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Abstract

There are two major challenges to solving con-
strained optimization problems using a Quadratic
Unconstrained Binary Optimization or QUBO
solver (QS). First, we need to tune both the un-
derlying problem parameters and the algorithm pa-
rameters. Second, the solution returned from a QS
might not be feasible. While it is common to use
automated tuners such as SMAC and Hyperopt to
tune the algorithm parameters, the initial search
ranges input for the auto tuner affect the perfor-
mance of the QS. In this paper, we propose a
framework that resembles the Algorithm Selection
(AS) framework to tune algorithm parameters for
an annealing-based QS. To cope with constraints,
we focus on permutation-based combinatorial op-
timization problems, since computing the projec-
tion to the feasible space for this class of problems
can be done efficiently; and for simplicity, the num-
ber of problem parameters can be reduced to one
and we fix it. Methodologically, we train a recom-
mendation system to to learn good annealing prob-
lem parameter ranges. During testing, we search for
good hyperparameter values using a recommenda-
tion system approach. To illustrate our approach ex-
perimentally, we use the Fujitsu Digital Annealer as
our QUBO solver and Optuna as the auto tuner to
solve the Traveling Salesman Problem.

Introduction
Many combinatorial optimization(CO) problems are known
to be NP-hard. Mixed Integer Programming solvers such as
CPLEX and Gurobi can solve combinatorial optimization
problems. A branch and bound paradigm, which is an ex-
act method, takes exponential time solving such problems.
Recently, there is great interest to use a quantum annealing-
based approach to solve these combinatorial optimization
problems as stated in Lucas [2014] and Glover et al. [2018].
To do so, we map these optimization problems into an Ising
model, or equivalently, a QUBO (Quadratic Unconstrained
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Optimization Problem) formulation. However, since Quan-
tum hardware is still in a nascent stage, to test out these
ideas, non-quantum solvers such as Digital Annealer by Fu-
jitsu [2016] and Alpha QUBO are used instead. These solvers
are typically heuristic in nature, and they return multiple pos-
sible solutions.

QUBOs are optimization problems of the form:

min
x∈{0,1}n

xTQx

In Lucas [2014] and Glover et al. [2018], many combina-
torial optimization problems are formulated as QUBOs. In
Venturelli et al. [2016], a decision problem for the job-shop
scheduling problem is proposed where it is then can be solved
via a QUBO solver (QS).

While QUBOs can be used to formulate a wide variety of
combinatorial optimization problems, in this paper, we focus
on permutation problems (which includes Traveling Sales-
man Problem, Quadratic Assignment Problem, and Flowshop
Scheduling Problem). We define variable xij ∈ {0, 1} as an
indicator variable that takes value 1 if object i is assigned to
slot j and it takes value 0 otherwise. The goal is to find an op-
timal assignment of the objective function that is a quadratic
function of these binary variables. The optimization problems
that we focus on are of the form of

min
x

xTQx

subject to
∑n

i=1 xij = 1 and
∑n

j=1 xij = 1 where these
constraints describe that each object is assigned a slot and
each slot has an object being assigned to it respectively.

The problem stated above cannot be solved directly by a
QS due to the constraints. In Lucas [2014], Goh et al. [2022],
Huang et al. [2021], penalty methods have been used to con-
vert the problem in the form of a QUBO, we rewrite the prob-
lem formulation as:

min
x

xTQx+A

( n∑
i=1

xij − 1

)2

+

 n∑
j=1

xij − 1

2


where A is the penalty coefficient (or the problem parameter).
It can be shown that if the penalty coefficient A is set to be
large enough, then the unconstrained optimization problem



is equivalent to the corresponding constrained optimization
problem. However, in practice, simulated annealing-based
QS does not give a high-quality solution when the penalty
coefficient is too large. Lately, there have been works to tune
the penalty coefficient to improve the quality of the solution,
for example, Verma and Lewis [2020], Huang et al. [2021],
Goh et al. [2022], Ayodele [2022], and Diez Garc´ıa et al.
[2022]. Empirically, it is known that A determines a trade-
off between optimality and feasibility. Note that the penalty
method theoretically can be used in general constrained opti-
mization problems. We focus on the permutation constraints
in this paper because the projection of the solution can be
computed efficiently to ensure feasibility.

