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Risk-Aware Procurement Optimization
in a Global Technology Supply Chain

Jonathan Chase, Jingfeng Yang, and Hoong Chuin Lau(B)

School of Computing and Information Systems, Singapore Management University,
80 Stamford Rd, Singapore 178902, Singapore

{jdchase,hclau}@smu.edu.sg, jfyang.2018@phdcs.smu.edu.sg

Abstract. Supply chain disruption, from ‘Black Swan’ events like the
COVID-19 pandemic or the Russian invasion of Ukraine, to more ordi-
nary issues such as labour disputes and adverse weather conditions,
can result in delays, missed orders, and financial loss for companies
that deliver products globally. Developing a risk-tolerant procurement
strategy that anticipates the logistical problems incurred by disruption
involves both accurate quantification of risk and cost-effective decision-
making. We develop a supplier-focused risk evaluation metric that con-
strains a procurement optimization model for a global technology com-
pany. Our solution offers practical risk tolerance and cost-effectiveness,
accounting for a range of constraints that realistically reflect the way the
company’s procurement planners operate.

Keywords: Supply chain · Risk analysis · Procurement optimization

1 Introduction

The COVID-19 pandemic has revealed vulnerabilities in global supply chains,
creating supply, demand, and logistics challenges that required immediate action,
forcing supply chain executives to re-chart their courses. Other recent headline-
grabbing supply chain challenges include the blocking of the Suez Canal by the
Ever Given, and the Russian invasion of Ukraine, a significant producer of the
world’s food supply. However, while these ‘Black Swan’ scenarios attract global
attention, supply chains must also deal with more ordinary, but also more fre-
quent disruptions, such as natural disasters, labour disputes, tax policy changes,
and transport disruptions. Supply chain resilience is a company’s ability to nav-
igate unexpected supply chain disruptions with its existing capabilities. In other
words, supply chain resilience is the ability to react to problems and recover from
them without significant impact on operations and customer timelines. Most
of the short-term tactics to mitigate disruption involve reallocating production
lines to other products, re-balancing workforce, shutting down production, and
finding alternative logistics models and suppliers. Large companies can employ
dedicated teams to handle this workload, therefore in this paper, we develop a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. de Armas et al. (Eds.): ICCL 2022, LNCS 13557, pp. 382–396, 2022.
https://doi.org/10.1007/978-3-031-16579-5_26



Risk-Aware Procurement Optimization in a Global Technology Supply Chain 383

medium-term procurement optimization method to provide a risk-robust pro-
curement strategy that reduces the burden on short-term emergency response
teams. Since supply chain disruption data can be challenging to acquire from
third-party vendors, with the impact of a disruption event being difficult to
accurately quantify, we develop a risk evaluation metric that assigns a risk score
to suppliers based on multiple risk categories that allows direct optimization
without the need to generate disruption scenarios from inadequate data.

The contributions of this paper are as follows. First, we develop a supplier
risk score metric from multiple sources, performing factor analysis to identify
key risk factors that lead to supply chain disruption. Second, based on the risk
scores, we formulate a risk-constrained optimization model that generates a parts
procurement strategy for a global computer manufacturing firm. We then com-
pare our optimization model against a baseline greedy approach, and evaluate
the cost-effectiveness of our plan against historical procurement data obtained
from the procurement department.

2 Literature Review

A critical review on supply chain risk has been conducted in [5], which reviewed
existing approaches for quantitative supply chain risk management by setting
the focus on the definition of supply chain risk and related concepts. An end-
to-end supply chain risk management process (SCRMP) was proposed in [10]
for managers to assess and manage risks in supply chains. The structured app-
roach can be divided into the phases of risk identification, measurement, and
assessment; risk evaluation; and mitigation and contingency plans. For supply
chain risk assessment, [1] proposed a fuzzy-based integrated framework. It first
identifies risks based on an expert’s knowledge, historical data, and supply chain
structure. Then the proposed fuzzy inference system is used to calculate the
aggregated total risk score, considering the risk management parameters and
risk predictability. [4] carried out a case study for supplier risk assessment based
on expert rating and supplier clustering. 72 existing suppliers were evaluated
and clustered into 3 different clusters, and each cluster had 17 risk criteria with
scores to help decision makers select the best suppliers. A graph-based model is
proposed in [9] to measure the structural redundancy for supply chain resilience.
The approach focuses on the resilience of the supply chain network against dis-
ruptions. Critical supply chain components are identified and the percentage of
plants disrupted is calculated in their real-world case. Recently, supply chain
risk management (SCRM) with artificial intelligence is also emerging. [2] pro-
vided a comprehensive review of supply chain literature that addresses problems
relevant to SCRM using approaches that fall within the AI spectrum.

