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How to Find Actionable Static Analysis
Warnings: A Case Study with FindBugs

Rahul Yedida, Hong Jin Kang, Huy Tu, Xueqi Yang, David Lo Fellow, IEEE , Tim Menzies, Fellow, IEEE

Abstract—Automatically generated static code warnings suffer from a large number of false alarms. Hence, developers only take
action on a small percent of those warnings. To better predict which static code warnings should not be ignored, we suggest that
analysts need to look deeper into their algorithms to find choices that better improve the particulars of their specific problem.
Specifically, we show here that effective predictors of such warnings can be created by methods that locally adjust the decision
boundary (between actionable warnings and others). These methods yield a new high water-mark for recognizing actionable static
code warnings. For eight open-source Java projects (cassandra, jmeter, commons, lucene-solr, maven, ant, tomcat, derby) we achieve
perfect test results on 4/8 datasets and, overall, a median AUC (area under the true negatives, true positives curve) of 92%.

Index Terms—software analytics, static analysis; false alarms; locality, hyperparameter optimization

F

1 INTRODUCTION

Static analysis (SA) tools report errors in source code,
without needing to execute that code. This makes them
very popular in industry. For example, the FindBugs tool [6]
has been downloaded over a million times. Unfortunately,
due to the imprecision of static analysis and the different
contexts where bugs appear, SA tools often suffer from a
large number of false alarms that are deemed to be not
actionable [57]. Hence, developers never act on most of their
warnings [23, 24, 33]. Previous research work shows that
35% to 91% of SA warnings reported as bugs by SA tools
are routinely ignored by developers [24, 23, 32].

Those false alarms produced by SA tools are a significant
barrier to the wide-scale adoption of these SA tools [27, 15].
Accordingly, in 2018 [64], 2020 [68] and 2021 [69], Wang et al.
and Yang et al. proposed data miners that found the subset
of static code warnings that developers found “actionable”
(i.e. those that motivate developers to change the code). But
in 2022, Kang et al. [29] showed that of the 31,000+ records
used by Wang et al. and Yang et al., they could only generate
768 error-free records– which meant all the prior Wang and
Yang et al. results need to be revisited.

When Kang et al. tried to build predictors from the
768 good records, they found that their best-performing
predictors were not effective (e.g., very low median AUCs
of 41%), for details see Table 2. Hence the following remains
an open research question:

RQ1: For detecting actionable static code warnings, what
data mining methods should we recommend?
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This paper conjectures that prior work failed to find good
predictors because of a locality problem. In the learners
used in that prior work, the decision boundary between
actionable warnings and other was determined by a single
global policy. In detail, changes to the values of the hyper-
parameters of (e.g.) an SVM learner (used by Kang et
al. [29]) make global changes to the decision boundary (i.e.,
the global shape of the decision boundary is modified);
instead, we argue for local changes to the decision boundary.
This allows us to make different local adjustments at
different regions of the decision boundary to adapt it to the
local data.

More specifically, we conjecture that:
For complex data, global treatments perform worse
than localized treatments which adjust different parts
of the landscape in different ways.

To test this, we use local treatments to adjust the decision
boundary in different ways in different parts of the data.

1) Boundary engineering: adjust the decision boundary near
our data points;

2) Label engineering: control outliers in a local region by
using just a small fraction of those local labels;

3) Instance engineering: addressing class imbalance in local
regions of the data;

4) These treatments are combined with parameter
engineering to control how we build models.

We call this combination of treatments GHOST2 (GHOST2
extends GHOST [70] which just used one of these
treatments). When researchers propose an intricate
combination of ideas, it is prudent to ask several questions:

RQ2: Does GHOST2’s combination of instance, label,
boundary and parameter engineering, reduce the
complexity of the decision boundary?

Later in this paper, we will show evidence that our
proposed methods simplifies the “error landscape” of a data
set (a concept which we will discuss, in detail in §4).

ppyeo
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RQ3: Does GHOST2’s use of instance, label, boundary
and parameter treatments improve predictions?

Using data from Kang et al. (768 records from eight
open-source Java projects), we show that GHOST2 was able
to generate excellent predictors for actionable static code
warnings.

RQ4: Are all parts of GHOST2 necessary; i.e. would
something simpler also achieve the overall goal?

To answer RQ4, this paper reports an ablation study
that removes one treatment at a time from our four
recommended treatments. For the purposes of recognizing
and avoiding static code analysis false alarms, it will be
shown that, ignoring any part of our proposed solution
leads to worse predictors. Hence, while we do not know
if changes to our design might lead to better predictors, the
ablations study does show that removing anything from that
design makes matters worse.

This work has six key contributions:
1) As a way to address, in part, the methodological

problems raised by Kang et al. GHOST2 makes its
conclusions using a small percentage of the raw data
(10%). That is, to address the issues of corrupt data
found by Kang et al., we say “use less data” and, for
the data that is used, “reflect more on that data”.

2) A case study of successful open collaboration by
software analytics researchers. This paper is joint work
between the Yang et al. and Kang et al. teams from the
United States and Singapore. By recognizing a shared
problem, then sharing data and tools, in eight weeks
these two teams produced a new state-of-the-art result
that improves on all of the past papers by these two
teams (within this research arena). This illustrates the
value of open and collaborative science, where groups
with different initial findings come together to help
each other in improving the state-of-the-art for the
benefit of science and industry.

3) Motivation for changing the way we train software
analytics newcomers. It is insufficient to just reflect
on the different properties of off-the-shelf learners.
Analysts may need to be skilled in boundary, label,
parameter and instance engineering.

4) GHOST2’s design, implementation, and evaluation.
5) A new high-water mark in software analytics for

learning actionable static code warnings.
6) A reproduction package that other researchers can use

to repeat/refute/improve on our results1.
The rest of this paper is structured as follows. The next
section offers some background notes. §3 discusses the
locality problem for complex data sets and §4 offers details
on our treatments. §5 describes our experimental methods
after which, in §6, we show that GHOST2 outperforms (by
a large margin) prior results from Kang et al. We discuss
threats to validity for our study in §7, before a discussion in
§8 and concluding in §9.

Before all that, we digress to make two important points.

1. https://github.com/yrahul3910/static-code-warnings/

• A learned model must be tested on the kinds of data
expected in practice. Hence, any treatments to the
data (e.g. via instance, label, boundary engineering) are
restricted to the training data, and do not affect the test data.

• There are many ways we could define “actionable”
warnings. We use the definition that is consistent with
past work [68, 69, 64, 29]. However, it can be argued
that “actionable” refers to someone taking action (as
demonstrated by an open issue being closed in a future
commit, for example). Our definition then is a subset
of the actionable ones according to this definition (since
something could be actionable and some programmers
choose to take no action). Another way to say that is
that, by our definition, something is definitely actionable
in the sense that in the historical record there is a clear
record that some action was taken on it. Perhaps it
might be more precise to call these warnings “the one
that programmers choose to actually notice”– which is
what we take to be the essence of the prior work in this
area [68, 69, 64, 29].

2 BACKGROUND

2.1 Static Code Analysis
Automatic static analysis (SA) tools, such as Findbugs are
tools for detecting bugs in source code, without having to
execute that code. As they can find real bugs at low cost [55,
21], they have been adopted in open source projects and
in industry [6, 52, 9, 72, 47, 62]. For example, Zheng et al.
[74] discuss how a majority of the static analysis warnings
were generated from a few patterns which lead to security
vulnerabilities. Their study was based on defect data from
over 3 million lines of C/C++ code.

However, as they do not guarantee that all warnings
are real bugs, these tools produce false alarms. The large
number of false alarms produced is a barrier to adoption [27,
15, 56, 45]; it is easy to imagine how developers will
be frustrated by using tools that require them to inspect
numerous false alarms before finding a real bug. While this
problem was raised by Johnson et al. [27] nearly ten years
ago, a recent paper assessing the usability of static analysis
tools [45] confirmed that the challenge of too many false
alarms remains an open problem. While false alarms include
spurious warnings caused by the over-approximation of
possible program behaviors during program analysis, false
alarms also refer to warnings that developers do not
act on. For example, developers may not think that the
warning represents a bug (e.g. due to “style” warnings that
developers perceive to be of little benefit) or may not wish
to modify obsolete code.

