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Abstract—In many route planning applications, finding con-
strained shortest paths (CSP) is an important and fundamental
problem. CSP aims to find the shortest path between two nodes on
a graph while satisfying a path constraint. Solving CSPs requires
a large search space and is prohibitively slow on large graphs,
even with the state-of-the-art parallel solution on GPUs. The
reason lies in the lack of effective navigational information and
pruning strategies in the search procedure. In this paper, we
propose SPEC, a Shortest Path Enhanced approach for solving
the exact CSP problem. Our design rationales of SPEC rely on
the observation that the shortest path (SP) provides valuable
information in the search procedure of CSP. Hence, we propose
a label priority that distinguishes promising candidate paths
based on SP. We further devise efficient pruning and teleporting
strategies utilizing SP lengths and costs, which eliminates un-
feasible paths at an early stage. Furthermore, we observe that
the expansion number at each search iteration affects the overall
performance significantly. Thus, we devise an adaptive controller
based on reinforcement learning. We also show that SPEC
works seamlessly with the parallel implementation. Extensive
experimental results on 8 read-world graphs reveal that single
thread SPEC achieves an order of magnitude speedup over the
state-of-the-art GPU-based method. The parallel implementation
boosts SPEC 3 to 5 times further.

Index Terms—constrained shortest path, shortest path

I. INTRODUCTION

The constrained shortest path (CSP) problem is an essential

component in many applications. Given a graph on which each

edge has two properties, i.e., the length and cost, CSP finds

the shortest path between two nodes source and target without

exceeding a cost limit. For example, in the vehicle routing

problem [1], the length of an edge is the road length, while

the cost could be the road charge. The goal of CSP is to find

the shortest path under a road charge limit. Many applications

impose rigorous constraints and seek exact solutions, such

as Quality of Service (QoS) package routing with delay

constraints on Internet networks [2], [3], battery-limited drone

deliveries [4], etc. In these applications, approximate solutions

that may exceed the cost limit are not favored because of

service quality or security concerns [5]. In this paper, we focus

on the exact CSP problem and consider one cost constraint,

which is the most common case in practical applications.

Solving CSP on large graphs efficiently is both theoretically

NP-hard and empirically challenging [1], [6], [7].

∗This work was done when Wenwen Xia was visiting Singapore Manage-
ment University.

The seminal method for CSP is the labeling algorithm (LA)

based on dynamic programming [8], which has been well

studied and extended to solve the CSP problem and its variants

[9]–[11]. In LA, each path from the source node to a visited

node v is denoted as a label lv on v. lv stores its length and

cost values. LA maintains a frontier (a priority queue) to store

labels for expansion. At each step, the top label lt is popped

and new labels are created by extending the length and cost of

lt along all outgoing edges of t. These new labels are pruned

or inserted back into the frontier. The algorithm terminates

until the frontier is empty. The details of LA will be presented

in Sec. II-A. Recently, Lu et al. propose a framework named

Vine that utilizes the massively parallel Graphics Processing

Units (GPUs) to accelerate LA and delivers the state-of-the-art

performance for CSP [7]. However, the efficiency of Vine is

still unsatisfactory for real-time applications on large graphs.

For example, it takes several seconds to find one CSP in

a graph with only a few thousand nodes. Furthermore, the

reliance on hardware accelerators like GPUs also imposes

limitations in cases where such resource is inaccessible for

space and cost concerns [2], [12].

Motivations. There are two key challenges in accelerating LA.

First, it is unclear how to choose an efficient label expansion

order to navigate the search procedure faster. Second, it is

difficult to prune feasible yet sub-optimal labels effectively

at an early stage. Existing methods only expand the labels

with small length or cost values and prune unpromising labels

that have larger length and cost than existing ones [7], [8].

However, the unconstrained shortest path (SP) information

between nodes in the search procedure has been entirely

overlooked. In fact, the SP information provides valuable hints

to optimize the expansion order and significantly reduces the

search space. The reason is SP length is often a good (if not

best) criterion to quantify a label’s quality. SP length and cost

values could be used for pruning which avoids a large number

of sub-optimal labels at an early stage. Furthermore, the

overhead of querying the SP information is almost negligible

for CSP processing as the SP queries can be solved 5 to 6

orders of magnitudes faster than CSP queries (Figure 12 in

Appendix). Thus, the benefit of employing SP information

in the searching outweighs the overheads of processing SP

queries for CSP.

2022 IEEE International Conference on Data Mining (ICDM)
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Solution. Based on the motivations, we propose the SP En-

hanced CSP (SPEC) algorithm that exploits the SP information

for efficient label expansion and effective label pruning. To

devise an efficient label expansion order, we rely on a new

type of label priority that considers not only the label length

from the source but also the SP length to the target node. This

label priority can reduce the iteration number of the frontier

expansion and thus navigate the search faster. To effectively

prune the sub-optimal labels, SPEC progressively maintains

a current best CSP length as the pruning threshold. We can

safely prune a label if it cannot achieve a valid and better

solution, e.g., if the shortest path in terms of length is larger

than the current best length, or if the shortest path in terms of

cost exceeds the global cost limit. To facilitate both the label

expansion and pruning, we adapt the state-of-the-art indexing

method for the SP algorithms to efficiently compute the SP in

terms of length and cost.