While most solvers have automated mechanisms in per-
forming annealing, some QS such as Fujitsu Digital Annealer
allows the user to further fine-tune the underlying annealing
parameter, which allows us to further improve the quality
of the solution. These annealing hyperparameters affect the
search trajectories as they would influence whether a region
of solutions is explored, or whether a promising region is ex-
ploited to obtain better solutions. In this paper, we focus on
tuning these algorithm parameters by fixing the problem pa-
rameters (penalty coefficients) to a large value.

In summary, we consider two forms of hyperparameters:

1. Problem parameters: Penalty coefficients that play a
role in the trade-off between the objective function and
the constraints. By fixing these problem parameters,
we convert the constrained optimization problem to a
QUBO. For simplicity, these parameter values are iden-
tically set, and is denoted as A in our paper.

2. Annealing Parameters: These are algorithm parame-
ters within the QS that define the annealing behavior to
solve a given QUBO instance.

There are a good number of Bayesian-based tuners that
have been used in practice; some examples of Bayesian tuners
(automated tuners) are Hyperopt, Optuna Akiba et al. [2019],
SMAC Hutter et al. [2011]. At the time of writing, there
are emerging hybrid automated tuners such as Hyperband
Li et al. [2017] and BOHB Falkner et al. [2018] which are
the state-of-art hyperparameter tuning approaches for vari-
ous deep learning tasks. The fundamental idea of these auto
tuners is that they build a surrogate model which may be
based on Tree Parzen Estimator (TPE), random forest, neu-
ral network, or some other regression model that is in turn
used to suggest the next set of parameter values for both ex-
ploration and exploitation purposes. Given a QS with parame-
ters to be tuned, one direct approach is to pass the domains of
the parameters to the auto tuner and allow it to automatically
suggest good hyper-parameter values.

In Figure 1, we show how an automated tuner is used to
tune a QUBO solver to solve a combinatorial optimization
problem. Notice that the purpose of this work is not to im-
prove the automated tuner per se, but rather we treat the ini-
tial search range as an input that needs to be tuned. More pre-
cisely, we propose a recommendation system approach to rec-
ommend suitable algorithm parameter ranges to be fed into
the automated tuner for unseen QUBO instances.

Figure 1: A typical approach to apply a QS to solve a combi-
natorial optimization problem.

Related Work
No single algorithm or a machine learning pipeline always
performs better than the other algorithms. This is known
as the no free lunch theorem, and it is applicable in opti-
mization, machine learning, and statistical inference Wolpert
[1996], Wolpert and Macready [1997]. However, finding the
best pipeline given a new unseen instance is challenging. As
categorized in Fusi et al. [2018], the task of leveraging on pre-
vious experiments has been explored by two different com-
munities: The Bayesian optimization community and the al-
gorithm selection community. In the Bayesian community,
the task is commonly formulated as multi-task learning. The
Multi-task Bayesian Optimization approach is used in Swer-
sky et al. [2013] where a smaller data set is used to learn
suitable hyperparameters of a bigger dataset. The technique
of using an indicator variable to choose which dataset is used
to run an experiment was presented in Schilling et al. [2015].
Neural networks techniques have been used in Springenberg
et al. [2016] and Perrone et al. [2017].

The field of Algorithm Selection (AS) was formalized by
Rice [1976] where we assign a suitable algorithm to solve
suitable problem instances. Formally, P which denote the
problem space, A, which denote the algorithm space, and also
a mapping from P×A → R that measure the performance if
we use an algorithm on a particular problem instance.