The problem of addressing false alarms from static
analysis tools has been widely studied [30, 44, 28, 31, 30,
46, 18]. There have been many recent attempts to address the
problem. Some researchers have proposed new SA tools that
use more sophisticated, but costly, static analysis techniques
(e.g. Infer [12], NullAway [7]). Despite their improvements,
these tools still produce many false alarms [57]. Another
approach [46] involves the refinement of bug detection
rules to avoid false positives, but requires manual analysis
and design of the rules. Other attempts to prune false
alarms include the use of test case generation to validate

https://github.com/yrahul3910/static-code-warnings/
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Fig. 1: To detect actionable warnings, a learner is trained
on warnings from a training revision. Each warning is
annotated with a label. When deployed on the latest
revision, only warnings classified as actionable warnings
by the machine learner are presented to the developers.

the presence of a bug at the source code location indicated
by the warning [28]. As generating test cases is expensive,
these techniques may face issues when scaling up to larger
projects, limiting their practicality.

2.2 Early Results: Wang et al., 2018

By framing the problem as a binary classification problem,
machine learning techniques can identify actionable
warnings (allowing us to prune false alarms) [22, 23, 40,
51, 64, 68, 69]. These techniques use features extracted from
code analysis and metrics computed over the code and
warning’s history in the project.

Figure 1 illustrates this process. A static analyzer is
ran on a training revision and the warnings produced are
labelled. When applied to the latest revision, only warnings
classified as actionable warnings by the machine learner are
presented to the developers.

To assess proposed machine learners, datasets of
warnings produced by Findbugs have been created. As
the ground-truth label of each warning is not known, a
heuristic was applied to infer them. This heuristic compares
the warnings reported at a particular revision of the
project against a revision set in the future. If a warning
is no longer present, but the file is still present, then the
heuristic determines that the warning was fixed. As such,
the warning is actionable. Otherwise, if the warning is still
present, then the warning is a false alarm.

Wang et al. [64] ran a systematic literature review to
collect and analyze 100+ features proposed in the literature,
categorizing them into 8 categories. To remove ineffective
features, they performed a greedy backward selection
algorithm. From the features, they identified a set of features
that offered effective performance.

2.3 Further Result: Yang et al., 2021

Yang et al. [68] further analyzed the features using the data
collected by Wang et al. [64]. They found that all machine
learning techniques were effective and performed similarly
to one another. Their analysis revealed that the intrinsic

TABLE 1: Evaluation metrics based on TP (true positives);
TN (true negatives); TP (true positives) and FP (false
positives)

Evaluation Metric Description

Precision TP
TP+FP

AUC area under the receiver operating
characteristics curve (the true positive
rate against the false positive rate)

False alarm rate FP
FP+TN

Recall TP
TP+FN

dimensionality of the problem was low; the features used
in the experiments were more verbose than the actual
attributes required for classifying actionable warnings.
This motivates the use of simpler machine learners over
more complex learners. From their analysis, SVMs were
recommended for use in this problem, as they were both
effective and can be trained at a low cost. In contrast, deep
learners were effective but more costly to train.

For each project in their experiments, one revision
(training revision) was selected for extracting warnings for
training the learner, and another revision (testing revision)
set chronologically in the future of the training revision is
selected for extracting warnings for evaluating the learner.
This simulates a realistic usage scenario of the tool, where
the learner is trained using past data before developers
apply it to another revision of the source code.

2.4 Issues in Prior Results: Kang et al., 2022
Subsequently, Kang et al. [29] replicated the Yang et al. [68]
study to find subtle methodological issues in the Wang et al.
data [64] which led to overoptimistic results.

Firstly, Kang et al. found data leakage where the
information regarding the warning in the future, used
to determine the ground-truth labels, leaked into several
features. Five features (warning context in method, file,
for warning type, defect likelihood, discretization of defect
likelihood) measure the ratio of actionable warnings within
a subset of warnings (e.g. warnings in a method, file, of
a warning type). To determine if a warning is actionable,
the ground-truth label was used to compute these features,
leading to data leakage. Kang et al. reimplemented
the features such that they are computed using only
historical information, without reference to the ground truth
determined from the future state of the projects. As only the
features were reimplemented, the total number of training
and testing instances remained unchanged.

Secondly, they found many warnings appearing in both
the training and testing dataset. As some warnings remain
in the project at the time of both the training and testing
dataset, the model has access to the ground-truth label for
the warning at training time. Kang et al. addressed this issue
by removing warnings that were already present during the
training revision from the testing dataset, ensuring that the
learner does not see the same warning in both datasets.
After removing these warnings, the number of warnings in
the testing revision decreased from 15,695 to 2,615.

Next, Kang et al. analyzed the warning oracle, based on
the heuristic comparing warnings at one revision to another
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TABLE 2: The predictors reported by Kang et al. did not
perform well on the repaired data. In this table, lower
false alarms are better while higher precisions, AUC, and
recall are better.

Dataset Precision AUC False alarm rate Recall

cassandra 0.67 0.33 0.25 0.67
commons 0.67 0.52 0.57 0.62

lucene-solr 0.56 0.70 0.36 0.71
maven 0.52 0.41 0.19 0.32
jmeter 0.50 0.36 0.14 0.17
tomcat 0.52 0.41 0.19 0.32
derby 0.20 0.64 0.12 0.08

ant 0.00 0.00 0.00 0.00

revision in the future, used to automatically produce labels
for the warnings in the dataset. After manual labelling of
the actionable warnings, Kang et al. found that only 47% of
warnings automatically labelled actionable were considered
by the human annotators to be actionable. This indicates
that the heuristic employed as the warning oracle is not
sufficiently reliable for automatically labelling the dataset.

Kang et al. manually labelled 1,357 warnings. After
filtering out duplicates and uncertain labels, a dataset of
768 warnings remained. On this dataset, Kang et al. again
applied off-the-shelf SVM models, assessing them with the
evaluation metrics listed in Table 1.

For their reasoning, Kang et al. used the learners
recommended by prior work; i.e. radial bias SVMs. The
results of the SVM are shown in Table 2. Those results are
hardly impressive:

• Median precisions barely more than 50%;
• Very low median AUCs of 41%;
• Extremely low median recalls of 32%.

That is to say, while Kang et al. were certainly correct in
their criticisms of the data used in prior work, based on
their paper, it is still an open issue about how to generate
good predictors for static code false alarms.

3 RETHINKING THE PROBLEM

This section suggests that detecting actionable static code
warnings is a “bumpy” problem (defined below) and that
such problems can not be understood by learners that use
simplistic boundaries between classes.

The core task of any classification problem is the creation
of a hyperspace boundary that let us isolate what is most

C = 0.1 C = 0.1 C = 0.02
γ = 0.1 γ = 0.08 γ = 0.1

acc = 90% acc = 64% acc = 81%

Fig. 2: The C parameter of a radial basis function alters the
shape of the hyperspace boundary. Acc is accuracy which
is the ratio of true positives plus true negatives divided by
a SVM making predictions across that boundary. Example
from [36].

desired or most interesting. Different learners build their
boundaries in different ways:

• Simple decision tree learners can only build straight-
line boundaries.

• Neural networks can produce very complex and
convoluted boundaries.

• And internal to Kang et al.’s support vector machine
was a “radial basis function” that allowed those
algorithms to build circular hyperspace boundaries.

Boundaries can be changed by adjusting the parameters that
control the learner. For example, in Kang et al.’s radial basis
functions, the C regularization parameter is used to set the
tolerance of the model to (some) classifications. By adjusting
C , an analyst can change the generalization error; i.e. the
error when the model is applied to as-yet-unseen test data.

Figure 2 shows how changes to C can alter the decision
boundary between some red examples and blue examples.
Note that each setting to C changes the accuracy of the
predictor; i.e. for good predictions, it is important to fit the
shape of the decision boundary to the shape of the data.

(Technical aside: while this example was based on SVM
technology, the same line of argument applies to any other
classifier; i.e. changing the control parameters of the learner
also changes the hyperspace boundary found by that learner
and, hence, the predictive prowess of that learner.)

We have tried applying hyperparameter optimization
to C in a failed attempt to improve that performance (see
the C1 results of Table 8). From that failed experiment, we
conclude that however C works for radial bias functions,
they do not work well enough to fix the unimpressive
predictive performances – see Table 2.

Why do radial bias SVMs fail in this domain? Our
conjecture is that the hyperspace boundary dividing the
static code examples (into false positives and others) is so
“bumpy”2 that the kinds of shape changes seen in Figure 2
can never adequately model those examples.

To test that conjecture, we first checked for “bumpiness”
using a technique from Li et al. [38]. That technique
visualizes the “error landspace” (i.e. how fast small changes
in the independent variables altered the error estimation).
For our TOMCAT data, Li et al.’s methods resulted in Figure
3. There, we see a “bumpy” landscape with several multiple
local minima.

Having confirmed that our data is “bumpy”, our second
step was to look for ways to reduce that bumpiness.
Initially, we attempted to use neural nets since that kind of
learner is meant to be able to handle complex hyperspace
boundaries [67]. As discussed in §6, that attempt failed
even after trying several different architectures such as
feedforward networks, CNN, and CodeBERT [50, 21, 63]
(with and without tuning learner control parameters).