Optimization methods have been applied to a range of supply chain and
logistics problems, mitigating risk and accounting for uncertainty. The clas-
sic Newsvendor Problem [7] makes advance purchasing decisions in the face
of demand uncertainty, while supply chain disruption can be addressed using
a portfolio approach that uses multiple time periods to estimate the impact of
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delay on the delivery time of an order [8]. For problems where the impact of
disruption can be accurately quantified, it is appropriate to employ stochastic
optimization to account for uncertainty, typically solved deterministically for
multiple generated scenarios [6]. However, where available data does not permit
the accurate realization of scenarios to optimize on, methods that draw directly
on risk to constrain the scope of optimization can be employed, either introduc-
ing risk minimization as a joint objective with cost minimization, or through
risk as a constraint on a cost minimization problem [3]. It is this last case that
is the most appropriate for the technology company use case in this work.

3 Problem Description

In this paper we consider a global technology company that supplies a wide range
of computer products encompassing both software and hardware for both con-
sumers and businesses. To provide hardware solutions, such as enterprise-level
servers, parts are obtained from a range of third-party suppliers, and then assem-
bled according to customer orders. Contracts are arranged with each supplier on
a long-term basis, with part procurement decisions taken for the medium term
(3–6 months). In the event of supply disruption, a dedicated team is responsi-
ble for meeting demand from any sources available, with the goal of this work
being to generate a risk-aware medium term procurement plan that reduces the
burden on the disruption-response team. Parts supplied to the company may
belong to ‘Alternative Parts Groups’ (APGs), where member parts in the group
may be substituted for each other based on similar technical specifications in
order to satisfy demand. Suppliers may optinally specify minimum purchase lev-
els and rebate schemes in their contracts, where exceeding a threshold quantity
of eligible parts purchased triggers a percentage discount on purchased parts.
Since suppliers may not charge identical prices for the parts in an APG, and
have varying risk levels, an effective risk-tolerant procurement strategy should
balance cost, rebates, and risk.

It can be challenging to quantify risk in the real world, as many methods, par-
ticularly those employing machine learning, require a large quantity of consistent
and accurate data on past disruptions, which may be difficult or time-consuming
to obtain. To overcome this challenge, we develop a risk-score metric for each
supplier, identifying a range of risk categories and formulating a representative
score. These scores provide input to our risk-constrained optimization model that
recommends a procurement strategy which minimizes the net cost of meeting
part demand while not exceeding a chosen risk tolerance.

4 Supplier Risk Analysis

In this section, we present our risk analysis model. The technology company
has several important products that need to be evaluated for risk. Our goal is
to develop an automated resiliency metric, which is represented by a risk score
from 0 to 10 (low to high), for the suppliers that deliver parts critical to products
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where supply chain risk is an essential consideration. Supply risk is a multidi-
mensional concept that encompasses various risk factors such as supplier failure,
disruption/loss of a supplier, non-suitable essential parts, late deliveries, and
disruption due to catastrophic events. We decompose the risk analysis into the
following five steps, as depicted in Fig. 1: (1) examine which risk categories must
be addressed for each product, as well as which risk criteria must be evaluated
within each broad risk category; (2) based on the selected risk criteria, collect
related data from both internal and external (third-party companies) sources for
analysis; (3) reduce the dimensionality of selected risk criteria, focusing on the
most important factors; (4) calculate the risk score for each supplier; and finally,
(5) dynamically update the risk score calculation method with feedback from
suppliers.

