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Abstract

This work is motivated by a real-world problem of coordinating B2B
pickup-delivery operations to shopping malls involving multiple non-
collaborative Logistics Service Providers (LSPs) in a congested city where
space is scarce. This problem can be categorized as a Vehicle Routing
Problem with Pickup and Delivery, Time Windows and Location Con-
gestion with multiple LSPs (or ML-VRPLC in short), and we propose
a scalable, decentralized, coordinated planning approach via iterative
best response. We formulate the problem as a strategic game where each
LSP is a self-interested agent but is willing to participate in a coordi-
nated planning as long as there are sufficient incentives. Through an
iterative best response procedure, agents adjust their schedules until no
further improvement can be obtained to the resulting joint schedule. We
seek to find the best joint schedule which maximizes the minimum gain
achieved by any one LSP, as LSPs are interested in how much benefit
they can gain rather than achieving a system optimality. We compare
our approach to a centralized planning approach and our experiment
results show that our approach is more scalable and is able to achieve
on average 10% more gain within an operationally realistic time limit.

Keywords: Vehicle Routing Problem, Multi-Agent Systems, Best Response
Planning
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1 Introduction

Business-to-Business (B2B) pickup-delivery operations to and from commer-
cial or retail locations involving multiple parties, commonly referred to as
Logistics Service Providers (LSPs), more often than not cannot be done in
silos. Resource constraints at these locations such as limited parking bays can
cause congestion if each LSP adopts an uncoordinated, selfish planning. Thus,
some form of coordination is needed to deconflict the schedules of these LSPs
to minimize congestion thereby maximizing logistics efficiency. This research is
motivated by a real-world problem of improving logistics efficiency in shopping
malls involving multiple independent LSPs making B2B pickups and deliveries
to these locations in small, congested cities where space is scarce.

Collaborative planning for vehicle routing is an active area of research
and had been shown to improve efficiency, service level and sustainability
[1]. However, collaborative planning assumes that various LSPs are willing to
collaborate with each other by forming coalitions, exchanging of information
and/or sharing of resources to achieve a common objective. This is different
from our problem setting where LSPs are independent entities who can only
make decision locally in response to other LSPs’ decisions and they do not
interact directly with each other to collaborate or make joint decision.

Ideally if we have one single agent who can control the routes and schedules
of multiple LSPs with complete information and collaboration amongst the
LSPs, we may achieve some form of system optimality. However, an unintended
outcome is that some LSPs may suffer more loss than if they adopt their own
planning independently. Moreover, such centralized approach is not scalable
and not meaningful in solving real-world problems, since LSPs may not always
be willing to collaborate with one another.

To address the above concern, this paper proposes a scalable, decentralized,
coordinated planning approach via iterative best response. The underlying
problem can be seen as a Vehicle Routing Problem with Pickup and Delivery,
Time Windows and Location Congestion with multiple LSPs (or ML-VRPLC
in short) (see Figs. 1a and 1b).

More precisely, we formulate the problem as a strategic game where each
LSP is a self-interested agent willing to participate in a coordinated planning
(without collaborating directly with other LSPs) as long as there are sufficient
incentives. [2] coined the term ”loosely-coupled” agent to describe an agent
which exhibits such characteristics. Through an iterative best response proce-
dure, multiple agents adjust their schedules until no further improvement can
be obtained to the resulting joint schedule. We seek to find the best joint sched-
ule which maximizes the minimum gain achieved by any one LSP, since LSPs
are more interested in how much benefit they can gain rather than achiev-
ing a system optimality. To realize such gains, we propose to use maximum
cost deviation from an ideal solution (a solution that assumes no other LSPs
exist to compete for the limited resources) as the performance measure. It is
clear that the minimum gain is equivalent to the cost deviation of the worst
performing LSP from this ideal solution.
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(a) Similar to a typical VRP except that
there are limited resources at each of the
location.

(b) There exist multiple independent LSPs
in the environment (represented in differ-
ent colors). The limited resources at each
location are shared among multiple LSPs.

Fig. 1 Problem illustrations for single-LSP VRP with Location Congestion (VRPLC) and
the multi-LSP version of the problem (ML-VRPLC).

This paper makes the following contributions:

1. We define a new variant of VRP, ML-VRPLC and formulate the problem
as an n-player strategic game.

2. We propose a scalable, decentralized, coordinated planning approach based
on iterative best response consisting of a metaheuristic as route optimizer
with a scheduler based on Constraint Programming (CP) model to solve a
large-scale ML-VRPLC.

3. We show experimentally that our approach outperforms a centralized
approach in solving large-scale problem within an operationally realistic
time limit of 1 hour while still providing enough incentives for LSPs to
participate in a coordinated planning.

This paper is an extended version of a conference paper of the same title [3].
Besides improving the writeup, we provide extensive details on our proposed
routing and scheduling heuristic for the best response computation step, as
well as an example to illustrate our proposed approach. We also conduct a
comprehensive set of experiments to further evaluate the robustness of our
approach by varying the value of a certain key input parameter, testing on
different problem sizes and incorporating plan deviations by some of the LSPs.

2 Related Works

2.1 VRP with Location Congestion

VRPLC is essentially a variant of a classical VRP with Pickup and Delivery,
and Time Windows (VRPPDTW) but with cumulative resource constraint at
each location [4]. Resources can be in the form of parking bays, cargo storage
spaces or special equipment such as forklifts. In VRPLC, there are tempo-
ral dependencies between routes and schedules that do not exist in classical
VRPs. In classical VRPs, arrival times of vehicles are merely used to ensure
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time window feasibility. In VRPLC, changes to the time schedule of one route
may affect the time schedule of another routes in the form of wait time or
time window violation. Many existing approaches to VRP do not take into
consideration this relationship between routes and schedules.

[4] proposed a branch-and-price-and-check (BPC) approach to solve a
single-LSP VRPLC. It is inspired by a branch-and-cut-and-price method for
VRPPDTW [5] and combines it with a constraint programming subproblem
to check the VRPPDTW solutions against the resource constraints. However,
BPC approach can only find feasible solutions for instances up to 150 pickup-
delivery requests and proves optimality for up to 80 requests given a time limit
of 2 hours. Therefore, this approach is not scalable when applied directly to
solve ML-VPRLC, since pickup-delivery requests are usually in the order of
hundreds per LSP and for our problem setting, a solution is expected within
an hour due to operational requirement.

[6] studied a similar problem involving docking congestion at shopping
malls under travel time and service time uncertainty. They modeled that
problem as a two-stage stochastic mixed integer program, developed an adap-
tive large neighborhood search algorithm that approximates the second stage
recourse function using various sample sizes.

