
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2022

QuoTe: Quality-oriented Testing for deep learning systems QuoTe: Quality-oriented Testing for deep learning systems

Jialuo CHEN

Jingyi WANG

Xingjun MA

Youcheng SUN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
CHEN, Jialuo; WANG, Jingyi; MA, Xingjun; SUN, Youcheng; SUN, Jun; ZHANG, Peixin; and CHENG, Peng.
QuoTe: Quality-oriented Testing for deep learning systems. (2022). ACM Transactions on Software
Engineering and Methodology. 32, (5), 1-33.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7785

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jialuo CHEN, Jingyi WANG, Xingjun MA, Youcheng SUN, Jun SUN, Peixin ZHANG, and Peng CHENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7785

https://ink.library.smu.edu.sg/sis_research/7785

QuoTe:uality-oriented Testing for Deep Learning Systems

JIALUO CHEN, Zhejiang University, China
JINGYI WANG∗, Zhejiang University, China
XINGJUN MA, Fudan University, China

YOUCHENG SUN, University of Manchester, UK

JUN SUN, Singapore Management University, Singapore

PEIXIN ZHANG, Zhejiang University, China
PENG CHENG∗, Zhejiang University, China

Recently, there has been a signiicant growth of interest in applying software engineering techniques for the quality assurance

of deep learning (DL) systems. One popular direction is deep learning testing, i.e., given a property of test, defects of DL

systems are found either by fuzzing or guided search with the help of certain testing metrics. However, recent studies have

revealed that the neuron coverage metrics, commonly used by most existing DL testing approaches, are not necessarily

correlated with model quality (e.g., robustness, the most studied model property), and are also not an efective measurement

on the conidence of the model quality after testing. In this work, we address this gap by proposing a novel testing framework

called uoTe (i.e., Quality-oriented Testing). A key part of uoTe is a quantitative measurement on 1) the value of each test

case in enhancing the model property of interest (often via retraining), and 2) the convergence quality of the model property

improvement. uoTe utilizes the proposed metric to automatically select or generate valuable test cases for improving model

quality. The proposed metric is also a lightweight yet strong indicator of how well the improvement converged. Extensive

experiments on both image and tabular datasets with a variety of model architectures conirm the efectiveness and eiciency

of uoTe in improving DL model quality, i.e., robustness and fairness. As a generic quality-oriented testing framework,

future adaptions can be made to other domains (e.g., text) as well as other model properties.

CCS Concepts: · Software and its engineering→ Software testing and debugging; · Computing methodologies→

Neural networks.

Additional Key Words and Phrases: deep learning, testing, robustness, fairness.

1 INTRODUCTION

Deep learning (DL) [38] has been the core driving force behind the unprecedented breakthroughs in solving
many challenging real-world problems such as object classiication [65], speech recognition [23] and natural
language processing [11]. However, DL systems are known to have defects in terms of robustness or fairness. For
instance, a self-driving car killed the driver as the object detector failed to recognize the white truck against a
bright sky [5], and a photo-tagging app tagged pictures of dark-skinned people as gorillas [24]. Along with its

∗Both corresponding authors.

Authors’ addresses: Jialuo Chen, Zhejiang University, China, chenjialuo@zju.edu.cn; Jingyi Wang, Zhejiang University, China, wangjyee@

zju.edu.cn; Xingjun Ma, Fudan University, China, xingjunma@fdu.edu.cn; Youcheng Sun, University of Manchester, UK, youcheng.sun@

manchester.ac.uk; Jun Sun, Singapore Management University, Singapore, junsun@smu.edu.sg; Peixin Zhang, Zhejiang University, China,

pxzhang94@zju.edu.cn; Peng Cheng, Zhejiang University, China, lunarheart@zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/2-ART $15.00

https://doi.org/10.1145/3582573

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3582573
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582573&domain=pdf&date_stamp=2023-02-10

2 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 1. The overview of QuoTe testing framework. It starts from an initial DL model trained from the training dataset in a
standard way. Then, it applies a testing algorithm to generate a new set of test cases for retraining the model to improve
the specified testing property. QuoTe iteratively generates the test suite and retrains the model at each iteration. It checks
whether the property of the retrained model is satisfactory using an independent quality validation dataset at the end
of iterations. If the answer is yes, it terminates and outputs the enhanced model; otherwise, QuoTe continues until the
requirement is satisfied or the testing budget is exhausted.

prevalent applications, such DL defects naturally raise great concerns about its trustworthiness, especially when
deployed in safety- and ethic-critical applications such as face recognition [54], autonomous driving [15, 41] and
medical diagnosis [18, 47].
Signiicant eforts have been made in the software engineering community to enhance the quality of DL

systems with a focus on threats like adversarial examples (on robustness) [19, 55, 63, 70]. Adversarial examples
are inputs that are formed intentionally by applying small perturbations to the normal examples, aiming to fool
the DL systems to give wrong results (see Fig. 4 for an example). Among the works, formal veriication aims to
prove that no adversarial examples exist in the neighborhood of a given input. Substantial progress has been
made using approaches like abstract interpretation [63, 83] and reachability analysis [67]. However, these formal
veriication techniques are in general computationally expensive and only scale to limited model structures and
properties (e.g., local robustness [29]).
Another popular line of work is deep learning testing, which aims to generate test cases that can expose the

defects of DL models. For example, DeepXplore [55], a robustness testing technique for deep learning, revealed
thousands of incorrect corner case behaviors in the autonomous driving DL systems; Themis [19], a fairness
testing technique, detected signiicant model discrimination towards sensitive features like gender, marital status
and race; ADF [87] utilizes gradient information to guide the fairness testing process and is more eicient in
inding discriminatory samples. These test cases can then be used to repair the model (e.g., through retraining),
potentially improving the quality of DL systems. However, this should not be taken for granted, as recent
studies have shown that test cases generated based on existing testing metrics have limited correlation to model
robustness and robustness improvement after retraining [13, 26].

There are two key ingredients when it comes to testing DL systems for a given model property of interest such
as robustness and fairness. The irst key ingredient is the test adequacy metrics [57] (which we call testing metrics
for simplicity) used to evaluate the quality of a test case or a test suite. Multiple robustness testing metrics have
been proposed, including neuron coverage [55], multi-granularity neuron coverage [45], MC/DC coverage [64],

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 3

combinatorial coverage [44] and surprise adequacy [35]. The common idea is to explore as much diversity as
possible in a certain subspace deined based on diferent abstraction levels of a neuron network model, e.g.,
neuron activation [55], neuron activation pattern [45], neuron activation conditions [64] and neuron activation
vector [35]. The second is the method adopted for generating test cases, which is often done by mutating a
set of seed inputs with the guidance of the testing metric. Existing test case generation techniques such as
DeepXplore [55], DeepConcolic [64], DeepHunter [81], DeepCT [44] and ADAPT [40] are mostly designed to
improve the neuron coverage metrics. While existing testing approaches help expose the defects of DL systems to
some extent, recent studies have unfortunately found that neuron coverage metrics are not helpful for improving
model robustness [13, 26, 43]. As a result, unlike in the case of traditional software testing where the software
quality is more certainly improved after ixing defects revealed through testing, one may not easily improve the
quality of a DL system after retraining with the generated test cases.
In this work, we address the above-mentioned limitations of existing DL testing approaches by proposing a

novel DL testing framework called uoTe (i.e., Quality-oriented Testing), which is designed with DL model
quality enhancement in mind, aiming to bridge the gap between testing and model quality enhancement. As
illustrated in Fig. 1, uoTe distinguishes itself from existing neuron coverage guided testing works in the
following important aspects. First, uoTe is quality-oriented. For a given property (e.g., robustness or fairness),
uoTe takes a user-deined requirement with respect to the property as input and integrates the retraining
process into the testing pipeline. The requirement is provided in prior for quality assurance purposes. For
instance, the user may require łthe enhanced model should mitigate 80% of adversarial examples (potentially
from an independent validation)".uoTe then iteratively improves the model quality by generating test cases
and retraining the model to satisfy the requirement. Second, inuoTe, we propose a novel set of lightweight
metrics that are strongly correlated with the property for testing. The metrics can quantitatively measure the
relevance of each test case for model enhancement, and are designed to favor test cases that can signiicantly
improve the model quality. Extensive experimental results further conirm the efectiveness and eiciency of
uoTe in improving model robustness and fairness, by up to 67.69% and 58.90% increase on average respectively.

In a nutshell, we make the following main contributions:

• We propose a quality-oriented testing framework (uoTe) for DL systems as an extension of the RobOT
framework [69]. uoTe provides an end-to-end solution for enhancing the quality of DL systems in terms
of certain model properties.
• We propose a set of lightweight testing metrics that quantify the importance of each test case with respect
to the testing properties, which are demonstrated to be stronger indicators than existing coverage metrics.
• We implement in uoTe, a set of fuzzing strategies guided by the proposed metrics to automatically select
and generate high-quality test cases for improving the model quality.
• We evaluate uoTe for two important DL model properties (i.e., robustness and fairness) on 8 benchmark
datasets (including 5 image datasets and 3 tabular datasets). Our experiments show thatuoTe is more
efective in improving model quality than state-of-the-art test case selection and generation works. Besides,
we release our implementation and experimental data for future research 1.

This paper is a signiicant extension of our previous work published in ICSE 2021 [69], by extending the original
idea for robustness testing to a more challenging model property, i.e., fairness. We deine the problem and also
provide extensive experiments on both tabular and image domain data, to demonstrate the efectiveness of our
approach for fairness testing. As a generic quality-oriented testing framework, future adaptions can be made to
extend uoTe to other data domains (e.g., text/NLP) and more testing properties to improve the trustworthiness
of DL systems from diferent dimensions.

1https://github.com/Testing4AI/QuoTe

ACM Trans. Softw. Eng. Methodol.

https://github.com/Testing4AI/QuoTe

4 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 2. An example DNN to predict cat or dog. Fig. 3. Comparison between traditional sotware and DL
system quality assurance ater testing.

The remainder of the paper is organized as follows. We irst provide the background of DL testing in Section 2.
We then present the details of uoTe in Section 3. Extensive experimental results on multiple benchmark datasets
are in Section 4. Finally, we discuss related works in Section 5 and conclude in Section 6.

2 BACKGROUND

2.1 Deep Neural Networks

In this work, we focus on deep learning models, e.g., deep neural networks (DNNs) for classiication. We introduce
a conceptual deep neural network (DNN) as an example in Fig. 2 for simplicity and remark that our approach is
applicable for state-of-the-art DNNs in our experiments such as ResNet [27] and VGG [62].
A DNN classiier is a decision function f : X → Y , which maps an input x ∈ X (often preprocessed into a

vector) into a discrete class label y ∈ Y = {1, 2, · · · ,C}, where C is the total number of classes. A typical DNN
classiier is composed of L layers: { f 1, f 2, · · · , f L−1, f L}, where f 1 is the input layer, f L is the output layer2,
and f 2, · · · , f L−1 are the hidden layers, as shown in Fig. 2. We use θ to denote the parameters of f which assign
weights to each connected edge between neurons. Given an input x , we can obtain the output of each neuron ne
on x , i.e., ϕ(x ,ne), by calculating the weighted sum of the outputs of all the neurons in its previous layer and
then applying an activation function (e.g., Sigmoid, Tanh, or Relu). Given a dataset D = {(xi ,yi)}

N
i=1, a DNN is

often trained by solving the following optimization problem:

min
θ

1

N

N
∑

i=1

L(f L(xi),yi), (1)

where L is a loss function that calculates a loss by comparing the model output f L(xi)with the ground-truth label
yi . The most commonly used loss function for multi-class classiication tasks is categorical cross-entropy [50].
The DNN is then trained by computing the gradient w.r.t. the loss for each sample in the dataset D and updating
the model parameters θ accordingly.

2.2 DL Model Properties

In this work, we focus on two important and most commonly studied testing properties for DL models, i.e.,
robustness and fairness. Here, we provide a brief introduction and formal deinitions of them.

2.2.1 Robustness Property. Intuitively speaking, robustness is the degree to which a system can function correctly
in the presence of invalid inputs or stressful environmental conditions [60]. For a DL system, we often use

2The output is a probability vector and the predicted class label is argmax f L .