Moreover, we need to carefully choose the number of

labels expanded in each iteration as it could affect the overall

performance as well. A straightforward approach as in the

existing solutions is to expand the top label in the frontier

since it has the highest priority. However, counter-intuitively,

we find that this approach might be sub-optimal because it can

cause SPEC stuck in expanding the labels that seem promising

but are actually unfeasible. On the other side, expanding too

many labels will lead to a redundant workload. Hence, we

formalize the label expansion process as a sequential decision

making procedure and design a reinforcement learning (RL)-

based adaptive expansion controller. The RL controller takes

statistics of the frontier expansion and returns an action as

the expansion number. To further boost the performance, we

propose a parallel scheme that works seamlessly with all

proposed techniques.

Summary of Contributions.
• We propose SPEC, an exact CSP solving method. We

devise an efficient expansion priority and prune strategies

by utilizing the SP information which has been entirely

overlooked in the literature.

• We devise a novel RL controller to adaptively expand the

label frontier for reducing overheads on unpromising labels.

Our techniques fit nicely with the parallel implementation.

• Extensive experiments on 8 real-world graphs show that

single-thread SPEC is on average 30× faster compared to

the state-of-the-art GPU-accelerated approach [7]. Multi-

thread SPEC is 3∼4× faster than single thread SPEC. The

implementation of SPEC and datasets are released 1.

The rest of this paper is organized as follows. In Sec. II, we

elaborate the CSP problem and related work. In Sec. III, we

elaborate the SP-based label priorities and pruning strategies

in SPEC. In Sec. IV, we present the adaptive RL controller

and the parallel implementation. In Sec. V and Sec. VI, we

present experimental setup and results. We conclude the paper

in Sec. VII.

1https://github.com/xiawenwen49/SPEC

II. BACKGROUND AND RELATED WORK

In this section, we first elaborate on the definition of the

CSP problem and the details of the labeling algorithm with a

toy example. Then we summarize related works of both SP

and CSP.

A. CSP and The Labeling Algorithm

Definition 1 (CSP). Given a directed graph G = (V,E) where
V is the node set and E is the edge set, each edge e is
associated with a length e.l and cost e.c. We assume lengths
and costs are nonnegative. A path p consists of a sequence
of edges, p =< e1, e2, · · · , e|p| >. The path length p.l and
path cost p.c can be computed as

∑|p|
i=1 ei.l and

∑|p|
i=1 ei.c

respectively. Given a query (u, v, c) with source u, target v,
and a cost limit c, let P denotes all paths from u to v with
path cost no larger than c. The CSP problem aims to find the
shortest path in P, i.e., p∗ = argminp∈P p.l.

The Labeling Algorithm. The most commonly used algo-

rithm for exact CSP is the labeling algorithm, also called Sky-

Dijk [7], [8]. In the process of solving a query (u, v, c), a label

lk for node k is defined as a path’s information from source

u to k. lk only stores the path’s length, cost, and node k, i.e.,

lk = (l, c, k) where l = p.l, c = p.c. p indicates the path that

lk represents. To prune labels that are deemed sub-optimal,

label dominance is defined as follows.

Definition 2 (Dominance). Label lk dominates label lj if
lk.l ≤ lj .l and lk.c ≤ lj .c.

The labeling algorithm maintains a non-dominant label

list at each node and a global frontier that stores labels

for expansion. Labels in the frontier (a priority queue) are

maintained in ascending order of their cost/length. At each

step, the top label lk is popped and expanded along the out

edges of node k, i.e., extending the label length and cost with

an edge’s length and cost. If a newly generated label lj is not

dominated by existing labels on node vj and doesn’t exceed

the cost budget, it will be inserted back into the frontier and

the non-dominant label list on vj , otherwise discarded. The

expanding process terminates until the frontier is empty.

Example 1. Consider the graph in Figure 1, and assume the
query is (v1, v5, 50). We plot the frontier’s labels at each step
in Figure 2. The frontier is initialized with label (0, 0, v1). At
the 1st step, (2, 10, v2) and (1, 30, v3) are generated along
edges (v1, v2) and (v1, v3). At the 2nd step, (7, 20, v4) and
(3, 20, v3) are generated from (2, 10, v2) along edge (v2, v4)
and (v2, v3). At the 3rd step, (11, 40, v5) is generated from
(7, 20, v4), and it then stops since the target v5 is found. At
the 4th step, (4, 30, v4) is generated from (3, 20, v3) along
edge (v3, v4). (6, 80, v5) is discarded because 80 exceeds
the cost limit 50. At the 5th step, (8, 50, v5) is generated
from (4, 30, v4) along edge (v4, v5) and the target is found.
At the 6th step, (4, 90, v5) is generated from (1, 30, v3) but
is discarded since 90 exceeds the cost limit of 50. Finally,
(8, 50, v5) is returned as the solution.



Fig. 1. A sample graph.

(0, 0, v1) (2, 10, v2)
(1, 30, v3)

(7, 20, v4)
(3, 20, v3)
(1, 30, v3)

(11, 40, v5)
(3, 20, v3)
(1, 30, v3)

(4, 30, v4)
(1, 30, v3)

(8, 50, v5)
(1, 30, v3)

(4, 90, v5)

Step0 1 2 3 4 5 6

(6, 80, v5)

Fig. 2. Processing the example graph in Figure 1. The source is v1, target is
v5, and cost budget is set to 50. Green labels are feasible solutions and will
stop expanding, while gray ones are pruned.

B. Related Work

The CSP problem was firstly proposed in [13], where

CSP is formulated as an integer linear programming (ILP)

problem. [14], [15] also solve the exact CSP with ILP solvers.

Nonetheless, these methods hardly scale to large networks.