Since standard neural net technology failed, we tried
several manipulation techniques for the training process,
described in the next section.

4 TREATMENTS

This section discusses a framework that holds operators for
treating the data in order to adjust the decision boundary

2. “Bumpy” data contain complexities such as many local minima,
saddle points, very flat regions, and/or widely varying curvatures. For
example, see Figure 3.
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Fig. 3: Error landscape in the TOMCAT data before
applying the methods of this paper. In the plot, the
larger the vertical axes, the greater the loss value. Later
in this paper, we will show this plot again, after it has
been smoothed via the methods of §4 (see Figure 4 and
Table 11).

(in different ways for different parts of the data). For
the purposes of illustration and experimentation, we offer
operational examples for each part of the framework:

• SMOTE for instance engineering;
• SMOOTH for label engineering;
• GHOST for boundary engineering;
• DODGE for parameter engineering.

Before presenting those parts we note here that the
framework is more than just those four treatments. As
SE research matures, we foresee that our framework will
become a workbench within which researchers replace
some/all of these treatments with more advanced options.

That said, we have some evidence that SMOTE,
SMOOTH, GHOST, DODGE are useful:

• The ablation study of §5.4 shows that removing any one
of these treatments leads to worse performance.

• All these treatments are very fast: sub-linear time for
SMOTE and SMOOTH, linear time for GHOST, and
DODGE is known to be orders of magnitude faster than
other hyperparameter optimizers [3].

4.1 Instance Engineering (via SMOTEing)

To remove the “bumpiness” in data like Figure 3, we need
to pull and push the decision boundaries between different
classes into a smoother shape. But also, unlike simplistic C
tuning available in radial SVMs, we want that process to
perform differently in different parts of the data.

One way to adjust the decision boundary in different
parts of the data is to add (or delete) artificial examples
around each example X . This builds a little “hill” (or valley)
in the local region. As a result, in that local region, it
becomes more (or less) certain that all predictions which
reach the same conclusion as X . In effect, adding/deleting
examples pushes the decision boundary away (or, in the
case of deletions, pulls it closer). SMOTE [14] is one instance
engineering technique that:

• Finds five nearest neighbors to X with the same label;
• Selects one at random;
• Creates a new example R, with the same label as X at

some random point between X and R.

4.2 Label Engineering (via SMOOTHing)
SMOTE has seen much success in recent SE papers as a
way to improve predication efficacy [2]. But this technique
makes a linearity assumption that all the data around X is
correctly labelled (in our case, as examples of actionable or
unactionable static code warnings). This may not be true.
Cordeiro and Carneiro [17] and recent SE researchers [58,
59, 61, 71] note that noisy labels can occur when human
annotators are present [42] or those humans have divergent
opinions about the labels [8, 41]. Although our labels were
re-checked by the authors of Kang et al. [29], our ablation
study (below) reports that it is best to apply some mitigation
method for poorly labelled examples. For example, in
this work we applied the following SMOOTHing operator
where data is assigned labels using multiple near neighbors.
This has the effect of removing outliers in the data. At
least within the domain of static analysis warning data,
SMOOTHing, by reducing noise in the training labels,
SMOOTH compensates for misclassification accuracy.

Our SMOOTH operator works as follows:
• Given n training samples (and therefore, n labels), we

keep
√
n at random and discard the rest.

• Next, we use a KD-tree to recursively sub-divide
the remaining data into leaf clusters of 4

√
n nearest

neighbors. Within each leaf, all examples are assigned a
label that is the mode of the labels in that leaf.

One interesting and beneficial side-effect of SMOOTHing is
that we make conclusions on our test data using just 10%
of the training data. By reducing the labelling required to
make conclusions, SMOOTHing offers a way to help future
studies avoid the problems reported by Kang et al. [29]:

• One of the major finding of the Kang et al. study
was that earlier work [68] had mislabelled much of its
data. From that study, we assert that it is important for
analysts to spend more time checking their labels. We
note that there are many other ways to reduce the labels
required for supervised learning.

• SMOOTHing reduces the effort required for that
checking process (by a factor of ten).

As an aside, we note that SMOOTHing belongs to a class
of algorithms called semi-supervised learning [58, 59] that try
to make conclusions using as few labels as possible. The
literature on semi-supervised learning is voluminous [11,
13, 34, 73, 75] and so, in the theory, there could be many
other better ways to perform label engineering. This would
be a productive area for future research. But for now, the
ablation study (reported below) shows that SMOOTHing is
useful (since removing it degrades predictive performance).

4.3 Boundary Engineering (via GHOSTing)
As defined above, instance and label engineering do not
reflect on the quality of data in the local region.

To counter that, this study employs a boundary method
called “GHOSTing”, recently developed and applied to
software defect prediction by Yedida and Menzies [70].
Boundary engineering is different to label and instance
engineering since it adjusts the frequency of different classes
in the local region (while the above typically end up
repeating the same label for a particular locality). Hence,
in that region, it changes the decision boundary.
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GHOSTing addresses class imbalance issues in the data.
When an example with one label is surrounded by too
many examples of another label, then the signal associated
with example can be drowned out by its neighbors To
fix this, for a two-class dataset D with class c0 being
the minority, GHOSTing oversamples the class by adding
concentric boxes of points around each minority sample.
The number of concentric boxes is directly related to the
class imbalance: higher the imbalance, more the number
of boxes. Specifically, if n is the fraction of samples in the
minority class, then blog2(1/n)c boxes are added. While
the trivial effect of this is to oversample the class (indeed,
as pointed out by Yedida and Menzies [70], this reverses
the class imbalance), we note that the algorithm effectively
builds a wall of points around minority samples. This
pushes the decision boundary away from the training
samples, which is preferred since a test sample that is
close to a training sample has a lesser chance of being
misclassified due to the decision boundary being in between
them.

Our pre-experimental intuition was that boundary
engineering would replace the need to use instance
engineering. However, as shown by our ablation study,
for recognizing actionable static code warnings, we needed
both tools. On reflection, we realized both may be necessary
since while (a) boundary engineering can help make local
adjustments to the decision boundary, it can (b) only work in
regions where samples exist; instance engineering can help
fill in gaps in sparser regions of the dataset.

4.4 Parameter Engineering (via DODGEing)
We noted above that different learners generate different
hyperspace boundaries (e.g. decision learners generate
straight-line borders while SVMs with radial bias functions
generate circular borders). Further, once a learner is selected,
then as seen in Figure 3, it is possible to further adjust a
border by altering the control parameters of that learner (e.g.
see Figure 2). We call this adjustment parameter engineering.

Parameter engineering is like a scientist probing some
phenomenon. After the data is divided into training and
some separate test cases, parameter engineering algorithms

TABLE 3: List of hyper-parameters tuned in our study.
CodeBERT is not shown in that table since, as mentioned
in the text, this analysis lacked the resources required to
tune such a large model.

Learner Hyper-parameter Range
Feedforward network #layers [2, 6]

#units per layer [3, 20]
Logistic regression Penalty {l1, l2}

C {0.1, 1, 10, 100}
Random forest Criterion { gini, entropy }

n estimators [10, 100]
Decision Tree Criterion { gini, entropy }

Splitter { best, random }
SVM C {0.1, 1, 10, 100}

Kernel {sigmoid, rbf,
polynomial }

CNN #convolutional blocks [1, 4]
#convolutional filters {4, 8, 16, 32, 64}
Dropout probability (0.05, 0.5)
Kernel size {16, 32, 64}

TABLE 4: Neural net architectures used in this study.

Feedforward networks These are artificial neural networks,
comprising an acyclic graph of nodes that process input and
produce an output. These dates back to the 1980s, and the
parameters of these models are learned via backpropagation
[50]. These networks have O(103) − O(104) parameters.
For these networks, we used the ReLU (rectified linear
activation) function (f(x) = max(0, x)). This is a piecewise
linear function that will output the input directly if it is
positive, otherwise, it will output zero.
A convolutional neural net (CNN) is a structured neural net
where the first several layers are sparsely connected in order
to process information (usually visual). CNN is an example
of an deep learner and are much larger than feedforward
networks (these may span O(105) − O(107) parameters).
Optimizing an CNN is a very complex task (so many
parameters) so following advice from the literature [26, 54],
we used the following architecture. Our CNNs had multiple
“convolutional blocks” defined as follows:

1) ReLU activation
2) Conv (with “same” padding)
3) Batch norm [26]
4) Dropout [54]
We note that this style of building convolutional networks,
by building multiple “convolutional blocks” is very popular
in the CNN literature [35, 37]. Our specific design of the
convolutional blocks was based on a highly voted answer
on Stack Overflow 3.
Note that with that architecture there is still room to adjust
the ordering of the blocks– which is what we adjust when
we tune our CNNs.
CodeBERT [20] is a transformer-based model that been
pre-trained model using millions of examples from
contemporary programming languages such as Python, Java,
JavaScript, PHP, Ruby, and Go. Such transformer models are
those based on the “self-attention” mechanism proposed by
Vaswani et al. [63]. CodeBERT is even large than CNN and
can contain O(108) − O(109) parameters. One advantage of
such large models is that can learn intricacies that are missed
by smaller models.

conduct experiments on the training data looking for
parameter settings that improve the performance of a model
learned and assessed on the training data. Once some
conclusions are reached about what parameters are best,
then these are applied to the test data. Importantly, the
parameter engineering should only use the training data for
its investigations (since otherwise, that would be a threat to
the external validity of the conclusions).