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 5

Fig. 4. An adversarial example (x ′ from x) to fool the DL
system to output a wrong label.

Fig. 5. An discriminatory sample pair (x ,x ′) (on race) make
the DL system output inconsistent results.

robustness to measure the resilience towards perturbations (e.g., adversarial noise). Mathematically, the global
robustness of a DL model is deined as follows.

Definition 1. Global Robustness. Given a DL model f : X → Y , model f is called (ϵ,δ)-globally-robust if

∀x ,x ′ ∈ X , | |x − x ′ | |p ≤ ϵ ⇒ || f (x) − f (x ′)| | ≤ δ , where ϵ and | | · | |p are the perturbation bound and the p-norm

for distance measurement respectively, while δ represents the model tolerance.

Global robustness is theoretically sound, and yet extremely challenging for testing or veriication [33]. To
mitigate the complexity, multiple attempts have been made to constrain the robustness into the local input space,
such as Local Robustness [29], CLEVER [77] and Lipschitz Constant [82]. These local versions of robustness are
not ideal either, i.e., shown to have their own limitations [31, 33]. For instance, CLEVER relies on the extreme
value theory, making it extremely costly to calculate (e.g., costs an hour for one seed). Nowadays, adversarial
robustness (i.e., accuracy against adversarial examples) is the most popular robustness evaluation method in
the machine learning security community due to its high eiciency and lexibility. The deinition of adversarial
example is as follows.

Definition 2. Adversarial Example. Given a DL model f : X → Y , a normal sample x ∈ X and its ground

truth output д(x), x ′ is an adversarial example of model f by adding a slight perturbation on x (| |x − x ′ | |p ≤ ϵ)

that satisies the condition: f (x ′) , д(x), i.e., a wrong prediction.

Fig. 4 shows an adversarial example x ′ crafted by the most representative Projected Gradient Descent (PGD)
attack [48] (sampled from the CIFAR-10 dataset [37]), which fools the DL system to output a wrong label ‘ship’
while it is still an ‘automobile’ in human eyes by adding small perturbations. However, x and x ′ are totally
diferent in the perspective of the model, thus it usually gives a wrong answer with high conidence. Naturally, a
robust model should give consistent results for the neighbours of normal examples.

2.2.2 Fairness Property. Fairness is another desirable property that introduces great social impacts and has
gained increasing interests recently. However, there still lacks commonly agreed deinition of fairness. In this
work, we focus on individual fairness/discrimination, which has been mostly studied in the fairness testing
literature [87, 89]. We irst consider tabular (structural) data that each input consists of a set of attributes. The
intuition is that, given two samples that only difer by certain protected (or sensitive) attributes (e.g., race, gender
and age), a fair DL model should output the same label. The deinition of individual discrimination is as follows.

Definition 3. Individual Discrimination. Let A be the set of protected attributes and Z be the set of non-

protected attributes. Given a DL model f : X → Y , x ∈ X is a discriminatory sample of model f if there exists

another sample x ′ ∈ X where x only difers from x ′ onA attributes (the remaining attributes keep same) that satisies

the condition: f (x) , f (x ′). Further, (x ,x ′) is called a discriminatory sample pair.

ACM Trans. Softw. Eng. Methodol.

6 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 6. A simplified view of CycleGAN architecture. GA→B and GB→A are the generators that map input from domain A

to target domain B and B to A respectively. DA and DB are the discriminators that distinguish whether the input is ‘real’.
The orange and blue solid circles represent the data in domain A and B respectively. The hat symbol indicates the data is
synthesized. Objective (2) and (3) will be optimized jointedly in the training process of CycleGAN.

Here, we use the Census Income dataset [36] as a running example for a better illustration. The task is to
predict whether the income of an adult is above 50,000$ based on their personal information. The dataset contains
more than 30K training samples with 13 attributes each. The following shows two samples x and x ′:

x : [4, 0, 6, 6, 0, 1, 2, 1, 1 (male), 0, 0, 40, 100] → x ′ : [4, 0, 6, 6, 0, 1, 2, 1, 0 (f emale), 0, 0, 40, 100]

Among the 13 attributes, there are multiple potential protected attributes, i.e., age, race, and gender. Here, we
assume the protected attribute is gender for simplicity, whose index in the feature vector is 8 (highlighted with
bold). There are only two diferent values for this attribute, i.e., 1 representing male and 0 representing female.
Given a DL model trained on the dataset, if changing male to female (denoted as x ′) changes the prediction by
the model, we say that x is a discriminatory sample for the model, and (x ,x ′) is a discriminatory sample pair.
Note that tabular data is now still the main study object for the fairness testing problem while image data is

much less explored. Rather than explicitly manipulating the discrete value for tabular data as above, the fairness
testing becomes much more challenging for the high-dimensional image domain, since manipulating the protected
attributes (e.g., race and gender) for images is not intuitive as they are implicit in the input feature space and
need to be handled in the semantic level. To address this problem, we adopt an image-to-image transformation
technology CycleGAN [90] to help transform images across the protected attributes while preserving other
information according to Def. 3. As shown in Fig. 6, CycleGAN provides a mechanism to transfer from domain A

to domain B and B to A respectively with two generative models, i.e., GA→B and GB→A. Similar to traditional
GAN [21], CycleGAN contains two discriminators DA and DB to distinguish whether the input is ‘real’, i.e.,
generated by the generative model or from the original dataset in the corresponding domain. To ensure that the
output of generator GA→B (i.e., GA→B (a)) is in the data distribution of the target domain B, the consistency loss
is introduced to make the synthesized inputs more realistic. Thus, the total loss consists of three parts, the loss
of generators, the loss of discriminators and the cycle consistency loss, and the four models will be optimized
jointedly during the training process.
Fig. 5 shows a discriminatory sample pair (x ,x ′) generated by manipulating the person’s race (from domain

‘Caucasian’ to ‘African’) in a natural way, which makes the model output inconsistent predictions. There are three
key factors inluencing the generation results. The irst is the protected attribute to cross. Attributes such as gender
can be hard to be transformed well since the related features are complex (often entangled). The second is the
data in two domains used for training GANs. We use a large-scale high-quality dataset (BUPT-Transferface [71])
on which is costly to train models (more than one day with a GTX 1080 Ti), while adopting other small datasets

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 7

inevitably leads to poor transformation performance due to that the features can not be fully extracted (i.e.,
underitting condition). The third can be the training setting, and we adopt the recommended coniguration
in [90] to achieve balanced transformation results.

2.3 Deep Learning Testing

Deep Learning testing (DL testing) refers to activities designed to reveal the diferences between existing and
required behaviors of a DL system w.r.t. diferent kinds of model properties [86]. In the following, we briely
introduce representative testing methods for the two properties and provide pointers for more details.

2.3.1 Robustness Testing. Most existing robustness testing works are based on neuron coverage [55] or its
variants [45], aiming to generate test cases to achieve a higher neuron coverage. Simply speaking, a neuron
ne is covered if there exists at least one test case x where ϕ(x ,ne) is larger than a threshold and thus has been
activated. DeepXplore [55] is the irst testing work for DL, which proposes the irst testing metric, i.e., neuron
coverage, and a diferential testing framework to generate test cases to improve the neuron coverage. DLFuzz [25]
and DeepHunter [81] improve DeepXplore under the guidance of neuron coverage deined in [55] and multi-
granularity neuron coverage metrics deined in [45] respectively. DeepCT [44] proposes a novel coverage metric
that considers the combination of diferent neurons at each layer. ADAPT [40] adopts multiple adaptive strategies
to generate test cases that could signiicantly improve the neuron coverage metrics deined in [45], and achieves
state-of-the-art performance. Besides the above robustness testing methods, popular adversarial attacks in the
machine learning security community such as FGSM [22], PGD [48], JSMA [53] and C&W [10] are also used to
generate test cases in multiple works [17, 35, 75].

2.3.2 Fairness Testing. Compared to robustness, fairness testing is much less explored (still lacking speciically
designed testing metrics). In terms of test case generation, Themis [19] is the irst fairness testing method,
which explores the input domains for all attributes through random sampling and then checks whether the
generated samples are discriminatory. AEQUITAS [68] improves Themis by adopting a two-phase (global and
local) generation framework to systematically search the input space, which is guided by a distribution that
describes the probability of inding a discriminatory sample. ADF [87] improves the search strategy through
adversarial sampling and has been demonstrated to be more efective in generating discriminatory samples.
Despite the considerable progress, existing fairness testing works mainly focus on structural data, while complex
image data is rarely investigated. DeepFAIT [88] is a recent work that designs speciically for high-dimensional
image data, which adopts GAN [21] for crossing sensitive attributes and proposes several strategies to generate a
variety of unfair sample pairs.

2.4 Test Case Selection

Test case selection is crucial for improving the model properties with a limited retraining budget and reducing
the labeling efort [28, 46]. The key of the selection is to quantitatively measure the value of each test case. Deep-
Gini [17] was recently proposed to select the most informative test cases that are more likely to be misclassiied
by the model to guide the model retraining process, which is demonstrated to be more efective than neuron
coverage-based metrics on improving model robustness. MCP [61] is another uncertainty-based metric, which
selects the test cases close to the decision boundaries by the top-2 probabilities. Surprise Adequacy [35] metrics
including LSA (likelihood-based) and DSA (distance-based) are utilized to select test cases with larger surprise
values [7]. PRIMA [75] was proposed to select test cases via intelligent mutation analysis based on designed
mutation rules. A recent work DAT [28] makes an empirical study on the performance of several selection metrics
for model enhancement under diferent data distributions.

ACM Trans. Softw. Eng. Methodol.

8 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

2.5 Model Retraining

Model retraining is demonstrated to be an efective way to improve the quality of a model [3, 16, 35], by rectifying
the prediction results of a model on the test cases generated by testing algorithms (e.g., DeepXplore [55] and
DeepTest [66]). Retraining is usually done by adding the vulnerability-exposing test cases to the original training
dataset, while the training settings such as model structure and loss function keep the same. We make a brief
comparison between traditional software testing and DL testing in Fig. 3. Although many testing methods (e.g.,
random testing [52], symbolic execution [8], concolic testing [72] and fuzzing [20]) can be applied to identify
vulnerabilities or bugs for both the traditional software and the DL systems, the worklow difers after testing is
done, i.e., the quality of traditional software is enhanced by patching the found bugs, whereas DL systems are often
improved by utilizing the found buggy inputs in diferent ways, e.g., retraining [3, 16, 17] or repairing [42, 84].
Such improvement is guaranteed by patching bugs identiied through testing in traditional software (assuming
regression bugs are not frequent), i.e., the usefulness of a bug-revealing test for traditional software requires no
justiication. While for DL systems, the usefulness of a test case can only be judged by taking into account the
retraining step. That is, the contribution of each test case to the quality improvement through retraining can be
quite diferent.

2.6 Problem Definition

Unlike existing DL testing methods which focus on inding error cases, our goal is to design an end-to-end
quality-oriented testing framework to improve a certain model property via testing. We consider two important
properties in this paper, i.e., robustness and fairness. Naturally, two key problems need to be answered: 1) how
can we design testing metrics which are strongly correlated with model robustness and fairness? 2) how can we
automatically generate test cases favoring the proposed testing metrics?

3 THE QUOTE FRAMEWORK

In this section, we presentuoTe, a novel quality-oriented framework for testing and enhancing (with respect
to robustness and fairness) DL systems automatically. The overall framework of uoTe is shown in Fig. 1. We
assume that a requirement on the speciied testing property (introduced in Section 2.2) is provided in prior for
quality assurance purposes. Note that the requirement is likely application-speciic, i.e., diferent applications
may have diferent requirements. For instance, the user may require the retrained model should mitigate 80% of
adversarial examples (potentially from an oracle). We consider such empirical evaluation to be practical.

uoTe integrates the DL (re)training into the testing framework. It starts from the initial training dataset D0,
and trains an initial DNN f0 in the standard way. Then, it applies a fuzzing algorithm (see Section 3.5) which is
guided by our proposed testing metrics (see Section 3.3) to generate a new set of test cases Dt , for retraining the
model f0 to improve the speciied property P . The retraining step distinguishes uoTe from existing DL testing
work and it places a speciic requirement on how the test cases in Dt are generated and selected, i.e., the test
cases should be helpful in improving f0’s property P after retraining.uoTe iteratively generates the test suite
Dt and retrains the model fn at each iteration. Afterwards, it checks whether the property of the new model fn
is satisfactory using an independent quality validation dataset Dv , probably subject to an acceptable degrade
of the model’s accuracy on normal data. If the answer is yes, it terminates and outputs the enhanced model fn ;
otherwise, uoTe continues until the requirement is satisied or the testing budget is exhausted.