A direct application of the above works to ML-VRPLC assumes a fully
centralized, collaborative planning approach which we discussed earlier that
may not be practical nor meaningful under a multiple LSP context.

2.2 ML-VRPLC

ML-VRPLC can be considered as a problem belonging to an intersection
between two main, well-studied research areas namelyMulti-Party VRP and
Multi-Agent Planning (MAP). Existing approaches to Multi-Party VRP
and MAP can broadly be categorized based on the degrees of collaboration and
cooperation respectively. Based on our understanding of our problem setting,
approaches to ML-VRPLC should fall within Quadrant 3 (see Fig. 2) where
the agents are non-collaborative but are still willing to cooperate to a certain
degree. As ML-VRPLC is a new variant of VRP, there is no prior work done
on this problem. Nevertheless, in the following subsections, we discuss existing
works that are relevant to solving ML-VRPLC.

2.3 ML-VRPLC as a Multi-Party VRP

To solve VRPs involving multiple parties similar to ML-VRPLC, many exist-
ing works in the literature focus on collaborative planning approaches. [1]
coined the term collaborative vehicle routing and it is a big area of research
on its own. Collaborative vehicle routing can be classified into centralized and
decentralized collaborative planning. The extent of collaboration ranges from
forming of alliances or coalitions (for e.g. [7, 8]) to sharing of resources such as
sharing of vehicles or exchanging of requests through auction (for e.g. [9, 10]).
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Fig. 2 ML-VRPLC as a Multi-Party VRP and Multi-Agent Planning Problem.

We have established earlier that existing works in this area are not directly
applicable to our problem due to the non-collaborative nature of the LSPs.

2.4 ML-VRPLC as an MAP Problem

MAP is simply planning in an environment where there exist multiple agents
with concurrent actions. Approaches to MAP can be further categorized into
cooperative and non-cooperative domains although most MAP problems lie in
between these two domains.

2.4.1 Cooperative Domain

Cooperative MAP involves agents that are not self-interested and are work-
ing together to form a joint plan for a common goal [11]. [2] introduced
MA-STRIPS, a multi-agent planning model on which many cooperative MAP
solvers are based on. [12] proposed a two-step approach consisting of cen-
tralized planner to produce local plan for each agent followed by solving
a distributed constraint satisfaction problem to obtain a global plan. [13]
introduced the concept of planning games and proposed two models namely
coalition-planning games and auction-planning games. Those two models
assume agents collaborate with each other through forming of coalitions or
through an auction mechanism; similar to the approaches within the collab-
orative vehicle routing domain. In general, the approaches in this domain
essentially assume cooperative agents working together to achieve a common
goal.
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2.4.2 Non-Cooperative Domain

Planning in the context of multiple self-interested agents where agents do
not fully cooperate or collaborate falls into the domain of non-cooperative
game theory. MAP problem can be formulated as strategic game where agents
interact with one another to increase their individual payoffs.

[14] proposed a sampled fictitious play algorithm as an optimization heuris-
tic to solve large-scale optimization problems. Optimization problem can be
formulated as a n-player game where every pure-strategy equilibrium of a game
is a local optimum since no player can change its strategy to improve the objec-
tive function. Fictitious play is an iterative procedure in which at each step,
players compute their best replies based on the assumption that other play-
ers’ actions follow a probability distribution based on their past decisions [15].
This approach had been applied to various multi-agent optimization problems
where resources are shared and limited such as dynamic traffic network rout-
ing [16], mobile units situation awareness problem [17], power management in
sensor network [18] and multi-agent orienteering problem [19].

On a separate front, [20] proposed a best-response planning method to
scale up existing multi-agent planning algorithms. The authors used existing
single-agent planning algorithm to compute best response of each agent to
iteratively improve the initial solution derived from an MAP algorithm. It is
scalable compared to applying the MAP algorithm directly to an MAP plan-
ning problem. However, the authors evaluated their proposed approach only on
standard benchmark problems such as those found in the International Plan-
ning Competition (IPC) domains. On the other hand, [21] applied a similar
best-response planning approach to a real-world power management problem.

2.5 ML-VRPLC as a Non-Cooperative MAP Problem

Given that the LSPs in ML-VRPLC are considered as ”loosely-coupled”
agents, the approach to solve ML-VRPLC will be somewhere in between coop-
erative and non-cooperative domains of MAP, although it tends to lean more
towards the non-cooperative domain since LSPs are still largely independent
and self-interested. Our approach includes certain elements that are discussed
above such as non-cooperative game theory and best-response planning.

There exist prior works that propose MAP approaches for problems with
multiple self-interested agents similar to ours. One such work proposes an
approach that combines mechanism design (specifically Vickrey-Clarke-Groves
(VCG) mechanism) and a distributed planning approach (Multi-Agent A*)
[22]. Both this work and ours share some common features such as an assump-
tion that agents are willing to cooperate as long as there are sufficient incentives
for them to do so and that agents update their plans in a iterative fashion
based on observing the plans of other agents. However, the main key difference
between these two approaches is that in [22], agents are able to communicate
with other agents directly and each agent keeps track of its individual list of
explored and unexplored states/plans. In contrast, for our approach, we assume
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a central agent that coordinates the message-passing function and keeps track
of a central list of states/plans. This difference implies that the search pro-
cess of our approach is more coordinated and structured while there is no
clear structure or order that determines how often, when and which agents
to communicate to in [22]. This difference alone results in both strengths and
weaknesses for each approach. More coordinated approach can be more effi-
cient as it avoids exploring the same solutions multiple times and incurs lower
communication cost while, a more distributed approach is computationally
less expensive and does not need to assume the presence of a trusted central
agent. Thus, the suitability and the performance of these two approaches will
be very much dependent on the specific problem settings and requirements.

Nevertheless, our work differs mainly from other existing works in that
we apply techniques from other research fields (MAP and game theory) on a
new variant of a well-studied optimization problem (VRP) with a real-world
problem scale.

3 Problem Description

Multiple LSPs have to fulfill a list of pickup-delivery requests within a day.
They have multiple vehicles which need to go to the pickup locations to load
up the goods and deliver them to various commercial or retail locations such as
warehouses and shopping malls. The vehicles need to return to their depot by
a certain time and every request has a time window requirement. A wait time
will be incurred if the vehicle arrives early and time violations if it serves the
request late. In addition, every location has limited parking bays for loading
and unloading, and a designated lunch hour break where no delivery is allowed.
As such, further wait time and time window violations will be incurred if a
vehicle arrives in a location where the parking bays are fully occupied or arrives
during the designated lunch hour.

The objective of each LSP is to plan for a schedule that minimizes travel
time, wait time and time window violations. Given that parking bays at every
location are shared among the multiple LSPs, some sort of coordination is
needed to deconflict their schedules to minimize congestion.