The algorithm selection problem has been well studied for
some famous problems. SATZILLA Xu et al. [2008], Xu et
al. [2012] is a popular algorithm selection approach for SAT.
It works by first running pre-solvers for a short amount of
time and then hard instances are detected and delegated to
a backup solver. Different performance models are learned
for different categories of the problem instances. Stern et
al. [2009] studies constraint solving problems and combina-
torial auction winner determination problems and Malitsky
and O’Sullivan [2014] projects commonly used hand-crafted
meta-features used to select algorithms onto the latent space
identified by their model. Mısır and Sebag [2017] further ex-
tended the work by Stern et al. [2009] by handling the cold
start problem through nonlinear modeling of the latent factor.
A recommender system proposes similar products to similar
users. In the algorithm selection literature, this corresponds to
recommending similar algorithms/pipelines to similar prob-
lem instances. An advantage of collaborative filtering is that
during training, it is not necessary to enumerate all the config-
urations on all the problem instances. Imputation is frequently
used in a collaborative filtering approach commonly via a la-
tent space.



There are two approaches to collaborative filtering.
Memory-based approaches depend on the similarity functions
of the user and item spaces. In contrast, the model-based ap-
proach learns a lower dimension latent space of dimension l.
A common model-based technique is based on matrix factor-
ization approaches where the latent space is chosen to mini-
mize the reconstruction error subject to some sparseness con-
straint. That is given the rating matrix Y . We want to find
X ∈ RN×l,W ∈ Rl×D such that Y ≈ XW . They are ob-
tained by solving the following optimization problem:

min
X,W

{
L(Y,XW ) +

λ

2

(
tr
(
X ·XT

)
+ tr

(
W ·WT

))}
where L is a loss function and λ is a regularization parameter.

Using techniques in Salakhutdinov and Mnih [2008],
Lawrence and Urtasun [2009], in Fusi et al. [2018], a proba-
bilistic nonlinear matrix factorization approach is used in se-
lecting machine learning pipelines for the problem instances
where we use a Gaussian Prior,

p(Y |X, f, σ2) =

N∏
n=1

D∏
d=1

N(yn,d|fd(xn), σ
2)

We place a Gaussian process priors over f, p(f |X) =
N(f |0,K) where K is a covariance matrix, k(xi, xj) =
α exp

(
−γq

2 ∥xi − xj∥2
)

The marginal likelihood is obtained
by integrating f and we obtained

P (Y |X, θ, σ2) =

D∏
d=1

N(Y:,d|0,K(X,X) + σ2I) (1)

where θ = {α, γ1, . . . , γq}.
A stochastic gradient approach can be used to optimize the

model. That is we can solve for θ and perform imputation by
minimizing the negative log-likelihood. Prediction of a new
problem instance can be computed efficiently due to the prior
that we have placed.

A recommender system approach has the advantage that
after we perform the training stage, given an unseen instance,
we can suggest suitable hyperparameter values that can be
used to achieve a higher quality solution in fewer iterations.
However, a recommender system framework cannot be used
directly. To do so, we have to address a few challenges:

1. Convert a constrained optimization problem to an un-
constrained problem by choosing a suitable penalty co-
efficient.

2. Obtain suitable candidates for the initial hyperparameter
range.

3. Ensure feasibility of the solution returned.

Our work extends the recommender system framework for
the application of a QS to solve combinatorial optimization
problems. Most optimization solvers take constraints into
considerations explicitly. This is not the typical setting for
quantum annealing or most QS where neither the optimal-
ity nor feasibility is ensured. However, exploration of such

solvers is of great importance. Similar challenges will be
faced even when the quantum annealing hardware technology
matures. Most quantum technologies are accessed via Cloud
Services. Calling such services too frequently is expensive.
By illustrating that a recommendation system is applicable
for such metaheuristics, it shows that more time can be spent
on exploiting good hyperparameter values.

Proposed Framework
Using the terminology from the Algorithm Selection commu-
nity, to apply a recommender system framework, we need to
define the problem instance space P, the potential algorithm
space A, and also the performance model P×A → R:

1. Problem instance space: In our context, a problem in-
stance is a QUBO with a defined problem parameter
value.

2. Algorithm Space: In our context, the algorithm space is
the proposed initial ranges of the annealing parameter
values for the automated tuner.

3. Performance model: In our context, we compute the pro-
jection of the solution obtained and convert them into a
relative gap w.r.t the best solution attained.

