
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2022

Right to know, right to refuse: Towards UI perception-based Right to know, right to refuse: Towards UI perception-based

automated fine-grained permission controls for Android apps automated fine-grained permission controls for Android apps

Vikas Kumar MALVIYA
Singapore Management University, vikasm@smu.edu.sg

Chee Wei LEOW
Singapore Management University, cwleow@smu.edu.sg

ASHOK KASTHURI
Singapore Management University, ashokk.2022@phdcs.smu.edu.sg

Naing Tun YAN
Singapore Management University, yannaingtun@smu.edu.sg

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

See next page for additional authors Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
MALVIYA, Vikas Kumar; LEOW, Chee Wei; ASHOK KASTHURI; YAN, Naing Tun; SHAR, Lwin Khin; and
JIANG, Lingxiao. Right to know, right to refuse: Towards UI perception-based automated fine-grained
permission controls for Android apps. (2022). Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Ann Arbor, Michigan, 2022 October 10-14. 1-6.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7777

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7777&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Vikas Kumar MALVIYA, Chee Wei LEOW, ASHOK KASTHURI, Naing Tun YAN, Lwin Khin SHAR, and
Lingxiao JIANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7777

https://ink.library.smu.edu.sg/sis_research/7777

Right to Know, Right to Refuse: Towards UI Perception-Based
Automated Fine-Grained Permission Controls for Android Apps

Vikas K. Malviya
School of Computing and Information
Systems, Singapore Management

University
Singapore

vikasm@smu.edu.sg

Chee Wei Leow
School of Computing and Information
Systems, Singapore Management

University
Singapore

cwleow@smu.edu.sg

Ashok Kasthuri
School of Computing and Information
Systems, Singapore Management

University
Singapore

ashokk.2022@phdcs.smu.edu.sg

Yan Naing Tun
School of Computing and Information
Systems, Singapore Management

University
Singapore

yannaingtun@smu.edu.sg

Lwin Khin Shar
School of Computing and Information
Systems, Singapore Management

University
Singapore

lkshar@smu.edu.sg

Lingxiao Jiang
School of Computing and Information
Systems, Singapore Management

University
Singapore

lxjiang@smu.edu.sg

ABSTRACT
It is the basic right of a user to know how the permissions are used
within the Android app’s scope and to refuse the app if granted
permissions are used for the activities other than specified use
which can amount to malicious behavior.

This paper proposes an approach and a vision to automatically
model the permissions necessary for Android apps from users’ per-
spective and enable fine-grained permission controls by users, thus
facilitating users in making more well-informed and flexible per-
mission decisions for different app functionalities, which in turn
improve the security and data privacy of the App and enforce apps
to reduce permission misuses. Our proposed approach works in
mainly two stages. First, it looks for discrepancies between the
permission uses perceivable by users and the permissions actually
used by apps via program analysis techniques. Second, it runs pre-
diction algorithms using machine learning techniques to catch the
discrepancies in permission usage and thereby alert the user for
action about data violation. We have evaluated preliminary imple-
mentations of our approach and achieved promising fine-grained
permission control accuracy. In addition to the benefits of users’
privacy protection, we envision that wider adoption of the approach
may also enforce better privacy-aware design by responsible bodies
such as app developers, governments, and enterprises.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Privacy protections; • Software and its engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Ann Arbor, Michigan, United States
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559556

KEYWORDS
automated permission control, UI perception, Android application
analysis, Android permissions, machine learning

ACM Reference Format:
Vikas K. Malviya, Chee Wei Leow, Ashok Kasthuri, Yan Naing Tun, Lwin
Khin Shar, and Lingxiao Jiang. 2022. Right to Know, Right to Refuse: To-
wards UI Perception-Based Automated Fine-Grained Permission Controls
for Android Apps. In 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3551349.3559556

1 INTRODUCTION
Mobile phones are indispensable in daily life. Besides being a strong
communication medium, now they facilitate daily routine tasks via
mobile apps. These apps use the personal information of users to
personalize the functionality. But some apps misuse this function
by secretly using the user’s data for advertising or some other
malicious work without the user’s consent, because of which user’s
privacy is raising more andmore concerns. "Do you allow the app to
access your contacts, photos, media, files, messages, . . . " becomes a
common question faced by users when they start to use an app, but
such permission control mechanisms put too much burden on users
(Hong 2017) [21]. Most users may not understand well the purposes
of the accesses and the implications of granting permissions, and
simply grant the permissions most of the time, leading to significant
misuses of their privacy-sensitive data by apps.

It is unreliable to use the "reputation" of app developers to pro-
tect users’ privacy for various reasons. For example, Facebook was
reported to use "free" VPN apps and "research" apps that utilize a
backdoor provided by Apple’s Enterprise Developer Programme to
collect participants’ data without disclosure of its purposes (Cons-
tine 2019, Shealy 2019) [12, 37]. Google also used the backdoor to
collect users’ data, although it did better than Facebook in revealing
itself and how the data collection works (Whittaker et al. 2019) [49].