4 Model Formulation

4.1 ML-VRPLC as a Strategic Game

We formulate ML-VRPLC as an n-player game ΓML−V RPLC with LSPs repre-
sented as players i ∈ N having a finite set of strategies Si and sharing the same
payoff function i.e. u1(s) = ... = un(s) = u(s). s ∈ S1 × ....× Sn is a finite set
since Si is finite. Table 1 provides the set of notations and the corresponding
descriptions used in the model.
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Table 1 Set of notations used in ΓML−V RPLC .

Notation Description

N A set of LSPs, N ∈ {1, 2, ..., n}.
si A schedule of LSP i, i ∈ N, si ∈ Si.
s A joint schedule of all LSP, s = (s1, s2, ..., sn), s ∈ S.

s−i A joint schedule of all LSP except LSP i, s−i = (s1, ..., si−1, si+1, ..., sn).
(si, s−i) A joint schedule where LSP i follows a schedule si

while the rest follows a joint schedule, s−i.
ui(s) Payoff of LSP i when all LSP follows a joint schedule, s.

Bi(s−i) Best response of LSP i when all other LSPs follow a joint schedule, s−i.

4.1.1 Strategy

In this paper, we will use the terms ’strategy’, ’solution’ and ’schedule’ inter-
changeably since a strategy of a player i.e. an LSP is represented in the form
of a schedule. A schedule is a solution of a single-LSP VRPLC which consists
of the routes (sequence of locations to visit) of every vehicle and the corre-
sponding time intervals (start and end service times) of every requests served
by each vehicle. si is represented as the following tuple:

si = ⟨si.routes, si.timeIntervals⟩

4.1.2 Potential Function

We define a function, P (s) =
∑

i∈N ui(s) i.e. total weighted sum of travel
times, wait times and time violations when all LSP follow a joint schedule
s. In this paper, we define the payoff function, ui(s) as cost incurred (see
Equation (6) for the full definition). P (s) is an ordinal potential function for
ΓML−V RPLC since for every i ∈ N and for every s−i ∈ S−i

ui(si, s−i)− ui(s′i, s−i) > 0 iff

P (si, s−i)− P (s′i, s−i) > 0 for every si, s
′
i ∈ Si. (1)

Proof

P (si, s−i)− P (s′i, s−i) > 0

⇒ ui(si, s−i) +
∑
j∈−i

uj(s−i)−
(
ui(s′i, s−i) +

∑
j∈−i

uj(s−i)
)
> 0

⇒ ui(si, s−i)− ui(s′i, s−i) > 0

□

Thus, ΓML−V RPLC is a finite ordinal potential game and it possesses a
pure-strategy equilibrium and has the Finite Improvement Property (FIP) [23].
Having the FIP means that every path generated by a best response procedure
in ΓML−V RPLC converges to an equilibrium. We are able to show conceptually
and empirically that our approach converges into an equilibrium in the later
sections.
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4.1.3 Equilibrium and Local Optimality

s′ = (s′i, s
′
−i) is an equilibrium if

ui(s′i, s
′
−i) ≤ ui(si, s

′
−i) for all i ∈ N where si ∈ Bi(s

′
−i). (2)

An equilibrium of ΓML−V RPLC is a local optimum since no player can improve
its payoff/reduce its cost by changing its individual schedule. Conversely, every
optimal solution, s∗ of ΓML−V RPLC is an equilibrium since ui(s∗) ≤ ui(si, s

∗
−i)

for all i ∈ N where si ∈ Bi(s
∗
−i).

4.1.4 Objective Function

The objective of this problem is to minimize the maximum payoff deviation of
any one LSP from an ideal solution.

mins∈Sf(s) (3)

f(s) = maxi∈NDeviationLB(s, i) (4)

DeviationLB(s, i) =
ui(s)− ui(sideal)

ui(sideal)
× 100% (5)

where sideal is defined as the joint schedule where all other LSPs do not exist
to compete for parking bays. sideal is a Lower Bound (LB) solution since it is
a solution of a relaxed ΓML−V RPLC . We are essentially trying to search for
solutions where each LSP’s payoff is as close as possible to its corresponding
LB solution.

We do not define the objective function as mins∈S

∑
i∈N ui(s) because in

this game, the players are not concerned about the system optimality (total
payoff of all players) but rather on how much benefit it can obtain by adopting
a coordinated planning instead of planning independently.

5 Solution Approach

The key idea of our proposed approach is to improve a chosen joint schedule
iteratively by computing the best responses of each player assuming the rest
of the players adopt the chosen joint schedule until no improvement can be
obtained to the resulting joint schedule or until a given time limit or maximum
number of iterations has been reached. Our approach is decentralized in nature
because each LSP is an independent agent which can compute its own route
and schedule i.e. a central agent does not dictate how each player determine
its decision.

Given that we have established that our problem is a potential game and has
an FIP, our approach will converge to an equilibrium which has been shown ear-
lier to be equivalent to a local optimal solution. Therefore, our approach seeks
to explore multiple local optimal solutions until the terminating conditions are
met and returns the best one found so far.
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5.1 Iterative Best Response Algorithm

Algorithm 1 describes how the iterative best response algorithm works. At each
iteration (lines 3-22), a joint schedule is chosen from a sampling pool of previ-
ously obtained improved joint schedules or from the current best joint schedule
(line 7). We implement an ε-greedy sampling policy to allow for exploration
of multiple improvements paths (see Fig. 3 for an example of an improvement
path) to search for best joint schedule. An improvement step consisting of n−1
best response computations is applied to the chosen joint schedule to obtain
new improved joint schedules (line 10). If no further improvement can be made
to the sampled joint schedule, we proceed to the next iteration (lines 11-13).
We update the current best joint schedule if any of the new joint schedules
has a lower f(s) value than fmin (lines 15-16). Otherwise, we place the new
improved joint schedules into the sampling pool for further improvement steps
in the subsequent iterations (lines 17,19). We repeat the process until termi-
nation conditions are met. Finally, we return the current best joint schedule
as the final output.

5.1.1 Initial Solution, Lower Bound and Upper Bound
Solutions

The initial joint schedule can be initialized to any random, feasible joint sched-
ule. However, in this paper, we use the uncoordinated joint schedule as the
initial solution to be improved by iterative best response algorithm. To com-
pute the initial joint schedule, sinitial, we first compute the best schedules for
each LSP independently assuming no other LSPs exist to compete for the lim-
ited resources. This is akin to solving a single-LSP VRPLC for each LSP. The
resulting joint schedule is in fact sideal and is the LB solution to ΓML−V RPLC .
Next, a scheduler consisting of a CP model that incorporates the resource
capacity constraint at each location is solved for the combined routes of sideal.
This forms an uncoordinated joint schedule, suncoord which serves as an Upper
Bound (UB) solution to ΓML−V RPLC as any coordinated planning approaches
must result in solutions that are better than an uncoordinated one. We use
the LB and UB solutions in the experiments to evaluate the solution quality
of our proposed approach.