[8] proposes the labeling algorithm as described in Sec. II-A,

which has good empirical performance [16]. [17] proposes

a kth SP algorithm, which can also be adapted to solve the

exact CSP problem, e.g., iteratively computing the next SP

solution until the cost limit is satisfied. [18] proposed a forest-

based index structure analogous to the two-hop labeling. While

their index construction induces large space cost. To scale

CSP to large networks, many approximate CSP solutions are

proposed by trading off solution quality for speed [1], [6],

[19], [20]. The approximate method COLA [1] builds indices

by partitioning the graph and selecting specific paths between

boundary nodes. However, approximate solutions introduce

errors and cannot be applied for the exact CSP. To accelerate

the exact CSP algorithm, Lu et al. [7] propose Vine, which

utilizes GPUs to parallelize the expansion process of the

labeling algorithm. With the help of tens of thousands of GPU

threads, Vine delivers state-of-the-art performance for the CSP

problem. However, Vine expands labels without distinguishing

their priorities and expands all labels at each iteration. In

contrast, we devise highly efficient pruning strategies by taking

advantage of SP information computed on the labels.

III. SP ENHANCED ACCELERATIONS

In this section, we first present the effect of label priority

and present our devised SP-based label priorities. Then we

introduce our pruning and teleporting strategies using SP.

Finally, we briefly present our adaptions of the state-of-the-

art SP algorithm. We provide a pseudo-code of SPEC in the

Appendix Algorithm 1.

A. Label Priority

The labeling algorithm iteratively expands the label with

the highest priority. Thus, it is critical to carefully design the

label priority to distinguish promising labels and expand those

early to find the optimal solution quickly. Existing priority

values are set based on the length or cost from the source

to the label nodes. In this work, we propose to incorporate

(a) Hops to target in searching (b) Label number and running time

Fig. 3. Hops from the top label in the frontier to the target node w.r.t iterations
and their totally expanded label number and running time comparison.

the SP information from a label node to the target into the

label priority. The SP information enables navigation support

for the expansion process to reach the target faster. Although

computing SP brings additional costs, we find that the benefits

significantly outweigh the overhead.

In the following, we present the motivating experiment to

illustrate the significance of the label priority. For comparison,

we list four priorities in the following.

1) Random priority. We assign a random value to a label as

the priority, i.e., ignoring label differences as a baseline.

2) Length priority. For a label lk, we adopt lk.l as the priority.

The priority is given to those with small length [7], [8].

3) Cost priority. For a label lk, we adopt lk.c as the priority.

The priority is given to those with small cost [7], [8].

4) SP enhanced priority. We set the priority of lk as lk.l+d̄kv .

d̄kv is the shortest length from k to target v.

In Figure 3(a), we plot the hop number of the top element

in the frontier to the target node w.r.t iterations on the NE

graph. We observe that for random priority, length priority,

and cost priority, the hop number fluctuates significantly, and

the random priority has the largest fluctuation. In contrast,

SP enhanced priority shows a stable and drastic decrease of

the hop number. Hence, SP enhanced priority has much fewer

iterations incurred to reach the target. Figure 3(b) shows the

total number of expanded labels and average query time of

the four priorities. SP enhanced priority achieves the smallest

number of labels expanded as well as the lowest running time.

The experiment confirms that label priority plays a significant

role in efficient CSP processing and the SP information

provides critical guidance on the label expansion process.

In addition to considering SP information for the length

property, we can also consider SP information on edge costs.

For node k and v, if we compute the shortest path using length,

we obtain the minimal length d̄kv and the corresponding

maximum cost c̄kv that k, v require. While we can also

compute the shortest path using cost, in this way we obtain

the minimal cost c̃kv that k, v require to have a path and

the corresponding maximum length d̃kv . Hence we could

devise three SP enhanced label priorities as follows. All these

priorities could be regarded as estimations of a label’s final
length when reaching the target node.

1) P1 : lk.l+d̄kv , i.e., an optimistic estimation that prioritizes

the labels with shorter lengths by ignoring the cost.



2) P2 : lk.l+ d̃kv , i.e, a pessimistic estimation that prioritizes

the labels with shorter lengths by using the smallest cost.

3) P3 : lk.l + d̄kv + (d̃kv − d̄kv) × c̄kv−(c−lk.c)
c̄kv−c̃kv

, a linear

interpolation of P1 and P2.

Note that a smaller value indicates a higher priority. We

will study the experimental performance of these priori-

ties in Sec. VI-C. Besides, we discuss how to compute

d̄kv, c̄kv, c̃kv, d̃kv efficiently in Sec. III-C.

B. Pruning and Teleporting

In addition to the label priority, the SP information enables

efficient pruning and teleporting strategies as well. Previous

methods mainly utilize the dominance relation (Def. 2) for

pruning [7], [8]. However, with the help of SP information,

we maintain a current best 2 and could prune labels using

the current best and SP lengths/costs to the target efficiently.

For a query (u, v, c) and a label lk (located on node k),

we define the start point of lk as (lk.c + c̃kv, lk.l + d̃kv)
and the end point of lk as (lk.c + c̄kv, lk.l + d̄kv). Both are

understood as coordinates in the 2-dimensional cost-length

coordinate system. Note the definitions of d̄kv, c̄kv, d̃kv, c̃kv
are in Sec. III-A. A sketch of the start and end point is shown

in Figure 4(a).

The pruning and teleporting are based on the locations of a

label’s start and end point in the cost-length coordinate system.

We initialize the current best to d̃u,v . For query (u, v, c), if

the minimal cost c̃u,v exceeds c, the query is infeasible. If the

maximum cost c̄u,v doesn’t exceed c, we immediately return

d̄u,v as the solution. Otherwise, the pruning and teleporting

strategies are as follows.

1) For the endpoint, if lk.l + d̄kv is larger than the current

best, we prune the label. Because lk.l+ d̄kv is the smallest

possible length from lk and is already worse than the

current best. (Figure 4(b), case 1.)