Parameter engineering executes within the space of
control parameters of selected learners. These learners have
the internal parameter space shown in Table 3. We selected
this range of learners using the following rationale:

• In order to compare our new results to prior work by
Kang et al. [29], we use the Kang et al. SVMs with the
radial basis kernel and balanced class weights.

• In order to compare our work to Kang et al. [68], we
used a range of traditional learners (logistic regression,
random forests, and single decision tree learners);

• Also, we explored the various neural net algorithms
shown in Table 4 since these algorithms have a
reputation of being able to handle complex decision
boundaries [67]. In this textbook on Empirical Methods
for AI, Cohen [16] advises that supposedly more
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complex solutions should be compared to a range
of alternatives, including very simple methods.
Accordingly, for neural nets, we used (a) feedforward
networks from the 1980s; (b) the CNN deep learner
used in much of contemporary SE analytics; and (c) the
state-of-the-art CodeBERT model.

There are many algorithms available for automatically
tuning these learning control parameters. As recommended
by a prior study [4], we use Agrawal et al.’s DODGE
algorithm [3]. DODGE is based on early work by Deb et
al. in 2005 that proposed a “E-domination rule” [19]; i.e.

If one setting to an optimizer yield results within E
or another, then declare the region ± E as “tabu” and
search elsewhere.

A surprising result from Agrawal et al.’s research was that
E can be very large. Agrawal et al. noted that if learners
were run 10 times, each time using 90% of the training data
(selected at random), then they often exhibited a standard
deviation of 0.05 (or more) in their performance scores.
Assuming that performance differences less than ±2µ, are
statistically insignificantly different, then Agrawal reasoned
that E could be as large as 4∗ .05 = 0.2. This is an important
point. Suppose we are trying to optimize for two goals
(e.g. recall and false alarm). Since those measures have the
range zero to one, then E = 0.2 divides the output space
of those two goals divides into just a 5×5 = 25 regions.
Hence, in theory, DODGE could find good optimizations
after just a few dozen random samples to the space of
possible configurations.

When this theoretical prediction was checked
experimentally of SE data, Agrawal [4] found that DODGE
with E = 0.2 defeated traditional single-point cross-over
genetic algorithms as well as state-of-the-art optimizers
(e.g. Bergstra and Bengio’s HYPEROPT algorithm [10]4).
Accordingly, this study used DODGE [4, 60] for its
parameter engineering.

Our pre-experimental intuition was that DODGEing
would be fast enough to tune even the largest neural net
model. This turned out not to be the case. The resources
required to adjust the CodeBERT model are so large that,
for this study, we had to use the “off-the-shelf” CodeBERT.

In this study, whenever we say we perform hyper-
parameter optimization (or equivalently in this paper,
parameter engineering), we mean we run DODGE for 30
iterations to maximize the difference between recall and
false alarm rate. This simultaneously aims to maximize
recall while minimizing false alarm rate, prioritizing both
goals equally.

5 EXPERIMENTAL METHODS

5.1 Data
This paper tested the efficacy of instance, label, boundary
and parameter engineering using the revised and repaired
data from Kang et al. paper [29].

Recall that Kang et al. manually labelled warnings from
the same projects studied by Yang et al. [68] to assess
the level of agreement between human annotators and

4. At the time of this writing (April 2022), the paper proposing
HYPEROPT has 7,557 citations in Google Scholar.

the heuristic. The manual labelling was performed by two
human annotators. One annotator is an undergraduate
student, while the other is a graduate student with two years
of industrial experience. When the annotators disagreed on
the label of a warning, they discussed the disagreement
to reach a consensus. While they achieved a high level
of agreement, achieving a Cohen’s Kappa of above 0.8,
manual labelling is costly, requiring human analysis of both
the source code and the commit history of the code. That
said, considering the subsequent evolution of the source
code allows the annotators to analyze each warning with
a greater amount of context. These labels are essential since
it removed closed warnings which are not actionable (e.g.,
the warnings may have been removed for reasons unrelated
to the Findbugs warning).

Two other filters employed by Kang et al. where:
• Unconfirmed actionable warnings were removed;
• False alarms were randomly sampled to ensure a

balance of labels (40% of the data were actionable)
consistent with the rest of the experiments.

One of the complaints of the Kang et al. paper [29] against
earlier work [68] was that, for data that comes with some
time stamp, it is inappropriate to use future data to predict
past labels. To avoid that problem, in this study, we sorted
the Kang et al. data by time stamps, then used 80% of the
past data to predict the remaining 20% future labels.

The Kang et al. data comes from eight projects and we
analyzed each project’s data separately. The 80:20 train:test
splits resulted in the train:test sets shown in Table 6
(exception: for MAVEN, we split 50:50, since there are only
4 samples in total).

In this data, the dependent variables provide
information about the warning, file, and source code that
the warning is reported on. They are further categorized
based on how they are obtained, e.g. through the history
of the code. Finally, the variables fall into eight broad
categories. They are summarized in Table 5. Prior studies
on static analysis warnings have worked with datasets
with a wide range of actionable warnings. For example,
Heckman and Williams [23] experimented on 2 datasets,
one of which had a percentage of actionable warnings of
89%. Imtiaz et al. [25] experimented on several datasets, one
of which had a percentage of 49.5% of actionable warnings.
Therefore, the percentage of actionable warnings in our
experiments is consistent with some prior studies.

Pre-experimentally, we were concerned that learning
from the smaller data sets of Table 6 would complicate our
ability to make any conclusions from this data. That is, we
needed to know:

RQ5: Are larger training sets necessary (for the task of
recognizing actionable static code warnings)?

This turned out not to be a critical issue. As shown
below, the performance patterns in our experiments were
stable across all the six smaller data sets used in this study.

Technical aside: In other papers, we have run repeated
trials with multiple 80:20 splits for training:test data. This
was not here since some of our data sets are too small (see
the first few rows of Table 6) that any reduction in the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 5: The dependent variables used in this study. These features were identified in prior work [64, 68, 69]. The
“Golden Features” are in bold.

Feature type Feature Description

size context for warning type, method
size context in file, package
warning context in method, file, package
warning context for warning type
fix, non-fix change removal rate.

Warning defect likelihood for warning pattern Features related to the warnings and other information
combination variance of likelihood (e.g. total number of warnings of each type, percentage

defect likelihood for warning type of actionable warnings)
discretization of defect likelihood
average lifetime for warning type.

method, file, package size.
comment length
comment-code ratio
method depth
file depth

Code method callers, callees Features related to the source file where the warning is
characteristics # methods in file, package reported (e.g., the number of methods in the file)

# classes in file
# classes in package
indentation
complexity

warning pattern
warning type

Warning warning priority Features related to the warning (e.g., its priority)
characteristics warning rank, warnings in method, file

package
latest file, package modification
file, package staleness

File file age, creation Features related to the file where where the warning was reported
history deletion revision (e.g., creation date of the file)

developers
call name, class, parameter signature
method visibility
return type
new type, new concrete type
operator

Code field access class, field Features obtained through program analysis related to the source code
analysis catch where the warning was reported (e.g., if the method is public,

field name, type, visibility, is static/final protected, or private)
return type
is static/ final/ abstract/ protected
class visibility,is interface
added, changed, deleted, growth, total,
percentage of LOC in file (past 3 months)
LOC added , changed, deleted, growth

Code total, percentage in file (last 25 revisions) features related to the revision history of the source code
history added, changed, deleted, growth, total, where the warning was reported (e.g., number of

percentage of LOC in package (past 3 months) lines of code added in past 3 months)
added, changed, deleted, growth, total,
percentage of LOC in package (last 25 revisions)

Warning warning lifetime by revision, by time features related to the history of the warning in the project
history warning modifications, open revision

File file type, name features related to the metadata of the file
Characteristics package name

training set size might disadvantage the learning process.
Hence, the external validity claims of this paper come from
patterns seen in eight different software projects.