5.1.2 Finite Improvement Paths and Convergence

Each improved joint schedule can be represented as a node in a directed tree.
A series of nodes with parent-child relationship forms an improvement path as
shown in Fig. 3 where P (sk,i) < P (sk−1,i′) for all k ≥ 1 and i, i′ ∈ N . Every
improvement path is finite since S is a finite set. Every finite improvement
path will converge to an equilibrium and every terminal point is a local opti-
mum. However, since the best response is computed heuristically and there
is no way to prove optimality (as discussed in Section 5.2, computing best
response in our problem setting is equivalent to solving a mid-sized VRP with
complex constraints which cannot be solved to optimality given the time limit
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Algorithm 1: Iterative Best Response Algorithm to solve ML-
VRPLC

Input : Initial joint schedule sinitial, maximum iteration K, time
limit T

Output: Best found joint schedule sbest

1 sbest := sinitial, fmin := f(sinitial), k = 0

2 Create a sampling pool of joint schedules, H = {sinitial}
3 while k < K and runT ime < T and H ̸= ∅ do
4 if k = 0 then
5 sk := sinitial

6 else
7 With probability ε, sk ∼ U(H) otherwise sk := sbest

8 end

9 Remove sk from H

10 Find new joint schedules {sk,1, sk,2, ..., sk,n} where

sk,i = (ski , s
k
−i), u

i(sk,i) < ui(sk) and ski ∈ Bi(s
k
−i)

11 if ui(sk) ≤ ui(sk,i) for all i ∈ N then
12 k+ = 1
13 continue

14 end

15 if mini∈Nf(sk,i) ≤ fmin then

16 sbest := sk,i
∗
, fmin := f(sk,i

∗
)

17 put {sk,i}i∈N\{i∗} in H

18 else
19 put {sk,i}i∈N in H
20 end
21 k+ = 1

22 end

23 return sbest

provided), the resulting equilibrium is just an approximate. Nevertheless, we
can show empirically in our experiments that our approach will converge to
an approximated equilibrium solution after a certain number of iterations.

In short, our approach explores multiple improvement paths to search for
a joint schedule that return the best objective value, f(s) with the lowest total
payoff, P (s) as a secondary objective.

5.2 Best Response Computation

At every iteration, best response to a chosen joint schedule, sk is computed for
each LSP (line 10 of Algorithm 1). The best response computation of single
LSP is equivalent to solving a single-LSP VRPLC where the resource constraint
is determined by the resource utilization of each location by all other LSPs
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Fig. 3 One example of an improvement path assuming n = 3.

Table 2 Set of notations used in the single-LSP VRPLC model.

Notation Description

V A set of vehicles.
R A set of all requests.
M A set of all locations.
Rv A set of requests served by vehicle v.
Om A set of requests at location m ∈ M .
Cm,t Resource capacity at location m at time t.
er,v Lower time window of request r served by vehicle v.
lr,v Upper time window of request r served by vehicle v.

prev(r) Previous request served prior to request r, prev(r), r ∈ Rv .
dx,y Travel time from location of request x to location of request y.

timeIntervalr,v Time interval when request r in vehicle v is being served,
consisting of start and end time.

T0, coolingRate Parameters for acceptance criteria in Simulated Annealing.

based on sk−i. Table 2 shows the notations used in this single-LSP VRPLC
model.

We propose a heuristic consisting of Adaptive Large Neighbourhood Search
(ALNS) as route optimizer and a scheduler based on a CP model to solve this
single-LSP VRPLC. Heuristic is proposed as it is more scalable for a real-
world problem setting. ALNS is used to search for better routes and the CP
model based on the resulting routes is then solved to produce a schedule that
meets the resource and time-related constraints. ALNS is chosen because it is
probably the most effective metaheuristic for the VRPPDTW [24] and ALNS is
widely used to solve large-scale problem [25]. Algorithm 2 details the proposed
best response computation consisting of ALNS and CP model.
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Algorithm 2: Best Response Computation

Input : Chosen solution sk, initial temperature T0, coolingRate
Output: Bi(s

k
−i)

1 sbesti := ski , si := sinputi , T = T0

2 while termination criteria are not met do
3 s′i := si
4 Select removal and insert operators via roulette wheel mechanism
5 Apply the selected removal operator to remove the requests from

s′i.routes
6 Apply the selected insert operator to insert the orders into s′i.routes

7 Calculate the cost/payoff, ui(s′i, s
k
−i) and update s′i.timeIntervals

8 if ui(s′i, s
k
−i) < ui(sbesti , sk−i) then

9 sbesti := s′i, si := s′i
10 else
11 if ui(s′i, s

k
−i) < ui(si, s

k
−i) then

12 si := s′i
13 else

14 si := s′i with probability, min{1, e(u
i(si,s

k
−i)−u(s′i,s

k
−i))/T }

15 end

16 end
17 Update the weights and scores of the operators accordingly

18 T := T ∗ coolingRate

19 end

20 Bi(s
k
−i) := sbesti

21 return Bi(s
k
−i)

5.2.1 ALNS as Route Optimizer

The ALNS algorithm implemented in this paper is adapted from the vanilla
version of ALNS proposed by [26] with differences in the choices of remove and
insert operators and parameters used. However, the key difference in our ALNS
implementation lies in line 7 of Algorithm 2. To compute the time intervals
and the corresponding payoff of the updated solution, a CP model is solved.
The detailed description of the CP model can be found in Section 5.2.2.

As the words adaptive and large in ALNS imply, ALNS explores large
search space for new solutions by adaptively choosing remove and insert
operators to remove a certain number of orders from existing solution and
reinserting them back to other positions to form a new solution (lines 4-6). In
our implementation, we use the following remove and insert operators.

Remove Operators

We define the following 5 remove operators and each operator will select 10−
15% of orders uniformly to be removed from the current solution.
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1. Random removal – This operator randomly selects orders from the cur-
rent solution. Random removal allows exploration of larger search space
even though the probability of finding a better solution is low.

2. Worst removal – This operator selects orders that result in the maximum
increase in payoff/cost if removed from the current solution.

3. Spatio-temporal distance removal – This operator selects orders which
has the highest sum of spatio-temporal distances with their adjacent orders.
This operator tries to relocate orders that are more likely to incur higher
travel cost and time window violations. The definition of spatio-temporal
distance implemented was first introduced in [27].

