildings per campus. These areas
are dedicated to three activities: recreational, dining, and studying. We considered only the indoor
gym area within a building to represent recreational activity, the only common dining hall area
within a building to represent dining activity, and multiple study areas on all floors within the
library building to represent study activity. The values for SMU are shown in the left figure, while
the values for NUS are shown in the right figure. The absolute count for each percentage is listed
inside each area (e.g. The absolute count for SMU_Food in 𝑃𝑆4 is 22 people comprising about 40%
of the total occupancy).
There were differences in the space utilization between the two campuses. For example, SMU

closed all recreational facilities in 𝑃𝑆2 onwards, and this is reflected in the noticeable percentage
drop. The on-campus dining facilities were also mostly closed from 𝑃𝑆2 onwards.

As NUS has a large number of students staying on campus in dorms (SMU does not have dorms
on campus), even in 𝑃𝑆4, the occupancy of recreational spaces was relatively high (and higher
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Fig. 7. The percentage change in area-level occupancy within different rooms (left) and levels (right) of SMU
buildings, plotted from pre COVID-19 time (𝑃𝑆0) to current time (𝑃𝑆4).

Fig. 8. The percentage change in area-level occupancy within different SMU (left) and NUS (right) buildings,
plotted from pre COVID-19 time (𝑃𝑆0) to current time (𝑃𝑆4).

percentage-wise than earlier phases). This result is likely because students staying in dorms did not
want to stay in their rooms all day long and decided to go out to these recreational spaces (which
is technically a violation of the quarantine rules in effect).

Such occurrences raise concerns that these recreational spaces would have larger than optimal
occupancy densities and undesirable mixing students from different dorms that would compromise
measures designed to contain the spread of infection.

4.3 Impact of Various Policies on Mobility
Next, we sought to determine how various social mobility control measures influenced mobility
patterns across both universities. First, looking at SMU, Figure 9 charts the average transitions
made on a per-building level over a day in each phase, from one building (called SMU_building1),
to five other SMU buildings. The transition count indicates the number of times a person moved
from SMU_building1 to the indicated building on that day.

The results showed an expected decrease in the overall numbers as each phase was introduced,
beginning with the university’s decision to conduct online learning for its students at phase 𝑃𝑆1. In
phase 𝑃𝑆2, SMU introduced full A/B schedules where only half the student and staff population
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could physically be on campus at any one time. This step reduced the overall occupancy (as shown
in Figure 6 and decreasing Transition count for 𝑃𝑆2 in Figure 9).

Fig. 9. Device transitions originating from SMU_building1 to five other buildings. The patterns of mobility
remained the same on the overall despite noticeable reduction in the number of transitions over time.

Fig. 10. Device transitions originating from NUS_building1 to three other academic buildings over different
phases. Overall, occupancy rate and mobility rate are evidently less.

The actual mobility rate has also decreased for NUS due to decreased occupancy on campus.
However, the mobility rate for each person on campus remained the same - this is understandable
as the work required them to visit the same set of buildings they had previously. SMU reduced the
campus occupancy to almost 0 in Phases 𝑃𝑆3 onwards, and this naturally reduced the mobility rate
(Figure 9).

We next looked at data from NUS to understand if these changes in mobility patterns were
consistent. Figure 10 shows the absolute number of transitions (numbers within each bar) along
with the percentage of transitions from oneNUS academic building to three other academic buildings.
Similar to SMU, even though the total occupancy of the campus decreased due to the measures
enacted in 𝑃𝑆2, the mobility rate (amongst those staff and students still on campus) remained high
until more complete lockdown policies were enacted in 𝑃𝑆3 onwards.

4.4 On-campus Living
The previous analysis focused on academic buildings. However, NUS, unlike SMU, has a significant
student population still residing in on-campus dormitories even during the complete lockdown
phase 𝑃𝑆4. We dug deeper to understand the behavior of students living in these NUS dorms.
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Fig. 11. The hourly WiFi activity trend for NUS_Dorm plotted before (𝑃𝑆0) and during full lockdown (𝑃𝑆4).