Fig. 1. Framework for risk analysis model

4.1 Risk Criteria Identification

First, we identify which criteria are appropriate for the risk assessment from
the supplier perspective. Through literature review and detailed discussion with
supply chain experts in our company, we produced a set of risk evaluation cat-
egories. The initial round of analysis identifies 12 different risk categories, such
as socio-political, manufacturing, or financial, risks, which are then reduced to 6
in the second round of discussion. Finally, 13 risk criteria are chosen for further
consideration in our supplier risk assessment.

4.2 Supplier Risk Score Calculation

Following the selection of risk criteria, the next step is to collect relevant data for
each criterion from both internal and external third-party sources. The following
data types were obtained from internal and external databases:

– Internal data: product information, market condition, supply business lever-
age data, financial data;
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– External data: macroeconomic data (Economist database), socio-political
data and rational data (e.g., geopolitical, legal), manufacturing and catas-
trophic data (Resilinc database);

Each of the criteria has a numerical value from 0 to 10 (after normaliza-
tion) that represents the criterion’s risk score (the higher the value, the greater
the risk). Figure 2 shows an example of the data used to calculate the supply
risk score. The first three columns contain supplier information, such as name,
country, and city. The fourth column indicates whether or not the vendor is
a subcontractor. The risk score data for selected criteria is contained in the
remaining columns.

Fig. 2. Sample of data collected for the calculation of supplier risk score

The final step in calculating supplier risk is to aggregate all of the risk score
data into a single total. We utilize the weighted sum approach to determine the
final risk score here because of the method’s interpretability. We first introduce
the notations for risk score calculation as follows:

– ri: risk score for supplier i;
– wi: weight assigned for criterion ci;
– ci: risk criterion i.

We then use a weighted sum to calculate the final risk score:

ri = w1 · c1 + w2 · c2 + · · · + wn · cn (1)

There may be a strong inter-correlation between each risk criterion, and the
risk data with 19 criteria is too large and difficult to understand and manage.
Hence we use a factor analysis to examine the relationships between these cri-
teria and group them into a small number of factors, which is a common data
dimension reduction technique. Factor analysis also allows us to discover intrinsic
links and better comprehend the data.

4.3 Factor Analysis

In this part, we take the product anonymized as “A0001” in our company, which
is a high-performance computer, as an example, and examine the correlation
between different risk criteria using the risk data obtained. Figure 3 depicts the
relationship between various risk criteria. The correlation coefficient ranges from
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−1 to +1, and the closer the value is to +1, the higher is the positive linear rela-
tionship between the variables. It can be seen, for example, that the corruption
perception index has high correlations with other risk criteria, such as infras-
tructure risk, labour market risk, tax policy risk, financial risk, foreign trade,
payments risk and so on.

Fig. 3. Correlation matrix of 19 risk criteria for enterprise server product

The results of the factor analysis is shown in Fig. 4a. When conducting a
factor analysis, it is frequently necessary to determine how many component
variables to keep. Here, we determine the number of factors based on Kaiser
Criterion that proposes to extract factors with an eigenvalue greater than 1. The
eigenvalue in factor analysis is a measure of how much of the observed variables’
common variance is explained by a factor. The larger the eigenvalue is, the more
variance the factor can explain than a single variable (risk criterion). Based on
this, we select four factors for the supplier risk data. The factor loading of a
variable quantifies the extent to which the variable is related to a given factor.
It finds most of the risk criteria can be included in factor 1, while the business
continuity planning (BCP) risk can be treated as an independent factor.

4.4 Score Calculation

We calculate risk scores for each supplier using the processed risk data from fac-
tor analysis. Through extensive brainstorm meetings with experts from different
departments in the company (e.g., financial, supply chain, procurement, and so
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(a) Results of the factor analysis (b) Supplier risk score

Fig. 4. Results for factor analysis and supplier risk score calculation

on), all quantitative risk criteria are rated as of low, medium and high impor-
tance. The higher the importance of the risk criteria, the greater the weight
assigned in the calculation of the risk score. Using product “A0001” as an exam-
ple, the risk score of 50 suppliers is calculated and displayed in Fig. 4b. We high-
light the supplier with the highest risk score in Mexico and the two suppliers
with the lowest risk in Malaysia.