Notice that in this work, we consider mainly faults related to training data quality among all the possible DL
faults [30] and one possible ix scenario (i.e. model retraining by enriching training data rather than changing the
DL model architecture or hyper-parameters), thusuoTe is a complementary to testing works focus on ixing
fundamental issues such as network design or implementation. In the following, we illustrate each component of
uoTe in detail.

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 9

3.1 Empirical Evaluation for Model Properties

In this work, we focus on two important testing properties for DL systems, i.e., robustness and fairness. Although
many DL testing works in the literature claim a potential improvement on the DL model property by retraining
using the generated test suite, such a conjecture is often not rigorously examined. This is partially due to the
ambiguity associated with terms such as robustness. For instance, the evaluations of [55, 64, 66, 81] are based on
the empirical accuracy of the validation set [86].

Based on the deinitions in Section 2.2, we adopt the following empirical deinitions for robustness and fairness
in uoTe, which are commonly used for model quality evaluation in the machine learning community with
respect to the testing properties [9, 48, 73, 74, 85, 87].

Definition 4. Empirical Robustness (ER). Given a DL model f : X → Y and a validation set Dv =

{(xi ,yi)}
M
i=1, we deine its empirical robustness µ : (f ,Dv) → [0, 1] as γR =

1
M

∑M
i 1(f (xi) = yi), i.e., the ac-

curacy of f on Dv .

Definition 5. Empirical Fairness (EF). Given a DL model f : X → Y and a validation set Dv = {(xi ,x
′
i)}

M
i=1,

we deine its empirical fairness µ : (f ,Dv) → [0, 1] as γF =
1
M

∑M
i 1(f (xi) = f (x ′i)), i.e., the consistency (or

non-discrimination) of f on Dv .

Note that the selection of Dv is crucial for the practical evaluation of the model quality and it is still an open
research problem on how to form Dv . In practice, users often adopt diferent adversarial attacks (e.g., PGD for
robustness [48] and ADF for fairness [87]) to construct such a validation set using adversarial/discriminatory
samples. This empirical view is testing-friendly and facilitatesuoTe to eiciently compare the quality of models
before and after testing (retrained). Moreover, it is also practical, as it connects the evaluation with many existing
adversarial attacks and testing techniques.

3.2 A General View of QuoTe

Alg. 1 presents the high-level algorithmic design of uoTe for the worklow of DL testing on a speciic model
property P (e.g., R stands for Robustness and F for Fairness) based on Def. 4 and Def. 5. The initially trained
model f0 is given as an input to the algorithm and the testing and retraining iterations in uoTe are conducted
within the main loop (Line 2-6). The loop continues until the user-speciied empirical quality requirement r is
satisied (Line 2) or the computational budget is exceeded. uoTe aims to bridge the gap between DL testing and
retraining. Let Test (Line 3) denote a fuzzing algorithm (guided by certain metrics) to generate test cases to ind
defects on property P . The objective of quality-oriented testing is to improve the property P through testing.
Formally, given a deep learning model f , the goal of uoTe at each iteration is to improve the following:

EP
(

min
θ

1

|D |

|D |
∑

i=1

L(xi ,yi)∈D (f
L(xi),yi),Dv

)

, (2)

where EP represents ER (Def. 4) when the target model property P is Robustness . Intuitively, the testing metric
should be designed in such a way that after retraining with the generated test cases, objective (2) is improved.
This objective directly links the testing metric to the model property.

In the remaining section, we realize the testing method in Line 3 by answering two questions: 1) How should
we design test metrics that are strongly correlated with the model properties? and 2) How can we select and
generate valuable test cases guided by the proposed metrics for model enhancement?

3.3 Property-correlated Testing Metrics

Our irst goal is to design testing metrics that are strongly correlated with model properties for testing. Let’s
begin with the robustness property.

ACM Trans. Softw. Eng. Methodol.

10 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Algorithm 1 uoTe (f0,D,Dv , r)

1: Initial model f = f0
2: while EP(f ,Dv) < r and not exceed the computational budget do
3: Dt ← Test(f ,D)

4: D ← D ∪ Dt

5: Update f by further training the model with Dt

6: end while

7: return Enhanced model f on property P

3.3.1 Robustness-oriented Metrics. We note that there have been some eforts to modify the standard training
procedure (Obj. 2) in order to obtain a more robust model. For instance, the most efective and successful approach
so far is robust training [48, 73], which incorporates an adversary in the training process so that the robustness
of the trained model can be enhanced by minimizing the loss of adversarial examples iteratively (also known as
the Min-Max optimization problem):

min
θ

1

N

N
∑

i=1

max
| |x ′i−xi | |p ≤ϵ

L(f L(x ′i),yi). (3)

At the heart of robust training is to identify a strong (ideally worst-case) adversarial example x ′ around3 a
normal example x and train the model so that the loss on the strong adversarial example can be minimized. This
inspires us to consider DL testing analogously in terms of how we generate test cases (around a normal example)
and retrain the model with the test cases to improve the model robustness. The key implication is that when we
design robustness-oriented testing metrics to guide testing, we should evaluate the usefulness of a test case from
a loss-oriented perspective.
Let x0 be the seed for testing. We assume that a test case x t is generated in the neighborhood ϵ−ball around

x0, i.e., {x | | |x − x0 | |p ≤ ϵ} using a given testing method. The main intuition is that a test case which induces a
higher loss is a stronger adversarial example, which is consequently more helpful in training robust models [48]
and relevant to improving the model robustness through retraining. Based on this intuition, we propose two
levels of testing metrics on top of the loss as follows.

1) Zero-Order Loss (ZOL). The irst metric directly calculates the loss of a test case with respect to the DL
model. Formally, given a test case x t (generated from seed x), a DL model f , the loss of x t on f is deined as:

ZOL(x t , f L) = L(f L(x t),y), (4)

wherey is the ground-truth label of x , andL is the categorical cross-entropy loss function. For test cases generated
from the same seed, we prefer test cases with higher losses, which are supposed to be more helpful in improving
the model robustness via retraining.

2) First-Order Loss (FOL). The loss of the generated test cases can be quite diferent for diferent seeds and
models It is generally easier to generate test cases with high losses around seeds, which unfortunately do not
generalize well. Thus, ZOL is unable to measure the value of the test cases in a uniied way. To address this
problem, we propose a more ine-grained metric that could help us measure to what degree we have achieved the
highest loss in the seed’s neighborhood. The intuition is that, given a seed input, the loss around it often irst
increases and eventually converges if we follow the gradient direction to modify the seed [48]. Thus, a criterion
that measures how well the loss converges can serve as the testing metric. A test case with better convergence

3A ϵ−ball deined according to a certain Lp norm.

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 11

quality corresponds to a higher loss than its neighbors. Next, we introduce First-Order Stationary Condition
(FOSC) to provide a measurement on the loss convergence quality of the generated test cases.

Formally, given a seed input x0, its neighborhood area X = {x | | |x − x0 | |p ≤ ϵ}, and a test case x t , the FOSC
value of x t is calculated as:

c(x t) = maxx ∈X ⟨x − x
t
,∇xh(θ ,x

t)⟩, (5)

where h(θ ,x t) = L(f L(x t),y). In [73], it is proved that the above problem has the following closed form solution
if we take∞−norm for X:

c(x t) = ϵ | |∇xh(θ ,x
t)| |1 − ⟨x

t − x0,∇xh(θ ,x
t)⟩. (6)

However, many existing DL testing works generate test cases from the L2 norm neighborhood, making the
above closed-form solution for L∞ unavailable. We thus consider solving the formulation in Eq. 5 with L2 norm
and obtain the solution as follows:

c(x t) = ϵ | |∇xh(θ ,x
t)| |2. (7)

Proof. According to CauchyśSchwarz inequality:

|⟨x − x t ,∇xh(θ ,x
t)⟩|2 ≤

⟨x − x t ,x − x t ⟩ · ⟨∇xh(θ ,x
t),∇xh(θ ,x

t)⟩ ≤

ϵ2 · (| |∇xh(θ ,x
t)| |2)

2
.

Since there must exist x ∈ X such that x − x t and ∇xh(θ ,x
t) are in the same direction, we thus have:

max |⟨x − x t ,∇xh(θ ,x
t)⟩|2 = ϵ2 · (| |∇xh(θ ,x

t)| |2)
2
.

Finally, we have:

c(x t) = max |⟨x − x t ,∇xh(θ ,x
t)⟩| = ϵ · | |∇xh(θ ,x

t)| |2.

□

Note that FOSC (or FOL) (in both Eq. 6 and Eq. 7) can be calculated eiciently, whose main cost is a one-time
gradient computation (easy to obtain with all the DL frameworks). The FOL value represents the irst-order loss
of a given test case. The loss of a test case converges and achieves the highest value if its FOL value equals zero.
Thus, a smaller FOL value means a better convergence quality and a higher loss relatively.

3.3.2 Fairness-oriented Metrics. Diferent from the robustness-oriented metrics, we need to evaluate the use-
fulness of a discriminatory sample pair using joint loss for the fairness property. Intuitively, a discriminatory
sample pair which induces a higher joint loss is more helpful in reducing the discrimination.
Let x0 be the seed for testing. We assume that a test case (i.e., discriminatory sample) x t1 is generated around

x0 and (x
t
1 ,x

t
2) is an identiied discriminatory sample pair (see Def. 3) through fairness testing techniques like

[19, 68]. We adapt the ZOL metric for joint loss of fairness property as follows:

ZOL((x t1 ,x
t
2), f) = −

C
∑

i

f Li (x
t
1) · log f

L
i (x

t
2), (8)

where f Li (x) is the probability output of label i andC is the total number of classes. This objective aims to impose
the model to output similar predictions for (x t1 ,x

t
2) for reducing the individual discrimination towards to sample

x t1 . Based on Eq. 8, we could obtain the corresponding FOL metric for the fairness property according to Eq. 6
and Eq. 7 straightforwardly.

ACM Trans. Softw. Eng. Methodol.

12 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Algorithm 2 KM-ST(Dt ,k,n)

1: Let Ds = ∅

2: Let FOLmax and FOLmin be the maximum and minimum FOL values of Dt respectively
3: Equally divide range [FOLmin , FOLmax] into k sections KR = [R1,R2, · · · ,Rk]

4: for each range R ∈ KR do

5: Randomly select n/k samples Dr from Dt whose FOL values are in R

6: Ds = Ds ∪ Dr

7: end for

8: return Ds

3.3.3 Comparison with Neuron Coverage Metrics. Compared to existing neuron coverage metrics [45, 55], our
proposed loss-based metrics have the following main advantages. First, both our ZOL and FOL testing metrics
are strongly correlated to the adversarial strength of the generated test cases regarding on the certain model
property. Thus, our metrics can serve as strong indicators of the degree of satisfying the property after retraining.
Second, our metrics are also able to measure the value of each test case in retraining, which further helps us
select valuable ones from a large number of test cases to reduce the heavy retraining cost. Moreover, our metrics
are structure-unaware, which work without the need to keep a heavy map of neuron activations as in the case of
existing coverage metrics, and thus, are lightweight and easy to calculate.