Fig. 12. Transitions of 200 sampled NUS_Dorm occupants to different (neighbourhood) area (e.g., another
dorm) as a result of their phones being connected to unique AP locations within NUS.

Figure 11 plots the daily WiFi activity trend of one dormitory location, NUS_Dorm, over phases
𝑃𝑆0 and 𝑃𝑆4. Overall, we observed the same daily activity levels (approximately 700) for this dorm
across all phases – indicating that the dorm population occupancy had not changed between phases.
Instead, we observe the full lockdown at 𝑃𝑆4 resulting in the reversal of the WiFi activity trend
with decreasing connections during the day and active WiFi utilization over the night, indicating
user activeness at night.

Our analysis of mobility patterns amongst students staying in the dorms revealed some interesting
findings. In particular, we found that even during lockdown periods (𝑃𝑆4), a significant number of
people were moving actively across campus – which is technically a violation of the lockdown rules.
Figure 12 presents the mobility rate of 200 randomly selected individuals staying in NUS_Dorm to

ACM Trans. Spatial Algorithms Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:18 Zakaria, Trivedi, Cecchet, Chee, Shenoy and Balan, et al.

unique areas and AP locations visited within the campus vicinity. We found that their mobility rate
increased during 𝑃𝑆3 and 𝑃𝑆4 compared to 𝑃𝑆2. Each occupant was making at least three transitions
on average in phase 𝑃𝑆2, which doubled to about six transitions in 𝑃𝑆3 onwards.

While the number of AP locations that individuals’ devices were connected to seemed surprisingly
high at first glance, these APs remained in neighboring areas of the users’ residences. Specifically,
individuals moved between areas in the same dorm to visit the dining, recreational facilities, or the
bus stops more often (to head to other dining and grocery areas). These were all shorter length
transitions compared to earlier phases – in earlier phases, the transitions had long durations as the
individuals were going to academic buildings for coursework reasons.

4.5 Main Takeaways
From the analysis of SMU and NUS, the main takeaway we derive is that policies that allow
telecommuting and split-team load balancing are excellent for reducing the people density on
campus. However, the staff and students that do work on campus are more likely to continue
visiting the same set of places they utilized, thus, can lead to serious issues if an outbreak occurs –
as the COVID-19 can be easily spread to all the other people visiting those areas. Thus, to avoid
uncontrolled outbreaks, it may be necessary to limit the mobility of individuals and the only policy
that was successful at this (from the many policies that were tried in Singapore) is a full lockdown
where everyone is given stay-at-home orders.

In addition, the mobility analysis of dorm occupants at NUS suggests that reducing mobility will
require providing everything occupants need at their premises itself. Otherwise, the mobility rate
could go up (even if the actual length of the transitions are shorter in duration) as individuals travel
to other places to procure food and other essential items needed during a lockdown.

5 MOBILITY AND OCCUPANCY ANALYSIS FOR US UNIVERSITY
Unlike Singapore, the US state our campus (UMASS) was located in only had a single response – the
state went from business as usual to a stay-at-home order with shutdowns of many businesses [30]3.

US State Phases Date Started Safety Measures
Pre COVID-19 (𝑃𝑈 0) 29 Feb, 2020 No Policy. Business as Usual.
Phase 1 (𝑃𝑈 1) 20 Mar, 2020 Stay at Home State Wide Order [30]

No classes at UMASS
Dorms cleared at UMASS except in special cases

Table 4. Dates corresponding to the safety measures for COVID-19 in UMASS

We observed similar occupancy trends, compared to SMU and NUS, as UMASS transitioned into a
lockdown. Figure 13 plots the total number of unique devices detected for different area types over
ten days for each of the two phases. The areas picked were “Recreational” (e.g. gym), Dorm (e.g.
on-campus dormitory housing), “Lib” (campus libraries), and “Food” (e.g. food courts). Overall, we
observed a more than 90% decrease in occupancy between phases 𝑃𝑈 0 (business as usual) 𝑃𝑈 1 (full
stay-at-home orders). In addition, we observed that the quarantine policies had naturally shifted
the occupancy rates with the dormitories becoming the most occupied locations during 𝑃𝑈 1, and
consequently reducing the occupancy of the previously busy library areas.

