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ABSTRACT
It is the basic right of a user to know how the permissions are used
within the Android app’s scope and to refuse the app if granted
permissions are used for the activities other than specified use
which can amount to malicious behavior.

This paper proposes an approach and a vision to automatically
model the permissions necessary for Android apps from users’ per-
spective and enable fine-grained permission controls by users, thus
facilitating users in making more well-informed and flexible per-
mission decisions for different app functionalities, which in turn
improve the security and data privacy of the App and enforce apps
to reduce permission misuses. Our proposed approach works in
mainly two stages. First, it looks for discrepancies between the
permission uses perceivable by users and the permissions actually
used by apps via program analysis techniques. Second, it runs pre-
diction algorithms using machine learning techniques to catch the
discrepancies in permission usage and thereby alert the user for
action about data violation. We have evaluated preliminary imple-
mentations of our approach and achieved promising fine-grained
permission control accuracy. In addition to the benefits of users’
privacy protection, we envision that wider adoption of the approach
may also enforce better privacy-aware design by responsible bodies
such as app developers, governments, and enterprises.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Privacy protections; • Software and its engineering;
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1 INTRODUCTION
Mobile phones are indispensable in daily life. Besides being a strong
communication medium, now they facilitate daily routine tasks via
mobile apps. These apps use the personal information of users to
personalize the functionality. But some apps misuse this function
by secretly using the user’s data for advertising or some other
malicious work without the user’s consent, because of which user’s
privacy is raising more andmore concerns. "Do you allow the app to
access your contacts, photos, media, files, messages, . . . " becomes a
common question faced by users when they start to use an app, but
such permission control mechanisms put too much burden on users
(Hong 2017) [21]. Most users may not understand well the purposes
of the accesses and the implications of granting permissions, and
simply grant the permissions most of the time, leading to significant
misuses of their privacy-sensitive data by apps.

It is unreliable to use the "reputation" of app developers to pro-
tect users’ privacy for various reasons. For example, Facebook was
reported to use "free" VPN apps and "research" apps that utilize a
backdoor provided by Apple’s Enterprise Developer Programme to
collect participants’ data without disclosure of its purposes (Cons-
tine 2019, Shealy 2019) [12, 37]. Google also used the backdoor to
collect users’ data, although it did better than Facebook in revealing
itself and how the data collection works (Whittaker et al. 2019) [49].

It is too inflexible to grant permissions at the granularity level
of apps. E.g., although it makes sense to allow a Messenger app to
access microphone and camera during a video call, it opens the door

https://doi.org/10.1145/3551349.3559556
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for the app to (mis)use the permissions for monitoring purposes. It
would be better to grant permission for a functionality only when
desired by the user following the principle of least privilege.

This paper aims to build up the capabilities that enable auto-
mated, finer-grained, and customizable permission controls that
are aligned with users’ perception of apps’ functionalities according
to what are perceivable from app user interfaces. This will promote
a privacy ecosystem that keeps users aware, while reducing the
burden on users, and pushes app developers to improve the privacy
protection grades of their apps.

Our key research question is as follows: How can we automati-
cally determine if a permission request to use privacy-sensitive data
by an app is legitimate at any point of use? We aim to address the
question from multiple views that model both users’ perceptions
of permissions necessary for apps and actual permissions used by
apps, following the right-to-know design principle that users should
be able to know apps’ functionality and private data needs based
on their interactions with app UIs and have the right-to-refuse too.
More specifically, we aim to,
(1) Build a model that can automatically infer the permission needs

according to extracted elements and contexts of apps’ UIs re-
lated to the functionality visible by a user.

(2) Build a model that can automatically determine the permissions
actually used by apps according to its code and infer the func-
tionality enabled by the permissions. Then, the discrepancies
between (1) the user perceived functionality and permission
needs and (2) the actual functionality and permissions used in
the code enables detection of (il)legitimate permission uses.

(3) Develop a dynamic permission manager that can customize
permission controls according to each user’s perceptions and
historical interactions with apps, monitor app features (UIs and
code traces) at run time, detect permission discrepancies and
warn the user about potential , and suggest to the user if to allow
or deny the permission use, or to fake private data if needed.