It is too inflexible to grant permissions at the granularity level
of apps. E.g., although it makes sense to allow a Messenger app to
access microphone and camera during a video call, it opens the door

https://doi.org/10.1145/3551349.3559556
https://doi.org/10.1145/3551349.3559556

ASE ’22, October 10–14, 2022, Ann Arbor, Michigan, United States Malviya et al.

for the app to (mis)use the permissions for monitoring purposes. It
would be better to grant permission for a functionality only when
desired by the user following the principle of least privilege.

This paper aims to build up the capabilities that enable auto-
mated, finer-grained, and customizable permission controls that
are aligned with users’ perception of apps’ functionalities according
to what are perceivable from app user interfaces. This will promote
a privacy ecosystem that keeps users aware, while reducing the
burden on users, and pushes app developers to improve the privacy
protection grades of their apps.

Our key research question is as follows: How can we automati-
cally determine if a permission request to use privacy-sensitive data
by an app is legitimate at any point of use? We aim to address the
question from multiple views that model both users’ perceptions
of permissions necessary for apps and actual permissions used by
apps, following the right-to-know design principle that users should
be able to know apps’ functionality and private data needs based
on their interactions with app UIs and have the right-to-refuse too.
More specifically, we aim to,
(1) Build a model that can automatically infer the permission needs

according to extracted elements and contexts of apps’ UIs re-
lated to the functionality visible by a user.

(2) Build a model that can automatically determine the permissions
actually used by apps according to its code and infer the func-
tionality enabled by the permissions. Then, the discrepancies
between (1) the user perceived functionality and permission
needs and (2) the actual functionality and permissions used in
the code enables detection of (il)legitimate permission uses.

(3) Develop a dynamic permission manager that can customize
permission controls according to each user’s perceptions and
historical interactions with apps, monitor app features (UIs and
code traces) at run time, detect permission discrepancies and
warn the user about potential , and suggest to the user if to allow
or deny the permission use, or to fake private data if needed.

We have implemented the components of our approach using combi-
nation of dynamic and static analysis techniques and deep learning-
based UI widget/image classification techniques. Our evaluation
on more than 20 real-world apps show promising results: Our ap-
proach correctly inferred perceivable functionalities and permis-
sions needed for about 66% of screenshots of app UIs from users’
perspective; It also correctly inferred the permissions necessary
for more than 90% of the code functionalities in apps represented
as code graphs; We also successfully utilize a dynamic permission
manager to dynamically allow or deny permissions or fake data
at run time according to the discrepancies between the inferred
permission needs and the actual permissions used: if an app uses a
permission for a functionality that is imperceptible by the user, the
use is denied as illegitimate. 1

The rest of the paper is organized as follows. Section 2 surveys
related work and discusses the uniqueness of our approach. Section
3 overviews our approach. Sections 4,5,6,7 give more details about
the major components and preliminary evaluation results. Section
8 concludes with future work.

1This paper considers a dangerous permission request by an app as a use of privacy-
sensitive data; in general, a use of private data may not be directly guarded by a
permission request, but can still be traced via taint analysis.

2 RELATEDWORK
Understanding and Managing Privacy: Much work has ex-
ploited ways to empower users with knowledge and capabilities to
better understand and manage privacy, such as Jason Hong, Jin et
al. and Chitkara et al. [11, 21, 24], for the use of sensitive data and
permissions in Android apps.

Detection of Abnormal Use of Private Data: Li et al. [27]
proposed a functional programming model, for accessing private
data. Gorla et al. [19] used app descriptions to check the abnormal
uses of sensitive APIs. Avdiienko et al. [4] built classification models
using data flow to differentiate normal and abnormal uses of private
data. BOXMATE by Jamrozik et al. [23] infers sandbox rules to
restrict private data uses. Avdiienko et al. and, Hotzkow [5, 22]
used "GUI mining" to cluster similar GUI elements across apps and
detect outliers that trigger different APIs in code.

User Perception vs App Behaviour: Chen et al. [9] used
Permission Event Graphs to specify policies on the interactions
between user actions and permissions. Chen and Zhu) [10] used
app functionalities to justify if a data transmission is a leak. Yang
et al. and Fu et al. [16, 45]) used data flow information during GUI
change event to infer if a data transmission is intended by a user.
Fernandes et al. [15] inferred semantic annotations for UI elements
on-device to avoid sending sensitive on-screen data off the device.
Yang et al. [44] used conditions and events surrounding private
data uses to differentiate malicious uses from benign ones. Pandita
et al. [34] and Qu et al. [36] checked if the descriptions of an app
are consistent with permission uses. Yu et al. [47, 48] extended
their work with additional information such as the app’s privacy
policy bytecode, code features and natural language processing
techniques. Wijesekera et al. [43] used context likely visible to a
user for classificationmodels and personalizes the models; theymay
be the first to infer privacy decisions automatically on a case-by-
case basis at runtime without active user involvement. Nguyen et
al. [32] measured user perception towards Android app behaviour
on the basis of GUI elements to detect access of sensitive resources.
Zhang et al. [51] developed a language for formalizing GUI policies
and proposed abstraction named event-driven layout forest to per-
form static analysis for finding violations of sensitive information
usage. Cao et al. [8] conducted a study of user’s behavior towards
permissions granting and denial of Android apps.