3.4 FOL-Guided Test Case Selection

In the following, we show the usefulness of the proposed metrics through an important application, i.e., test case
selection from a massive amount of generated test cases. Note that by default, we use the FOL metric hereafter
due to the limitation of ZOL as described above.
Test case selection is crucial for improving the model with respect to the property with a limited retraining

budget. The key of the selection is to quantitatively measure the value of each test case. So far, this problem
remains an open challenge. Prior work like DeepGini [17] has been proposed to calculate a Gini index of a test
case x from the model’s output probability distribution:

DeepGini(x , f) = 1 −

C
∑

i

f Li (x
t)2. (9)

DeepGini’s intuition is to favor those test cases with the most uncertainty (i.e., a more lat probability distribu-
tion) under the current model’s prediction. The larger the DeepGini value is, the higher the uncertainty.
Compared to DeepGini, our FOL metric contains ine-grained information at the loss level and is strongly

correlated with certain model testing properties. Given a set of test cases Dt , we introduce the following two test
case selection strategies based on the FOL distribution to select a subset Ds ⊂ Dt for retraining the model. Let
Dt = [x1,x2, · · · ,xM] be a ranked list in descending order according to the FOL value, i.e.,∀i ∈ [1,M − 1], we
have FOL(xi) ≥ FOL(xi+1).

1) K-Multisection Strategy (KM-ST). The idea of KM-ST is to uniformly sample the FOL space of Dt , and
Alg. 2 shows the details. Assume we need to select n test cases from Dt . We irst equally divide the range of FOL
into k sections (KR) at line 3. Then for each range r ∈ KR, we randomly select the same number of test cases
at line 5. We also consider the pure random strategy (RAND) without the range segmentation for comparison.
An extreme case is that the FOL values of Dt follow a constant distribution, and there would be no diference
between the two strategies from the loss convergence perspective.

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 13

Algorithm 3 FOL-Fuzz(f , seeds_list , ϵ, lr ,k, λ, iters)

1: Let f uzz_result = ∅
2: for seed ∈ seeds_list do
3: Maintain two lists s_list1 = s_list2 = {seed}
4: Obtain FOLmax = FOLmin = FOL(seed)

5: while s_list1 is not empty do

6: Obtain a seed x = s_list1.pop()
7: Let x ′ = x

8: for iter = 0 to iters do
9: Set optimization objective ObjA as Eq. 10

10: Obtain дrads = ∇ObjA
∇x ′

11: Obtain perb = processinд(дrads, lr)
12: Obtain x ′ = x ′ + perb

13: Obtain dis = Dist(x ,x ′)

14: if FOL(x ′) ≥ FOLmax and dis ≤ ϵ then

15: FOLmax = FOL(x ′)

16: s_list1.append(x
′)

17: if satisfactory(x ′) then
18: f uzz_result .append(x ′)
19: end if

20: end if

21: end for

22: end while

23: while s_list2 is not empty do

24: Obtain a seed x = s_list2.pop()
25: Let x ′ = x

26: for iter = 0 to iters do
27: Set ObjA as Eq. 10 (opposite to line 9)
28: Repeat line 10 to 13
29: if FOL(x ′) ≤ FOLmin and dis ≤ ϵ then

30: FOLmin = FOL(x ′)

31: s_list2.append(x
′)

32: Repeat line 17 to 19
33: end if

34: end for

35: end while

36: end for

37: return f uzz_result

2) Bi-End Strategy (BE-ST). The idea of BE-ST is to form Ds by equally combining test cases with small and
large FOL values. This strategy mixes test cases of strong and weak adversarial strength in the context of the
model loss landscape, which is inspired by a recent work on improving standard robust training [34]. Given a
ranked Dt , we hope to take a number of test cases from the two ends of the list to compose Ds .

ACM Trans. Softw. Eng. Methodol.

14 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Algorithm 4 DiscriminationCheck(x)

1: for each element t in x do

2: if t ∈ IA then ▷ IA is the valuation domain of the protected attributes.
3: for v in IA\{t} do
4: Obtain x ′ by replacing t in x with v
5: if f (x) , f (x ′) then

6: return True

7: end if

8: end for

9: end if

10: end for

11: return False

3.5 FOL-Guided Fuzzing

Next, we introduce a simple yet eicient fuzzing strategy to generate test cases based on FOL. Note that since
we have no prior knowledge of the FOL distribution, we are not able to design a fuzzing strategy for KM-ST.
Instead, we design a fuzzing algorithm for the BE-ST strategy. The idea is to greedily search for test cases in two
directions, i.e., with both small and large FOL values.

Alg. 3 presents the details. The inputs include the model f , the list of seeds to fuzz seeds_list , the perturbation
bound ϵ , the learning rate lr , the number of labels for optimization k , the weight λ on how much we favor FOL
during fuzzing and lastly the number of iterations iters for one seed. For each seed in the seeds_list , we maintain
two lists of seeds s_list1 and s_list2 at line 3 for two directions. After obtaining a seed x from s_list1 (line 5),
we iteratively add perturbation on it from line 7 to line 21 in the increasing direction guided by FOL (opposite
direction for s_list2 at line 24 to 34). We set the following generic objective ObjA for optimization (line 9, 27):

ObjA = objP ± λ · FOL(x
′) (10)

For the robustness property, we set objP as an adversarial objective as objP =
∑k

i=2 f
L
ci
(x ′) − f Lc1 (x

′), where

ci is the label with the ith largest softmax probability of f L(x) (e.g., c1 is the maximum), f Lci (x) is the softmax
output of label ci . The idea is to guide the perturbation towards changing the original label (i.e., generating an
adversarial example) whilst increasing or decreasing the FOL value conditionally. While for fairness, there are
two strategies for inding discriminatory sample pairs. AEQUITAS [68] uses random perturbations, while ADF
[87] applies adversarial perturbations. Our empirical evaluation shows that the latter strategy is more efective in
inding discrimination samples (more than 5× on average). Thus, we follow [87] to set objP = | f Lc1 (x

′) − f Lc1 (x)|

as an adversarial objective similarly for inding the target sample x t1 , and then checking whether there exists a
discriminatory sample pair (x t1 ,x

t
2) following Alg. 4.

We then obtain the gradient of the inal objective (line 9) and calculate the perturbation based on the gradient by
multiplying the learning rate lr and a randomized coeicient to reduce the chance to have duplicate perturbations
(line 11). We run two kinds of checks to achieve the BE-ST strategy respectively (line 14 and 29). If the FOL value
of the new sample after perturbation (x ′) is either larger (line 14) or smaller (line 29) than the threshold, we add
x ′ to the seed list (line 16 and 31). Furthermore, we add x ′ to the fuzzing result if it satisies the check (line 17
and 32). For robustness, the check is satisied if x ′ has a diferent label with the original seed x , while for fairness,
the check is satisied if x ′ is a discriminatory sample (i.e., there exists another x ′′ such that (x ′,x ′′) makes a
discriminatory sample pair according to Def. 3). Note that compared to coverage-guided fuzzing algorithms
which need to proile and update neuron coverage information [40, 81], our FOL-guided fuzzing algorithm is
much more lightweight, i.e., whose main cost is to calculate a gradient at each step.

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 15

Hyper-parameters. Our algorithm (Alg. 3) involves 5 hyper-parameters totally, ϵ, lr ,k, λ and iters . Assigning
appropriate values to them is important for the fuzzing process. The irst two hyper-parameters ϵ and lr inluence
the adding perturbation perb (line 11) directly. For instance, with small ϵ and lr values often fails to make notable
perturbations on the test cases, while with large values makes the generated inputs far away from the oracle.
We set ϵ to 0.5 (after Dist calculation) and lr to 0.1 respectively following ADAPT [40]. Hyper-parameter k is
the number of labels in objP which controls the diversity of target labels. For example, if k is 2, the target label
during optimization will be always the label with the second largest score. We set k to 5 following existing testing
works, i.e., DeepXplore [55] and DLFuzz [25]. Hyper-parameter iters is the maximum number of iterations for
one seed to ind the satisfying input, we set it to 3 to perform multiple times within the testing budget. Lastly,
hyper-parameter λ in Eq. 10 controls how much the FOL metric is favoured during the joint optimization process.
Intuitively, if λ is very small (e.g, 0.1), the diversity of the generated test cases will be limited due to the lack
of search. We set λ to 1.0 to better balance the guidance of the testing metric and the adversarial objective. In
experiments, we manually ix the values as above and leave further exploration on tuning these hyper-parameters
for boosting the performance as future work.

4 EXPERIMENTAL EVALUATION

In the following, we evaluate uoTe through multiple experiments.

4.1 Experiment Setings

4.1.1 Properties, Datasets andModels. In this work, we focus on twomain properties for DL testing, i.e., robustness
and fairness. In total, we adopt 8 benchmark datasets widely used in the literature for the evaluation, including
5 image datasets (4 for robustness and 1 for fairness) and 3 tabular datasets (all for fairness). We irst briely
introduce the ive image datasets. MNIST [39] is a handwritten digits (from 0 to 9) dataset, consisting of 70,000
images with size 28 × 28 × 1. FASHION [80] is a fashion products (e.g., coat, shirt) dataset, consisting of 70,000
images with size 28× 28× 1. SVHN [51] is a house number dataset that contains 99,289 natural scene images with
size 32 × 32 × 3. CIFAR-10 [37] has 60,000 images with size 32 × 32 × 3. FairFace [32] is a collection of 108,501
race-balanced face images with size 224×224×3. We train an age classiier and take it as a challenging benchmark
for the fairness research due to the high complexity. For the three tabular datasets, Census Income [36] has
been introduced in Section 2.2.2. German Credit [14] consists of 600 items with 20 attributes, aiming to give an
assessment of individual’s credit based on personal records. Bank Marketing [49] contains 45,211 items with 16
attributes, which is used to predict whether the client would subscribe to a term deposit.
For each image dataset, we use two diferent widely used DNN model structures for evaluation. We only

consider one standard model structure for tabular data with low input dimensions. The details of all the datasets
and models are summarized in Table 1. Note that ‘ConvNet-1/2’ are mainly composed of multiple convolutional
layers and ‘MLP-6’ is composed of fully-connected layers only.

4.1.2 Test Case Generation. To generate test cases for model quality evaluation in practical, we adopt 2 adversarial
attacks [22, 48] and 3 testing approaches [25, 40, 55] for the robustness experiments and 3 testing approaches
for fairness [68, 87, 88]. We summarize all the conigurations in Table 2. Speciically, for DeepXplore [55], two
extra models are used for diferential testing, which are trained independently with the same structure but
under diferent training settings, i.e., diferent optimizers (SGD and Adam) and training epochs (0.5× and 2×).
DeepFAIT [88] is a systematic fairness testing framework proposed recently for the image domain. It utilizes
GANs to realize semantic transformations across diferent protected attributes, and designs three strategies (i.e.,
Random Generation, Gaussian Injection and Gradient-based Generation) to help generate a variety of unfair
sample pairs. Following the original paper’s coniguration, we use BUPT-Transferface [71] as an auxiliary dataset

ACM Trans. Softw. Eng. Methodol.

16 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Table 1. Testing properties, datasets and models.

Testing Property Dataset Domain Model #Layers #Parameters Accuracy

Robustness

MNIST [39] Image
LeNet-5 7 107.8K 99.02%

LeNet-1 5 7.2K 98.59%

FASHION [80] Image
LeNet-5 7 107.8K 90.70%

ConvNet-1 8 594.9K 91.83%

SVHN [51] Image
LeNet-5 7 136.9K 88.84%

ResNet-20 20 274.4K 92.30%

CIFAR-10 [37] Image
ConvNet-2 12 2.91M 84.84%

ResNet-20 20 274.4K 90.39%

Fairness

Census Income [36] MLP-6 6 3.7K 88.15%

German Credit [14] Tabular MLP-6 6 4.1K 100.0%

Bank Marketing [49] MLP-6 6 3.9K 92.26%

FairFace [32] Image
ResNet-50 50 23.53M 92.36%

VGG-16 16 134.30M 84.65%

to train the semantic transformer on race, and then generate mixed test cases through diferent generation
strategies.

4.1.3 Test Case Selection. We adopt a recent work DeepGini [17] (GINI) and the pure random strategy (RAND)
as the baselines of the test case selection. Recall that DeepGini calculates a Gini-index (Eq. 9) for each test case
according to the output probability distribution of the model (details in Section 3.4). While for RAND, each test
case has the same probability of being chosen from the data pool.