5 Risk-Aware Supply Chain Optimization

In our problem, the procurement planner needs to make purchasing plans on
computer parts that are subsequently assembled into products for end users
such as desktop computers and rack mount servers. Some parts are cheap and
required in large quantities while others are expensive specialized components
that have high cost but low demand quantity. Internally, parts obtained from
suppliers are given a part number (PN) with each PN obtainable from a single
supplier. To enable choice among a selection of suppliers, parts may be grouped
into APGs, defined by equivalent specifications. For example, consider a range
of storage components, different brand hard disks with the same capacity and
RPM values may be grouped into an APG. The demand for parts is defined by
APG, although parts are purchased by PN from suppliers.

Since contracts with suppliers are typically agreed on a long term basis, our
goal is not to recommend suppliers, but uses an established list of contracted
suppliers to recommend a default risk-aware part procurement strategy. In addi-
tion to the per-part cost of suppliers, two additional factors must be considered.
Firstly, suppliers may offer rebates on some of the parts they sell in the form
of either a percentage discount or as a per-part discount, if a target quantity
of eligible parts is purchased. Since either a percentage discount or a per-part
discount can each be expressed in terms of each other, we only implement the
percentage discount, and express the per-part discount contracts in terms of
percentages. Incentives are not typically agreed for a single part but across all
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parts ordered from a supplier matching a particular technical specification and
importance in the supply chain. Since APGs are an internal concept and apply
across suppliers, it cannot be assumed that there will be a convenient corre-
spondence between APG membership and rebate eligibility. Secondly, in order
to maintain a good relationship with each supplier, a minimum purchase level
per supplier should be achieved, such that a percentage of the demand for each
APG is allocated to each supplier that offers parts in that APG.

The notation used in the optimization methods introduced in this section is
given in Table 1.

Table 1. Key notations used in optimization solutions.

Indices

i Supplier index from set I
j Part index from set J
k Alternative Parts Group set index from set K

Each k is a set of parts, j ⊂ J
l Incentive index from set L. Each l is uniquely linked to 1 supplier i.

Each l is a set of parts, j ⊂ J
Decision variables

yi,j Number of part j obtained from i,

zi,j Binary variable indicating if the incentive threshold is crossed for
supplier i and for part j

ζi,l Variable indicating the number of part j qualifying for rebate

Parameters

ri Risk score of supplier i, normalized to [0, 1]

ψ, ψj Risk tolerance level for whole system and for part j individually

ci,j Per-part cost of obtaining j from i

θi,j Minimum purchase threshold imposed by supplier i for part j which
becomes 0 if disrupted under scenario s

λi,l Incentive threshold for supplier i for scheme l

μi,j Rebate percentage if incentive threshold is crossed for i on part j

dk Demand for part group k

γi,j Capacity for supplier i, part j

5.1 ‘Bang for Buck’ (B4B) Baseline

The first method to consider is a simple ranking-based approach that does not
use scenarios, where suppliers are ordered by their risk score, and, once any min-
imum order requirements have been satisfied, parts are allocated with priority to
the lower risk suppliers, meeting incentive thresholds until all demand has been
met. If demand remains after incentives have been satisfied, a default allocation
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increment should be set, to allocate remaining demand incrementally to each
supplier in turn. The best value for the default increment would be a subject for
experimentation. The resulting solution will generate two values: the cost of the
solution, and the risk score of the solution. The method of calculating overall risk
score can be left open for further development, but a reasonable metric would
be to express the risk as a percentage or probability in the range [0, 1] of all sup-
plier risk scores, normalised to the [0, 1] range, multiplied by the proportion of
all required parts obtained from them, as shown in (2). These two output values
will provide a basis for comparison with other methods. The usable output of
the method is a default allocation strategy in terms of the numbers of parts that
should normally be ordered from suppliers.

risk =
∑

i

∑

j

ri · yi,j∑
j dj

(2)

The algorithm is as follows:

1. Sort the list of suppliers in ascending order of risk score.
2. Allocate parts to buy from each supplier with minimum spend agreement,

enough to satisfy the minimum. If there is still unsatisfied part demand,
continue.