Having defined the above, the remaining steps will be to con-
struct the CF matrix (Step 4) and perform the prediction (Step
5).

We provide the details of these components below.

1. Defining the problem instances
The problem instances in our context are the QUBO mod-
els derived from combinatorial optimization problems. As we
have discussed earlier, A, the penalty coefficient determines
the trade-off between optimality and feasibility. Though we
acknowledge that fine-tuning problem parameter is neces-
sary for achieving a better solution quality, we decide to not
tune it but fix it with a large enough value to ensure feasi-
bility. By doing so, we could focus on tuning the annealing
parameter which has not been broadly studied. The experi-
ments results also show that tuning annealing parameter alone
could achieve good performance and even optimal solution
for some of the instances.

2. Defining the algorithm space
Given a problem instance and an automated tuner, we de-
scribe how we can learn a range of each of the hyperparame-
ters via a simple but effective sampling approach.

For each QUBO instance, we run the automated tuner for
m iterations. We then extract the hyperparameter values that
correspond to the top r% of the configuration that we ex-
plored where they return feasible solutions. For each of the
hyperparameters, we then compute the first and the third quar-
tile of those best-performing hyperparameters. The pseudo-
code is presented in Algorithm 1.

3. Defining the performance measure
Optimality gap is a common metric to measure the solution
quality w.r.t the optimal or the best known solution. It’s not



Algorithm 1: Sampling Approach to extract potential start
range for annealing hyper parameter
Input: QUBO solver f ; automated tuner T ; a QUBO instance
d; the default initial search ranges provided by automated
tuner for each of the hyperparameters R; the percentage of
hyperparameter visited to be used, r; the number of times to
run the automated tuner, m.
Output:Intervals of hyper parameter values that can be
passed to the automated tuner.

1: Use the automated tuner to evaluate T (f, d,R,m), that
is we call the tuner T with the solver f with dataset d
with the initial range being described by R and record
it. Record the hyperparameter values used and the corre-
sponding best feasible objective function.

2: if the recorded feasible solution is non-empty then
3: Sort the hyperparameter values according to the objec-

tive function.
4: Extract the hyperparameter values corresponding to

the top r% of the recorded data.
5: Return the first quartile and the third quartile for each

of the hyperparameter values explored.
6: else
7: Return the initial range without narrowing it.
8: end if

impractical to use the optimality gap as the performance mea-
sure, especially when conducting inference on unseen test
instances where there isn’t an optimal or best known solu-
tion. Since our approach tunes the parameter in an iterative
manner, we could always compute the gap w.r.t to the best
solution achieved for each instance. This relatively measure
is good enough to show the performance difference between
various annealing parameters based on our experiment re-
sults.

But we are solving a constrained optimization problem and
might obtain an infeasible solution from the solver. Hence, we
have to process the solution obtained before we compute the
gap.

To ensure feasibility, for each solution that we obtain, we
compute the projection to the feasible space, a procedure that
was introduced in Goh et al. [2022]. In terms of Hamming
distance, the problem of finding the closest permutation ma-
trix is a linear programming problem. Suppose we have ob-
tained yi,u, i, u ∈ {1, . . . , n} a solution which is binary but
not feasible. To obtain xi,u that is feasible, their Hamming
distance can be written as

(xi,u−yi,u)
2 = x2

i,u−2xi,uyi,u+y2i,u = (1−2yi,u)xi,u+yi,u
(2)

Solving the projection problem is equivalent to solving the
following binary linear programming problem.

min
x

(1− 2yi,u)xi,u (3)

subject to
n∑

u=1

xi,u = 1,∀i ∈ {1, . . . , n} (4)

n∑
i=1

xi,u = 1,∀u ∈ {1, . . . , n} (5)

which is just an assignment problem that can be solved in
polynomial time. Once we obtain the feasible solution, we
can calculate the gap accordingly.

After attaining the feasible solution, we could compute the
gap as the following:

gap =

(
feasible solution − best achieved

best achieved

)
× 100%

Later, we find the model trained with normalized gap is
more robust and it achieves better performance. Thus, we
conduct the Min-Max scaling over the gap for both training
and testing.