We have implemented the components of our approach using combi-
nation of dynamic and static analysis techniques and deep learning-
based UI widget/image classification techniques. Our evaluation
on more than 20 real-world apps show promising results: Our ap-
proach correctly inferred perceivable functionalities and permis-
sions needed for about 66% of screenshots of app UIs from users’
perspective; It also correctly inferred the permissions necessary
for more than 90% of the code functionalities in apps represented
as code graphs; We also successfully utilize a dynamic permission
manager to dynamically allow or deny permissions or fake data
at run time according to the discrepancies between the inferred
permission needs and the actual permissions used: if an app uses a
permission for a functionality that is imperceptible by the user, the
use is denied as illegitimate. 1

The rest of the paper is organized as follows. Section 2 surveys
related work and discusses the uniqueness of our approach. Section
3 overviews our approach. Sections 4,5,6,7 give more details about
the major components and preliminary evaluation results. Section
8 concludes with future work.

1This paper considers a dangerous permission request by an app as a use of privacy-
sensitive data; in general, a use of private data may not be directly guarded by a
permission request, but can still be traced via taint analysis.

2 RELATEDWORK
Understanding and Managing Privacy: Much work has ex-
ploited ways to empower users with knowledge and capabilities to
better understand and manage privacy, such as Jason Hong, Jin et
al. and Chitkara et al. [11, 21, 24], for the use of sensitive data and
permissions in Android apps.

Detection of Abnormal Use of Private Data: Li et al. [27]
proposed a functional programming model, for accessing private
data. Gorla et al. [19] used app descriptions to check the abnormal
uses of sensitive APIs. Avdiienko et al. [4] built classification models
using data flow to differentiate normal and abnormal uses of private
data. BOXMATE by Jamrozik et al. [23] infers sandbox rules to
restrict private data uses. Avdiienko et al. and, Hotzkow [5, 22]
used "GUI mining" to cluster similar GUI elements across apps and
detect outliers that trigger different APIs in code.

User Perception vs App Behaviour: Chen et al. [9] used
Permission Event Graphs to specify policies on the interactions
between user actions and permissions. Chen and Zhu) [10] used
app functionalities to justify if a data transmission is a leak. Yang
et al. and Fu et al. [16, 45] ) used data flow information during GUI
change event to infer if a data transmission is intended by a user.
Fernandes et al. [15] inferred semantic annotations for UI elements
on-device to avoid sending sensitive on-screen data off the device.
Yang et al. [44] used conditions and events surrounding private
data uses to differentiate malicious uses from benign ones. Pandita
et al. [34] and Qu et al. [36] checked if the descriptions of an app
are consistent with permission uses. Yu et al. [47, 48] extended
their work with additional information such as the app’s privacy
policy bytecode, code features and natural language processing
techniques. Wijesekera et al. [43] used context likely visible to a
user for classificationmodels and personalizes the models; theymay
be the first to infer privacy decisions automatically on a case-by-
case basis at runtime without active user involvement. Nguyen et
al. [32] measured user perception towards Android app behaviour
on the basis of GUI elements to detect access of sensitive resources.
Zhang et al. [51] developed a language for formalizing GUI policies
and proposed abstraction named event-driven layout forest to per-
form static analysis for finding violations of sensitive information
usage. Cao et al. [8] conducted a study of user’s behavior towards
permissions granting and denial of Android apps.

Detection of Illegitimate Use of Permission: Zhang et al.
[50] used dynamic analysis to recognize permission (mis)uses in
apps. Fu et al. [17] used app code and foreground UIs to build clas-
sifiers that differentiate legitimate and illegitimate permission uses.
SmarPer (Olejnik et al.) [33] used 32 types of context information
(e.g., time, location, app name) to build classification models.

Privacy-by-Design: For the purpose of assisting smartphone
app developers in comprehending and implementing the most rele-
vant privacy and security concepts, Majid Hatamian [20] proposed
a design guide. The stated legal concepts are mapped in this guide
to workable privacy and security solutions. It supports developers
in ensuring greater privacy that complies with current legal require-
ments. Sokolova and Lemercier [38] examined the existing privacy
situation of mobile systems with reference to mobile operating
systems and mobile apps, classifying privacy violation possibilities
into three classes. They concluded by presenting a few patterns that
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assist mobile application developers in implementing the Privacy
by Design principle. A novel authorization model appropriate for
mobile applications that respects Privacy by Design was introduced
by Sokolova et al. [39]. The authors demonstrated how such a mod-
ified permission system might enhance not only the security but
also the transparency and consent of mobile applications.