We next investigated if similar changes to the mobility rate had occurred due to the quarantine
policy. Figure 14 plots the CDF of the number of other places visited by the occupants of one
particular UMASS dorm (called UMASS_Dorm) in each phase. We observed that the number of visits
3Note: for anonymity reasons, we cite an article listing all the states that have effected a similar policy.

ACM Trans. Spatial Algorithms Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Analyzing the Impact of COVID-19 Control Policies on Campus Occupancy and Mobility via WiFi Sensing 1:19

Fig. 13. Space occupancy within UMASS for both 𝑃𝑈 0 and 𝑃𝑈 1 – broken down by usage type

Fig. 14. CDF of unique transition locations made by occupants of UMASS_Dorm, plotted from pre COVID-19
time (𝑃𝑈 0 the blue line on the right) to the current quarantine phase (𝑃𝑈 1 the red line on the left). At least
50% of the occupants had reduced their transitions from approximately 10 unique locations to 5.

had reduced with the 50𝑡ℎ percentile reducing by slightly more than half (about ten visits in 𝑃𝑈 0
versus less than five visits in 𝑃𝑈 1) and the 90𝑡ℎ percentile decreasing from about 17 visits to about
nine visits. This reduction in mobility behavior is consistent with [4], which found that the change
in mobility patterns using cell mobile data to reduce by approximately 50% with state-level policy
enforcement.

Figure 15 breaks down these visits by the type of place visited. We observed that most of the visits
in 𝑃𝑈 0 were to dining and recreational locations. However, in 𝑃𝑈 1, most of the visits were made to
another on-campus dorm. We believe this was attributed to the students availing themselves of the
dining and recreational facilities as certain previously-popular places on campus had been closed
in 𝑃𝑈 1.

6 POLICY IMPACT
This section discusses the impact of the policy decisions on disease spreading amongst the campus
community. In particular, we looked at two different modes by which the virus could spread: 1)
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Fig. 15. The percentage change in transitions for different areas made by occupants of UMASS_Dorm, plotted
from pre COVID-19 time (𝑃𝑈 0) to current time (𝑃𝑈 1).

spreading amongst the people in the same place as where they are located. We call this vector local
spread. 2) spreading amongst intercrossing people as they travel to and spend time at places other
than the primary location. We call this vector mobility spread. Controlling each of these vectors
requires different approaches.
Controlling local spread requires reducing the density of people in the same location. On the

other hand, controlling mobility spread requires reducing the amount of movement outside one’s
primary location. Reducing the density of people, in general, can reduce mobility spread as well.
Note: both these approaches can apply in both cases except with different intensities. For example,
limiting the movement one does in one’s primary location can control local spread but this may not
always be practical.

6.1 Controlling Local Spread Across Campus
From the results presented in Sections 4 and 5, we note that quarantine policies were very effective
in removing people from their workplaces. The policies immediately removed one primary source
of local spread (i.e., spreading a virus amongst co-workers).
However, this quarantine policy resulted in higher densities being observed in the student