4. Constructing Collaborative Filtering (CF) Matrix
For each problem instance, we derive a suitable QUBO to
represent it using a large enough problem parameter. After
which, we find a suitable annealing parameter configuration
range using Algorithm 1. With that, we can then compute the
corresponding performance measure for the problem instance
and annealing configuration pair. We define the Collaborative
Filtering (CF) matrix or rating matrix as a matrix that records
the performance of a QUBO instance given a particular an-
nealing parameter configurations. We illustrate the CF matrix
for our context of tuning hyperparameters in a QUBO solver
in Figure 2.

Figure 2: Example of a CF matrix where each row is a QUBO
corresponding to a particular optimization problem and each
column is a potential configuration.

Enumerating the performance measure for all the problem
instances and the annealing configuration pair would be very
expensive. To reduce the computational complexity, we use
an acquisition function. An acquisition function is a function
that suggests which value to explore that would likely give
us the best solution. One such acquisition function is the ex-
pected improvement (EI). We also need a parameter τ that



specifies the fraction of configuration to explore for each of
the datasets. We describe the procedure in Algorithm 2.

Algorithm 2: Constructing the CF matrix
Input:Data instances of combinatorial optimization problem;
the default parameter for the annealing QUBO solver; an
automated tuner, T ; initial penalty coefficient for each
combinatorial optimization problem instance, A0; maximum
number of iteration to search for the problem parameter.
Output:A collaborative filtering ma-
trix.

1: for every combinatorial optimization instance, d do
2: Set the problem parameter to be A0(d), where A0 can

depends on the instance d and construct the corre-
sponding QUBO.

3: if feasibility condition for the permutation constraint is
satisfied then

4: Run Algorithm 1 to obtain a suitable initial range
for the instance.

5: Compute the best feasible solution.
6: end if
7: end for
8: Construct a CF matrix with the QUBO obtained as a row

and the initial configurations as a column.
9: while The CF matrix is not filled up to τ do

10: for each instance do
11: Run the acquisition function to get the suggested

configuration to record the best performance
12: end for
13: end while
14: Compute the gap of the annealing configuration for each

of the instances.
15: return the CF matrix.

Once the CF matrix has been constructed, we can use any
collaborative filtering method that has a fast prediction pro-
cedure in predicting good hyperparameter values. For exam-
ple, in Fusi et al. [2018], a probabilistic matrix factorization
approach for a recommender system for selecting machine
learning pipelines has been proposed. We impute the miss-
ing values by considering the mean of the gap across the in-
stances.

5. Prediction Stage
Given a new problem instance, we can first use a large prob-
lem parameter to define the QUBO to represent the problem
instance. Next, we have to address a common problem arising
in the recommender system, the cold start problem.

The similarity is measured using the L1 distance of the fea-
tures. The features that we use are constructed as follows: For
every QUBO instance, we compute the density of the QUBO
matrix. That is, we first scale the matrix to be between 0
and 1, and investigate the fraction of data that are less than
0.1, 0.2, . . . , 0.9. We also consider application-based meta-
features. These meta-features used for TSP are the number
of cities, the mean distance, the standard deviation of the dis-
tances, the mean of the degree, the standard deviation of the
degree, and the two largest eigenvalues. After which, we use

an acquisition function to predict the next value to try until
we obtain τ% of all the configurations.

Algorithm 3: Prediction Stage
Input:Data instances; default hyper-parameter range; the
number of configurations chosen from warm start, n; the
number of configuration to explore, k.
Output:Solution to the combinatorial optimization prob-
lem.

1: Set the problem parameter to a large enough value.
2: Construct the QUBO.
3: Select n configurations with lowest average gap from the

most similar QUBO instances in the training set.
4: Update the gap
5: while Less than k configurations have been explored do
6: Run the acquisition function to get the suggested con-

figuration to run the next set of configurations.
7: Update the gap using kernel regression
8: end while
9: if a feasible solution is found then

10: Return the best solution found
11: else
12: Compute the best projected solution.
13: end if

We present our prediction algorithm in Algorithm 3. Note
that our framework is agnostic to any specific QUBO solver
or any automated tuner.