These related studies have the following limitations:
• Most of the studies (except for a few [43]) are coarse-grained,
making decisions at app-level or library/package-level, and not
flexible enough for different app usages;

• Most studies based on classification techniques need to assume
some apps are “benign” beforehand, which is unreliable.

• The studies have not utilized links among user-understandable
GUI features, app functionalities, and norms of private data uses
across apps for legitimacy decisions.

Our approach and vision aim to develop novel techniques that have
the following advantages:
• No need of “benign” apps, via cross-validation of legitimacy
models across many apps to infer norms of minimal private data
uses with minimal user labelling;

• More fine-grained classification of GUI features and app func-
tionalities, via deep learning of user-perceivable UI elements and
contexts, code patterns, and permission uses in each app;

• More accurate correlation among GUI features and private data
uses, via new feature classification techniques that use both static
and dynamic information of an app to relate UI elements and
contexts and user perceptions to relevant code in the app;

• More understandable permission legitimacy decisions, via UI
perception-based matching and comparison across UI, code, and
private data uses in apps and individual users’ preferences.

3 OVERVIEW OF SOLUTION APPROACH
An overview of our approach is shown in Figure 1. It has two
main stages: building permission legitimacy (control) models, and
applying the models. The first stage infers the norms of dangerous
permission uses (and thus privacy-sensitive data uses) across a set
of apps. It is to be done on servers that have full-control of the
devices to analyse and test Android apps’ GUIs and bytecodes. UI
elements and contexts and data usage patterns in code are extracted
and related to each other to construct legitimacy/control models of
private data uses. We implement it from three aspects.
• The first aspect is dynamic analysis of apps. We extract screen-
shots (as images and UI element layouts) and code execution
traces (e.g., API call sequences) from an app. Such data is used to
train deep learning models in a later step to identify UI features
and permission uses perceivable by users.

• The second aspect is to utilize user perceptions towards permis-
sions and UI features (e.g., icons, widgets, their functionalities
and intents). Such perceptions can be curated via user studies
of real-world apps and/or via automated inference from trained
machine learning models (Section 5).

• The third aspect is static analysis of apps. It produces various
kinds of code graphs (e.g., control-flow graphs, call graphs, de-
pendence slices, window-transition graphs) linked to UI elements
(e.g., triggered by a user action via the app UI). Such graphs can

Figure 1: Overview of Approach

be used to train deep learning models to classify code function-
alities and permission needs and to check if they are consistent
with users’ perception via UIs. At the same time, static analysis
can identify all permissions that may be potentially used in the
app code, although with more false alarms.

The three aspects can thus produce different but related views of
the functionalities of an app and its permission needs. Following
the principles of right-to-know and least privilege, we use the view
perceivable by users via UIs as the “legitimate” functionalities and
permissions; the discrepancies between this UI view and the other
views indicate potential violations in app code, which are used as
the decision guideline for forming our Permission Control Model.

The second stage is intended for developing a permission man-
ager that, based on the Permission Control Model, helps users to
have fine-grained controls of permission requests at runtime. The
second stage also utilizes dynamic monitoring and analysis and
consists of a violation detector and mitigator. It monitors the app
features (UI elements, code API call traces, and permission requests)
and utilizes the models from the first stage and compares them on
the fly. In case of discrepancies, it warns the user about that and
provides mitigation options (e.g., to deny the permission request,
or to fake the private data guarded by the permission) which can
be saved and tailored for future uses.

Our approach can be used by an app store to infer and apply the
permission legitimacy/control models to detect if an app contains
illegitimate permission uses. It can also be used as a system app
(with privileges) or a standalone app on (unrooted) devices to apply
the inferred models on the fly to analyse if each use by an app
on-device is illegitimate (i.e., not perceivable or not controllable
by the user at run time) and customize mitigation options. The
components of the stages are explained further in the next sections.