5.2 Models
In this section, we discuss the models used by our approach.
Briefly, we use feedforward networks, which are neural
networks where each layer is fully connected. We do not
use more modern approaches such as batch normalization
[26] or dropout [54]; as pointed out in the original GHOST
paper [70], the work of Montufar et al. [43] shows that by

setting the number of hidden layers to at least the number of
inputs, the lower bound of the number of piecewise linear
regions of the decision boundary is non-zero, and therefore
(more likely to be) non-trivial.

Although there are practical challenges when optimizing
such basic models that are overcome by recent advances
[53, 38], we use the approach of GHOST, instead relying
on hyper-parameter optimization. The defect prediction
study of the original paper showed that hyper-parameter
optimization along with weighted loss functions and “fuzzy
sampling” (in this paper, we refer to the combination of
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TABLE 6: Summary of the data distribution

Project # train # labels imbalance% # test

maven 2 1 33 1
cassandra 9 4 38 4

jmeter 10 4 43 4
commons 12 5 59 5

lucene-solr 19 5 38 6
ant 22 6 36 7

tomcat 134 13 41 37
derby 346 20 37 92

total 554 58 156

these techniques as “GHOST” for simplicity) suffices to
achieve state-of-the-art results–this paper shows that result
extends to the task of demarcating actionable static code
warnings as well.

5.3 LIME

It is worth looking inside the models at this point instead
of treating them as black boxes. In an effort to understand
the most important variables, we used LIME [49], a
standard explanation algorithm. However, this pursuit was
unsuccessful for several reasons:

• Some of our data sets are very small and, for such
small data sets, LIME reports that all features are
unimportant.

• All our data sets have different attributes (e,g, who
made a comment, what part of the code they
commenting on, etc). So even though we could generate
results with high performance values, we could not find
common patterns across the different data sets.

We conjecture that static code warning classification is a
hard problem with a bumpy decision boundary that cannot
be characterized by (e.g.) LIME’s simple linear models.
Rather, we may need some hyper-dimensional inferred
description, which is why we see low prediction scores in
Table 2 and much higher scores when we apply neural
technology.

5.4 Experimental Rig

This study explores:
• N = 4 pre-processors (boundary, label, parameter,

instance) that could be mixed in 24 = 16 ways.
• Six traditional learners: logistic regression, decision

trees, random forests, SVMs (with 3 basis functions);
• Three neural net architectures: CNN, CodeBERT,

feedforward networks;
To clarify the reporting of these 16×(6+3) = 144 treatments,
we made the following decisions. Firstly, when reporting the
results of the traditional learner, just show the results of the
one that beat the other traditional learners (which, in our
case, was typically random forest or logistic regression).

Secondly, we do not apply pre-processing or parameter
engineering on CodeBERT. This decision was required, for
pragmatic reasons. Due to the computational cost of training
that model, we could only run off-the-shelf CodeBERT.

Thirdly, rather than explore all 16 combinations of
use/avoid different pre-processing, we ran the ablation
study recommended in Cohen’s Empirical Methods for

AI textbook [16]. Ablation studies let us explore some
combination of N parts can be assessed in time O(N), not
O(2N ). Such ablation studies work as follows:

• Commit to a preferred approach, with N parts;
• If removing any part ni ∈ N degrades performance,

then conclude that all N parts are useful.
With these decisions, instead of having to report on 144
treatments, we need only show the 13 treatments in the
ablation study of Table 7. In that table, for treatments
that use any of boundary or label or parameter or
instance engineering, we apply those treatments in the
order recommended by the original GHOST paper [70]. That
paper found that it could improve recall by 30% (or more)
by multiple rounds of SMOTE + GHOST. As per that advice,
A1 executes our pre-processors in the order:

smooth → smote → ghost → ghost → smote → dodge

The rationale for this approach is as follows. Learning
can be divided into three stages: preprocessing, “in-
processing”, and post-processing. This paper does not
explore post-processing (and that might be a useful
direction for future work). The crux of this paper (and the
original GHOST paper) is that we should focus more than
we currently do on pre- and in-processing. As such, we start
the pre-processing with SMOOTH, which has the effect of
eliminating outliers in the data. We then balance classes
using SMOTE. After that, we applied a recommendation
from the GHOST paper, i.e. it is best to run GHOST twice
on the data (hence our call to GHOST -> GHOST). It turns
out that we should not pass those outputs directly to the
learner, since we want a robust decision boundary. Hence,
we use another recommendation from the GHOST paper
which is

ghost → ghost → smote

All that said, it is an open issue if other ordering might be
more useful. In this paper, we mote that our ablation study
reports no obvious problem with this ordering. But that is
not to say that other orderings might improve our results
even further. We leave this matter for future work.

All the treatments labelled “A” (A1,A2,A3,A4,A5) in
Table 7, use the order shown above, perhaps (as part of the
ablation study) skipping over one or more the steps. We
acknowledge that there are many possible ways to order the
applications of our treatments, which is a matter we will
for future work. For the moment,the ordering shown above
seems useful (evidence: see next section).

As to the specifics of the other treatments:
• Treatment A5 is the treatments from the TSE’21 paper

that proposed GHOSTing [70].
• Treatment D1 contains the treatments applied in prior

papers by Yang et al. [68] and Kang et al. [29].
• Anytime we applied parameter engineering, this meant

that some automatic algorithm (DODGE) selected the
control parameters for the learners (otherwise, we just
used the default off-the-shelf settings).

• Anytime we apply label engineering, we are only used
10% of the labels in the training data.

• The last line, showing CodeBERT, has no pre-
processing or tuning. As said above, CodeBERT is so
complex that we must run it “off-the-shelf”.
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TABLE 7: Design of our ablation study. In the learner choice column, F = feedforward networks, T = traditional
learners, C = CNN, B = CodeBERT.

Engineering decisions

Treatment Bo
un

da
ry

La
be

l

Le
ar

ne
r

Pa
ra

m
et

er

In
st

an
ce

% Labels Description

A1 3 3 F 3 3 10 Our recommended method
A2 3 3 F 3 10 A1 without instance engineering (no SMOTE)
A3 3 3 F 3 10 A1 without hyper-parameter engineering (no DODGE)
A4 3 F 3 3 10 A1 without boundary engineering (no GHOST)
A5 3 F 3 3 100 A1 without label engineering (no SMOOTH). From TSE’21 [70]
A6 3 T 3 3 100 A1 without label engineering, replacing feedforward with traditional

learners
A7 3 3 T 3 3 10 A1 replacing feedforward with traditional learners
B1 3 T 3 3 10 A1 without boundary engineering, replacing feedforward with traditional

learners
B2 3 C 3 3 10 A1 without boundary engineering, replacing feedforward with CNN
C1 T 3 3 100 A1 without boundary engineering or label engineering, replacing

feedforward with traditional learners
C2 C 3 3 100 A1 without boundary engineering or label engineering, replacing

feedforward with CNN
D1 T 3 100 Setup used by the Yang et al. [68] and Kang et al. [29] studies.

CodeBERT B 100 CodeBERT without modifications

6 RESULTS

The results of the Table 7 treatments are shown in Table 8
(and another brief summary is offered in Table 10). These
results are somewhat extensive so, by way of an overview,
we offer the following summary tool. The cells shown in
pink are those that are worse than the A1 results (and A1

is our recommended GHOST2 method). Looking over those
pink cells we can see that across our data sets and across our
different measures, our recommend method (A1) is rarely
outperformed by anything else.

(Technical aside: looking at the pink cells, it could be said
that A5 comes close to A1, but A5 loses a little on recalls).
Nevertheless, we have strong reasons for recommending A1
over A5 since, recalling Table 7, A5 requires a labelling for
100% of the data. On the other hand A1, that uses label
engineering, achieves its results using 10% of the labels.
This is important since, as said in our introduction, one way
to address, in part, the methodological problems raised by
Kang et al. GHOST2 makes its conclusions using a small
percentage of the raw data (10%). That is, to address issues
of corrupt data found by Kang et al., we say “use less data”
and, for the data that is used, “reflect more on that data”.

These answer our research questions as follows.

RQ1: For detecting actionable static code warnings,
what data mining methods should we recommend?

Regarding feedforward networks versus, say, traditional
learners (decision trees, random forests, logistic regression
and SVMs), the traditional learners all performed worse
than the feedforward networks used in treatment A1
(evidence: compare treatments A1 with A7 which use
feedforward or traditional learners, respectively; there are
four perfect AUCs for feedforward networks in A1, i.e
AUC=100%, but only two for the A7 results).