Detection of Illegitimate Use of Permission: Zhang et al.
[50] used dynamic analysis to recognize permission (mis)uses in
apps. Fu et al. [17] used app code and foreground UIs to build clas-
sifiers that differentiate legitimate and illegitimate permission uses.
SmarPer (Olejnik et al.) [33] used 32 types of context information
(e.g., time, location, app name) to build classification models.

Privacy-by-Design: For the purpose of assisting smartphone
app developers in comprehending and implementing the most rele-
vant privacy and security concepts, Majid Hatamian [20] proposed
a design guide. The stated legal concepts are mapped in this guide
to workable privacy and security solutions. It supports developers
in ensuring greater privacy that complies with current legal require-
ments. Sokolova and Lemercier [38] examined the existing privacy
situation of mobile systems with reference to mobile operating
systems and mobile apps, classifying privacy violation possibilities
into three classes. They concluded by presenting a few patterns that

UI Perception-Based Automated Fine-Grained Permission Controls for Android Apps ASE ’22, October 10–14, 2022, Ann Arbor, Michigan, United States

assist mobile application developers in implementing the Privacy
by Design principle. A novel authorization model appropriate for
mobile applications that respects Privacy by Design was introduced
by Sokolova et al. [39]. The authors demonstrated how such a mod-
ified permission system might enhance not only the security but
also the transparency and consent of mobile applications.

These related studies have the following limitations:
• Most of the studies (except for a few [43]) are coarse-grained,
making decisions at app-level or library/package-level, and not
flexible enough for different app usages;

• Most studies based on classification techniques need to assume
some apps are “benign” beforehand, which is unreliable.

• The studies have not utilized links among user-understandable
GUI features, app functionalities, and norms of private data uses
across apps for legitimacy decisions.

Our approach and vision aim to develop novel techniques that have
the following advantages:
• No need of “benign” apps, via cross-validation of legitimacy
models across many apps to infer norms of minimal private data
uses with minimal user labelling;

• More fine-grained classification of GUI features and app func-
tionalities, via deep learning of user-perceivable UI elements and
contexts, code patterns, and permission uses in each app;

• More accurate correlation among GUI features and private data
uses, via new feature classification techniques that use both static
and dynamic information of an app to relate UI elements and
contexts and user perceptions to relevant code in the app;

• More understandable permission legitimacy decisions, via UI
perception-based matching and comparison across UI, code, and
private data uses in apps and individual users’ preferences.

3 OVERVIEW OF SOLUTION APPROACH
An overview of our approach is shown in Figure 1. It has two
main stages: building permission legitimacy (control) models, and
applying the models. The first stage infers the norms of dangerous
permission uses (and thus privacy-sensitive data uses) across a set
of apps. It is to be done on servers that have full-control of the
devices to analyse and test Android apps’ GUIs and bytecodes. UI
elements and contexts and data usage patterns in code are extracted
and related to each other to construct legitimacy/control models of
private data uses. We implement it from three aspects.
• The first aspect is dynamic analysis of apps. We extract screen-
shots (as images and UI element layouts) and code execution
traces (e.g., API call sequences) from an app. Such data is used to
train deep learning models in a later step to identify UI features
and permission uses perceivable by users.

• The second aspect is to utilize user perceptions towards permis-
sions and UI features (e.g., icons, widgets, their functionalities
and intents). Such perceptions can be curated via user studies
of real-world apps and/or via automated inference from trained
machine learning models (Section 5).

• The third aspect is static analysis of apps. It produces various
kinds of code graphs (e.g., control-flow graphs, call graphs, de-
pendence slices, window-transition graphs) linked to UI elements
(e.g., triggered by a user action via the app UI). Such graphs can

Figure 1: Overview of Approach

be used to train deep learning models to classify code function-
alities and permission needs and to check if they are consistent
with users’ perception via UIs. At the same time, static analysis
can identify all permissions that may be potentially used in the
app code, although with more false alarms.

The three aspects can thus produce different but related views of
the functionalities of an app and its permission needs. Following
the principles of right-to-know and least privilege, we use the view
perceivable by users via UIs as the “legitimate” functionalities and
permissions; the discrepancies between this UI view and the other
views indicate potential violations in app code, which are used as
the decision guideline for forming our Permission Control Model.