4 DYNAMIC ANALYSIS OF ANDROID APPS
Dynamic Analysis of Android apps is done to obtain screenshots
and code execution traces at run time. These will be utilized in
training the deep learning models during the first stage and also in
developing a permission manager during the second stage.

We adapt DroidMate-2 [6] for our purpose during the first stage
as it can achieve relatively high coverage in comparisonwith related
work. Based on the screenshot images and UI elements extracted, we
trained a deep learning model based on image and text embedding
and multi-class classification using the Keras library [35], together
with data from user perceptions as labels (Section 5). The model
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can take images and UI elements of an app as input and produce as
output the functionality descriptions and permissions for the app
that is likely user-perceivable via UIs. We evaluated 89 applications
having 76 benign and 13 malicious apps for uses of 9 sensitive
permissions. We achieved on average 66% precision and 56% recall.
We are now conducting larger-scale evaluations with more apps
and more user labels to enhance the results.

5 USER PERCEPTION CURATION
We collect users’ perceptions for GUI elements, their features and
the permission(s) needed for them. We conducted a user study
through an online survey with 102 participants for screenshots
taken from about 20 apps commonly used in our city [46]. There
are 144 Yes-No Questions, 30 Multi-Selection questions, and 17 UI
Design Preference questions. The questions in the user study were
formatted with inspiration from the previous work [29]. We also
cross-validated the Yes-No MCQ answers from the 14 participants
with only Android experience, 14 participants with only iPhone
experience, and 74 participants who are experienced with both.

Through the answers to the questions, we want to find out how
well each UI element expresses its intent to use certain permissions
for users to understand. As a summary, participants on average
identified only 55.6% of the permissions used in the apps based on
the provided UI images. This shows that, the UI does not accurately
express the intent of permission uses. If we set the threshold for
“Good” UI at 70% agreement among participants (i.e., more than
70% of the participants indicate that the UI expresses the need of
a permission), we got 100 of such “Good” UI images for training,
and the remaining 44 UI images and also screenshots from malware
apps were considered as “Poor” examples.

Besides this study, we expand our study with recent related
work [32]. They measured user perception towards Android app
behaviour on the basis of GUI elements via user studies. Then
they developed a tool named GUIBAT to detect undesired access of
sensitive resources. We are also using their dataset of UI elements
for expanding our study and training deep learning models.

6 STATIC ANALYSIS WITH GRAPH
REPRESENTATION LEARNING

6.1 Static Program Analysis
Static analysis is a fundamental element in program analysis and
is used to debug, examine the source code before the program
execution or run. We used Soot [40] and other tools derived from it,
such as FlowDroid [3] and Gator [26], to load Android apps and to
generate the graphs such as call graph, CFG, PDG, SDG, Window-
Transition Graphs. These graphs act as basic building blocks for our
deep learning models of code in our work. We also perform slicing
[41] on the graphs to reduce code that is irrelevant to permission
uses or user inputs via UI event handlers, so that the sliced graphs
can be more accurate in representing permission or UI-relevant
code functionalities for training deep learning models.

6.2 Whole Graph Embedding based Prediction
Graph embedding techniques [7] are to turn graphs into numerical
encoding vectors based on the graph structures and their implicit

features, so that the graph vectors can be easily used as features to
train machine learning models to detect a desired property of the
graphs. We ran whole graph embedding on the inter-procedural
control-flow graphs for Android apps to obtain the feature vectors
using the NetworkX [31] library and GL2vec [18] in the karateclub
machine learning library [25].

We applied the graph vectors on various classification models to
classify the code functionalities of the graphs and their permission
mappings, evaluated with precision and recall metrics. For the same
20 apps used in Section 5 and also 20 malicious apps obtained from
DeepIntent [13], we assumed all code functionalities and permission
uses in the malwares are illegitimate, but ran a malware scanning
tool Androwarn [2] on the “benign” apps to detect any malicious
behaviours; only code graphs that do not contain any reported
malicious behaviors are considered legitimate and used for our
training. Thus, a graph is considered as legitimate if there is no
malicious behaviour detected (with a label 0), and is considered
as illegitimate if there are any malicious behaviours found (with a
label 1). We intend to further engage annotators and utilize user
studies to enrich the labels for both UI screenshots and code graphs,
to minimize training biases and improve the quality of the graph
labels and thus deep learning models.