2) For the end point, if lk.l + d̄kv is smaller than the current

best, and the cost lk.c+ c̄kv is no larger than the cost limit,

we update the current best to lk.l + d̄kv , i.e., teleporting
it to the target. Because it is the smallest length expanding

from this label without exceeding the cost limit. (Figure

4(b), case 2.)

3) For the start point, if lk.c+ c̃kv is larger than the cost limit,

we prune the label. Because lk.c + c̃kv is the minimal

cost expanding from this label and exceeds the cost limit.

(Figure 4(c), case 3.)

4) For the start point, if lk.l+ d̃kv is smaller than the current

best and lk.c + c̃kv is no larger than the cost limit, we

make a new label which is teleported to the target with

length lk.l + d̃kv . The current best length is updated

correspondingly. Note that we will not prune the label

because we may find better solutions expanding from this

label. (Figure 4(c), case 2.)

For the last case, i.e., the start point is in the area of Figure

4(c) case 1 and the end point is in the area of Figure 4(b)

case 3, we preserve the label because it may expand to

2Current best is the minimum CSP length of currently found feasible paths.

feasible paths which have smaller lengths than the current best

without exceeding the cost limit as well. The correctness and

complexity analysis are shown in the Appendix.

C. Efficient SP Processing for CSP

Our approach relies on efficient SP processing for com-

puting d̄kv , c̄kv , d̃kv , c̃kv . If there exist multiple shortest

length paths, the smallest cost on these paths should be

returned. Likewise, if there exist multiple shortest cost paths,

the smallest length should be returned. Although existing SP

algorithms can return either the shortest length or the minimum

cost efficiently, they only consider one metric. While we

require both ones simultaneously.

We adapt the state-of-the-art SP algorithm H2H [21] and

summarize our adaptations as follows:

1) We built two indices: one for original length information

and the other for the corresponding cost.

2) In index construction and query processing, if the new

length is smaller than the old one, both the length and

cost will be updated. If the new length is equal to the old

one, the cost will be updated only if the new cost is smaller

than the old one. A mirror operation is applied to minimum

cost index construction and query processing.

With the above adaptation, the cost of invoking SP in SPEC

only takes up 5% to 10% of the total running time.

IV. ADAPTIVE EXPANSION CONTROL

Assigning priorities to labels facilitates distinguishing labels

that are more promising. An intuitive strategy is to always

expand the label with the highest priority, i.e., the top one in

the frontier, which seems to be the most efficient. However,

counter-intuitively, we find that this approach is often sub-

optimal because it can cause the search exploration process

stuck in expanding the labels that seem promising but are

actually unfeasible. Furthermore, expanding too many labels

will lead to redundant labels generated. We elaborate on this

intuition with an experiment as follows.

A. Observations

As shown in the toy example of Figure 5(a), S and T

indicate the source and target node respectively. l1, l2 are

labels in the 1st iteration, and l3, l4, l5, l6 are in the 2nd

iteration. Labels are arranged such that higher ones have larger

priorities. Besides, we assume l5 is a label that will induce an

update on the current best (highlighted in red), and l3, l4 will

be pruned in future steps. At the current iteration, assuming

the expansion number is set to 2, l3 and l4 are expanded.

Then, all their descendant labels will be pruned finally and

the current best will not decrease, which is unsatisfactory. If

the expansion number is set to 4, the current best will be

updated. However, more labels will be generated from l6 at

this step which may not be pruned as well even using the new

pruning threshold. An appropriate expansion number should

be 3 for this example.

Our exploratory experiments confirm the findings above.

Figure 5(b) shows a comparison of the current best and frontier
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Fig. 4. Pruning and teleporting strategies. The start and end correspond to two paths from a label node to the target node with the smallest cost and the
smallest length respectively. The coordinates of start and end points could be computed assisted by the shortest path indices.

size for a query on NE with expansion number set to 1 (EP1),

500 (EP500), and 1000 (EP1000). We can find that EP1 finds

the final CSP the slowest and has the largest running time. A

large number of EP500 finds the CSP the fastest and has the

smallest running time. While an even larger number EP1000

is worse than EP500 as well.

Although we may find an optimal expansion number for

one query, it may not be suitable for queries with different

nodes and cost constraints. Adjusting different static expansion

strategies for different query sets is impractical because of

the tuning cost. Instead, considering that each iteration’s

expansion impacts the overall search procedure which reveals

a sequential decision making characteristic, we propose to

learn an adaptive strategy in an end-to-end manner using the

reinforcement learning method to serve different queries.

S T

X

X

Future paths

(a) Adaptive expansion intuition (b) Expansion number comparison
Fig. 5. The effect of different expansion numbers. In Figure 5(b), FS is the
frontier size and CB is the current best.

B. RL-based expansion control

In the following, we elaborate our specifications of state,

action, reward and optimization objective:

State s. We collect query’s information and the current run-

ning statistics as informative signals. Based on the preliminary

study, we list state features in Table I. QI and RI indicate query

information and running information respectively.

Action a. We set the actions as discrete numbers that increase

geometrically, i.e., 16, 32, 64, 128, etc. The action space can

cater to various expansion demands for different queries.