dormitories, as shown in Figure 13 where the occupancy in dorms increased after the initial
quarantine measures were imposed. This was “solved” by the universities asking students to vacate
the dorms and return home. This reduced the density of the dormitories as shown by our results,
but it moved the problem elsewhere. In particular, we believe that many home residences would
have seen much higher population densities as a result of these quarantine policies as the entire
country (Singapore) and state (in the US) population was asked to stay at home for extended periods
of time. This could make it easier for residents to fall sick if someone in their vicinity had the
virus. Indeed, Singapore experienced this first-hand as the second wave of COVID-19 outbreak in
Singapore occurred in the dormitories used by foreign workers. The population densities at these
dormitories were very high, and the first cases of COVID-19 were reported on April 1st 2020 [38].
This spread grew very fast and resulted in thousands of infections within the dormitories within
just a few weeks [36]. Fortunately, the strict quarantine policies, enacted just a few days (on 7th
April, 2020) after the first dorm infection (on 1st April, 2020) when the authorities realized the
potential for the spread to grow out of control, ensured that the virus was contained within the
dormitories. For example, while the infection rate remains high in the worker dormitories, the
number of cases in the rest of Singapore is almost non-existent – on May 15th, 2020, 791 new
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infection cases were discovered in the worker dorms with just one other case discovered across the
rest of Singapore [35]. Thus, while quarantine policies can lead to higher local transmission rates,
the significantly reduced mobility stops the virus from spreading beyond the local area.

6.2 Controlling Mobility Spread
The second mode of virus propagation is where an infected individual travels to another place
and infects someone there. We call this mobility spread. This vector is particularly dangerous as it
can allow the virus to spread to formally safe areas very quickly. Indeed, it was this vector that
was responsible for spreading COVID-19 throughout the world – carried by infected individuals
travelling between countries.
We see from the results in Section 4 that only a strict quarantine was effective in reducing

mobility patterns. In particular, the split team and other approaches used in phases 𝑃𝑆1 and 𝑃𝑆2
did not have a significant impact on the mobility patterns of individuals (defined as the number of
unique places visited by an individual in a day). However, when strict quarantine policies were
enacted, starting in 𝑃𝑆3 and fully enacted in 𝑃𝑆4, we note that the amount of individual mobility
has significantly reduced. Also, when people were mobile, they spent significantly lower amounts
of time at each place visited.
This data backs up the policy decisions in both Singapore and the US state to enact a strict

quarantine as the impact on individual mobility is very clear. Such measures, in turn, dramatically
reduce the probability that COVID-19 can spread beyond a local area. However, as stated previously,
reducing mobility comes at the expense of increasing the population density of homes, dormitories,
and other residential areas. Hence, there could be a higher probability of local infections as a result
of a strict quarantine (as demonstrated by the worker dormitories outbreak in Singapore).

7 DISCUSSION
Our study’s objective was to demonstrate that coarse-grained WiFi data can sufficiently reflect the
spectrum in crowd change when different COVID-19 control policies were implemented. Here we
discuss the implications of our findings.

7.1 Support Operational Strategies for Universities
As institutions seek to re-open in the coming semesters, they must fully implement the required
COVID-19 protocol and maintain campus operations with as much safety as possible for staff
and students. At a higher level, such operational planning encompasses strategies for regulating
gatherings in enclosed spaces and tracking infection spread, achievable through monitoring crowd
changes using WiFi sensing. Specifically, as shown in Figures 3 and 4, reports on actual space
utilization can emphasize over-utilized areas and buildings’ floor-by-floor foot traffic. Monitoring
mobility as per Figure 5 can emphasize possible transmission routes within and among buildings in
the campus vicinity. As a whole, monitoring occupancy and mobility can aid institutions backtrack
path and areas to focus on disinfecting compromised sites. Other strategies relate to regulating
restrictions for external parties and planning for emergency evacuation. The ability to distinguish
user types on the WiFi network, as shown in Figure 2, can inform institutions of overcapacity
visitors. Monitoring total building capacity remains relevant in reducing the risk of occupant
exposure to infection spread in shared open-spaces. For example, establishing one-way safe travels
within buildings in the event of an emergency evacuation.
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Fig. 16. A dashboard visualization of occupancy rate in areas per floor of a building.