Table 1 shows our preliminary results. We used sklearn ensemble
library [14] for Ensemble Graph Classification. A VotingClassifier
was created based on majority voting from seven commonly used
machine learning classifiers. The Ensemble model resulted in a
promising precision of up to 92% for detecting code graphs that
may contain illegitimate (i.e., malicious or imperceptible by users
via UIs) permission uses.

Table 1: Ensemble Classification Report

Precision Recall F1 Score
Label 0 (legitimate) 0.89 0.93 0.91
Label 1 (illegitimate) 0.92 0.88 0.95
Weighted Avg 0.91 0.91 0.90

To reduce the need of manually labelled user perceptions, we
also envision the use of unsupervised learning models according
to similarity and difference among code graphs and UIs [1, 28] for
detecting abnormal permission uses that may violate the right-to-
know and least privilege principles.

7 DYNAMIC PERMISSION MANAGER
Dynamic permission managers, such as UIPDroid [30], can be em-
ployed in the second stage for detecting discrepancies in permission
usage. To enable dynamic monitoring and permission management
on unrooted devices, we can utilize app virtualization frameworks
(e.g., VirtualXposed [42] used by UIPDroid) in an architecture like
Figure 2. Android API methods can be hooked using VirtualXposed.
Whenever any app wants to access private data of user, it has to
call platform APIs which are secured by the Android permission
mechanism. API hooks to these method calls can check whether
the permission should be granted based on the Permission Control
Model from the first stage and/or users’ customized preferences.
Users’ decisions are recorded and stored for the future incidents.
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Permission Configuration UIs can be used to change the prefer-
ences. Permission Configuration UIs can also import decision from
other analysis tools or from other experienced persons.

SMU Classification: Restricted

Dynamic Fine-Grained Permission Manager on Unrooted Devices

5

Virtualized Apps

Virtualization

Allow/Deny/Fake

Permission Control 
ModelApps to be 

managed

API Hooks Permission 
Controls

Android Framework (Unrooted)

Notifications
Permission 

Configuration 
UIs for Users

Figure 2: Virtualization-based Permission Control

We have evaluated our Permission Control Model for the same
Android apps used in Section 5 using UIPDroid on a Google Pixel
4A phone with Android 10. As UIPDroid currently hooks only the
APIs that use contact and location permissions, we only consider
the parts of the control model that involve contact and location per-
missions. Out of about 20 apps, UIPDroid failed to hook 11 apps due
to limitations of the VirtualXposed frameworks and anti-analysis
techniques used in the apps. For rest of the apps UIPDroid success-
fully enabled permission control according to the decisions given
by our Permission Control Model, its execution overhead was also
minimal as it did not affect user experience. This preliminary result
shows the usefulness of our Permission Control Model together
with a dynamic permission manager like UIPDroid for automated
fine-grained permission management.

8 CONCLUSION AND FUTUREWORK
An approach and a vision for fine-grained permission controls in
Android apps is presented in this work, guided by the right-to-know,
right-to-refuse, and least-privilege principles. Illustrated with pre-
liminary implementations and evaluations, this approach, together
with its supporting models, aims to automatically determine the
legitimacy of each use of private data by analysing app UI and
code functionality linked to it. The components of this approach
can be customised as per users’ needs. We are aware of various
limitations in the components of our two-stage approach but have
confidence that they can be improved with better analysis and
learning techniques for UI and code as a part of future work.

In more general, the approach can be useful for various scenarios:
• As a gatekeeper for application stores to build the norms of
private data uses and analyse if the features of an app in the store
comply with the norms.

• As a system app (with system privileges) shipped with mobile
systems to analyse the features of an app on-device against the
norms and manage private data uses on the fly.

• As a standalone app on an (unrooted) user’s device to analyse
the features of an app on the device against the norms and report
and/or block anomalies. The user can choose to customize the
norms used and enable/disable the analysis for each app.

The above usage scenarios can help to shift the burden of privacy
protection from end-users to app developers, to app stores, to sys-
tem developers, to OEM vendors, etc. [21] by identifying features
in their apps that unnecessarily use private data and improving the
privacy protection ecosystem for mobile systems and apps.
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