The second stage is intended for developing a permission man-
ager that, based on the Permission Control Model, helps users to
have fine-grained controls of permission requests at runtime. The
second stage also utilizes dynamic monitoring and analysis and
consists of a violation detector and mitigator. It monitors the app
features (UI elements, code API call traces, and permission requests)
and utilizes the models from the first stage and compares them on
the fly. In case of discrepancies, it warns the user about that and
provides mitigation options (e.g., to deny the permission request,
or to fake the private data guarded by the permission) which can
be saved and tailored for future uses.

Our approach can be used by an app store to infer and apply the
permission legitimacy/control models to detect if an app contains
illegitimate permission uses. It can also be used as a system app
(with privileges) or a standalone app on (unrooted) devices to apply
the inferred models on the fly to analyse if each use by an app
on-device is illegitimate (i.e., not perceivable or not controllable
by the user at run time) and customize mitigation options. The
components of the stages are explained further in the next sections.

4 DYNAMIC ANALYSIS OF ANDROID APPS
Dynamic Analysis of Android apps is done to obtain screenshots
and code execution traces at run time. These will be utilized in
training the deep learning models during the first stage and also in
developing a permission manager during the second stage.

We adapt DroidMate-2 [6] for our purpose during the first stage
as it can achieve relatively high coverage in comparisonwith related
work. Based on the screenshot images and UI elements extracted, we
trained a deep learning model based on image and text embedding
and multi-class classification using the Keras library [35], together
with data from user perceptions as labels (Section 5). The model

ASE ’22, October 10–14, 2022, Ann Arbor, Michigan, United States Malviya et al.

can take images and UI elements of an app as input and produce as
output the functionality descriptions and permissions for the app
that is likely user-perceivable via UIs. We evaluated 89 applications
having 76 benign and 13 malicious apps for uses of 9 sensitive
permissions. We achieved on average 66% precision and 56% recall.
We are now conducting larger-scale evaluations with more apps
and more user labels to enhance the results.

5 USER PERCEPTION CURATION
We collect users’ perceptions for GUI elements, their features and
the permission(s) needed for them. We conducted a user study
through an online survey with 102 participants for screenshots
taken from about 20 apps commonly used in our city [46]. There
are 144 Yes-No Questions, 30 Multi-Selection questions, and 17 UI
Design Preference questions. The questions in the user study were
formatted with inspiration from the previous work [29]. We also
cross-validated the Yes-No MCQ answers from the 14 participants
with only Android experience, 14 participants with only iPhone
experience, and 74 participants who are experienced with both.

Through the answers to the questions, we want to find out how
well each UI element expresses its intent to use certain permissions
for users to understand. As a summary, participants on average
identified only 55.6% of the permissions used in the apps based on
the provided UI images. This shows that, the UI does not accurately
express the intent of permission uses. If we set the threshold for
“Good” UI at 70% agreement among participants (i.e., more than
70% of the participants indicate that the UI expresses the need of
a permission), we got 100 of such “Good” UI images for training,
and the remaining 44 UI images and also screenshots from malware
apps were considered as “Poor” examples.

Besides this study, we expand our study with recent related
work [32]. They measured user perception towards Android app
behaviour on the basis of GUI elements via user studies. Then
they developed a tool named GUIBAT to detect undesired access of
sensitive resources. We are also using their dataset of UI elements
for expanding our study and training deep learning models.

6 STATIC ANALYSIS WITH GRAPH
REPRESENTATION LEARNING

6.1 Static Program Analysis
Static analysis is a fundamental element in program analysis and
is used to debug, examine the source code before the program
execution or run. We used Soot [40] and other tools derived from it,
such as FlowDroid [3] and Gator [26], to load Android apps and to
generate the graphs such as call graph, CFG, PDG, SDG, Window-
Transition Graphs. These graphs act as basic building blocks for our
deep learning models of code in our work. We also perform slicing
[41] on the graphs to reduce code that is irrelevant to permission
uses or user inputs via UI event handlers, so that the sliced graphs
can be more accurate in representing permission or UI-relevant
code functionalities for training deep learning models.

6.2 Whole Graph Embedding based Prediction
Graph embedding techniques [7] are to turn graphs into numerical
encoding vectors based on the graph structures and their implicit

features, so that the graph vectors can be easily used as features to
train machine learning models to detect a desired property of the
graphs. We ran whole graph embedding on the inter-procedural
control-flow graphs for Android apps to obtain the feature vectors
using the NetworkX [31] library and GL2vec [18] in the karateclub
machine learning library [25].

We applied the graph vectors on various classification models to
classify the code functionalities of the graphs and their permission
mappings, evaluated with precision and recall metrics. For the same
20 apps used in Section 5 and also 20 malicious apps obtained from
DeepIntent [13], we assumed all code functionalities and permission
uses in the malwares are illegitimate, but ran a malware scanning
tool Androwarn [2] on the “benign” apps to detect any malicious
behaviours; only code graphs that do not contain any reported
malicious behaviors are considered legitimate and used for our
training. Thus, a graph is considered as legitimate if there is no
malicious behaviour detected (with a label 0), and is considered
as illegitimate if there are any malicious behaviours found (with a
label 1). We intend to further engage annotators and utilize user
studies to enrich the labels for both UI screenshots and code graphs,
to minimize training biases and improve the quality of the graph
labels and thus deep learning models.