4. Time-violation removal – This operator selects orders that result in
highest time window violation. Similar to spatio-temporal distance removal,
this operator tries to relocate orders that are “out of position” with respect
to their time window requirements.

5. Shaw removal – This operator was first introduced in [28]. The basic
idea of Shaw removal is to select orders that are similar to each other. The
intuition is that removing and reinserting orders that are similar to each
other is easier and is more likely to create better solution. Removing and
inserting orders that are vastly different from one another can be challenging
and may result in unsuccessful reinsertions or poor insertion positions.

The above remove operators are selected to provide both exploitation and
exploration in the search process. Randomization in the operator provides the
exploration capability while removal operators like worst, spatio-temporal and
time-violation are more exploitative in nature as they aim to improve the
solution in a greedy manner. Shaw removal is essentially the opposite of worst
removal and thus having both operators provides a diversification of search.
Shaw removal select orders that are easier to remove and insert while worst
removal select orders that are relatively harder to reinsert.

Insert Operators

Prior to any insertion operation, orders are selected for removal using the
selected remove operations as described in previous section. The selected orders
can be removed in two ways namely remove all or remove one by one. Remove
all indicates that the selected orders for removal are removed together prior to
insertion while remove one by one indicates that order is removed one at the
time prior to insertion. Meanwhile, insertion is done sequentially which means
that for remove all, all orders are removed and reinserted one by one while for
remove one by one, each order is removed and reinserted one at a time.

These are the 6 insert operators implemented:

1. Remove all with greedy insertion – All orders are removed prior to
any insertion. Greedy insertion heuristics insert the order that returns the
minimum increase in payoff/cost.

2. Remove one by one with greedy insertion – Similar to the first
operator except that orders are removed and inserted one at a time.
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3. Remove all with greedy insertion with noise – Similar to the first
operator except that calculation of increase in payoff/cost includes a noise
function.

4. Remove one by one with greedy insertion with noise – Similar to the
second operator except that calculation of increase in payoff/cost includes
a noise function.

5. Remove all with regret-k insertion – All orders are removed prior to
any insertion. This operator inserts orders based on their regret values.
Regret value is defined as the difference in the cost of inserting into its best
route and its kth best route.

6. Remove one by one with regret-k insertion – Similar to the fifth
operator except that orders are removed and inserted one at a time.

Similar to the remove operators, the above insert operators are selected
to provide both exploitation and exploration in the search process. Random-
ization in the operator via noise function provides the exploration capability
while greedy insertion is more exploitative in nature. In addition, regret inser-
tion provides a certain degree of lookahead capability since greedy insertion is
more likely to cause the solution to be stuck at local optima.

On top of the exploration capability provided by the remove and insert
operators, a similar mechanism used in Simulated Annealing is applied in
choosing poorer solutions to further enlarge the search space and also to escape
local optima (line 14). For more detailed discussions of ALNS algorithm such as
on the roulette wheel mechanism (line 4) and the adaptive weight adjustment
for the operators (line 17), we refer our readers to [26].

5.2.2 CP Model as Scheduler

The following CP model is solved to obtain the updated time intervals of the
newly-found routes and the corresponding payoff of the updated schedules at
every ALNS iteration in line 7 of Algorithm 2. The payoff is computed as
follow:

ui(si) = w1 × totalTravelT ime(si.routes)+

minimize
∑
v∈V

{
w2 ×

∑
r∈Rv

waitT imer,v + w3 ×
∑
r∈Rv

timeV iolationr,v

}
(6)

where

w1, w2, w3 are predetermined set of weights,

waitT imer,v = min{0, (start(timeIntervalr,v)−
end(timeIntervalprev(r),v)− dprev(r),r)},

timeV iolationr,v = min{0, (end(timeIntervalr,v)− lr,v)},
si.timeIntervals = {timeIntervalr,v}r∈Rv,v∈V
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The second term of Equation (6) is the objective function of the CP model
with {timeIntervalr,v}r∈Rv,v∈V as the primary decision variables of the model.
The key constraints of the CP model are as follow:

CUMULATIV E({timeIntervalr,v : v ∈ V,

r ∈ Rv ∩Om}, 1, Cm,t),∀m ∈ M (7)

noOverlap({timeIntervalr,v : r ∈ Rv}),∀v ∈ V (8)

start(timeIntervalr,v) ≥ end(timeIntervalprev(r),v)

+dprev(r),r,∀r ∈ Rv, v ∈ V (9)

start(timeIntervalr,v) ≥ er,v,∀r ∈ Rv, v ∈ V (10)

Constraint (7) is used to model the resource capacity constraint at
each location at a given time t where start(timeIntervalr,v) ≤ t ≤
end(timeIntervalr,v) and Cm,t is determined by the resource utilization of all
other LSPs based on sk−i. Constraint (8) ensures that the time intervals of
requests within a route do not overlap. Constraints (9) and (10) ensure that
the start time of a request must at least be later than the end time of the pre-
vious request plus the corresponding travel time and it should not start before
its lower time window. Other constraints relating to operational requirements
such as no delivery within lunch hours, operating hours of the locations and
vehicles are omitted to simplify the discussion as it is fairly straightforward to
incorporate these constraints.

5.3 Solution Illustration

In this section, we provide a simple illustration on how our approach works
using a simple toy example involving 2 LSPs and here, we assume each location
has a capacity of one. Our approach begins by computing the initial solution,
lower bound and upper bound solutions as explained in Section 5.1.1. Each
LSP plans independently assuming no other LSPs exist to compete for resource
and the resulting joint schedule is as follows s1 = ⟨[A,B, ...], [(5, 7), (9, 11), ...]⟩
and s2 = ⟨[B,D, ...], [(4, 12), (15, 17), ...]⟩. This resulting joint schedule is in
fact sideal which is a LB solution. However, it is observed that LSP 1 will need
to wait at Location B because LSP 2 is still occupying Location B at time
interval (9, 11). Thus, through a CP-based scheduler, this initial joint schedule
is revised to a feasible solution such as s1 = ⟨[A,B, ...], [(5, 7), (13,15), ...]⟩
while s2 remains. Due to the waiting time incurred in Location B, the cost of
this initial solution is higher. This is a suncoord since there is no coordination
involved and is also an UB solution.