Reward r. Our goal is to optimize the overall running time,

which is constituted by each iteration’s time. Hence, we take

the negative running time during each iteration as the reward

signal. Note that the reward decaying factor γ is set to 1. In this

way, maximizing the cumulative reward in RL is consistent

with our goal of minimizing the overall running time. Based

on our experimental studies, we find that the running time

of one iteration may fluctuate because of CPU overloads and

TABLE I
LIST OF STATE FEATURES

Type Symbol Description

QI
c Cost limit
Luv The shortest length between u, v

RI

Tlast Last iteration running time
F Frontier size
ΔF Frontier size change from last iteration
Scurr Current best value
ltop.priority Frontier top label’s priority
ltop.l Frontier top label’s length
ltop.c Frontier top label’s cost
ΔStop Length gap between top label’s priority and cur-

rent best
cr Frontier top label’s remaining cost

thread schedules. Hence, we combine the running time with

the number of new unpruned labels as a combined reward to

reduce variance. λ is set in [0.1, 0.5] empirically.

Riter = −Titer − λNiter (1)

Optimization objective. We adopt the Deep Q-network

(DQN) [22] as the RL agent. For a transition tuple (s, a, r, s
′
),

the optimization objective is the Bellman equation error using

target network and policy network. The target network’s

estimation is Vtarget = r + maxa′ Qtarget(s
′
, a

′
), while the

policy network’s estimation is Vpolicy = Qpolicy(s, a). We adopt

smooth L1 loss as the error metric as follows, where β is set

to 1.0 by default.

L =

{
0.5(Vtarget − Vpolicy)

2/β, |Vtarget − Vpolicy| < β

|Vtarget − Vpolicy| − 0.5β, otherwise
(2)

C. Parallel optimization

Once the expansion number is determined at each iteration,

we could parallelize the expansion process to boost the effi-

ciency based on modern multi-core CPUs. We devise a thread

pool to manage parallel threads. Additionally, we make two

optimizations for the parallel implementation.

(1) Each thread maintains a local non-dominant list, which

stores newly unpruned labels in this thread, instead of directly

writing back to the global list. This approach reduces synchro-

nization overheads and memory write contention when parallel

threads write labels back to the global non-dominant list.

(2) After all threads expand their local non-dominant lists, we

merge and prune new labels from all threads by adopting the

dominance relation. Because a parallel expansion will expand



FrontierExpanding

Thread 1 Thread 2 Thread k...

Merge local NDLs

Global Non-dominant list

Local NDL Local NDL Local NDL

Fig. 6. Parallel execution sketch. Local NDL indicates a non-dominant label
list maintained in each thread independently.

TABLE II
LIST OF DATASET STATISTICS.

Type Dataset —V— —E— Size

Road

New York City (NY) 264346 730100 14MB
Florida (FLA) 1070376 2687902 55MB
Northwest USA (NW) 1207945 2820774 60MB
Northeast USA (NE) 1524453 3868020 81MB

Internet
Router Connection (Router) 2113 13264 1MB
Tech-Internet (Internet) 40164 170246 3MB

IF
Open flights (Flights) 2905 31290 1MB
Power grid (Power) 4941 13188 1MB

more labels than a single thread as some labels dominated in

a single thread may not be dominated in a parallel scenario

[7]. With the merge step, we avoid pushing back redundant

labels into the frontier.

The execution flow is sketched in Figure 6. We will describe

more detailed settings in Sec. V, e.g., thread pool size, the

overload of each thread, etc.

V. EXPERIMENTAL SETUP

Environment. We run SPEC and other baselines that only

require CPUs on a machine with an AMD EPYC 7643

48-Core processor. Note that Vine runs on GPUs, and the

GPU specification is NVIDIA Tesla P100 GPU with 12GB

global memory and 56SMs. Vine is complied with NVIDIA’s

nvcc compiler (version 7.5) 3, and other CPU algorithms are

complied with gcc 9.3 with O3 flag. In all experiments, the

graph data is pre-loaded into the CPU or GPU memory. We

run all experiments five times and average the results.

Datasets. We evaluate SPEC and the baselines on 8 read-

world graph datasets as listed in Table II. These datasets are

used in previous works [1], [7]. We include three types of

graphs: (1) road network, (2) internet topology, and (3) infras-

tructure network. Road networks are obtained from the 9th

DIMAC Challenge [23]. Internet and infrastructure datasets

are obtained from the network data repository [24]. On road

networks, length and cost indicate road length and travel cost.

For internet and infrastructure networks, only the topology

information is obtainable, without length and cost attached.

Hence for each edge, we randomly generate two integers in

the range [100, 10000] as length and cost respectively.

Query sets. For road networks, we adopt the same query set

as used in [7]. While for internet and infrastructure networks,

we adopt the following rule to generate queries, which is

used in previous works [1], [7]. We firstly generate query

3Newer NVCC version results in errors for Vine.

node pairs randomly and then divide them into three sets Q1,

Q2, and Q3, according to their hop lengths. The ranges are

[dmin/8, dmin/4], [dmin/4, dmin/2], and [dmin/2],+∞], for

Q1, Q2, and Q3 respectively. dmin is the graph diameter. Q1
is designed to be with a relatively small search space, Q2

is moderate, and Q3 is large. Constraints are also generated

randomly between the minimum and the maximum cost of

the two query nodes. Each query set contains 100 queries. We

report the average running time of each query set.

Baselines. We compare the following methods that could solve

the exact CSP problem: (1) our single thread SPEC (SPEC-s),

(2) our multi-thread SPEC (SPEC-m), (3) labeling algorithm

(LA), [8] (4) Vine, [7], (5) k-th shortest path algorithm (KSP)

[17], [25], [26]. KSP solves the exact CSP algorithm by finding

the next SP until the solution satisfies the cost limit. We

implement the labeling algorithm and adopt the label’s length

as the priority. For other baselines, we use their released codes

and default settings.