Application
To illustrate our proposed framework, we experiment on the
Traveling Salesman Problem, which is a permutation problem
of finding the shortest Hamiltonian path that visits each city
exactly once.

Lucas [2014] formulates TSP as follows: We let Xv,j de-
note the indicator variable that city v is the j-th city to be
visited.

min
x

HB(x) +AHA(x)

where

HB(x) =
∑

(u,v)∈E

du,v

n∑
j=1

xu,jxv,j+1

and

HA =

n∑
v=1

1−
n∑

j=1

xv,j

2

+

n∑
j=1

(
1−

n∑
v=1

xv,j

)2

.

Here HB describes the length of the TSP tour and HA is
an expression that would take a positive value if and only if it
is infeasible. A, the penalty coefficient has the property that
if it is increased, the solution returned by the QUBO solver
tends to be feasible but not optimal. On the other hand, if it is
too small, it is likely to give a better objective value but it is
more likely to be not feasible for the original problem. Here,
we simply fix A = max(u,v)∈E du,v .



Experimental Results
In this section, we report preliminary experimental results and
try to answer the following two questions:

• Could our approach produce better solutions when fac-
ing unseen test instances compared to other methods?

• Does our approach have good generalization ability for
slightly out-of-distribution test instances compared to
other methods?

We use the Fujitsu second-generation Digital Annealer
(DA) (Matsubara et al. [2020]) operating in normal mode as
the QUBO solver, and Optuna (Akiba et al. [2019]) as the au-
tomated tuner. We set the number of annealing steps to be 108
and the number of replicas to be 128. The annealing hyper-
parameters that we tune are the temperature update interval,
the decay rate, and the starting temperature. These parameters
control the temperature-decreasing behavior in the annealing
process. The starting temperature and the temperature update
interval take a value between 0 and 108. The decay rate takes
a value between 0 and 1. The temperature update interval is
the interval length before the temperature is updated. It takes
a positive number. The update interval should be less than
the number of iterations. We set the default range to be these
ranges. We set the number of Optuna calls to be 60.

To train and test the recommendation system, we generated
50 random TSP instances. First, we generate a random region
on the 2-dimensional space, and then sample the coordinates
of all the cities using a uniform distribution and also trun-
cated exponential distribution to generate instance size from
20 to 60 cities. We use 40 instances for training and 10 in-
stances for testing. For test instances, we randomly select 10
of the configurations that we learned and we compute the cor-
responding entry.

We use random search and warm start as our baseline
methods. Random search selects configurations at random. In
warm start, the configurations with the smallest gap are cho-
sen from the most similar training instances (QUBO) given
the new test instance. Our goal is to show that our recom-
mendation system could learn from the prior knowledge with
training data and surpass the performance of other sampling
based approaches.

The comparison is fair given the auto tuner i.e., Optuna
will still be applied with identical computational resources
located (same number of trials) on the configurations chosen
from these methods.

a. Comparison of the average regret
To answer the first question, we examine if our proposed rec-
ommendation system can suggest the best configurations for
unseen test instances. Each instance will be given total 10
configurations and the gap is retrieved directly from the CF
matrix and then we compute the average regret achieved by
the recommendation system. In our paper, the regret is de-
fined as the difference from the recommended gap from the
current best configuration, hence a smaller regret is desirable.
The result is shown in Table 1.

We could see that our approach has achieved the lowest
average regret compared to random search and warm start.

Methods Ours Random search Warm start
Average regret 0.05368 0.06201 0.06217

Table 1: Comparison of the average regret

Though the improvement is not extremely significant, the re-
sults are consistent with our recommendation system even
trained with different hyperparameter settings.