Through a iterative best response procedure, our approach tries to
improve this initial solution. For instance, at a given iteration, we first
assume s2 to remain and compute the best response of LSP 1 by using
the proposed heuristic (see Section 5.2). At the same time, we compute
the best response of LSP 2 assuming s1 remains. Each of the result-
ing new joint schedule is kept if its objective value is better than the



Springer Nature 2021 LATEX template

Coordinating Multi-Party Vehicle Routing with Best Response 17

fmin (see line 15-17 of Algorithm 1) or is better than the solution at
the start of this iteration (lines 18-19). Assuming that only 1 resulting
joint schedule, s1 = ⟨[A,F, ..., B, ...], [(5, 7), (10, 13), ..., (20,22), ...]⟩ and s2 =
⟨[B,D, ...], [(4, 12), (15, 17), ...]⟩ returns an improved objective value, we set this
schedule as the current best solution, sbest and place it in the sampling pool
H. This resulting joint schedule is an improved solution because a congestion
is avoided at Location B as LSP 1 visits Location B at a later time interval,
(20, 22).

At the next iteration, since the sampling pool consists only 1 joint sched-
ule and it is also the current best solution, another round of best response
computations is done on this schedule. Assuming that the resulting new joint
schedules do not return improved objective values, this current best solution
is then returned as the local optimal solution which is also an approximate
equilibrium solution since no one player can improve its own payoff. This
example illustrates a terminating condition where the sampling pool is empty
and no improvement can be made to the current best solution. Another
instance of terminating condition will be when the computation time reaches
a pre-determined time limit.

In this simple illustration, we simulate 1 iteration of iterative best response
procedure. In practice, there would be multiple iterations and each iteration
will explore multiple improvement paths since the sampling pool would contain
multiple improved joint schedules.

5.4 Scalability and Flexibility

Our approach is scalable because the best response computations for every
LSP can be done in parallel since they are independent of each other (line 10
of Algorithm 1). In other words, explorations of multiple improvement paths
as shown in Fig. 3 can be done concurrently. Our approach is also flexible as
it also allows any other forms of solution approach to single-LSP VRPLC to
be used to compute the best response.

6 Experiments

The objective of the experiment is twofold. First, we would like to empirically
verify whether our approach converges to an equilibrium for our problem set-
ting and second, to evaluate the solution quality produced by our proposed
approach. For a more comprehensive evaluation of our proposed approach, we
look into the following aspects in our experiments:

1. Exploration vs. Exploitation. We investigate the impact of implement-
ing ε-greedy sampling policy to the solution quality.

2. Our Approach vs. Centralized. We compare our proposed decentralized
solution approach with a centralized approach with respect to sideal (LB)
and suncoord (UB). Intuitively, our approach should return solutions with
lower payoff/cost than UB solution and within a reasonable deviation from
LB solution.
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3. Sensitivity Analysis. We also investigate the impact of plan deviations
by any of the LSPs to solution quality.

6.1 Experimental Setup

We synthetically generate 30 test instances to simulate a month’s worth of
pickup-delivery requests for 20 LSPs. These instances are generated based on
existing datasets of our trials with several local LSPs. Each test instances
consists of 100 requests per LSP and each LSP has 10 vehicles. To simulate
congestion at the delivery locations, we narrow down the delivery locations
to 15 unique shopping malls with maximum capacity of 4 parking bays per
location. Our approach is implemented with K set at 300, T = 60 mins and
ε = 0.3. The implementation codes are written in Java while CP Optimizer
ver. 12.8 is used to solve the CP model. The experiments are run on a server
with the following configurations: CentOS 8 with 24 CPU Cores and 32GB
RAM.

6.1.1 Benchmark Algorithm

As there is no existing work that solves the non-collaborative ML-VRPLC,
we choose a centralized variant of our proposed non-collaborative planning
approach as a benchmark algorithm. It is centralized in that all LSPs are
treated as one single LSP and the central agent makes the routing and schedul-
ing decision on behalf of the LSPs. It is non-collaborative as no exchange
of requests or sharing of vehicles are allowed i.e. each vehicle can only serve
requests from the LSP they belong to. We use a heuristic approach combin-
ing ALNS and CP model similar to the one used to compute best response to
solve this single-LSP VRPLC. The initial solution is constructed via random-
ized Clarke-Wright Savings Heuristics adapted from [29]. The algorithm is run
for 1 hour and 2 hours for each test instance.

6.1.2 Performance Measures

On top of f(s), we introduce other performance measures to evaluate the
approaches more comprehensively. The other performance measures intro-
duced are as follows:

1. Maximum payoff deviation from an uncoordinated solution. g(s) measures
the payoff deviation of the worst performing LSP from the payoff if it follows
a schedule based on an uncoordinated planning. A negative deviation value
indicates reduction in cost and thus, the lower the value, the higher the
improvement gained from the UB solution.

g(s) = maxi∈NDeviationUB(s, i) (11)

DeviationUB(s, i) =
ui(s)− ui(suncoor)

ui(suncoor)
× 100% (12)
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2. Average payoff deviation from an ideal solution. Unlike f(s) which mea-
sures the payoff deviation of the worst performing LSP, f ′(s) measures the
average payoff deviation across all LSPs with respect to the ideal solution.
The lower the value of f ′(s), the closer the solution is to the LB solution
on average.

f ′(s) =
1

n
×

∑
i∈N

DeviationLB(s, i) (13)

3. Average payoff deviation from an uncoordinated solution. Similar to f ′(s),
g′(s) measures the average payoff deviation across all LSPs but with respect
to the UB solution. However, like Equation (11), a negative g′(s) value
indicates reduction in cost which translates to the improvement gained from
the UB solution.

g′(s) =
1

n
×

∑
i∈N

DeviationUB(s, i) (14)

We include results in terms of average and percentiles for a more extensive
evaluation since the approaches being evaluated are heuristics and contain a
certain degree of stochasticity. However, not all of the performance measures
are being used in every experiment. At different parts of the experiments, we
select only those which are relevant.

6.2 Experimental Results

6.2.1 Convergence

Fig. 4 shows that the total payoff of all players converges after 200 itera-
tions on average for all test instances. This supports our earlier deduction
that ΓML−V RPLC possesses an FIP and our proposed algorithm explores mul-
tiple improvement path that will converge to an approximated equilibrium.
Meanwhile, the average run-time for 200 iterations is around 1 hour.

6.2.2 Exploration vs. Exploitation

We investigate the impact of the value of ε to the solution quality in terms
of the objective value, f(s) and the total payoff, P (s) as secondary objective
function. As mentioned earlier, the value of ε determines the probability of
exploring ”poorer” improvement path at every best response iteration. ε = 0
implies full exploitation and no exploration, meaning that each best response
procedure is done to improve only the current best solution. In this experiment,
we run our solution approach with 3 different ε values (0, 0.3 and 0.5) against
the 30 test instances.

As shown in Table 3, although the impact on the total payoff does not seem
to be significant, our approach with ε = 0.3 returns solutions where the payoff
of worst performing LSP is within 21.1% on average compared to 26.5% and
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Fig. 4 The total payoffs converge for all 30 test instances. Each coloured line represents
the result of one test instance.