As to why the 1980s style feedforward networks worked
better than newer neural net technology, we note that
feedforward networks run so fast than it is easier to

extensively tune them. Perhaps (a) faster learning plus
(b) more tuning might lead to better results that then non-
linear modeling of an off-the-shelf learner. This could be an
interesting avenue for future work.

As to the value of boundary, label, instance and parameter
engineering, in the ablation study, removing any of these
increased the number of times A1 had larger performance
scores. For example, with boundary engineering, A1 (that uses
boundary engineering) generates more perfect scores (e.g.
AUC=100%) than A4 (that does not use it). Also, for recall,
A1 always had larger or same scores than n A4 in 6/8 data
sets. Similarly, A4 always suffers from a drop in AUC score.

As for label engineering, from A1 to A5, specializing our
data to just 10% of the labels (in A1) yields nearly the same
precisions which using 100% of the data (in A5) in nearly all
the AUC results. Moreover, the AUC score for A1 is perfect
in 4/8 cases, while for A5, it is rarely the case.

As to instance engineering, without it the precision can
crash to zero (compare A1 to A2, particularly the smaller
data sets) while often leading to lower recalls. The smaller
datasets also see a decrease in AUC for A2.

Measured in terms of false alarm, these results strongly
recommend parameter engineering. Without parameter
engineering, some of those treatments could find too many
static code warnings and hence suffer from excessive false
alarms (evidence: see the A3 false alarm results in nearly
every data set). A1 (which used all the treatments of §4)
had lower false alarm rates than anything else (evidence: we
rarely see the dark blue A1 spike in the false alarm results).
The only exception to the observation that “parameter
engineering leads to lower false alarm results” are seen
in the DERBY data set. That data set turns out to be
particularly tricky in that, nearly always, modeling methods
that achieved low false alarm rates on that data set also had
to be satisfied with much lower recalls.

One final point is that these results do not recommend
the use of certain widely used neural network technologies
such as CNN or CodeBERT for finding actionable static code
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TABLE 8: Results (8 datasets, 4 metrics. Pink shows performance worse than A1 (our recommend method).

Treatment maven cassandra jmeter commons lucene-solr ant tomcat derby median #cells better than A1

PRECISION (better results are larger)

A1 1 1 1 1 0.8 1 0.79 0.72 1 -
A2 0 0.25 1 0.67 1 1 0.68 0.73 0.71 2
A3 0.5 0.25 0.33 0.2 0.25 0.33 0.33 0.4 0.33 0
A4 1 0.75 1 1 0.75 1 1 0.75 1 2
A5 1 1 1 1 0.8 1 0.72 0.84 1 1
A6 1 1 0.5 0.33 0.67 1 0.85 0.89 0.87 2
A7 1 0.5 0.5 1 1 0 0.55 0.42 0.53 1
B1 (DODGE) 1 1 0 0.5 0 0 0.47 0.59 0.49 0
B2 (CNN) 0.5 0 0 0.6 0 0.29 0.51 0.61 0.4 0
C1 (DODGE) 1 1 1 0.33 0.67 0.67 0.67 0.81 0.74 1
C2 (CNN) 0.5 0.5 0.5 0.6 0.83 0.43 0.4 0.73 0.5 2
D1 0 0.5 0 0.6 0 0 0.39 0.39 0.2 0
CodeBERT 0.5 1 0.8 0.63 0.6 0 0.41 0.25 0.55 0

AUC: TP vs. TN (better results are larger)

A1 1 1 0.83 1 0.75 1 0.68 0.57 0.92 -
A2 0 0.5 0.75 0.83 0.63 0.75 0.6 0.7 0.67 1
A3 0.5 0.5 0.67 0.5 0.38 0.55 0.51 0.51 0.51 0
A4 1 0.5 1 0.75 0.63 0.8 0.54 0.59 0.69 2
A5 1 0.67 1 0.88 0.75 0.9 0.67 0.78 0.83 2
A6 1 1 0.83 0.75 0.88 1 0.85 0.76 0.87 3
A7 1 0.83 0.83 1 0.75 0.5 0.59 0.62 0.79 1
B1 (DODGE) 1 1 0.5 0.88 0.5 0.5 0.58 0.62 0.6 1
B2 (CNN) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.62 0.5 1
C1 (DODGE) 1 1 1 0.75 0.88 0.9 0.8 0.76 0.89 4
C2 (CNN) 0.5 0.5 0.17 0.5 0.5 0.5 0.63 0.82 0.5 1
D1 0.5 0.17 0.5 0.5 0 0.38 0.48 0.47 0.48 0
CodeBERT 0.5 0.56 0.68 0.53 0.63 0.48 0.44 0.63 0.54 1

FALSE ALARM RATE (better results are smaller)

A1 0 0 0 0 0.5 0 0.29 0.79 0 -
A2 0 1 0 0.33 0 0 0.4 0.38 0.17 2
A3 1 1 0.67 1 0.75 0.4 0.71 0.05 0.73 1
A4 0 1 0 0 0.5 0 0 0.48 0 2
A5 0 0 0 0 0.5 0 0.57 0.41 0 1
A6 0 0 0.33 0.5 0.25 0 0.09 0.03 0.06 3
A7 0 0.33 0.33 0 0 0 0.17 0.44 0.09 3
B1 (DODGE) 0 0 0 0.25 0 0 0.35 0.11 0 2
B2 (CNN) 1 0 0 1 0 1 1 0.25 0.63 2
C1 (DODGE) 0 0 0 0.5 0.25 0.2 0.26 0.06 0.13 3
C2 (CNN) 1 1 1 1 1 1 0.46 0.17 1 1
D1 0 1 0 1 1 0.25 0.77 0.67 0.72 0
CodeBERT 1 0 0.2 1 0.25 0 0.28 0.17 0.23 2

RECALL (better results are larger)

A1 1 1 0.67 1 1 1 0.65 0.94 1 -
A2 0.5 1 0.5 1 0.25 0.5 0.59 0.77 0.54 0
A3 1 1 1 1 0.5 0.5 0.75 0.07 0.88 2
A4 1 1 1 0.5 0.75 0.6 0.09 0.67 0.71 1
A5 1 0.33 1 0.75 1 0.8 0.91 0.97 0.94 3
A6 1 1 1 1 1 1 0.79 0.55 1 2
A7 1 1 1 1 0.5 0 0.36 0.69 0.85 1
B1 (DODGE) 1 1 0 1 0 0 0.5 0.34 0.42 0
B2 (CNN) 1 0 0 1 0 1 1 0.49 0.75 1
C1 (DODGE) 1 1 1 1 1 1 0.86 0.59 1 2
C2 (CNN) 1 1 0.33 1 1 1 0.73 0.82 1 1
D1 0 0.33 0 1 0 0 0.73 0.61 0.17 0
CodeBERT 1 0.33 0.67 1 0.5 0 0.26 0.25 0.42 0

warnings. CNN-based treatments (B2 and C2) suffer from
low precision and AUC scores (see Table 8). Similarly, as
shown Table 8, CodeBERT often suffers from low precision
and poor false alarms and (in the case of CodeBERT) some
very low recalls indeed.

Finally, we also test how few training samples we can get
away with before significant drops in performance. For this,
we test our experimental setup by changing the train/test
ratio:

• Our original setup used 80% for the training set and
20% for the test set; we test 60/40, 40/60, and 20/80
splits. These results are shown in Table 9.

• While there are within-dataset variations, the medians
show the expected result: as the training size reduces,
so does performance.

That said, the drop in performance when using 60% of
samples instead of 80% is rather small; the major drop
in performance comes when we drop down to 40%. At
40% and lower, there are too few samples to train on
maven (which has 4 samples in total), so the learners throw
exceptions–this is why we cannot compute metrics.

We note that even at 60%, the median number of
labels we use is

√
0.6n where n is the median number of

samples; this computes to 4 samples. Across all datasets,
the minimum value of this is 2, and the maximum value is
17. However, this is not to say this is true for all datasets–
we note that as shown in Figure 4, the loss landscape after
applying our methods was very flat, making optimization
easier. Our expectation is that for other datasets, if GHOST
and DODGE together flatten the loss landscape to this
extent, then learning from sub-10 samples should be
possible.

In summary:

Answer 1: To recognize actionable static code
warnings, apply all the treatments of §4. Also,
spend most tuning faster feedforward neural nets
rather than trusting (a) traditional learners or (b) more
recent “bleeding edge” neural net methods.
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TABLE 9: Our results using A1, with varying train/test ratios.