3. Going through the supplier list in order: if any have rebate incentives, satisfy
them. If at any point the total demand is satisfied, end the algorithm. If
the end of the list is reached with remaining demand, continue. Given that
multiple parts can be part of an incentive scheme, move to the next supplier
as soon as the incentive scheme is satisfied.

4. If unsatisfied demand for an APG remains, the leftovers can be distributed
among the suppliers with parts in that APG in increments, with priority given
to the suppliers with lower risk scores.

5.2 Risk-Constrained Optimization (RCO) Model

Risk-Constrained Optimization (RCO) is a methodology developed in engineer-
ing design to optimize performance while remaining within key safety limits [3].
A typical formulation maximizes or minimizes a quantity while ensuring that the
probability of failure for a given plan remains below a chosen safety threshold.
Thus, rather than considering the cost of failure and trading the cost off with the
potential benefits of a plan, failure is a hard constraint to be avoided. We can
employ an analogous idea in a the context of this supply chain problem, where,
instead of considering the probability of a disruption in the supply chain, we set
a limit on the total risk permitted in the system using the risk score in (2).

Our risk-constrained approach needs to account for the features required by
our company, namely APGs, rebates, and minimum purchase requirements. The
formulate the following set of rules for the optimization to enforce:

– The cost of the allocation is the total cost of buying the required parts from
the suppliers at their per-part cost, offset by any rebates that are activated.
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– Any minimum spend requirements with suppliers must be met (in this case,
this is as a percentage of the demand for each APG that the supplier offers
parts for).

– If the number of parts that are part of a rebate scheme with a supplier exceeds
the incentive threshold quantity, a percentage rebate is applied to offset the
total cost of those parts.

– There are no reductions to capacity or increases in cost due to disruption
events, so the total demand for parts must be met. Since parts are members
of Alternate Part Groups (APGs), demand satisfaction is counted for the
total demand for each part group.

– The risk score for the allocation cannot exceed a set threshold.

min
∑

i

∑

j

(
yi,jci,j − μi,jci,jzi,j

)
(3)

∑

j∈k

yi,j ≥ θi,k ∀i, k (4)

λi,lζi,l ≤
∑

j∈l

yi,j ∀i, l (5)

zi,j ≤ γi,jζi,l ∀i, l, j ∈ l (6)
zi,j ≤ yi,j ∀i, j (7)
∑

i

∑

j∈k

yi,j ≥ dk ∀k (8)

∑

i

∑

j

ri
yi,j∑
j dj

≤ ψ (9)

∑

i

ri
yi,j
dj

≤ ψj (10)

Equation (3) is the objective we want to minimize, combining the per-part
cost with any rebate offset. Equation (4) enforces the minimum purchase require-
ment for the parts in each APG offered by a supplier. (5)–(7) determine if the
threshold required to activate a rebate on a particular part has been crossed and
therefore the amount of parts that are discounted. (8) ensures that the demand
for each APG is satisfied. (9) and (10) ensure that the risk tolerance thresh-
old is not crossed for either the whole problem, or per-part if there are critical
individual parts for which the user wishes to specify a particular risk tolerance
level.

5.3 Numerical Results

For the purpose of verifying our model, we constructed a number of test cases
from anonymized data provided by the company’s procurement department.
We present results of cases with single APGs, and then for a full dataset over
various 3-month periods. Both the B4B and RCO methods were implemented in
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Python 3.9, with the optimization solution generated using the CPLEX library,
on a desktop computer powered by an Intel Core i7 3.40 GHz with 16 GB RAM.