We could also see that the average regret of random search
is very similar to the warm start. It indicates that the manually
designed QUBO features are unable to fully capture the simi-
larity between two QUBO instances so that warm start is inca-
pable of capturing more information than random search. In
contrast, the recommendation system could potentially learn
the latent representation of the QUBO instances as well as the
configurations and further recommend good configurations.

b. Comparison of the solution quality
Besides comparing the average regrets on the test instances
(the results are collected by tuning each configuration with
Optuna for 60 trials), we also test the performance of our
recommended configuration under limited computational re-
sources. We follow the same setting of comparing the average
regret but this time we only tune each configuration with 6
Optuna trials and record the best TSP solution attained from
DA.
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Figure 3: Solution attained using our approach, random
search, and warm start on 10 test instances.

Figure 3 shows that our recommendation approach per-
forms slightly better compared to other two baseline meth-
ods. The cost here refers to the tour length of the Hamiltonian
path found. In terms of relative gap, recommended configu-
rations has achieved average gap of −1.692% w.r.t to random
search and −0.494% w.r.t warm start. It shows that the our ap-
proach can work in a more realistic experiments setting with
each configuration distributed with only restricted computa-
tion budget.

We could further investigate our performance by compar-
ing it with the best solution found in Algorithm 2 since the
total number of Optuna trials for each instance are all equal



to 60. Table 2 records the best solution and the number of
iterations it takes to achieve the best solution.

TSP Ours Original
solution trial solution trial

jyqxu20 8244 28 8288 11
gxady23 10173 0 10484 24
nrlvc26 22198 39 22380 38
uoiuy28 19787 45 20115 45
ycdor29 12378 22 12497 11
zrkzh29 14820 12 14857 42
fjifx31 11667 30 12705 18
ruorj36 16039 26 16350 51
aktyu46 25470 22 24108 48
fdlxm46 29511 15 30800 40

Table 2: Best solution achieved and the number of trials it
takes for 10 test instances

We observe from Table 2 that our method achieves better
solutions for 9 out of total 10 test instances. Among them, 4
instances use fewer number of Optuna trials to achieve the
best solution. It shows that our method could recommend
good configurations that only requires fewer computational
budget to achieve better solution quality.

c. Generalization ability tested with TSPLIB
instances
In the previous two sections, we show that our trained recom-
mendation system could achieve better performance during
the test on random TSP instances generated using the same
distribution as the training instances. In this section we would
like answer the second question to further explore the gen-
eralization ability by testing it with TSPLIB instances from
Reinelt [1991]. These TSPLIB instances are commonly used
benchmark which is very different from our training and test-
ing instances.
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Figure 4: Solution attained using our approach, random
search, and warm start on 10 TSPLIB instances.

We give each configuration 6 Optuna trials and each
method could select a total of 10 configurations for testing.

10 TSPLIB instances are chosen randomly from the whole set
restricting the number of cities within 20 to 60. The best solu-
tion is shown in Figure 4. Unfortunately, our method is unable
to perform better than random search or a warm start. It is
not surprising given the test instances are not drawn from the
same distribution as our training set. In the future, we should
increase the diversity of our training set to make the model
generalize better for the unseen test instances.

Discussion and Conclusion
In this paper, we propose a framework to tune the hyperpa-
rameters to attain better solutions for a QS via a recommen-
dation system approach. From our preliminary experimental
results, we learn that the recommendation system is able to
suggest better configurations than competitive approaches if
the training instances are drawn from a similar distribution
than the testing instances. However, to date, our approach
fails to tackle the issue of generality.

While we believe tuning hyperparameters can improve the
performance of a QS, most of the solvers nowadays are pro-
vided in the form of a cloud service, where jobs are submitted
to a queue and the solution is not returned immediately typ-
ically. Such behavior is not specific to any particular cloud
service. Consequently, challenges such as jobs cancellation or
long queueing time can occur. These factors make data collec-
tion an extremely manually tedious task, which severely im-
poses constraints on producing extensive results with massive
data, unlike a typical machine learning task. We believe what
is needed to produce better experimental results is a more ef-
ficient data collection scheme.

Our framework currently fixes the penalty coefficient
value for each instance, and assumes that feasibility can be
achieved; separately, our work involves ensuring or restoring
feasibility through better tuning of these penalty values.

Other possible extensions involve minimizing the compu-
tational complexity when we make prediction in the future,
and extending our approach to other combinatorial optimiza-
tion problems.
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