SPEC settings. For all experiments, we set lk.l + d̄kv as

the default priority unless specified otherwise. For the RL

controller, we set 7 discrete actions, i.e., 16, 32, 64, 128, 256,

512, 1024. We set the replay buffer size to 5× 105 steps, and

the target network update frequency to 2×104 steps. Here each

step represents one iteration during solving a query. For our

multi-thread SPEC, we set the thread pool size to 70, and each

thread’s default overload, i.e., the number of labels distributed

to each thread for expansion, is set to 10.

Besides, we list the index space and build time of all

datasets in Appendix. We also elaborate RL training scheme,

Q-network architectures, and inference time in Appendix.

VI. EXPERIMENTAL RESULTS

In this section, we report experiment results, including

overall performance comparison (Sec. VI-A), pruning and

teleporting effect (Sec. VI-B), label priorities (Sec. VI-C),

adaptive expansion control effect (Sec. VI-D), and parallel

overload effect (Sec. VI-E).

A. Overall Performance Comparison

Figure 7 shows all methods’ average running time on each

query set. Note that the y-axis is set in a logarithm scale. For

small query sets like Q1, the speedup of SPEC-s over Vine

ranges over several dozens to several hundreds. For example,

SPEC-s achieves the smallest speedup of 27× on the Flights

graph and the largest speedup of 485× on the NY graph. The

speedup of SPEC-s over Vine on Q1 is 162× averaged on

all datasets. For large queries like Q3, the relative speedup

of SPEC-s is smaller than that on Q1. For example, SPEC-s

achieves 3.2× on NW and 125× on FLA. The average speedup

of SPEC-s is 40× over all datasets on Q3. For moderate

Q2, the speedup also lies in the middle of Q1 and Q3, i.e.,

the smallest and the largest speedup is 9× on Flights and

418× on FLA respectively with an average of 118×. For other

baselines, the running time of LA is prohibitively large even

for moderate graph and query sets, as shown in Figure 7(b)

and surges for large query sets as shown in Figure 7(c). For
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Fig. 7. Overall performance comparison for three query sets on all datasets.

KSP, the average running time is slightly better than that of

Vine on small Q1 sets while much larger on moderate and

large query sets.

Parallel Performance. We can find that SPEC-m obtains 3×
to 5× speedup over SPEC-s for queries on large datasets,

which require substantial computation time. For example, on

the NE graph with Q3 set, the average time of SPEC-s is

690ms, while SPEC-m is 142ms, achieving a 4.85× speedup.

For small datasets, the speedup decreases. This is because

small datasets have short running times and the parallelism

benefit becomes less significant. For example, on the Power

graph with Q3 set, the running time of SPEC-m and SPEC-s

is 1.31ms and 2.26ms respectively, with a minor speedup. We

find that the overload of each thread also has a considerable

influence on the improvements. We will discuss the effects of

this parameter in Sec. VI-E.

B. Impact of Pruning Strategies

In this section, we discuss the effects of our pruning

and teleporting strategies in Sec. III-B. We compare the

single thread SPEC-s performance with and without these

pruning and teleporting strategies. Two versions are denoted

by SPEC-s (with) and SPEC-s (without) respectively. We

conduct comparisons on all datasets for Q2 and Q3. Results

are shown in Figure 8. We can find that our pruning and

teleporting strategies have a substantial influence on the overall

running time on all datasets. The SPEC-s (with) runs about

2 to 3 magnitudes faster than SPEC-s (without) depending

on datasets. For example, speedups for Q2 on all datasets

of SPEC-s (with) over SPEC-s (without) are 64×, 317×,

1263×, 525×, 45×, 28×, 40×, 121× respectively, with an

average of 301×. While the average speedup for Q3 is 179×.

This comparison reveals the effectiveness of our pruning and

teleporting strategies, especially for large graphs like NW and

NE, on which many unpromising labels are pruned at the early

stages of the expansion process.

To illustrate the pruning effects more intuitively, we show

two queries’ statistics (on the NE graph) in Figure 8(c) and

8(d). Figure 8(c) and 8(d) plot the frontier size and current

best w.r.t iteration number, corresponding to the left and right

y-axis, respectively. For each query, we have two settings.

The without truth indicates a regular setting of SPEC-s, i.e.,

gradually updating the current best. While the with truth means

we set the current best to the groundtruth CSP value of that

query at the beginning. For query 1 in Figure 8(c), we can

find that the frontier size of without truth and with truth are

similar until the half of iterations. Then without truth has a

slightly larger frontier size than with truth. The frontier size

of without truth decreases rapidly after finding the final CSP

solution at about 3200 iterations. The final iteration numbers

of without truth and with truth have a considerably small gap,

i.e., about 300 iterations w.r.t a total of 4000, and the overall

running time is analogous as well. For query 2 in Figure 8(d),

the red line (without truth) is quite close to the green area (with
truth), which means that the gradually updating of current best

has pruned almost all labels that could be pruned by the final

ground truth length.

Figure 8(c) and Figure 8(d) reveal that: (1) there still

exist considerable labels that cannot be pruned in the search

procedure even if we know the groundtruth for pruning at

the beginning; (2) our pruning and teleporting strategies lead

to a pruning performance comparable with that of using the

groundtruth for pruning initially. Hence, in order to take

advantage of available computing resources like parallelism, a

promising direction is to enable bidirectional expansion , i.e.,

expanding from both the source and target, so that a better

pruning strategy and performance can be devised. We leave

this as future work.

(a) Performance on Q2 (b) Performance on Q3

(c) Query case 1 (d) Query case 2

Fig. 8. Pruning/teleporting performance comparison and illustration of two
cases on the NE graph between with and without ground-truth CSP value
initially. For Figure 8(c) and 8(d), frontier size and length correspond to the
left and right y-axis respectively.