7.2 Practical Application for Institutional Crowd Controls
We have since developed an open-sourced monitoring platform that allows institutions to set
occupancy parameters based on their own risk assessment for infection spread and mobilize contact
tracing within our university campuses: https://github.com/umassos/elastic-wifitrace
Figure 16 is a dashboard visualization of users at UMASS university, driven from their WiFi

network device activity. University administrators can select a building and its respective floor to
narrow down monitoring to a specific area (e.g., an open study area); see Filter 1 and 2. As explained
in Section 3.3, we used the number of unique MAC addresses seen by our WiFi network (devices)
to calculate occupancy percentages (Pane 3 and 4). The ability to refine our monitoring parameters
and results from per building to areas per floor can quickly help administrators determine areas
that may violate zone restrictions. For example, as per Pane 5 and 6, the occupancy heatmaps
for each area within the building show a relatively high occupancy rate (in orange) for five areas
throughout the day. Note: each area is represented as a row in the y-axis, while the x-axis denotes
the time of day.
From an operational perspective, institutions can make more informed decisions to actively

revise the restricted capacity based on the severity of an outbreak or official safety compliance
guidelines. Alerts on over-utilized spaces help administrators appropriately deploy officers on the
ground to manage the crowd. Attention to under-utilized buildings can also be an opportunity
for scheduling events in separate physical locations while complying with building occupancy
limitations.

7.3 Implementation of Privacy Safeguards
Our goal is towards establishing a non-privacy invasive modality to monitor indoor traffic and
implement disease control policies. Recall in Section 2.4, we described our privacy safeguards in the
event an area is determined to be at high risk of COVID-19 spread, and contract tracing may need
to be performed. As shown in Figure 17 (bottom left pane), we have implemented Elastic WiFiTrace
to utilize anonymized WiFi data for measuring occupancy. The mechanism of de-anonymizing
this information is recommended for university administrators to determine occupants at-risk of
potential exposure. We suggest a standard mandatory notice and consent provision is provided to
users of the campus WiFi network to allow for WiFi-based contact tracing. Upon consent, a user
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Fig. 17. User dashboard displaying all relevant information of occupancy density based on a target location.
Left bottom pane lists anonymized occupants.

preemptively authorizes administrators to access key information, particularly their MAC ID and
username, to initiate manual contact tracing procedure.

Overall, we believe passive WiFi sensing is a promising technique to pursue COVID-19 response on
a larger scale. We are already providing updates at SMU to the campus facilities managers and the
deans of students at NUS regarding the occupancy and mobility levels across the buildings and
dorms at each campus.

8 CONCLUSION & FUTUREWORK
Amid this pandemic, we can anticipate increasingly vulnerable situations to arise as individuals
congregate in groups. This paper presented results from two campuses in Singapore and one in
the North-Eastern portion of the United States of America, demonstrating how WiFi network
information alone could reveal occupancy and mobility spectrum changing with different con-
tainment policies. Indeed, augmenting WiFi data can assist institutions with managing safety
compliance as we get through the crisis. Our open-source COVID-19 monitoring tool is available:
https://github.com/umassos/elastic-wifitrace.
This study is not without limitations. First, the data was only collected from WiFi-enabled

devices that were associated with the campus WiFi networks; this can result in under-counting
if individuals do not enable or carry a WiFi device or are not connected to the campus network.
Second, WiFi sensing does not produce fine-grained spatial measures, including occupancy in small
rooms that share WiFi APs and inter-user distances. Thus, the modality cannot directly determine
individuals who stand too close to an infected person and regard them as at-risk of exposure.
Instead, it identifies occupants’ degree of risk from being in an exposed area (e.g., an hour-long
meeting in a conference room or a lecture classroom), which remains relevant to institutions
conducting follow-up manual contact tracing. Third and finally, our data comes from two countries
with contrasting COVID-19 policies. While we have observed similar results, local factors may
prevent specific results from applying to other regions. As COVID-19 continues to spread, our
efforts progress towards deeper and broader analyses addressing these shortfalls.
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