Table 1 shows our preliminary results. We used sklearn ensemble
library [14] for Ensemble Graph Classification. A VotingClassifier
was created based on majority voting from seven commonly used
machine learning classifiers. The Ensemble model resulted in a
promising precision of up to 92% for detecting code graphs that
may contain illegitimate (i.e., malicious or imperceptible by users
via UIs) permission uses.

Table 1: Ensemble Classification Report

Precision Recall F1 Score
Label 0 (legitimate) 0.89 0.93 0.91
Label 1 (illegitimate) 0.92 0.88 0.95
Weighted Avg 0.91 0.91 0.90

To reduce the need of manually labelled user perceptions, we
also envision the use of unsupervised learning models according
to similarity and difference among code graphs and UIs [1, 28] for
detecting abnormal permission uses that may violate the right-to-
know and least privilege principles.

7 DYNAMIC PERMISSION MANAGER
Dynamic permission managers, such as UIPDroid [30], can be em-
ployed in the second stage for detecting discrepancies in permission
usage. To enable dynamic monitoring and permission management
on unrooted devices, we can utilize app virtualization frameworks
(e.g., VirtualXposed [42] used by UIPDroid) in an architecture like
Figure 2. Android API methods can be hooked using VirtualXposed.
Whenever any app wants to access private data of user, it has to
call platform APIs which are secured by the Android permission
mechanism. API hooks to these method calls can check whether
the permission should be granted based on the Permission Control
Model from the first stage and/or users’ customized preferences.
Users’ decisions are recorded and stored for the future incidents.

UI Perception-Based Automated Fine-Grained Permission Controls for Android Apps ASE ’22, October 10–14, 2022, Ann Arbor, Michigan, United States

Permission Configuration UIs can be used to change the prefer-
ences. Permission Configuration UIs can also import decision from
other analysis tools or from other experienced persons.

SMU Classification: Restricted

Dynamic Fine-Grained Permission Manager on Unrooted Devices

5

Virtualized Apps

Virtualization

Allow/Deny/Fake

Permission Control
ModelApps to be

managed

API Hooks Permission
Controls

Android Framework (Unrooted)

Notifications
Permission

Configuration
UIs for Users

Figure 2: Virtualization-based Permission Control

We have evaluated our Permission Control Model for the same
Android apps used in Section 5 using UIPDroid on a Google Pixel
4A phone with Android 10. As UIPDroid currently hooks only the
APIs that use contact and location permissions, we only consider
the parts of the control model that involve contact and location per-
missions. Out of about 20 apps, UIPDroid failed to hook 11 apps due
to limitations of the VirtualXposed frameworks and anti-analysis
techniques used in the apps. For rest of the apps UIPDroid success-
fully enabled permission control according to the decisions given
by our Permission Control Model, its execution overhead was also
minimal as it did not affect user experience. This preliminary result
shows the usefulness of our Permission Control Model together
with a dynamic permission manager like UIPDroid for automated
fine-grained permission management.

8 CONCLUSION AND FUTUREWORK
An approach and a vision for fine-grained permission controls in
Android apps is presented in this work, guided by the right-to-know,
right-to-refuse, and least-privilege principles. Illustrated with pre-
liminary implementations and evaluations, this approach, together
with its supporting models, aims to automatically determine the
legitimacy of each use of private data by analysing app UI and
code functionality linked to it. The components of this approach
can be customised as per users’ needs. We are aware of various
limitations in the components of our two-stage approach but have
confidence that they can be improved with better analysis and
learning techniques for UI and code as a part of future work.

In more general, the approach can be useful for various scenarios:
• As a gatekeeper for application stores to build the norms of
private data uses and analyse if the features of an app in the store
comply with the norms.

• As a system app (with system privileges) shipped with mobile
systems to analyse the features of an app on-device against the
norms and manage private data uses on the fly.

• As a standalone app on an (unrooted) user’s device to analyse
the features of an app on the device against the norms and report
and/or block anomalies. The user can choose to customize the
norms used and enable/disable the analysis for each app.

The above usage scenarios can help to shift the burden of privacy
protection from end-users to app developers, to app stores, to sys-
tem developers, to OEM vendors, etc. [21] by identifying features
in their apps that unnecessarily use private data and improving the
privacy protection ecosystem for mobile systems and apps.

ACKNOWLEDGMENTS
This work is supported by the National Research Foundation Singa-
pore, under the National Satellite of Excellence in Mobile System
Security and Cloud Security (NRF2018NCR-NSOE004- 0001).

REFERENCES
[1] Sondus Almrayat, Rana Yousef, and Ahmad Sharieh. 2019. Evaluating the Impact

of GUI Similarity between Android Applications to Measure their Functional
Similarity. International Journal of Computer Applications 178 (06 2019), 31–38.
https://doi.org/10.5120/ijca2019919075

[2] Androwarn 2019. Androwarn: Yet another static code analyzer for malicious
Android applications. https://github.com/maaaaz/androwarn.