% train maven cassandra jmeter commons lucene-solr ant tomcat derby median

PRECISION (better results are larger)

80% 1 1 1 1 0.8 1 0.79 0.72 1
60% 1 1 1 0.8 0.8 1 0.65 0.67 0.9
40% - 0 0.86 0.8 0.82 0.67 0.65 0.65 0.67
20% - 0 0.73 0.57 0.69 0.67 0.76 0.65 0.67

AUC: TP vs. TN (better results are larger)

80% 1 1 0.83 1 0.75 1 0.68 0.57 0.92
60% 1 0.63 0.8 0.9 0.75 0.83 0.55 0.56 0.78
40% - 0.5 0.8 0.95 0.77 0.54 0.56 0.53 0.56
20% - 0.5 0.69 0.71 0.59 0.61 0.7 0.54 0.61

FALSE ALARM RATE (better results are smaller)

80% 0 0 0 0 0.5 0 0.29 0.79 0
60% 0 0 0 0.2 0.5 0 0.52 0.81 0.1
40% - 0 0.25 0.1 0.29 0.38 0.57 0.8 0.29
20% - 0 0.5 0.25 0.56 0.73 0.36 0.55 0.5

RECALL (better results are larger)

80% 1 1 0.67 1 1 1 0.65 0.94 1
60% 1 0.25 0.6 1 1 0.67 0.62 0.92 0.8
40% - 0 0.86 1 0.82 0.46 0.69 0.86 0.82
20% - 0 0.89 0.67 0.73 0.94 0.75 0.63 0.73

TABLE 10: Median performance improvements seen after
applying all the treatments A1 (defined in §4); i.e. all of
instance, label, boundary and parameter engineering.

From right-
From hand-side

Table 2 of Table 8 Improvement
precision 50 100 50

higher is better AUC 41 90 59
recall 19 100 89

lower is better false alarm 32 0 32

TABLE 11: Percent changes in Li et al. [38]’s smoothness
metric, seen after applying the methods of this paper.

Dataset % change

maven 158.87
cassandra 73.09
jmeter 55.53
tomcat 36.34
derby 31.35
commons 29.61
ant 24.78
lucene-solr 16.46

median 33.85

RQ2: Does GHOST2’s combination of instance, label,
boundary and parameter engineering, reduce the
complexity of the decision boundary?

Previously, this paper argued that reason for the poor
performance seen in prior was due to the complexity of the
data (specifically, the bumpy shape seen in Figure 3). Our
treatments of §4 were designed to simplify that landscape.
Did we succeed?

Figure 4 shows the landscape in TOMCAT after the
treatments of §4 were applied. By comparing this figure with
Figure 3, we can see that our treatments achieved the desired
goal of removing the “bumps”.

As to the other data sets, Li et al. [38] propose a
“smoothness” equation to measure a data set’s “bumps”.
Table 11 shows the percentage change in that smoothness

measure seen after applying the methods of this paper.
All these changes are positive, indicating that the resulting
landscapes are much smoother. For an intuition of what
these numbers mean, the TOMCAT change of 36.35% results
in Figure 3 changing to Figure 4.

Hence we say:

Answer 2: Label, parameter, instance and boundary
engineering can simplify the internal structure of
training data.

RQ3: Does GHOST2’s combination of instance,
label, boundary and parameter improve predictive
performance?
Table 10 shows the performance improvements after
smoothing out our training data from (e.g.) Figure 3 to
Figure 4. On 4/8 datasets, we achieve perfect scores.
Moreover, we showed through an ablation study that each
of the components of GHOST2 is necessary. For example,
row A3 in Table 8 is another piece of evidence that hyper-
parameter optimization is necessary. The feedforward
networks of our approach outperformed more complex
learners (CNNs and CodeBERT)–we refer the reader to
rows B2, C2, and CodeBERT in Table 8. On the other
hand, going too simple for traditional learners leads to A7,
which suffers from poor precision scores. Given those large
improvements, we say:

Answer 3: Detectors of actionable static code warnings
work much better when learned from smoothed
training data.

RQ4: Are all parts of GHOST2 necessary; i.e. would
something simpler also achieve the overall goal?
We presented an ablation study that showed that each part
of GHOST2 was necessary. Among the 13 treatments that we
tested, GHOST2 was the only one that consistently scored
highly in precision, AUC, and recall, while also generally
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Fig. 4: Error landscape in the TOMCAT after applying
the treatments of §4. To understand the simplifications
achieved via our methods, the reader might find it
insightful to compare this figure against Figure 3.

having low false alarm rates. The crux of our ablation study
was that each component of GHOST2 works with the others
to produce a strong performer.

Based on the above ablation study results, we say:

Answer 4: Ignoring any of part of instance, label,
boundary or parameter engineering leads to worse
results than using all parts (at least for the purpose of
recognizing actionable static code warnings).

RQ5: Are larger training sets necessary (for the task of
recognizing actionable static code warnings)?

In the above discussion, when we presented Table 6, it
was noted that several of the train/tests used in this study
were very small. At that time, we expressed a concern that,
possibly, our data sets explored were too small for effective
learning.

This turned out not to be the case. Recall that in Table 8,
the data set were sorted left-to-right from smallest to largest
training set size. There is no pattern there that smaller
data sets perform worse than large ones. In fact– quite the
opposite: the smaller data sets were always associated with
better performance than those seen on right-left-side. Hence
we say:

Answer 5: The methods of this paper are effective, even
for very small data sets.

This is a surprising result since one of the truisms of data
mining is “the more data, the better”: Researchers in linear
regression have a rule of thumb that every independent
attribute implies needing an additional 10 to 20 training
examples [48, 5]. By that reasoning, our data sets with
260 attributes would need 2600 to 5200 examples before a
learner could achieve competency.

That said, those rules of thumb for regression models
were developed where:

• Inputs are naturally occurring (or handcrafted)
attributes (not the more nuanced hyper-dimensions
found by neural methods);

• The response variable (output) is a continuous variable
that can vary over a large numeric range (and not the
two labels we are exploring).

A better conceptual model for our work, that could explain
our success when reasoning about small data, might be “pin
the tail on the donkey” where there are a handful of green
and red pins already in place and we have to add in a ribbon
that separates (say) the different colors. Note that since we
are using neural, we are free to pull that ribbon across any
dimension we like, or even infer a new dimension, if we
want. We would argue that in this second conceptualization,
it is totally reasonable to expect that such a ribbon can
be found especially when we are trying to separate only a
handful of pins.

7 THREATS TO VALIDITY

As with any empirical study, biases can affect the final
results. Therefore, any conclusions made from this work
must be considered with the following issues in mind:

1. Sampling bias threatens any classification experiment;
i.e., what matters there may not be true here. For example,
the data sets used here comes prior work and, possibly, if we
explored other data sets we might reach other conclusions.
On the other hand, repeatability is an important part of
science so we argue that our decision to use the Kang et al.
data is appropriate and respectful to both that prior work
and the scientific method.

2. Learner bias: Machine learning is a large and active
field and any single study can only use a small subset of
the known algorithms. Our choice of “local learning” tools
was explained in §4. That said, it is important to repeat the
comments made there that our SMOTEing, SMOOTHing,
GHOSTing and DODGEing operators are but one set of
choice within a larger framework of possible approaches
to instance, label, boundary, and parameter engineering
(respectively). As SE research matures, we foresee that
our framework will become a workbench within which
researchers replace some/all of these treatments with better
options. That said, in defence of the current options, we note
that our ablation study showed that removing any of them
can lead to worse results.

Another threat to validity is the stochastic nature of
SMOOTH (since points are selected at random). We tested
if SMOOTH leads to conclusion instability as follows.
SMOOTH uses a k-d tree to perform hierarchical clustering.
We modify it so that it returns the median positions of the
leaf clusters. By running this operation 20 times, we have
a set of medians. We say that our conclusions are stable if
those medians are stable. We conjectured that over each run,
because the process is stochastic, that these medians would
move slightly; therefore, we ran the following steps:

• From the k-d tree clustering, obtain the number of leaf
clusters, call this k

• Run SMOOTH 20 times, and collect a list of the
medians. Each set of medians should have k elements,
where each element is d−dimensional. That is, we have
20× k points, each d−dimensional.

• On these 20k points, we run k−means clustering, using
k from Step 1 as the number of clusters.
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• For each cluster, we find the median, and then compute
the deviations (via the L1 norm [1]) of each point in that
cluster to this median. This gives us a set of deviations,
of which we compute the median.

• We compute this median as a percentage of the L1-norm
of the dataset

Overall, these percentages are extremely low, with the
highest being 0.52%. This suggests that over 20 repeats,
while the median does shift, it does so in very small
proportions relative to the overall dataset. Therefore, we
believe this should not have a meaningful impact on our
results.

3. Parameter bias: Learners are controlled by parameters
and the resulting performance can change dramatically
if those parameters are changed. Accordingly, in this
paper, our recommended methods (from Table 4) includes
parameter engineering methods to find good parameter
settings for our different data sets.