Table 3 The impact of ε to the solution quality in terms of the objective function, f(s)
and total payoff, P (s) across 30 test instances.

Performance Measure ε = 0 ε = 0.3 ε = 0.5

Max payoff Q1 19.3% 17.1% 17.0%
deviation from LB Q2 21.3% 21.1% 20.5%
f(s) Q3 25.0% 24.2% 26.2%

Avg 31.8% 21.1% 26.5%

Total payoff (in 1000s) Q1 124.0 122.6 122.1
P (s) Q2 126.5 127.2 128.4

Q3 130.6 130.7 132.6
Avg 128.2 127.5 128.1

31.8% when ε = 0.5 and 0 respectively. Based on our experiment, our choice of
ε = 0.3 provides a balance between exploration (high ε value) and exploitation
(low ε value) and produces better quality solutions consistently across the 30
test instances.

6.2.3 Our Approach vs. Centralized

As shown in Fig. 5, we intentionally present the results as a line chart and sort
the test instances based on increasing total payoff of the ideal solution to better
illustrate that our approach returns solutions whose total payoff are lower than
the centralized approach and are well within the UB and LB solutions in all
30 test instances.

Table 4 shows that our approach outperforms the centralized approach
on every performance measure even when the run-time for the centralized
approach is increased to 2 hours. In terms of the performance of the worst



Springer Nature 2021 LATEX template

Coordinating Multi-Party Vehicle Routing with Best Response 21

Fig. 5 Our proposed approach outperforms the centralized approach (even when the run-
time is doubled) and its solutions are well within the LB and UB solutions in terms of total
payoff.

LSP, our approach is able to ensure that on average, the payoff of the worst
performing LSP is still within about 21.1% from the LB solution and at least
gain about 2.7% improvement over the uncoordinated solution. Meanwhile,
even with doubling of the run-time, the centralized approach can only manage
to ensure that the payoff of the worst performing LSP is within 32.0% from
the LB solution while incurring a 13.1% additional cost as compared to an
uncoordinated planning.

On average, across all LSPs, our approach return solutions that are well
within 8.6% deviation from the LB solution and improve the payoff of the
LSPs by an average of 10.4% from an uncoordinated planning approach. This
is contrasted with the centralized approach which can only manage to return
solutions that are within 14.9% of LB solution on average and an improvement
of about 5.1% from the UB solution even when the run-time is doubled.

We observe that the worst performing LSP in centralized approach con-
sistently returns g values that are positive (see Table 4) which indicates that
the solution for the worst performing LSP is even worse than that of an unco-
ordinated planning approach. This is because the centralized approach only
concerns about the system optimality and not on the performance of each indi-
vidual LSP. This reiterates our point that a centralized approach may result
in some LSPs performing worse than if they are to plan independently.
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Table 4 Our approach outperforms the centralized approach on every performance
measures across 30 test instances.

Performance Our Approach Centralized (1hr) Centralized (2hrs)
Measure

Max payoff Q1 17.1% 28.0% 23.9%
deviation from LB Q2 21.1% 30.7% 28.8%
f(s) Q3 24.2% 36.5% 33.5%

Avg 21.1% 35.0% 32.0%

Max payoff Q1 −3.1% 10.5% 6.8%
deviation from UB Q2 −2.1% 13.7% 9.2%
g(s) Q3 −1.1% 16.4% 15.4%

Avg −2.7% 13.7% 13.1%

Avg payoff Q1 7.5% 15.5% 12.5%
deviation from LB Q2 8.6% 17.2% 14.1%
f ′(s) Q3 9.4% 18.7% 17.1%

Avg 8.6% 17.4% 14.9%

Avg payoff Q1 −11.8% −5.2% −7.4%
deviation from UB Q2 −9.9% −2.4% −4.6%
g′(s) Q3 −8.2% −0.6% −1.6%

Avg −10.4% −3.0% −5.1%

6.2.4 Sensitivity Analysis

Our approach assumes that every LSP follow the generated coordinated sched-
ules. However, in real-world settings, there are possibilities that some LSPs
deviate from the generated plans. In this experiment, we investigate the impact
of such plan deviations by any of the LSPs on the solution quality. To simplify
the discussion, we assume scenarios where 10%, 30% and 50% of LSPs devi-
ate from the generated schedules and follow their own planned schedules. We
assume that LSPs are rational agents which mean that their own schedules
are computed with the objective of minimizing their own total payoff/cost.

We generate and run another 30 test instances for this experiment. To
evaluate the impact on the solution quality of the resulting schedules, we use
the maximum and average payoff deviations from the generated plan as the
performance measures. As shown in Table 5, a slight plan deviation caused by
only 10% of the LSPs result in the worst performing LSP suffering a loss of
almost 30%. Due to the stochastic nature of our approach, the eventual worst
performing LSP may not be the same every time the algorithm is run. This
may create sufficient deterrence for LSPs from deviating from the generated
schedules. On the other hand, even with half of the LSPs not following the
generated plans, the average payoff deviation is kept within 10%. This shows
that our proposed approach is able to produce solutions that are robust against
plan deviations albeit with respect to the average performances of all the LSPs.

6.2.5 Experiment Discussion

The experiments show that our proposed decentralized approach outperforms
a centralized approach given the available run-time limit of 1 hour in all 30
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Table 5 The impact of plan deviations by 10%, 30% and 50% of the LSPs on the solution
quality across 30 test instances.

Performance 10% of LSPs 30% of LSPs 50% of LSPs
Measure deviate deviate deviate

Max payoff Q1 12.5% 13.7% 16.3%
deviation from Q2 18.7% 19.7% 21.4%
generated plan Q3 27.7% 25.1% 47.2%

Avg 28.5% 35.7% 39.8%

Avg payoff Q1 4.3% 5.3% 6.1%
deviation from Q2 5.4% 5.8% 8.0%
generated plan Q3 6.3% 7.3% 10.3%

Avg 5.7% 7.2% 8.4%

test instances and in all 4 performance measures. Furthermore, we also find
that the centralized approach is computationally more expensive and therefore
not as scalable as our decentralized approach as it needs longer run-time (> 2
hours) to return solutions that are at least comparable to our approach.