[3] Secure Software Engineering Group at Paderborn University and Fraunhofer
IEM. 2022. FlowDroid Data Flow Analysis Tool. Retrieved May 19, 2022 from
https://github.com/secure-software-engineering/FlowDroid

[4] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal
Usage of Sensitive Data. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 426–436. https://doi.org/10.1109/ICSE.2015.61

[5] Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, Andreas Rau,
Alessandra Gorla, and Andreas Zeller. 2017. Detecting Behavior Anomalies in
Graphical User Interfaces. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). 201–203. https://doi.org/10.1109/ICSE-
C.2017.130

[6] Nataniel P. Borges Jr., Jenny Hotzkow, and Andreas Zeller. 2018. DroidMate-2:
A Platform for Android Test Generation. Association for Computing Machinery,
New York, NY, USA, 916–919. https://doi.org/10.1145/3238147.3240479

[7] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[8] Weicheng Cao, Chunqiu Xia, Sai Teja Peddinti, David Lie, Nina Taft, and Lisa M.
Austin. 2021. A Large Scale Study of User Behavior, Expectations and Engage-
ment with Android Permissions. In 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, 803–820. https://www.usenix.org/conference/
usenixsecurity21/presentation/cao-weicheng

[9] Kevin Zhijie Chen, Noah M. Johnson, Vijay Victor D’Silva, Shuaifu Dai, Kyle
MacNamara, Thomas R. Magrino, Edward XueJun Wu, Martin C. Rinard, and
Dawn Xiaodong Song. 2013. Contextual Policy Enforcement in Android Applica-
tions with Permission Event Graphs. In NDSS.

[10] Xin Chen and Sencun Zhu. 2015. DroidJust: automated functionality-aware
privacy leakage analysis for Android applications. Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks (2015).

[11] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I. Hong, and Yuvraj
Agarwal. 2017. Does This App Really Need My Location?: Context-Aware Privacy
Management for Smartphones. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1 (09 2017), 1–22. https://doi.org/10.1145/
3132029

[12] Josh Constine. 2019. Facebook pays teens to install VPN that spies on them. Re-
trieved May 19, 2022 from https://techcrunch.com/2019/01/29/facebook-project-
atlas/

[13] DeepIntent 2021. DeepIntent: Deep Icon-Behavior Learning for Detecting
Intention-Behavior Discrepancy in Mobile Apps. https://github.com/deepintent-
ccs/DeepIntent.

[14] Ensemble 2021. sklearn Ensemble Module. https://scikit-
learn.org/stable/modules/ensemble.html.

[15] Earlence Fernandes, Oriana Riva, and Suman Nath. 2016. Appstract: On-The-
Fly App Content Semantics With Better Privacy. In ACM Annual International
Conference on Mobile Computing and Networking (MobiCom’16) (acm annual
international conference on mobile computing and networking (mobicom’16)
ed.). ACM. https://www.microsoft.com/en-us/research/publication/appstract-
on-the-fly-app-content-semantics-with-better-privacy/

[16] Hao Fu, Zizhan Zheng, Aveek K. Das, Parth H. Pathak, Pengfei Hu, and Prasant
Mohapatra. 2016. FlowIntent: Detecting Privacy Leakage from User Intention to
Network Traffic Mapping. In 2016 13th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON). 1–9. https://doi.org/10.1109/
SAHCN.2016.7732993

https://doi.org/10.5120/ijca2019919075
https://github.com/secure-software-engineering/FlowDroid
https://doi.org/10.1109/ICSE.2015.61
https://doi.org/10.1109/ICSE-C.2017.130
https://doi.org/10.1109/ICSE-C.2017.130
https://doi.org/10.1145/3238147.3240479
https://www.usenix.org/conference/usenixsecurity21/presentation/cao-weicheng
https://www.usenix.org/conference/usenixsecurity21/presentation/cao-weicheng
https://doi.org/10.1145/3132029
https://doi.org/10.1145/3132029
https://techcrunch.com/2019/01/29/facebook-project-atlas/
https://techcrunch.com/2019/01/29/facebook-project-atlas/
https://www.microsoft.com/en-us/research/publication/appstract-on-the-fly-app-content-semantics-with-better-privacy/
https://www.microsoft.com/en-us/research/publication/appstract-on-the-fly-app-content-semantics-with-better-privacy/
https://doi.org/10.1109/SAHCN.2016.7732993
https://doi.org/10.1109/SAHCN.2016.7732993

ASE ’22, October 10–14, 2022, Ann Arbor, Michigan, United States Malviya et al.