C. Label Priority Effects

In this section, we investigate the effects of different label

priorities. We compare 4 priorities, i.e., P1, P2, P3 are three
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Fig. 9. Label priorities comparison.

SP enhanced priorities discussed in Sec. III-A. We set P4 as

the label length, i.e., lk.l. The results on five relatively large

networks are shown in Figure 9. Comparisons are conducted

for Q2 (Figure 9(a)) and Q3 (Figure 9(b)) on the NE graph

with the single thread SPEC-s. Note that all variants include

the pruning and teleporting strategies.

We can see that for easy queries like Q2 on NY, FLA, and

Internet, the difference between P1 and P4 is not so obvious.

However, for hard queries like Q3 on NE, the gap between SP

enhanced priority P1 and length-based P4 becomes signifi-

cant, e.g., SPEC-s (P1) runs in less than 750ms on average

while SPEC-s (P4) exceeds 1700ms. P1 achieves the best

performance for most cases. Another interesting observation

is the relatively inferior performance of P2 and P3, which are

also SP enhanced priorities. We can find P3 performs slightly

worse than P1, while P2 is much worse than P1. Note that

P1 is an optimistic estimation of a label’s final length ignoring

the future cost needed. The reason comes from the fact that

a real CSP solution is near the SP path, i.e., CSP and SP

may have some overlapped path nodes. Hence the SP length

priority P1 works well as a signal for selecting promising

labels that will probably appear on the final CSP path, which

is also supported by Figure 3(a).

D. Adaptive Control Effects

In this section, we study the performance of adaptive

expansion control compared with static strategies. We consider

8 heuristic settings denoted by epi, where i is set to 1, 16,

32, 64, 128, 256, 512, 1024, respectively. i indicates how

many labels are expanded in each iteration. All experiments

are based on the single thread SPEC-s. To compare rl with

static strategies, we vary the queries by showing results for Q1,

Q2, and Q3 with small cost C1, medium cost C2 and large

cost C3. C1, C2, and C3 refer to the 20%, 50%, and 80%

values within the cost range specified in the experiment setup,

respectively. We demonstrate the results on the NE graph as

it is the largest dataset in our experiments and the dataset

comes with real road length and travel cost. The running time

is divided by that of ep1 to show the relative running time.

A smaller value indicates a better performance compared with

ep1. For all settings, we use the same RL controller. Results

are shown in Figure 10(a).

We can find that different query sets prefer different static

strategies. For example, on Q2 C1, ep128 achieves the best

performance. On Q2 C2, ep16 is the best. While on Q3 C3,

ep32 outperforms others. For most cases, the rl strategy

achieves comparable performance with the best static strategy

(a) Expansion strategy comparison

(b) RL actions (case 1) (c) RL actions (case 2)
Fig. 10. Expansion strategies and learned adaptive expansion numbers.

and outperforms the best static strategy on several cases, e.g.,

Q1 C1 and Q1 C3. In all cases, the rl strategy outperforms

the ep1 significantly.

To understand the expansion strategy learned by the RL con-

troller more intuitively and shed some light into the expansion

procedure, we plot the actions of the controller and the frontier

size w.r.t iterations for two query cases on NE graph, as shown

in Figure 10(b) and 10(c). The green line indicates the frontier

size and the red line shows the expansion number given by

the RL controller. We can find that the expansion controller

learns to give different strategies for different queries. For case

1, the expansion number is large at the beginning and remains

at a low level till termination. For case 2, the expansion

number firstly decreases rapidly as in case 1. The controller

outputs large actions near the end of the search procedure. We

can find that the increase of actions is accompanied by the

rapid decrease of frontier size. Because the final CSP solution

may have been found and most of the remaining labels in

the frontier could be pruned. Therefore the controller prefers

large actions to decrease the total iterations and the overall

running time. Based on the strategies learned by the expansion

controller, the expansion number should be relatively small



when the frontier size is large for heavy queries. Once high-

quality solutions are found for pruning, we may increase the

expansion number for quick termination.

E. Influence of Parallel Thread Overload

We study each thread’s overload in SPEC-m, i.e., number

of labels distributed to each thread to expand, which is an

important parameter affecting the number of threads used and

parallelization cost. We plot the average running time and the

number of threads utilized under different overload settings for

Q3 on the NE graph in Figure 11. Single indicates SPEC-s,

while OLi means SPEC-m with overload set to i.

From Figure 11, we can find that SPEC-m with overload

set to 2, 5, or 10 have much less running time compared with

the single thread version, i.e., about 150ms vs 700ms. We

can also notice that too many or too few threads will not

obtain the best result. For example, OL1 uses 70 threads while

requiring about 290ms, while OL50 uses about 2 threads with

an average of 450ms. Small overload leads to a non-negligible

thread invocation cost compared to the time of expanding the

assigned labels. A large overload, e.g., OL30, OL50, under-

utilizes thread resources. Hence, in our experiments, we set

10 as the default overload.

Fig. 11. Effects of parallel thread overload for Q3 on NE.

VII. CONCLUSIONS

In this paper, We devise highly efficient pruning strategies

by leveraging SP information. Our SP enhanced label priority

facilitates finding better feasible solutions faster, which could

be used to prune more sub-optimal labels. Furthermore, we

devise the adaptive RL-based expansion controller, which

improves the overall performance further compared with static

expansion strategies. Single CPU thread SPEC-s outperforms

current state-of-the-art GPU-accelerated Vine by more than

one order of magnitude. The parallelized SPEC-m outperforms

SPEC-s about 3 to 5 times further. As future works, we plan to

study the processing of multiple CSPs under concurrent graph

processing frameworks [27].
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VIII. THE SPEC ALGORITHM AND INDEX STATISTICS

We conduct a parallel optimization on our adapted H2H

algorithm with a 60-threads thread pool. We report the index

space and time of the adapted implementation for all datasets

in Table III. The SPEC is shown in Algorithm 1.