To further verify the performance of the centralized approach and its lack
of scalability, we run another set of experiments involving 5 LSPs with 100
pickup-delivery per LSP and each LSP having 10 vehicles. To simulate conges-
tion at the delivery locations, we set the maximum capacity at 2 parking bays
per location. Fig. 6 shows that both our proposed approach and the central-
ized approach produce comparable solutions in terms of total payoff across 30
test instances given the same time budget. To further substantiate this claim,
we conduct the following paired t-test:

H0 : µd = 0
H1 : µd ̸= 0

where µd refers to the mean difference between the total payoffs of our proposed
approach and the centralized approach. In this test, we assume 95% confidence
level. The test returns a p-value of 0.79 which is greater than α = 0.05. Thus,
there is no significant evidence to reject the null hypothesis and as such we
can conclude statistically that the total payoff of our proposed approach and
centralized approach are comparable. We have shown earlier that the perfor-
mance gap between the two approaches widens when the problem scale gets
larger (see Section 6.2.3). Therefore, the centralized approach indeed performs
well only with smaller scale problems.

Although further experimentation may be needed to evaluate the robust-
ness of our approach against various problem scenarios such as varying the
number of LSPs, vehicles, requests and pickup-delivery locations, we have
deliberately chosen to conduct sufficiently varied types of experiments to show
that even though there will be LSPs who gain more and others who will gain
less, our approach is able to ensure that there are enough incentives (and deter-
rence too) for LSPs to adopt and follow this coordinated planning as compared
to them performing their own selfish, independent planning.
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Fig. 6 Our proposed approach and the centralized approach produce comparable solutions
in terms of total payoff across 30 test instances (5 LSPs). Similar to Fig. 5, we intentionally
present the results as a line chart and sort the test instances based on increasing total payoff
of the ideal solution for ease of visualization.

7 Conclusion and Future Works

The key idea proposed in this paper is a scalable, decentralized, coordinated
planning approach that can be tailored to large-scale optimization problems
involving multiple ”loosely coupled” entities competing for shared resources.
Our proposed iterative best response algorithm decomposes a multi-agent
problem into multiple single-agent problems allowing existing single-agent
planning algorithms to be applied to a smaller problem.

Even though we assume that the best response algorithms and the payoff
functions of each LSP (or agent) are identical, our approach can be extended
to problems where each LSP adopts different best response algorithm and
payoff function. The best response computation algorithm is akin to a black-
box which can be replaced with any solution algorithm to solve single-LSP
VRPLC (or single-agent version of the problem). Moreover, even with non-
identical payoff functions, the inequality condition in Equation (1) will still
be valid and therefore our approach will still converge to an approximated
equilibrium.

One key limitation of our approach is that we assume the environment is
deterministic, which may not be the case in real-world setting. Furthermore,
we assume that every LSP in the system is cooperative in the sense that it
participates and adheres to the coordinated planning without any possibility
of plan deviation such as dropping out of the system or making changes to
their pickup-delivery requests. Even though we performed a sensitivity analy-
sis to describe the impact of plan deviations to our solution, it is interesting
to further investigate and enhance our approach to take into consideration
sources of uncertainty in the environment. One such extension is to take into
account stochastic service time i.e. loading and unloading time. In this paper,
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we assume constant service time. However, in practice, loading and unload-
ing time may vary and may cause further congestion and disruptions to the
planned schedules. Thus, incorporating stochastic service time in the planning
approach would result in a more robust and improved solution [30].

Other than to evaluate the robustness of our approach in a stochastic envi-
ronment, it is also interesting to evaluate the applicability of our approach in
other problem domains beyond logistics. Another possible direction for future
work will be to go beyond the empirical study that we did in this paper by
further defining and analyzing the theoretical bounds of our approach to n-
player game ΓML−V RPLC in terms of the classical notions of Price of Stability
(PoS) and Price of Anarchy (PoA).

Conflicts of Interest

This research is funded by the National Research Foundation Singapore under
its Corp Lab @ University scheme and Fujitsu Limited as part of the A*STAR-
Fujitsu-SMU Urban Computing and Engineering Centre of Excellence.

References

[1] Gansterer, M., Hartl, R.F.: Collaborative vehicle routing: a survey.
European Journal of Operational Research 268(1), 1–12 (2018)

[2] Brafman, R.I., Domshlak, C.: From one to many: planning for loosely
coupled multi-agent systems. In: Proceedings of the Eighteenth Interna-
tional Conference on International Conference on Automated Planning
and Scheduling, pp. 28–35 (2008)

[3] Joe, W., Lau, H.C.: Coordinating multi-party vehicle routing with loca-
tion congestion via iterative best response. In: Multi-Agent Systems: 18th
European Conference, EUMAS 2021, Virtual Event, June 28–29, 2021,
Revised Selected Papers, p. 72 (2021). Springer Nature

[4] Lam, E., Van Hentenryck, P.: A branch-and-price-and-check model for
the vehicle routing problem with location congestion. Constraints 21(3),
394–412 (2016)

[5] Ropke, S., Cordeau, J.-F.: Branch and cut and price for the pickup and
delivery problem with time windows. Transportation Science 43(3), 267–
286 (2009)

[6] Song, R., Lau, H.C., Luo, X., Zhao, L.: Coordinated delivery to shopping
malls with limited docking capacity. Transportation Science (2022)

[7] Cuervo, D.P., Vanovermeire, C., Sörensen, K.: Determining collaborative
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[29] Nazari, M., Oroojlooy, A., Takáč, M., Snyder, L.V.: Reinforcement learn-
ing for solving the vehicle routing problem. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pp.
9861–9871 (2018)

[30] de Weerdt, M.M., Stein, S., Gerding, E.H., Robu, V., Jennings, N.R.:
Intention-aware routing of electric vehicles. IEEE Transactions on Intel-
ligent Transportation Systems 17(5), 1472–1482 (2015)


	Coordinating multi-party vehicle routing with location congestion via iterative best response
	Citation

	Introduction
	Related Works
	VRP with Location Congestion
	ML-VRPLC
	ML-VRPLC as a Multi-Party VRP
	ML-VRPLC as an MAP Problem
	Cooperative Domain
	Non-Cooperative Domain

	ML-VRPLC as a Non-Cooperative MAP Problem

	Problem Description
	Model Formulation
	ML-VRPLC as a Strategic Game
	Strategy
	Potential Function
	Equilibrium and Local Optimality
	Objective Function


	Solution Approach
	Iterative Best Response Algorithm
	Initial Solution, Lower Bound and Upper Bound Solutions
	Finite Improvement Paths and Convergence

	Best Response Computation
	ALNS as Route Optimizer
	Remove Operators
	Insert Operators

	CP Model as Scheduler

	Solution Illustration
	Scalability and Flexibility

	Experiments
	Experimental Setup
	Benchmark Algorithm
	Performance Measures

	Experimental Results
	Convergence
	Exploration vs. Exploitation
	Our Approach vs. Centralized
	Sensitivity Analysis
	Experiment Discussion


	Conclusion and Future Works