4.1.4 Empirical Evaluation. We adopt Def. 4 and Def. 5 to empirically evaluate the robustness and fairness of a
model before and after testing (and retraining) respectively. For robustness, we compose the quality validation set
Dv for each dataset by combining the adversarial examples generated by FGSM [22] and PGD [48]. For fairness,
we compose the validation set Dv by combining the generated discriminatory sample pairs using AEQUITAS [68]
and ADF [87] for tabular data, while using DeepFAIT [88] for image data.

4.2 Research uestions

RQ1: What is the correlation between our FOL metric and model testing properties?

For each dataset/model pair (e.g., MNIST/LeNet-5), we irst prepare three models with diferent robustness
or fairness levels. The irst model (Model 1) is the original trained model. The second model (Model 2) is an
enhanced model which is retrained by augmenting 5% of the generated test cases Dt and is more robust/fairer
than Model 1 through empirical evaluation. The third model (Model 3) is an enhanced model which is retrained
by augmenting 10% of the generated test cases and is considered to be the most robust/fair.

Robustness property. For each model, we conduct attacks to obtain the same number of test cases (i.e.,
adversarial examples) which are independent to the set used for model retraining. We then calculate and show
the FOL distribution of the generated adversarial examples for diferent models in Fig. 7. We observe that there
is a strong correlation between the FOL distribution of these adversarial examples and the model robustness.
Speciically, the adversarial examples of a more robust model have smaller FOL values. This is clearly evidenced
by Fig. 7, i.e., for every dataset/model pair, the probability density is intensively distributed around zero for
Model 3 (the most robust model) while steadily expanding to larger FOL values for Model 2 and Model 1 (with

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 17

Table 2. Test case generation details.

Testing Method Parameter MNIST FASHION SVHN CIFAR-10

FGSM [22] Step Size 0.3 0.3 0.03 0.01

PGD [48]
Steps 10 10 10 10

Step Size 0.3/6 0.3/6 0.03/6 0.01/6

DeepXplore [55] Relu Threshold 0.5 0.5 0.5 0.5

DLFuzz [25] Distance Bound 0.5 0.5 0.5 0.5

ADAPT [40] Fuzzing Time Per Seed 10s 10s 10s 20s

Testing Method Parameter Census Credit Bank

AEQUITAS [68] Max Iteration 10 10 10

ADF [87] G/L Step Size 1.0/1.0 1.0/1.0 1.0/1.0

Protected Attribute Age, Race, Gender Age, Gender Age

Testing Method Parameter FairFace

Max Iteration 10

DeepFAIT [88] G/L Step Size 5.0/1.0

Protected Attribute Race

Fig. 7. The FOL distribution of adversarial examples for models with diferent robustness levels.

Model 1 larger than Model 2). The underlying reason is that a more robust model in general has a more lat loss
distribution and thus a smaller FOL value (which is calculated based on the loss gradient).
Table 3 further validates our observation. Speciically, for each dataset/model pair, six models with diferent

robustness (or fairness) levels are used for calculating the Pearson correlation coeicients [4] with the FOL values.
The absolute coeicient value is larger than 0.8 (a high correlation) for 15 times out of 16, and 10 times for the
value is larger than 0.9 (a very high correlation). Moreover, the FOL distribution is also inluenced by model
structures and datasets to a large extent generally. For instance, the FOL range of CIFAR-10/ConvNet-2 is more

ACM Trans. Softw. Eng. Methodol.

18 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 8. The FOL distribution of discriminatory sample pairs for models with diferent fairness levels.

Fig. 9. The FOL distribution of adversarial examples from
FGSM and PGD for the CIFAR-10 model.

Fig. 10. The FOL distribution of discrimination sample
pairs from ADF and AEQUITAS for the Credit model.

narrow than that of CIFAR-10/ResNet-20. While comparing across datasets, FASHION has the widest FOL value
range (multiple times larger than others), showing a much more lat FOL distribution.
In addition, we ind that adversarial examples crafted by stronger attacks have smaller FOL values. Fig. 9

shows the FOL distribution of adversarial examples from attacking the CIFAR-10 model with FGSM and PGD
respectively (see Fig. 14 for other models in Appendix A). We observe that adversarial examples from PGD
have signiicantly smaller FOL values than FGSM. The reason is that stronger attacks like PGD are generating
adversarial examples that have better loss convergence quality and induce relatively higher loss.

Fairness property. Similarly, we obtain the same number of discriminatory sample pairs for each model
with respect to certain protected attributes. Fig. 8 shows the FOL distribution of discriminatory sample pairs
for diferent models for tabular data (left 3 columns) and image data (right 1 column). The general observation
is consistent with that of the robustness property. Due to a much larger model capacity, the FairFace model’s
fairness converges more slowly (e.g., the diference between Model 1 and Model 2) compared to that of tabular
models. The absolute Pearson coeicient values between FOL and fairness as shown in Table 3 are all larger than
0.8. Therefore, there is still a strong correlation between the FOL distribution of discriminatory sample pairs and
the model fairness, i.e., the discriminatory sample pairs of a fairer model have smaller FOL values.

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 19

Table 3. Pearson correlation coeficients [4] (absolute value in range [0,1]) between the FOL metric and the empirical testing
properties on diferent models, and a larger value stands for a higher correlation [2, 59].

Dataset Model FOL/Robustness Coef. Abs.

MNIST
LeNet-5 0.8243

LeNet-1 0.8809

FASHION
LeNet-5 0.8908

ConvNet-1 0.9087

SVHN
LeNet-5 0.9803

ResNet-20 0.7869

CIFAR-10
ConvNet-2 0.9939

ResNet-20 0.9912

Dataset Model Proc. Attr. FOL/Fairness Coef. Abs.

Census MLP-6 Age 0.9927

Census MLP-6 Race 0.9677

Census MLP-6 Gender 0.9951

Credit MLP-6 Age 0.9756

Credit MLP-6 Gender 0.9898

Bank MLP-6 Age 0.8518

FairFace
ResNet-20 Race 0.9825

VGG-16 Race 0.8194

Moreover, for the two testing algorithms used for generating discriminatory sample pairs, i.e., ADF and
AEQUITAS, there is a clear diference between their FOL distribution as shown in Fig. 10 (see Fig. 15 for other
attributes in Appendix A). Speciically, ADF generates more discriminatory sample pairs with low FOL values,
while AEQUITAS has a relatively lat FOL distribution, which indicates that ADF might be a stronger fairness
attack than AEQUITAS.

We thus have the following answer to RQ1:

Answer to RQ1: FOL is strongly correlated with model robustness/fairness, and a more robust/fairer
model has smaller FOL values for adversarial examples/discriminatory sample pairs.

RQ2: How efective is our proposed FOL metric for test case selection?

To answer the question, we irst generate a large set of test cases using diferent methods, and then adopt
diferent test case selection strategies (i.e., BE-ST, KM-ST, RAND and GINI) to select a subset of test cases with
the same size to retrain the model. A selection strategy is considered to be more efective if the retrained model
with the selected test cases shows better robustness or fairness. For adversarial attacks, we adopt FGSM (weak)
and PGD (strong) attacks to generate a combined set of test cases (ATTACK). For testing algorithms including
DeepXplore, DLFuzz, ADAPT, AEQUITAS, ADF and DeepFAIT, we generate a set of test cases for each of them.
The parameters used are consistent with Table 2. Then, we apply the four strategies respectively to select p%
(ranging from 1% to 10%) test cases from each test set, then we obtain a retrained model by continuing learning
with the augmented data and evaluate its empirical robustness or fairness. To reduce the randomness, we repeat
the process 5 times and report the average and deviation results (in the form of a ± b).

Robustness property. Fig. 11a and Fig. 11b show the robustness evaluation results with diferent percentages
of test cases with diferent model structures. We observe that for all the selection strategies, the retrained model
obtained improved robustness to some extent, and the model robustness steadily improves as we augment more
test cases (from 1% to 10%) for retraining. By traversing the subigures, we could ind that FOL-guided strategies
(both BE-ST and KM-ST) have signiicantly better performance than Random and DeepGini, with KM-ST wins
on 20 out of the 32 cases (dataset/model pairs) and BE-ST wins on 9 out of 32. Speciically, our method achieves
8.27%, 14.11%, 14.79% and 10.83% more robustness improvement than Random on average for the four diferent
sets of test cases, and 28.14%, 37.63%, 44.47% and 34.48% more improvement than DeepGini. The reason behind is
that the FOL-based strategy is able to select test cases which have higher and more diverse loss convergence than
others, which are better correlated with model robustness. With a close look, we also ind that the model property

ACM Trans. Softw. Eng. Methodol.

20 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 11a. Robustness improvement with diferent selection strategies (with confidence interval of 95% significance level).

(robustness) is indeed inluenced by the model structure. For instance, ConvNet-2 on the CIFAR-10 dataset shows
much lower robustness performance compared to ResNet-20 in Fig. 11a. A popular explanation in the machine
learning security community is that the large model is easier to be fooled due to the underit condition (training
stage). Nevertheless, all the models still get improved through data enriching and retraining. Note that our
evaluation here is not iterative, but is done by retraining the model once (not from scratch). We conduct an
iterative retraining experiment on the MNIST/CIFAR-10 datasets to showcase the trend of improvements (see
Fig.16 in Appendix A). As expected, the model robustness is steadily improved and the improvement decays
along the iterations. The whole retraining process will be early terminated if the quality requirement is met. In
the meanwhile, we observe that the retrained models keep the utility as well, i.e., maintaining high accuracy on
the clean test set as shown in Table 4.
It is noteworthy that the Random strategy (orange line) performs surprisingly well in some cases, which is

close to KM-ST (e.g., ATTACK for FASHION). As Alg. 2 shows, KM-ST samples test cases from a list of ranges

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 21

Fig. 11b. Robustness improvement with diferent selection strategies (with confidence interval of 95% significance level).

Table 4. Clean test accuracy of models before and ater retraining with 10% of generated test cases (with confidence interval
of 95% significance level).

Dataset Model Original Retrained

MNIST
LeNet-5 99.02% 98.99±0.07%

LeNet-1 98.59% 98.53±0.03%

FASHION
LeNet-5 90.70% 90.51±0.20%

ConvNet-1 91.83% 91.91±0.35%

SVHN
LeNet-5 88.84% 88.58±0.54%

ResNet-20 92.30% 93.81±0.68%

CIFAR-10
ConvNet-2 84.84% 85.23±0.19%

ResNet-20 90.39% 89.46±0.22%

Dataset Model Proc. Attr. Original Retrained

Census MLP-6 Age 88.15% 88.00±0.08%

Census MLP-6 Race 88.15% 88.10±0.14%

Census MLP-6 Gender 88.15% 88.02±0.12%

Credit MLP-6 Age 100.0% 99.50±0.60%

Credit MLP-6 Gender 100.0% 98.83±1.25%

Bank MLP-6 Age 92.26% 91.97±0.38%

FairFace
ResNet-20 Race 92.36% 92.64±0.56%

VGG-16 Race 84.65% 85.33±1.15%

based on the FOL distribution. Considering the extreme case that FOL is a constant distribution, and there will
be no diference between these two strategies. This is further validated by Fig. 7 where the FOL distribution of
FASHION dataset is much more lat than others (with lower kernel densities). Nevertheless, KM-ST still holds a
clear advantage over Random overall (by up to 42.54%).

Moreover, we also observe that diferent testing algorithms obtain diferent robustness improvements. ADAPT
and DLFuzz have the highest (47.43% on average) and lowest (37.55% on average) robustness improvement
respectively while DeepXplore is in the middle (45.94% on average). Adversarial attacks often achieve higher
robustness improvement than all three neuron coverage-guided fuzzing algorithms for simpler datasets such
as MNIST, Fashion and SVHN. This casts a shadow on the usefulness of the test cases (adversarial examples)
generated by neuron-coverage-guided fuzzing algorithms in improving model robustness and is consistent with
recent empirical studies [13, 26, 43].
We further conduct experiments to evaluate and compare how robust the retrained models are when using

adversarial examples generated in diferent ways. We use test cases generated by diferent DL testing algorithms
(the parameters are consistent with Table 2) to evaluate the resilience of models to unseen threats. We summarize
the results in Table 5. We observe that the robustness drops noticeably (especially so for CIFAR-10), i.e., 20.45%,
28.34% and 22.95% for DeepXplore, DLFuzz, and ADAPT each on average compared to the results in Fig. 11a.
Table 6 shows the results under one recent adversarial attack [12] where the robustness also drops to some
extent. Intuitively, using adversarial examples from single generation method may be insuicient to face diverse
and complex threats in the real-world application scenario. Nevertheless, our test case selection strategies still
outperform Random and DeepGini in most cases, and BE-ST shows the best generalization ability to unseen

ACM Trans. Softw. Eng. Methodol.