[17] Hao Fu, Zizhan Zheng, Sencun Zhu, and Prasant Mohapatra. 2019. Keeping
Context In Mind: Automating Mobile App Access Control with User Interface In-
spection. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.
2089–2097. https://doi.org/10.1109/INFOCOM.2019.8737510

[18] GL2Vec 2019. GL2vec: Graph Embedding Enriched by Line Graphs with Edge
Features. https://link.springer.com/chapter/10.1007/978-3-030-36718-3_1.

[19] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking App Behavior Against App Descriptions. In ICSE ’14: Proceedings of the
2014 International Conference on Software Engineering (Hyderabad, India). ACM
Press, 292–302.

[20] Majid Hatamian. 2020. Engineering Privacy in Smartphone Apps: A Technical
Guideline Catalog for App Developers. IEEE Access 8 (2020), 35429–35445. https:
//doi.org/10.1109/ACCESS.2020.2974911

[21] Jason Hong. 2017. The Privacy Landscape of Pervasive Computing. IEEE Pervasive
Computing 16, 3 (2017), 40–48. https://doi.org/10.1109/MPRV.2017.2940957

[22] Jenny Hotzkow. 2017. Automatically inferring and enforcing user expectations.
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (2017).

[23] Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller. 2016. Mining
Sandboxes. In 2016 IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE). 37–48. https://doi.org/10.1145/2884781.2884782

[24] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Kumar Srivastava,
Matthew Fredrikson, Yuvraj Agarwal, and Jason I. Hong. 2018. Why Are They
Collecting My Data?: Inferring the Purposes of Network Traffic in Mobile Apps.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 2 (12 2018), 1–27. https://doi.org/10.1145/3287051

[25] Karateclub 2021. Karateclub Whole Graph Embedding.
https://karateclub.readthedocs.io/en/latest/modules/root.html.

[26] Gyutak Kim. 2022. GATOR: Program Analysis Toolkit For Android. Retrieved May
19, 2022 from http://web.cse.ohio-state.edu/presto/software/gator

[27] Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang, Matthew
Fredrikson, Yuvraj Agarwal, and Jason I Hong. 2017. PrivacyStreams: Enabling
Transparency in Personal Data Processing for Mobile Apps. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1 (09 2017), 76:1—-76:26. https://doi.org/10.
1145/3130941

[28] Jian Mao, Jingdong Bian, Hanjun Ma, Yaoqi Jia, Zhenkai Liang, and Xuxian Jiang.
2018. Robust Detection of Android UI Similarity. In 2018 IEEE International
Conference on Communications (ICC). 1–6. https://doi.org/10.1109/ICC.2018.
8422189

[29] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos Kofinas, Michelle
Mazurek, and Jeffrey Foster. 2017. User Interactions and Permission Use on
Android. 362–373. https://doi.org/10.1145/3025453.3025706

[30] Duan Mulin, Jiang Lingxiao, Shar Lwin, Khin, and Gao Debin. 2022. UIPDroid:
Unrooted Dynamic Monitor of Android App UIs for Fine-Grained Permission
Control. In 2022 International Conference on Software Engineering.

[31] NetworkX 2021. NetworkX Network Analysis.
https://networkx.org/documentation/stable/tutorial.html.

[32] Trung Tin Nguyen, Duc Cuong Nguyen, Michael Schilling, Gang Wang, and
Michael Backes. 2021. Measuring User Perception for Detecting Unexpected
Access to Sensitive Resource in Mobile Apps. Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security (2021).

[33] Katarzyna Olejnik, Italo Dacosta, Joana Soares Machado, Kévin Huguenin, Mo-
hammad Emtiyaz Khan, and Jean-Pierre Hubaux. 2017. SmarPer: Context-Aware
and Automatic Runtime-Permissions for Mobile Devices. In 2017 IEEE Symposium
on Security and Privacy (SP). 1058–1076. https://doi.org/10.1109/SP.2017.25

[34] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In 22nd
USENIX Security Symposium (USENIX Security 13). USENIX Association, Wash-
ington, D.C., 527–542. https://www.usenix.org/conference/usenixsecurity13/

technical-sessions/presentation/pandita
[35] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada

Eskeland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien
Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, et al. 2017. Kvasir: A multi-
class image dataset for computer aided gastrointestinal disease detection. In
Proceedings of the 8th ACM on Multimedia Systems Conference. 164–169.

[36] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhongchao Chen. 2014. AutoCog: Measuring the Description-to-permission
Fidelity in Android Applications. Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (2014).