Comparison Against Baseline. We first evaluate the performance of the
B4B baseline method by generating results for a single APG with 3 suppliers,
each offering a single compatible part model. The price and risk parameters
for each supplier are given in Table 2, with a total demand for the part of 208,
and minimum purchase requirement of 10% of demand per supplier. In Fig. 6a
we plot the B4B and generate cost values obtained by our risk-aware model
with varying risk constraints to serve as a Pareto Front, with the Balance Point
indicating the optimal cost obtainable for the risk of the B4B solution. The
vertical gap indicates the cost saving achievable at that risk level. As expected,
our risk-aware model is able to achieve a considerably better cost performance
against the B4B method across all risk levels. Given the superior performance
of the RCO, we focus on attempting to outperform the cost totals for historical
data in the following results.

Table 2. Parameters used for performance analysis against baseline.

Supplier Price Risk

0110 142.558 0.37

0106 155.867 0.15

0107 120.913 0.48

Single APG Results. To verify the correctness of the behaviour of our opti-
mization model, four APGs were considered independently as illustrated in
Fig. 5. For each APG, there was a choice of supplier, each offering a different
part. The APGs were chosen to highlight two purchasing dynamics - in ‘Scenario
1’, one supplier offered a lower price, while the other offered a lower risk, while in
‘Scenario 2’, the supplier with the lower price also offered lower risk. In Scenario
2, there is a clear preference for one supplier over the other, but when the rebate
schemes were introduced, for some APGs, the dynamics changed.

For APG 26, the introduction of a rebate transformed the scenario from a
trade-off between price and risk into a straightforward preference for one supplier
over the other, with only the minimum required allocation of 10% being given
to the other supplier. APG 1 gave the reverse behaviour, with a fixed optimal
decision without rebate, but when rebates were made available, the allocation
changed as illustrated in Fig. 6b, as the risk constraint changed.

For APG 8, the solution was stable and remained stable with rebates, as
expected, while the opposite was the case for APG 35. However, for APG 35,
the exact minimum point for the scenario with rebate changed because at looser
risk tolerances, rather than choosing the minimum value of the costlier part, our
optimization model chooses to buy a slightly higher quantity in order to cross
the rebate threshold, resulting in a solution with a lower net cost, than choosing
the minimum value and buying the remaining demand from the cheaper part,
as shown in Fig. 7.
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Fig. 5. Single APG test cases with purchasing dynamics changing as rebate becomes
available.

(a) Pareto Front showing the optimal
trade-off between risk and cost for a sin-
gle part, with the B4B result plotted for
comparison.

(b) Cost-Risk trade-off for APG 1 when
rebates are available.

Fig. 6. Results to verify correctness of RCO, impact of rebates, and performance
against the baseline.

Fig. 7. Cost-risk trade-off for APG 35 with rebate (left) and without rebate (right).
For the case with rebate, the lowest value for the costlier part is chosen to be the rebate
threshold, as the net cost proves lower than buying the minimum undiscounted part.
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These results indicate that when there is a choice of two different parts avail-
able to satisfy the demand, the model is able to find solutions that are not
immediately obvious to a human observer, but which prove more cost-effective
overall. However, since incentive schemes can be satisfied by parts bought from
multiple APGs, these examples do not reflect the complexities of actual procure-
ment.

Full Dataset Results. We considered a 3-month period from Jan-Mar 2021,
comparing the quantity of parts purchased and the net cost of our optimization
model against historical data. We chose a 3-month period, as the threshold num-
ber of parts required to trigger a rebate in the provided data was determined by
the total quantity purchased in 3 months. Parts with no membership in either an
APG nor contributing to a rebate scheme were discarded from both datasets, as
they involved no decision-making. The dataset for this 3-month period featured
5 suppliers and 78 PNs after unnecessary parts had been removed. 3 suppliers
had incentive schemes, of which 2 were triggered in the historical data. The
optimization was able to trigger all 3 while satisfying demand, ultimately pur-
chasing a slightly higher number of parts in order to achieve a lower net cost
overall (4.3% cost reduction). Since additional parts could be added to inventory,
this should not be a significant concern for the supply chain. Further, as shown
in Fig. 8, even a version of the optimization without access to rebates was able
to achieve a slightly better cost performance, indicating that more cost-effective
part purchases were possible.