22 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Table 5. Robustness performance of models (retrained using adversarial examples from atack algorithms) against test cases
generated by DL testing algorithms (with confidence interval of 95% significance level).

Dataset Model
DeepXplore DLFuzz ADAPT

BE-ST KM-ST Random DeepGini BE-ST KM-ST Random DeepGini BE-ST KM-ST Random DeepGini

MNIST
LeNet-5 86.52±2.01% 83.36±1.58% 80.34±1.49% 71.10±1.99% 82.59±2.98% 79.64±4.25% 76.26±5.68% 69.21±1.46% 76.57±2.78% 74.83±0.72% 70.13±2.23% 62.30±1.91%

LeNet-1 73.49±6.08% 67.46±3.54% 61.77±6.91% 55.52±4.23% 73.35±5.89% 67.28±3.60% 61.82±6.84% 55.36±4.18% 72.81±6.07% 67.30±3.97% 61.71±6.88% 55.29±4.21%

FASHION
LeNet-5 61.62±3.79% 65.10±3.33% 64.83±1.47% 51.86±1.06% 56.45±3.71% 58.69±3.69% 59.53±1.98% 41.16±2.59% 58.47±1.99% 60.24±2.72% 61.39±2.34% 43.73±1.17%

ConvNet-1 15.35±0.35% 15.22±0.98% 15.49±1.20% 17.41±1.27% 17.51±1.16% 18.64±1.51% 18.31±0.92% 18.48±1.14% 21.13±1.80% 21.17±1.64% 21.45±1.59% 22.88±1.91%

SVHN
LeNet-5 33.58±1.14% 33.30±1.32% 33.24±1.82% 23.91±0.43% 31.52±1.68% 31.20±1.80% 30.54±0.87% 23.91±0.52% 26.98±2.11% 27.37±1.42% 27.72±1.26% 18.63±1.17%

ResNet-20 48.51±2.86% 45.43±2.55% 43.96±1.37% 41.65±1.09% 45.28±2.06% 43.64±1.28% 43.25±1.59% 42.10±1.72% 45.67±2.53% 41.18±1.48% 40.20±1.62% 37.23±0.93%

CIFAR-10
ConvNet-2 10.87±0.11% 8.59±0.12% 8.74±0.21% 5.76±0.04% 13.77±0.28% 10.65±0.08% 10.19±0.26% 7.65±0.16% 14.44±0.16% 11.77±0.10% 11.65±0.25% 7.34±0.08%

ResNet-20 36.48±0.62% 32.25±1.23% 30.24±1.57% 21.43±0.94% 31.32±0.32% 29.03±0.79% 27.21±0.53% 20.01±1.32% 37.63±1.12% 34.45±1.30% 31.78±1.38% 24.59±0.72%

Average 45.80% 44.21% 42.32% 36.08% 43.97% 42.35% 40.89% 34.74% 44.21% 42.49% 40.75% 34.00%

Table 6. Robustness performance of models under Auto-Atack [12] (with confidence interval of 95% significance level).

Dataset Model
Auto-Attack

BE-ST KM-ST Random DeepGini

MNIST
LeNet-5 88.53±0.37% 87.89±0.53% 85.74±0.81% 77.75±0.25%

LeNet-1 90.06±1.17% 90.24±1.80% 84.99±0.56% 72.27±0.92%

FASHION
LeNet-5 70.35±1.89% 73.76±1.67% 73.63±2.52% 42.55±1.28%

ConvNet-1 72.49±0.71% 70.57±1.36% 69.63±0.60% 61.40±1.48%

SVHN
LeNet-5 69.58±0.41% 68.37±0.69% 67.39±0.58% 62.98±0.64%

ResNet-20 73.56±1.07% 68.07±1.94% 65.89±1.90% 63.02±0.98%

CIFAR-10
ConvNet-2 27.20±0.08% 24.46±0.11% 24.83±0.19% 13.89±0.07%

ResNet-20 55.60±0.33% 52.99±0.64% 51.21±0.70% 46.26±0.58%

Average 68.42% 67.04% 65.41% 55.02%

attacks (by up to 35.13% enhancement than Random), indicating that test cases with high convergence (hard
examples) can help improve model overall robustness. Thus, it is necessary to improve the diversity of test cases
for retraining from a perspective that is well correlated with model robustness.

Fairness property. Fig. 12a and Fig. 12b show the fairness evaluation results for tabular data and image
data respectively. The main observations are consistent with that of robustness above. For all the strategies, the
model’s fairness steadily improves as more test cases (discriminatory sample pairs) are used for retraining.
For tabular data, KM-ST has better performance than Random and DeepGini on average, achieving 4.23%

and 4.72% more fairness improvement than Random for the two diferent sets of test cases respectively, with
33.38% and 37.46% more improvement for DeepGini. Interestingly, BE-ST performs best at the early stage in 8
out of 12 cases where the improvement is up to 23.64% more than Random. However, as more test cases are
selected for retraining, BEST falls behind KM-ST and Random fast. This phenomenon may be due to the size of
the dataset/model being small so that the model converges fast. While for image data with high dimensions, both
our strategies perform well, achieving 7.07% more improvement than Random and 11.61% more than DeepGini
on average. Moreover, the overall performance is impacted by the protected attribute to some extent as well. For
instance, the improvement on the Age attribute is less than that on the Gender, as shown in Fig. 12a.
We further evaluate and compare how fair the retrained models are with an independently-generated dis-

criminatory set, i.e., test cases generated through random sampling in [19]. We summarize the results in Table 7
(for tabular data only). Diferent datasets or sensitive attributes cause model discrimination at diferent levels.
Overall, our test case selection strategies still outperform Random and DeepGini baselines in most of the cases.
In addition, we observe that the average fairness improvement of BE-ST is the highest, which is also consistent

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 23

Fig. 12a. Fairness improvement with diferent strategies (tabular) (with confidence interval of 95% significance level).

Fig. 12b. Fairness improvement with diferent strategies (image) (with confidence interval of 95% significance level).

with the results of the robustness property shown in Table 5,6, further validating the potential of our adapted
FOL metric in the test case selection scenario.

We thus have the following answer to RQ2:

Answer to RQ2: FOL-guided test case selection is able to select more valuable test cases to improve the
model robustness or fairness through testing and retraining.

RQ3: How efective and eficient is our FOL-guided fuzzing algorithm?

To answer the question, we compare our FOL-guided fuzzing algorithm (Alg. 3) with two state-of-the-art
testing methods, i.e., ADAPT [40] and ADF [87] on model robustness and fairness respectively, to show the

ACM Trans. Softw. Eng. Methodol.

24 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Table 7. Fairness performance of models against the test cases generated through random sampling (with confidence interval
of 95% significance level).

Dataset Model Proc. Attr.
AEQUITAS ADF

BE-ST KM-ST Random DeepGini BE-ST KM-ST Random DeepGini

Census MLP-6 Age 91.67±0.13% 91.40±0.25% 90.16±0.30% 88.74±0.15% 91.78±0.23% 89.01±0.34% 88.35±0.29% 86.56±0.08%

Census MLP-6 Race 92.72±0.17% 90.45±0.38% 89.67±0.26% 88.43±0.14% 90.19±0.07% 89.93±0.23% 89.56±0.12% 87.62±0.02%

Census MLP-6 Gender 97.97±0.08% 97.90±0.26% 98.14±0.19% 98.08±0.21% 97.95±0.15% 98.37±0.12% 98.16±0.11% 98.04±0.05%

Credit MLP-6 Age 89.68±0.06% 87.33±0.21% 85.72±0.19% 84.74±0.07% 89.30±0.12% 89.04±0.10% 88.05±0.17% 86.89±0.13%

Credit MLP-6 Gender 95.58±0.25% 94.47±0.14% 94.58±0.34% 94.72±0.11% 95.33±0.10% 94.15±0.18% 94.30±0.33% 94.18±0.04%

Bank MLP-6 Age 96.64±0.17% 95.93±0.16% 96.25±0.40% 96.12±0.08% 96.61±0.03% 96.17±0.22% 96.31±0.15% 95.80±0.13%

Average 94.04% 92.91% 92.42% 91.81% 93.53% 92.78% 92.45% 91.52%

Table 8. Comparison of FOL-fuzz and ADAPT [40] (with confidence interval of 95% significance level). a/b: a is the result of
FOL-fuzz and b is the result of ADAPT.

Dataset Model
10 mins 20 mins

Test case Robustness↑ # Test case Robustness↑

MNIST
LeNet-5 3284±206 / 4543±118 47.37±1.94% / 37.71±1.31% 7062±329 / 9227±273 65.88±1.87% / 54.93±1.12%

LeNet-1 2228±136 / 2705±45 20.60±0.77% / 16.31±0.32% 4171±157 / 5086±28 35.36±1.45% / 20.19±0.84%

FASHION
LeNet-5 9023±265 / 10722±441 33.06±0.84% / 15.44±1.70% 18339±286 / 21947±101 49.16±2.12% / 29.65±3.78%

ConvNet-1 3303±279 / 2533±236 23.06±0.89% / 13.85±1.43% 6586±304 / 4510±267 25.22±1.13% / 19.00±1.39%

SVHN
LeNet-5 12467±345 / 16763±663 29.86±0.90% / 28.78±1.81% 24903±256 / 33885±520 39.96±0.99% / 36.61±2.07%

ResNet-20 1369±91 / 3029±43 41.67±0.56% / 42.03±1.20% 2708±155 / 5699±327 47.11±0.68% / 48.72±2.19%

CIFAR-10
ResNet-20 2041±36 / 3575±256 22.82±0.59% / 19.21±1.21% 4023±107 / 6740±287 29.32±3.03% / 23.82±3.44%

ConvNet-2 4531±162 / 2791±285 7.43±0.49% / 6.48±0.33% 9225±204 / 5772±316 9.02±0.55% / 9.13±0.72%

Average 4791 / 5833 28.23% / 22.48% 9628 / 11608 37.63% / 30.26%

Table 9. Robustness improvement of models ater retraining using test cases with diferent densities (with confidence interval
of 95% significance level).

Dataset Model
Robustness↑ (# Test cases for each seed)

1 10 50 100

MNIST
LeNet-5 48.15±2.16% 64.62±3.58% 70.55±2.46% 72.33±2.24%

LeNet-1 27.62±2.31% 57.94±2.52% 64.09±0.84% 64.80±1.22%

FASHION
LeNet-5 15.81±0.97% 31.72±0.72% 45.26±0.54% 48.51±1.14%

ConvNet-1 22.92±1.10% 26.24±0.71% 27.93±0.74% 27.63±0.58%

SVHN
LeNet-5 27.21±0.59% 35.57±1.01% 40.24±0.65% 38.98±0.49%

ResNet-20 36.54±1.44% 45.47±1.91% 49.81±0.85% 50.46±1.53%

CIFAR-10
ConvNet-2 7.75±0.12% 8.35±0.15% 9.17±0.22% 9.86±0.08%

ResNet-20 24.48±0.34% 27.75±0.89% 30.83±0.46% 31.42±0.87%

Average 26.31% 37.21% 42.24% 43.00%

efectiveness and eiciency of improving the model quality with respect to a certain testing property. To reduce
the randomness, we repeat the process 5 times and report the average and deviation results.

Robustness property. We compare FOL-fuzz with the state-of-the-art neuron coverage-guided fuzzing
algorithm ADAPT as follows. We run FOL-fuzz and ADAPT on the same set of seeds to generate test cases within

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 25

the same amount of time (i.e., 10 minutes and 20 minutes). Then we retrain the model with all the generated
test cases to compare their robustness improvement. The hyper-parameters for FOL-Fuzz are set as follows:
k = 5, λ = 1.0, iters = 3, lr = 0.1, and the parameters for ADAPT are consistent with Table 2.