TABLE III
LIST OF INDEX SPACE AND INDEX TIME ON ALL DATASETS.

Dataset
Properties NY FLA NW NE Router Internet Flights Power
Graph size 14MB 55MB 60MB 81MB 1MB 3MB 1MB 1MB
Index size 1.2G 4.9G 6.9G 13G 4.7M 177M 6.2M 3.4M
Index time 212s 441s 553s 280s 1s 4s 1s 1s

IX. DETAILED SETTINGS AND PROOFS

Algorithm 1: SPEC algorithm

Input : the query q = (u, v, c), graph G,

AdaptedIndex Φ.

Output: the shortest path length d between u and v
with cost not exceed c.

1 Initialize F and global label list GL, current best cb;
2 while F is not empty do
3 State = FeatureExtract(F , G);

4 Num = RLAgent(State);

5 New labels = Expand(F [0 : Num− 1], G);

6 Initialize new labels;

7 forall label lk ∈ New labels do
8 d̄, c̄, d̃, c̃ = AdaptedH2H(Φ, k, v, c);

9 prune result = Prune(lk, GL, d̄, c̄, d̃, c̃, c, cb);
10 if prune result.preserve is True then
11 AssignPriorities(lk, d̄, c̄, d̃, c̃ );

12 new labels.append(lk);

13 UpdateCurrentBest(cb, prune result);
14 end
15 InsertFrontier(F , new labels);

16 InsertGlobalList(GL, new labels);

17 end
18 return d, c;

For the RL controller, we use a MLP with two hidden

layers as Q-net’s architecture. The hidden dimensions are

both 64, with input dimension 11 and output dimension 7. In

our experiments, the average inference time of RL controller

is about 10 macro-seconds. Note that the inference time is

independent with datasets.

Theorem 1. Given a query q = (u, v, c), The algorithm in
Alg. 1 could find the shortest path P ∗q with cost not exceeding
c (if exists).

Proof. Since our algorithm is based on the labeling algorithm,

which will find all non-dominate labels on all nodes, we only

Fig. 12. Query time comparison of state-of-the-art SP method (the H2H [21])
and CSP method (the Vine [7]) on the NE graph for a moderate query set
with 20 queries. SP is about 5 to 6 orders of magnitude faster than CSP.

need to prove that the label expansion priority and our pruning

strategies will not discard the best label on v, i.e., P ∗q . Assum-

ing the best path P ∗q = (v0, v1, v2, · · · , vk) where v0 = u and

vk = v, then for each prefix path P ∗q [: i] = (v0, v1, · · · , vi),
we need to proof that the label corresponding to P ∗q [: i] will be

preserved at node vi after the algorithm termination. We first

prove that each P ∗q [: i] will not be dominated by other possible

labels on vi. This can be proven by contradiction. If P ∗q [: i] is

dominated by P
′
, then P

′
+P ∗q [i+1 :] becomes a better path,

which contradicts the definition of P ∗q . Firstly, we can find

that no matter what labels priority we adopt, all labels P ∗q [: 0,

P ∗q [: 1], · · · , P ∗q [: k] will be created and preserved on nodes v0,

v1, · · · , vk, correspondingly, if no pruning strategies are used.

Because the algorithm will expand each label in the frontier

until empty by exploring all labels’ neighbors. Furthermore, all

these labels P ∗q [: i] will not be dominated by others, as stated

above. Hence they will be preserved finally. Secondly, we need

to prove that our devised pruning strategies will not prune any

P ∗q [: i]. Let Pcurr best denotes the current best solution found

during the algorithm operating. For any label P ∗q [: i], we can

conclude that: (1) For pruning strategy 1 (Figure 4(b), case

1.), P ∗q [: i].l + d̄vi,vk
≤ P ∗q .l ≤ Pcurr best.l. Because d̄vi,vk

is the minimal length from vi to vk, which is no larger than

P ∗q [i :].l. Since P ∗q is the best solution from v0 to vk, its

length is no larger than Pcurr best.l at any time. Hence, pruning

strategy 1 will not discard any label P ∗q [: i]. (2) For pruning

strategy 2 (Figure 4(c), case 3), P ∗q [: i].c+ c̃vi,vk ≤ P ∗q .c ≤ c.
Because c̃vi,vk is the smallest cost from vi to vk, which is no

larger that P ∗q [i :].c. Since P ∗q is a feasible solution from v0
to vk, its cost is no larger than c. Hence pruning strategy 2

will not discard any label P ∗q [: i] as well. (3) For teleporting

strategies, it will not prune existing labels but only update the

Pcurr best. As indicated by the above statement, Pcurr best will not

prune P ∗q [: i] in strategy 1. Hence, our pruning strategies will

preserve all labels (prefix paths) on the optimal path P ∗q . After

the algorithm termination, the best label (the shortest length

with a legal cost) on node vk will be selected as P ∗q .

For the worst-case complexity of Alg. 1, all pruning strate-

gies are ineffective and the controller always decides to expand

all labels in the frontier at each iteration. Our algorithm

degrades to the naive labeling algorithm and has the same

time complexity [8]. Hence the complexity of Alg. 1 is

O(lmaxmn · log lmaxn) where m (resp. n) is the number of

edges (resp. nodes), and lmax is the maximum edge length.
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