Fig. 8. Net cost values for historical and optimized data as well as optimization without
rebates with changing risk tolerance.

By focusing on 3 APGs (APG 7, APG 11, and APG 15) which featured some
of the largest savings, some insights are available into why the optimization
is able to improve on the historical cost. For APG 7 and 11, the optimizer
chooses a smaller selection of parts over the minimum required purchase, with
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the historical purchases selecting some parts with high cost. For APG 15, the
result changes with the availability of rebates. When rebates are available, the
optimizer balances the demand between two similarly priced parts, but when
rebates are not available, the strictly cheaper part is heavily favoured. This
adaptation to the presence of rebates illustrates why the optimization is able to
achieve improved cost performance even when rebates are unavailable.

Finally we ran our optimization model on 3 other 3-month periods: April
to June, June to August, and August to October. In each case, the goal was
to determine whether more rebates could be activated by the optimization. For
April to June, the number of parts purchased for Suppliers 8, 10, and 11, the
three with rebate schemes, was sufficient to provide a rebate for all, but in the
historical purchases, while the allocation to Supplier 8 doubled the rebate thresh-
old, Supplier 10 and Supplier 11 fell short, resulting in only 1 supplier activating
their rebates. For June to August, there was a similar case, but Supplier 11 was
also activated with only Supplier 10 missing out. For August to October, the
total allocated to the three suppliers was inadequate to trigger the rebate for
all 3, but an increase from 1 activated supplier to 2 may have been possible. In
fact, the optimization was able to achieve rebates on all 3 suppliers in each of
the 3 periods, because, due to the consideration of APGs, purchases could be
re-allocated from the 2 remaining rebateless suppliers, Supplier 4 and Supplier
7. This resulted in an allocation that was more even between the three suppliers
(though still preferring Supplier 8 as in the historical data), but also assigned
more parts to the 3 Suppliers and therefore gained discounts for all. The only
exception to this was for the case where the risk constraint was set to the tight-
est limit feasible, in which case Supplier 11 was ignored as far as possible, and
therefore could not achieve the rebate threshold while also satisfying the risk
constraint.

From these results, we conclude that considering APGs and incentive schemes
that encompass multiple parts, it is possible to take a holistic approach to pro-
curement that results in a global cost reduction that may be challenging for
planners to identify due to the scale and complexity of the possible solutions.

6 Conclusions and Further Work

Further developments of this project could pursue a number of possible avenues.
The first is the research and development of quantifiable risk impact, allowing
realistic scenarios to be generated, and thus a stochastic optimization scenario-
based approach could be reconsidered. The second approach could be to consider
additional ‘risk’ metrics, such as quality of parts provided. Thus an additional
focus on the proportion of defective parts provided by suppliers may enrich
the model beyond focusing on supply disruption type risks. Third, some of the
assumptions used in the experimental part of the project could be further exam-
ined. In particular, it is assumed that for suppliers with multiple risk scores
connected to different sites, the scores should be averaged to get the overall sup-
plier risk, but this may be too simplistic to achieve the best cost-risk balance.
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Finally, it is also assumed that all parts in an APG are equally viable and there
is no inherent preference for one over another that may lead to a decision that
is not purely cost-focused. Examining the impact of changing these assumptions
will lead to different purchasing decisions. For example, changing the risk cal-
culation to the maximum site risk rather than the average could lead to much
greater variation between suppliers and therefore the allocation dynamic and
range of possible risk tolerance tuning will change.

The real-world problem of risk-tolerant cost-effective part procurement is a
complex one, with many factors being included in decisions that may not all
be reflected in the models in this work. However, the results presented for the
problems shown indicate that when correctly specified, an optimization model
can find a solution that is much more mathematically explainable and scalable
than those that can be derived by simple greedy methods or human planners.
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