Table 8 summarizes the results. We observe that ADAPT generates more test cases on average, i.e., 8721
compared to 7210 of FOL-Fuzz. Nevertheless, using test cases founded by FOL-Fuzz (less than ADAPT) to retrain
the model signiicantly improves the model’s robustness than ADAPT, i.e., 32.93% compared to 26.37% of ADAPT
on average. With a closer look, we could ind that ADAPT usually generates much fewer test cases than FOL-Fuzz
for large models (e.g., CIFAR-10/ConvNet-2). The reason behind is that ADAPT needs to calculate and keep the
global coverage map in each iteration, which is extremely costly for the model with a large number of neurons,
while the main cost of FOL-Fuzz lies on the gradient calculation. Fig. 13 further shows several samples generated
by the two methods respectively, which reveals that ADAPT tends to generate a lot of test cases around a seed
(with little diference) with the core goal of improving certain neuron coverage metric. However, not all these
tests are meaningful to improve model robustness. On the other hand, FOL-Fuzz is able to discover more diverse
and valuable test cases relatively.

In addition, we explore how the presence of multiple test cases belonging to the same seed afects the retraining
performance. We control the generation of FOL-Fuzz to output a diferent number of test cases for each seed, i.e.,
1, 10, 50 and 100, and then retrain models on the generated test cases to evaluate the robustness improvement
respectively. Table 9 summarizes the results. We observe that robustness increases as more test cases are generated
for each seed, from 26.31% to 43.00% on average. However, the improvement is limited after the number grows
to a certain threshold. We only get 0.76% more improvement by adding the number from 50 to 100, and the
improvement even drops a little in some cases (e.g., SVHN/LeNet-5). Thus, the size of test cases is not the larger
the better, the diversity of test cases is of great importance.

Fairness property.We compare FOL-fuzz with the state-of-the-art fairness fuzzing algorithm ADF for tabular
data as follows. We run FOL-fuzz and ADF (global generation) on the same set of seeds to generate test cases (i.e.,
discriminatory sample pairs). The hyper-parameters for FOL-Fuzz are set as follows: k = 1, λ = 1.0, iters =
10, lr = 1.0, and parameters for ADF are consistent with Tab. 2.

Tab. 10 shows the results. We observe that ADF generates slightly more test cases on average, i.e., 561 compared
to 504 of FOL-Fuzz. Still, the generation process varies with the dataset and protected attribute, which may be
caused by the limited search space (tabular data with discrete values). Not surprisingly, we observe that using
test cases founded by FOL-Fuzz (although less than ADF) to retrain the model improves the model’s fairness
more than ADF, which wins in 4 out of 6 cases and achieves 46.56% improvement compared to 43.92% of ADF
on average. The improvement of FOL-fuzz on fairness is not signiicant when compared to that on robustness
shown in Tab. 8. One possible reason is that the size of the search space is diferent (the dimension of tabular
data is much less than image data) and the fuzzing process is further limited.

We thus have the following answer to RQ3:

Answer to RQ3: FOL-guided fuzzing is able to eiciently generate more valuable test cases to improve
the model robustness and fairness.

4.3 Threats to Validity

Our experimental results demonstrate the efectiveness of uoTe. However, we acknowledge some threats to
the validity of our approach and experiments. We discuss threats according to the guideline for experimental
studies in software engineering [58, 79].

ACM Trans. Softw. Eng. Methodol.

26 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 13. Generated test cases from FOL-Fuzz and ADAPT testing algorithms on the MNIST dataset.

Table 10. Comparison of FOL-fuzz and ADF [87] (with confidence interval of 95% significance level). a/b: a is the result of
FOL-fuzz and b is the result of ADF.

Dataset Model Proc. Attr.
1000 seeds

Test case Fairness↑

Census MLP-6 Age 821±9 / 656±4 42.90±0.40% / 39.85±0.31%

Census MLP-6 Race 653±3 / 456±3 42.85±0.17% / 44.02±0.13%

Census MLP-6 Gender 371±4 / 337±2 47.50±0.19% / 38.13±0.22%

Credit MLP-6 Age 575±6 / 594±4 53.52±0.15% / 48.88±0.22%

Credit MLP-6 Gender 235±1 / 449±2 44.75±0.04% / 44.07±0.11%

Bank MLP-6 Age 366±3 / 873±5 47.84±0.21% / 48.59±0.14%

Average 504 / 561 46.56% / 43.92%

The internal threat could be caused by the implementation of uoTe testing framework and baselines in
comparison. To reduce this threat, we borrow the available implementations of the compared methods from
released codes by their authors, and carefully check the correctness of our code.
The external threat to validity mainly comes from the datasets and model structures. Regarding the datasets,

we consider 8 public datasets in the testing literature, including 5 image datasets and 3 tabular datasets. To reduce
the threat from the models, we employ multiple well-known architectures for each dataset (including 8 structures
in total) to limit the impact of model dependency to some extent. SinceuoTe is generic and independent of
datasets or model structures, it can be adapted with minor adjustments for further use.

The construct threat lies in the empirical evaluation and quality requirement in uoTe, the hyper-parameter
setting, and the randomness in the training process. Following DeepGini [17], We adopt an empirical approach to
evaluate properties (robustness and fairness), which might vary with the pre-generated quality validation dataset
Dv . So far, it is still an open problem as to how to eiciently measure the robustness (or other properties) of DL
models. OuruoTe testing framework requires a quality requirement on the certain testing property as the input,
that could be application-speciic and relevant to the model as well. In practice, users could adjust the requirement
dynamically regarding the actual scenarios. For the hyper-parameters, we follow the standard setting in existing
works. For our method, further research for other datasets may be necessary to identify the hyper-parameters to
achieve a more efective and eicient testing. Regarding the randomness, we repeat each experiment 5 times
(have retrained more than 6,000 models) and we reported the results with statistical signiicance evaluation.

ACM Trans. Softw. Eng. Methodol.

QuoTe: uality-oriented Testing for Deep Learning Systems • 27

5 RELATED WORK

This work is mainly related to the following lines of works on building trustworthy DL systems.

5.1 Deep Learning Testing

Extensive DL testing works are focused on designing testing metrics to expose the robustness vulnerabilities of
DL systems including neuron coverage [55], multi-granularity neuron coverage [45], neuron activation conditions
[64], surprise adequacy [35] andmutation adequacy [56]. Alongwith the testingmetrics, many test case generation
algorithms are also proposed including gradient-guided perturbation [55, 87], black-box [78] and metric-guided
fuzzing [25, 40, 81]. However, these testing works lack rigorous evaluation of their efectiveness in improving the
model robustness (although most of them claim so) and have been shown to be inefective in multiple recent
works [13, 26, 43]. Multiple metrics have been proposed in the machine learning community to quantify the
robustness of DL models as well [6, 76, 77, 82]. However, most of them are used to evaluate local robustness and
are hard to calculate, thus are not suitable to test directly. Compared to the robustness property, the fairness
property is much less explored so far. Several works [1, 19, 68] are proposed to ind discriminatory samples of
machine learning models (deep learning models in [87, 89]). Our work bridges the gap and integrates model
retraining into the testing pipeline for better quality assurance. Moreover, our uoTe testing framework is
generic, i.e., it could be extended to other model properties by incorporating speciic testing metrics.

5.2 Adversarial Training

The key idea of adversarial training is to improve the robustness of the DL models by considering adversarial
examples in the training phase. There are plenty of works on conducting adversarial attacks on DL models (of
which we are not able to cover all) to generate adversarial examples such as FGSM [22], PGD [48] and C&W [10].
Adversarial training, in general, may overit to the speciic kinds of attacks that generate the adversarial examples
for training [48] and thus can not guarantee robustness on new kinds of attacks. Later, robust training [48] is
proposed to train robust models by solving a saddle point problem described in Sec. 3. Motivated by adversarial
training, we propose the FOL metric based on loss objective (e.g., pair-loss for fairness), which is strongly
correlated with model property and could be used to select more valuable test cases for model retraining to
enhance the model property. We believe that adversarial training and uoTe (like other testing approaches) are
complementary, and DL testing is important as testing can continuously generate new testing cases to enhance
the model’s property more eiciently.

6 CONCLUSION

In this work, we propose a novel quality-oriented testing framework uoTe for deep learning systems towards
improving a speciic model property (e.g., robustness and fairness), which focuses on ixing mainly faults related
to training data. The core of uoTe is a set of lightweight metrics to quantify both the value of each test case in
improving model property (via retraining) and the convergence quality of the improvement. We also utilize the
proposed metric to select and automatically fuzz for more valuable test cases for model quality enhancement.
We implementeduoTe as a self-contained open-source toolkit for future research. Extensive experiments on
multiple benchmark datasets verify the efectiveness and eiciency of uoTe in improving DL model robustness
and fairness, which outperforms several state-of-the-art works.

Future Work. In this work, we evaluate the efectiveness and eiciency of uoTe on two main DL properties,
i.e., robustness and fairness. Extending to other less explored properties such as safety and privacy is also worthy
of future study, although it is still challenging to achieve complete trustworthiness for DL models. Our work
focuses on ixing faults (or bugs) in the training dataset and improving model quality through data augmentation
and retraining. We are also aware that there are other fundamental faults in model structure, implementation or

ACM Trans. Softw. Eng. Methodol.

28 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

training setting in reality, which impacts model property to a certain extent. In the future, we hope to explore
the inluence of other possible faults on model quality enhancement. So far, our approach mainly focuses on
image and structural (tabular) data with feed-forward neural networks (e.g., CNN and MLP), we hope to extend
experiments to the text/NLP domain where input features are word vectors and recurrent neural networks (RNN)
are more used. There are several hyper-parameters involved in the used fuzzing and generation algorithms, and
we manually set them following existing works or through simple ablation studies, which may not be the optimal
setting. In the future, we plan to investigate automatic parameter tuning.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (Grant No. 2020YFB2010901), the Key
R&D Program of Zhejiang (Grant No. 2022C01018), the NSFC Program (Grant No. 62102359, 61833015, 62293511,
U1911401) and the Fundamental Research Funds for Central Universities (Zhejiang University NGICS Platform).

REFERENCES
[1] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha. 2019. Black box fairness testing of machine learning

models. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering. 625ś635.

[2] Haldun Akoglu. 2018. User’s guide to correlation coeicients. Turkish journal of emergency medicine 18, 3 (2018), 91ś93.

[3] Mohammed Oualid Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. 2022. Black-box Safety Analysis and Retraining of

DNNs based on Feature Extraction and Clustering. arXiv preprint arXiv:2201.05077 (2022).

[4] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson correlation coeicient. In Noise reduction in speech

processing. Springer, 1ś4.

[5] Neal E Boudette. 2017. Tesla’s self-driving system cleared in deadly crash. The New York Times 19 (2017).

[6] Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and Matthias Bethge. 2019. Accurate, reliable and fast

robustness evaluation. In Advances in Neural Information Processing Systems. 12861ś12871.

[7] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer. 2019. Input prioritization for testing

neural networks. In 2019 IEEE International Conference On Artiicial Intelligence Testing (AITest). IEEE, 63ś70.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted and automatic generation of high-coverage tests for

complex systems programs.. In OSDI, Vol. 8. 209ś224.

[9] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry,

and Alexey Kurakin. 2019. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705 (2019).

[10] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security

and privacy (sp). IEEE, 39ś57.

[11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing

(almost) from scratch. Journal of machine learning research 12, ARTICLE (2011), 2493ś2537.

[12] Francesco Croce and Matthias Hein. 2020. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free

attacks. In International conference on machine learning. PMLR, 2206ś2216.

[13] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu Wang, Li Wang, Jinsong Dong, and Ting Dai. 2020.

An Empirical Study on Correlation between Coverage and Robustness for Deep Neural Networks. In 2020 25th International Conference

on Engineering of Complex Computer Systems (ICECCS). IEEE, 73ś82.