4. Evaluation bias: This paper use four evaluation criteria
(precision, AUC, false alarm rate, and recall) and it is
certainly true that by other measures, our results might not
work be seen to work as as well. In defence of our current
selection, we note that we use these measures since they let
us compare our new results to prior work (who reported
their results using the same measures).

Also, to repeat a remark made previously, another
evaluation bias was how we separated data into train/test.
In other papers, we have run repeated trials with multiple
80:20 splits for training:test data. This was not here since
some of our data sets are too small (see the first few
rows of Table 5) that any reduction in the training set
size might disadvantage the learning process. Hence, our
conclusion do not come from (say) some 5×5 cross-
validation experiments. That experiment would take 20
months of CPU to execute and generate comparison
problems since our test sets would be of radically different
sizes (since some of our data sets are tiny)

Hence, the external validity claims of this paper come
from patterns seen in eight different software projects.
Suppose you wanted to refute the hypothesis that our
recommended treatment (A1) is better than the rest. To do
so, we need to to find examples that satisfied three tests:

• Test1: the performance metric collected from the other
methods has to be better;

• Test2: the size of the difference in the performance
metric has to be larger than a small effect (this is the
effect size test);

• Test3: the populations from which the performance
metrics are drawn are distinguishable (this is the
statistical significance test).

Note that there is no point doing the significance and
effect size tests unless we can first find evidence of better
performance. Hence, it should be noted that Test2 and Test3
are unnecessary if Test1 fails. Accordingly, we now turn our
attention to Test1 and the results from Table 8.

In Table 8., suppose to define “better” we look at the
13 rows in the four tables (precision, AUC, false alarm and
recall tables). Suppose further we define “better” as follows:

• Row X is “better than A1” if in N cells of row X, the
performance metric is better than A1.

(Aside: recall that “better” is different for different
measures; for false alarm, “better” means “less” while for
the others “better” means “more”.)

At first it might be tempting to use N > 4 (since we are
dealing with eight data sets and N > 4 would mean we are
saying “in the majority case”). It turns out that this N > 4
definition of “better” is almost unachievable since, reading
Table 8 we see that:

• There is only one example of better N ≥ 4 rows (for C1
(DODGE) AUC);

That said there are six examples whereN = 3 cells are better
in some row X than A15. That is to say, if we define N >= 3
as our threshold for row X is “better than A12” then in only
7/48 treatments would it make sense to apply a significance
and effect size test.

In summary: at the N >= 3 level, in 41/48 of our
experiments, we cannot refute the hypothesis that A12 is
better than other treatments.

8 DISCUSSION

This discussion section steps back from the above to make
some more general points.

We suggest that this paper should lead to a new way of
training newcomers in software analytics:

• Our results show that there is much value in decades-
old learning technology (feedforward networks).
Hence, we say that when we train newcomers to
the field of software analytics, we should certainly
train them in the latest techniques (deep learning,
CodeBERT, etc).

• That said, we should also ensure that they know of
prior work since (as shown above), sometimes those
older methods still have currency. For example, if some
learner is faster to run, then it is easier to tune. Hence,
as shown above, it can be possible for old techniques to
do better than new ones, just by tuning.

For future work, it would be useful to check what other
SE domains simpler, faster, learners (plus some tuning) out-
perform more complex learning methods.

That said, we offer the following cautionary note about
tuning. Hyper-parameter optimization (HPO, which we
have call “parameter engineering” in this paper) has
received much recent attention in the SE literature [3,
70, 4] We have shown here that reliance on just HPO
can be foolhardy since better results can be obtained by
the judicious use of HPO combined with more nuanced
approaches that actually reflect the particulars of the current
problem (e.g. our treatments that adjusted different parts
of the data in different ways). As to how much to study
the internals of a learner, we showed above that there
are many choices deep within a learner than can greatly
improve predictive performance. Hence we say that it is
very important to know the internals of a learner and how to
adjust them. In our opinion, all too often, software engineers
use AI tools as “black boxes” with little understanding of
their internal structure.

5. One: A6 for AUC; two: C1 for AUC; three: A6 for false alarm rate;
four: A7 for false alarm rate; five: C1 for false alarm rate; six: A5 for
recall.
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Our results also doubt some of the truisms of our field.
For example:

• There is much recent work on big data research in SE,
the premise being that “the more data, the better”. We
certainly do not dispute that but our results do show
that it is possible to achieve good results with very
small data sets.

• There is much work in software analytics suggesting
that deep learning is a superior method for analyzing
data [70, 65, 39, 66]. Yet when we tried that here, we
found that a decades-old neural net architecture (feed-
forward networks, discussed in Table 4) significantly
out-performed deep learners.

For newcomers to the field of software analytics, truisms
might be useful. But better results might be obtained
when teams of data scientists combine to suggest multiple
techniques – some of which ignore supposedly tried-and-
true truisms.

9 CONCLUSION

Static analysis tools often suffer from a large number of
false alarms that are deemed to be unactionable [57]. Hence,
developers often ignore many of their warnings. Prior
work by Yang et al. [68] attempted to build predictors for
actionable warnings but, as shown by Kang et al. [29], that
study used poorly labelled data.

This paper extends the Kang et al. result as follows.
Table 2 shows that building models for this domain is a
challenging task. The discussion section of §3 conjectured
that for the purposes of detecting actionable static code
warnings, standard data miners can not handle the
complexities of the decision boundary. More specifically, we
argued that:

For complex data, global treatments perform worse
than localized treatments which adjust different parts
of the landscape in different ways.

§4 proposed four such localized treatments, which we called
instance, parameter, label and boundary engineering.

These treatments were tested on the data generated by
Kang et al. (which in turn, was generated by fixing the
prior missteps of Yang et al.). On experimentation, it was
shown that the combination of all our treatments (in the
“A1” results of Table 7) performed much better than than
the prior results seen in Table 2. As to why these treatments
before so well, the analysis of Table 11 showed that instance,
parameter, label and boundary engineering did in fact
remove complex shapes in our decision boundaries. As to
the relative merits of instance versus parameter versus label
versus boundary engineering, an ablation study showed
that using all these treatments produces better predictions
that alternative treatments that ignored any part.

Finally, we comment here on the value of different teams
working together. The specific result reported in this paper
is about how to recognize and avoid static code analysis
false alarms. That said, there is a more general takeaway.
Science is meant to be about a community critiquing and
improving each other’s ideas. Here, we offer a successful
example of such a community interaction where teams
from Singapore and the US successfully worked together.
Initially, in a 2022 paper [29], the Singapore team identified

issues with the data that result in substantially lower
performance of the previously-reported best predictor of
actionable warnings [64, 68, 69]. Subsequently, in this paper,
both teams combined to produce new results that clarified
and improved the old work. That teamwork leads us to
trying methods which, according to the truisms of our field,
should not have worked. The teamwork that generated this
paper should be routine, and not some rare exceptional case.

ACKNOWLEDGMENTS

This work was partially supported by an NSF Grant
#1908762.

REFERENCES
[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On

the surprising behavior of distance metrics in high dimensional
space. In International conference on database theory, pages 420–434.
Springer, 2001.

[2] Amritanshu Agrawal and Tim Menzies. Is” better data” better
than” better data miners”? In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 1050–1061. IEEE,
2018.

[3] Amritanshu Agrawal, Wei Fu, Di Chen, Xipeng Shen, and Tim
Menzies. How to “dodge” complex software analytics. IEEE
Transactions on Software Engineering, 47(10):2182–2194, 2019.

[4] Amritanshu Agrawal, Xueqi Yang, Rishabh Agrawal, Rahul
Yedida, Xipeng Shen, and Tim Menzies. Simpler hyperparameter
optimization for software analytics: why, how, when. IEEE
Transactions on Software Engineering, 2021.

[5] Peter C Austin and Ewout W Steyerberg. Events per variable (epv)
and the relative performance of different strategies for estimating
the out-of-sample validity of logistic regression models. Statistical
methods in medical research, 26(2):796–808, 2017.

[6] Nathaniel Ayewah and William Pugh. The google findbugs fixit.
In Proceedings of the 19th International Symposium on Software Testing
and Analysis, pages 241–252, 2010.

[7] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway:
Practical type-based null safety for java. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages
740–750, 2019.

[8] Ella Barkan, Alon Hazan, and Vadim Ratner. Reduce discrepancy
of human annotators in medical imaging by automatic visual
comparison to similar cases, February 9 2021. US Patent
10,916,343.

[9] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy
Zaidman. Analyzing the state of static analysis: A large-scale
evaluation in open source software. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, pages 470–481. IEEE, 2016.

[10] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13(null):281–305, feb
2012. ISSN 1532-4435.

[11] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in Neural
Information Processing Systems, 32, 2019.

[12] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik
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