[37] Matt Shealy. 2019. What Facebook’s VPN scandal tells us about
its approach to data privacy. Retrieved May 19, 2022 from https:
//channels.theinnovationenterprise.com/articles/facebook-pays-teens-to-
download-a-vpn-that-spy-s-on-their-activity

[38] Karina Sokolova and Marc Lemercier. 2013. Privacy by Design in Mobile Devices.
In 4ème Atelier sur la Protection de la Vie Privée (APVP). Les Loges-en-Josas, France.
https://hal-utt.archives-ouvertes.fr/hal-02274620

[39] Karina Sokolova, Marc Lemercier, and Jean-Baptiste Boisseau. 2014. Respect-
ing user privacy in mobiles: privacy by design permission system for mobile
applications. International Journal On Advances in Security 7, 3-4 (2014), 110–120.
https://hal-utt.archives-ouvertes.fr/hal-02274681

[40] Soot 2021. Soot Program Analysis Framework. http://soot-oss.github.io/soot/.
[41] Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering

SE-10, 4 (1984), 352–357. https://doi.org/10.1109/TSE.1984.5010248
[42] Weishu. 2022. VirtualXposed. Retrieved May 17, 2022 from https://github.com/

android-hacker/VirtualXposed
[43] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David

Wagner, and Konstantin Beznosov. 2017. The Feasibility of Dynamically Granted
Permissions: Aligning Mobile Privacy with User Preferences. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). 1077–1093. https://doi.org/10.1109/SP.2017.51

[44] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
2015. AppContext: Differentiating Malicious and Benign Mobile App Behaviors
Using Context. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. 303–313. https://doi.org/10.1109/ICSE.2015.50

[45] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and Xiaoyang Sean
Wang. 2013. AppIntent: analyzing sensitive data transmission in android for
privacy leakage detection. Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013).

[46] Apps For You. 2022. Singapore Smart Nation Apps. Retrieved July 18, 2022 from
https://www.smartnation.gov.sg/community/apps-for-you

[47] L. Yu, X. Luo, C. Qian, S. Wang, and H. N. Leung. 2018. Enhancing the Description-
to-Behavior Fidelity in Android Apps with Privacy Policy. IEEE Transactions on
Software Engineering 44, 09 (sep 2018), 834–854. https://doi.org/10.1109/TSE.
2017.2730198

[48] Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. 2015. AutoPPG: Towards Automatic
Generation of Privacy Policy for Android Applications. Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices (2015).

[49] Whittaker Zack, Constine Josh, and Lunden Ingrid. 2019. Google will stop
peddling a data collector through Apple’s back door. Retrieved May 19,
2022 from https://techcrunch.com/2019/01/30/googles-also-peddling-a-data-
collector-through-apples-back-door/

[50] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,
Xiaoyang Sean Wang, and Binyu Zang. 2013. Vetting undesirable behaviors in
android apps with permission use analysis. Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (2013).

[51] Zhen Zhang, Yu Feng, Michael D. Ernst, Sebastian Porst, and Isil Dillig. 2021.
Checking conformance of applications against GUI policies. In ESEC/FSE 2021:
The ACM 29th joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). Athens, Greece.

https://doi.org/10.1109/INFOCOM.2019.8737510
https://doi.org/10.1109/ACCESS.2020.2974911
https://doi.org/10.1109/ACCESS.2020.2974911
https://doi.org/10.1109/MPRV.2017.2940957
https://doi.org/10.1145/2884781.2884782
https://doi.org/10.1145/3287051
http://web.cse.ohio-state.edu/presto/software/gator
https://doi.org/10.1145/3130941
https://doi.org/10.1145/3130941
https://doi.org/10.1109/ICC.2018.8422189
https://doi.org/10.1109/ICC.2018.8422189
https://doi.org/10.1145/3025453.3025706
https://doi.org/10.1109/SP.2017.25
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/pandita
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/pandita
https://channels.theinnovationenterprise.com/articles/facebook-pays-teens-to-download-a-vpn-that-spy-s-on-their-activity
https://channels.theinnovationenterprise.com/articles/facebook-pays-teens-to-download-a-vpn-that-spy-s-on-their-activity
https://channels.theinnovationenterprise.com/articles/facebook-pays-teens-to-download-a-vpn-that-spy-s-on-their-activity
https://hal-utt.archives-ouvertes.fr/hal-02274620
https://hal-utt.archives-ouvertes.fr/hal-02274681
https://doi.org/10.1109/TSE.1984.5010248
https://github.com/android-hacker/VirtualXposed
https://github.com/android-hacker/VirtualXposed
https://doi.org/10.1109/SP.2017.51
https://doi.org/10.1109/ICSE.2015.50
https://www.smartnation.gov.sg/community/apps-for-you
https://doi.org/10.1109/TSE.2017.2730198
https://doi.org/10.1109/TSE.2017.2730198
https://techcrunch.com/2019/01/30/googles-also-peddling-a-data-collector-through-apples-back-door/
https://techcrunch.com/2019/01/30/googles-also-peddling-a-data-collector-through-apples-back-door/

	Right to know, right to refuse: Towards UI perception-based automated fine-grained permission controls for Android apps
	Citation
	Author

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Solution Approach
	4 Dynamic Analysis of Android Apps
	5 User Perception Curation
	6 Static Analysis with Graph Representation Learning
	6.1 Static Program Analysis
	6.2 Whole Graph Embedding based Prediction

	7 Dynamic Permission Manager
	8 Conclusion and Future Work
	Acknowledgments
	References