[14] Dheeru Dua and Casey Graf. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

[15] Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey, A Kai Qin, and Yun Yang. 2020. Adversarial camoulage: Hiding physical-world

attacks with natural styles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1000ś1008.

[16] Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. 2022. HUDD: A tool to debug DNNs for safety analysis. In 2022 IEEE/ACM 44st

International Conference on Software Engineering.

[17] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. 2020. DeepGini: Prioritizing Massive Tests to

Enhance the Robustness of Deep Neural Networks. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software

Testing and Analysis (Virtual Event, USA) (ISSTA 2020). Association for Computing Machinery, New York, NY, USA, 177ś188. https:

//doi.org/10.1145/3395363.3397357

[18] Samuel G Finlayson, John D Bowers, Joichi Ito, Jonathan L Zittrain, Andrew L Beam, and Isaac S Kohane. 2019. Adversarial attacks on

medical machine learning. Science 363, 6433 (2019), 1287ś1289.

ACM Trans. Softw. Eng. Methodol.

http://archive.ics.uci.edu/ml
https://doi.org/10.1145/3395363.3397357
https://doi.org/10.1145/3395363.3397357

QuoTe: uality-oriented Testing for Deep Learning Systems • 29

[19] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing: testing software for discrimination. In Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering. 498ś510.

[20] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation. 206ś215.

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

2014. Generative adversarial nets. Advances in neural information processing systems 27 (2014).

[22] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In International

Conference on Learning Representations. http://arxiv.org/abs/1412.6572

[23] Alex Graves, Abdel-rahman Mohamed, and Geofrey Hinton. 2013. Speech recognition with deep recurrent neural networks. In 2013

IEEE international conference on acoustics, speech and signal processing. Ieee, 6645ś6649.

[24] Loren Grush. 2015. Google engineer apologizes after Photos app tags two black people as gorillas. The Verge 1 (2015).

[25] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Diferential fuzzing testing of deep learning systems.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 739ś743.

[26] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is Neuron Coverage a Meaningful

Measure for Testing Deep Neural Networks?. In Proceedings of the Joint Meeting on Foundations of Software Engineering (FSE).

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770ś778.

[28] Qiang Hu, Yuejun Guo*, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and Yves Le Traon. 2022. An empirical study on data

distribution-aware test selection for deep learning enhancement. ACM Transactions on Software Engineering and Methodology (2022).

[29] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety veriication of deep neural networks. In International

Conference on Computer Aided Veriication. Springer, 3ś29.

[30] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020. Taxonomy of real

faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 1110ś1121.

[31] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. 2019. Limitations of the Lipschitz Constant as a Defense Against Adversarial

Examples. In ECML PKDD 2018 Workshops, Carlos Alzate, Anna Monreale, Haytham Assem, Albert Bifet, Teodora Sandra Buda, Bora

Caglayan, Brett Drury, Eva García-Martín, Ricard Gavaldà, Irena Koprinska, Stefan Kramer, Niklas Lavesson, Michael Madden, Ian

Molloy, Maria-Irina Nicolae, and Mathieu Sinn (Eds.). Springer International Publishing, Cham, 16ś29.

[32] Kimmo Karkkainen and Jungseock Joo. 2021. Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement

and mitigation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 1548ś1558.

[33] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Towards proving the adversarial robustness of deep

neural networks. arXiv preprint arXiv:1709.02802 (2017).

[34] Marc Khoury and Dylan Hadield-Menell. 2019. Adversarial training with voronoi constraints. arXiv preprint arXiv:1905.01019 (2019).

[35] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 1039ś1049.

[36] Ron Kohavi et al. 1996. Scaling up the accuracy of naive-bayes classiiers: A decision-tree hybrid.. In Kdd, Vol. 96. 202ś207.

[37] Alex Krizhevsky, Geofrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).

[38] Yann LeCun, Yoshua Bengio, and Geofrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436ś444.

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Hafner. 1998. Gradient-based learning applied to document recognition. Proc.

IEEE 86, 11 (1998), 2278ś2324.

[40] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Efective white-box testing of deep neural networks with adaptive

neuron-selection strategy. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 165ś176.

[41] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan

Pratt, et al. 2011. Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE,

163ś168.

[42] Yu Li, Muxi Chen, and Qiang Xu. 2022. HybridRepair: towards annotation-eicient repair for deep learning models. In Proceedings of the

31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 227ś238.

[43] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage criteria for neural networks could be misleading. In 2019

IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 89ś92.

[44] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. Deepct: Tomographic combinatorial testing for deep

learning systems. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 614ś618.

[45] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge:

Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. ACM, 120ś131.

ACM Trans. Softw. Eng. Methodol.

http://arxiv.org/abs/1412.6572

30 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

[46] Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon. 2021. Test selection for deep learning systems. ACM

Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1ś22.

[47] Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, and Feng Lu. 2020. Understanding adversarial attacks on deep

learning based medical image analysis systems. Pattern Recognition (2020), 107332.

[48] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards Deep Learning Models

Resistant to Adversarial Attacks. In International Conference on Learning Representations. https://openreview.net/forum?id=rJzIBfZAb

[49] Sérgio Moro, Paulo Cortez, and Paulo Rita. 2014. A data-driven approach to predict the success of bank telemarketing. Decision Support

Systems 62 (2014), 22ś31.

[50] Kevin P. Murphy. 2012. Machine learning - a probabilistic perspective. MIT Press.

[51] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. 2011. Reading digits in natural images with

unsupervised feature learning. (2011).

[52] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random testing for Java. In Companion to the 22nd ACM SIGPLAN

conference on Object-oriented programming systems and applications companion. 815ś816.

[53] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016. The limitations of

deep learning in adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 372ś387.

[54] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep face recognition. (2015).

[55] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning systems. In

Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1ś18.

[56] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepMetis: Augmenting a Deep Learning Test Set to

Increase its Mutation Score. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 355ś367.

[57] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and Paolo Tonella. 2020. Testing machine

learning based systems: a systematic mapping. Empirical Software Engineering 25, 6 (2020), 5193ś5254.

[58] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software engineering. Empirical

software engineering 14, 2 (2009), 131ś164.

[59] Patrick Schober, Christa Boer, and Lothar A Schwarte. 2018. Correlation coeicients: appropriate use and interpretation. Anesthesia &

Analgesia 126, 5 (2018), 1763ś1768.

[60] Ali Shahrokni and Robert Feldt. 2013. A systematic review of software robustness. Information and Software Technology 55, 1 (2013),

1ś17.

[61] Weijun Shen, Yanhui Li, Lin Chen, Yuanlei Han, Yuming Zhou, and Baowen Xu. 2020. Multiple-boundary clustering and prioritization

to promote neural network retraining. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering.

410ś422.

[62] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[63] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural networks. Proceedings

of the ACM on Programming Languages 3, POPL (2019), 1ś30.

[64] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic Testing for Deep

Neural Networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France)

(ASE 2018). Association for Computing Machinery, New York, NY, USA, 109ś119. https://doi.org/10.1145/3238147.3238172

[65] Richard Szeliski. 2010. Computer vision: algorithms and applications. Springer Science & Business Media.

[66] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-driven autonomous

cars. In Proceedings of the 40th international conference on software engineering. 303ś314.

[67] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson.

2019. Star-based reachability analysis of deep neural networks. In International Symposium on Formal Methods. Springer, 670ś686.

[68] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated directed fairness testing. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. 98ś108.

[69] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and Peng Cheng. 2021. RobOT: Robustness-oriented

testing for deep learning systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 300ś311.

[70] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019. Adversarial sample detection for deep neural network

through model mutation testing. In Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 1245ś1256.

[71] Mei Wang, Weihong Deng, Jiani Hu, Xunqiang Tao, and Yaohai Huang. 2019. Racial faces in the wild: Reducing racial bias by information

maximization adaptation network. In Proceedings of the ieee/cvf international conference on computer vision. 692ś702.

[72] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin. 2018. Towards optimal concolic testing. In Proceedings

of the 40th International Conference on Software Engineering. 291ś302.

[73] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. 2019. On the Convergence and Robustness

of Adversarial Training. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning

ACM Trans. Softw. Eng. Methodol.

https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3238147.3238172

QuoTe: uality-oriented Testing for Deep Learning Systems • 31

Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, California, USA, 6586ś6595. http:

//proceedings.mlr.press/v97/wang19i.html

[74] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. 2019. Improving adversarial robustness requires

revisiting misclassiied examples. In International Conference on Learning Representations.

[75] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin Zhang. 2021. Prioritizing test inputs for deep neural

networks via mutation analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 397ś409.

[76] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S Dhillon, and Luca Daniel. 2018.

Towards Fast Computation of Certiied Robustness for ReLU Networks. arXiv preprint arXiv:1804.09699 (2018).

[77] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. 2018. Evaluating

the Robustness of Neural Networks: An Extreme Value Theory Approach. In International Conference on Learning Representations.

https://openreview.net/forum?id=BkUHlMZ0b

[78] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided black-box safety testing of deep neural networks. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 408ś426.

[79] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation in software

engineering. Springer Science & Business Media.

[80] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747 (2017).

[81] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019.

DeepHunter: A Coverage-Guided Fuzz Testing Framework for Deep Neural Networks. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery, New

York, NY, USA, 146ś157. https://doi.org/10.1145/3293882.3330579

[82] Huan Xu and Shie Mannor. 2012. Robustness and generalization. Machine learning 86, 3 (2012), 391ś423.

[83] Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun Zhang. 2020. Improving Neural

Network Veriication through Spurious Region Guided Reinement. arXiv preprint arXiv:2010.07722 (2020).

[84] Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun Zhao. 2021. Deeprepair: Style-guided repairing for deep

neural networks in the real-world operational environment. IEEE Transactions on Reliability (2021).

[85] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. 2019. Theoretically principled trade-of

between robustness and accuracy. In International Conference on Machine Learning. PMLR, 7472ś7482.

[86] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing: Survey, landscapes and horizons. IEEE Transactions

on Software Engineering (2020).

[87] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai. 2020. White-box fairness

testing through adversarial sampling. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 949ś960.

[88] Peixin Zhang, Jingyi Wang, Jun Sun, and Xinyu Wang. 2021. Fairness Testing of Deep Image Classiication with Adequacy Metrics.

arXiv preprint arXiv:2111.08856 (2021).

[89] Peixin Zhang, Jingyi Wang, Jun Sun, Xinyu Wang, Guoliang Dong, Xingen Wang, Ting Dai, and Jin Song Dong. 2021. Automatic Fairness

Testing of Neural Classiiers through Adversarial Sampling. IEEE Transactions on Software Engineering (2021).

[90] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-image translation using cycle-consistent

adversarial networks. In Proceedings of the IEEE international conference on computer vision. 2223ś2232.

A ADDITIONAL FIGURES

Fig. 14. The FOL distribution of FGSM and PGD atacks for diferent models.

ACM Trans. Softw. Eng. Methodol.

http://proceedings.mlr.press/v97/wang19i.html
http://proceedings.mlr.press/v97/wang19i.html
https://openreview.net/forum?id=BkUHlMZ0b
https://doi.org/10.1145/3293882.3330579

32 • Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng

Fig. 15. The FOL distribution of AEQUITAS and ADF testing algorithms for diferent models.

Fig. 16. The trend of robustness improvement (ATTACK) in iterations on the MNIST and CIFAR-10 datasets (with confidence
interval of 95% significance level).

ACM Trans. Softw. Eng. Methodol.

	QuoTe: Quality-oriented Testing for deep learning systems
	Citation
	Author

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 DL Model Properties
	2.3 Deep Learning Testing
	2.4 Test Case Selection
	2.5 Model Retraining
	2.6 Problem Definition

	3 The QuoTe Framework
	3.1 Empirical Evaluation for Model Properties
	3.2 A General View of QuoTe
	3.3 Property-correlated Testing Metrics
	3.4 FOL-Guided Test Case Selection
	3.5 FOL-Guided Fuzzing

	4 Experimental Evaluation
	4.1 Experiment Settings
	4.2 Research Questions
	4.3 Threats to Validity

	5 Related Work
	5.1 Deep Learning Testing
	5.2 Adversarial Training

	6 Conclusion
	References
	A Additional Figures

