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Abstract
Machine learning is disruptive. At the same time, machine learning can only succeed by
collaboration among many parties in multiple steps naturally as pipelines in an eco-system,
such as collecting data for possible machine learning applications, collaboratively training
models by multiple parties and delivering machine learning services to end users. Data
are critical and penetrating in the whole machine learning pipelines. As machine learning
pipelines involve many parties and, in order to be successful, have to form a constructive
and dynamic eco-system, marketplaces and data pricing are fundamental in connecting and
facilitating those many parties. In this article, we survey the principles and the latest research
development of data pricing in machine learning pipelines. We start with a brief review of
data marketplaces and pricing desiderata. Then, we focus on pricing in three important steps
in machine learning pipelines. To understand pricing in the step of training data collection,
we review pricing raw data sets and data labels. We also investigate pricing in the step of
collaborative training of machine learning models and overview pricing machine learning
models for end users in the step of machine learning deployment. We also discuss a series of
possible future directions.

Zicun Cong, Xuan Luo, and Jian Pei’s research is supported in part by the NSERC Discovery Grant
program. All opinions, findings, conclusions and recommendations in this paper are those of the authors and
do not necessarily reflect the views of the funding agencies.

B Yong Zhang
yong.zhang3@huawei.com

Zicun Cong
zicun_cong@cs.sfu.ca

Xuan Luo
xuan_luo@cs.sfu.ca

Jian Pei
jpei@cs.sfu.ca

Feida Zhu
fdzhu@smu.edu.sg

1 Simon Fraser University, Burnaby, Canada

2 Singapore Management University, Singapore, Singapore

3 Huawei Technologies Canada, Burnaby, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-022-01679-4&domain=pdf
http://orcid.org/0000-0002-2200-8711


1418 Z. Cong et al.

Keywords Data assets · Data pricing · Data products · Machine learning · AI

1 Introduction

The disruptive success of machine learning in many applications has led to an explosion
in demand [1, 109]. Recent research predicts that the global machine learning market is
expected to reach 20.83 billion dollars in 2024 [70]. To succeed in building amachine learning
application, one party is far from enough. Many parties have to collaborate in one way or
another. For example, one party may have to acquire raw data and data labeling services
from some other parties to construct training data, multiple parties may need to collaborate
in building a machine learning model, and one party may want to use some other parties’
models to solve its business problems. Machine learning applications are indeed pipelines
connecting many parties.

Data are critical for machine learning. Machine learning models, especially deep models,
rely on large amounts of data for training and testing. Deploying machine learning services
also needs data—machine learning models consume users’ data as input, and return insights
and recommend possible actions. Maintaining and updating machine learning models still
need data. The importance of data for machine learning cannot be over emphasized. Data
penetrate the whole machine learning pipelines.

Obtaining data for machine learning is far from easy [67]. For a party that wants to build a
machine learning model, the challenges come from multiple aspects. First, within the party,
in order to develop a training data set, more often than not it is costly to collect data, create
proper labels and ensure data quality. Second, the party may realize that it does not have
the necessary data to train the target model. Thus, the party may have to explore external
sources for the data needed. This involves acquiring external data. Last, to build or strengthen
business edges, the party may want to provide machine learning services to other parties.
Then, the party has to exchange data with other parties, such as accessing data from end users
and providing end users model output.

Connecting many parties in an eco-system in scale requires a general and principled
mechanism. As data and models are essential in machine learning pipelines and data and
model exchanges are the most fundamental interactions among different parties, data and
modelmarketplaces become a natural choice formachine learning pipelines and eco-systems,
and pricing becomes the core mechanism in machine learning pipelines.

In response to the massive and diversified demands for various data, data products become
valuable assets for purchase and sale. Here, data products refer to data sets as products and
information services derived fromdata sets [86].Data commoditizationmotivates data owners
to share their data products in exchange of rewards and thus helps data buyers to access data
products of high quality and large quantities.

To enable tradings between data owners and data buyers, data must be priced. Pricing
data, however, is far from trivial. Agarwal et al. [1] summarize four properties making data a
unique asset. First, data can be replicated at zero marginal cost. Second, the value of data is
inherently combinatorial. Third, the value of data varies widely among different buyers. Last,
the usefulness of data lies in the value of information derived from it, which is difficult to
verify a priori. Due to those properties, pricing models for physical goods cannot be directly
applied or straightforwardly extended to data products, and thus new principles, theories, and
methods need to be developed.
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Data pricing in machine learning pipelines 1419

Fig. 1 Steps and pricing tasks in machine learning pipelines

Based on an extensive survey on existing research, we identify and focus on three steps in
data and model supply tasks in the manufacturing pipeline of machine learning models [36].
The steps and their corresponding tasks are illustrated in Fig. 1. In the step of training data
collection, raw data are collected and the associated labels are annotated. We review the
research on pricing for raw data sets and data labels. In the step of collaborative training of
machine learning models, we investigate how to price different participants’ contributions
through their data. In the model deployment step, we overview pricing machine learning
models for end users. We focus on the four pricing tasks in machine learning pipelines as
follows.

– Pricing raw data sets To build a machine learning model, the first step is collecting
training data. Monetizing and trading raw data sets provide people with a convenient
and efficient way to acquire a large amount of training data. A key challenge in pricing
raw data sets is how to set the price reflecting the usefulness of a data set. Moreover,
pricing models may be optimized toward different objectives, such as revenue maximiza-
tion, arbitrage-freeness, and truthfulness. Achieving those optimization goals introduces
additional challenges in the design and implementation of pricing models.

– Pricing data labels In the training data collection step, in addition to collecting raw data,
obtaining data labels is critical. Crowdsourcing is a popular way for this purpose [112].
Unfortunately, spammers may commit no efforts in their assigned tasks and produce
random answers, which leads to data sets of poor quality. Thus, a key challenge in
pricing data labels is how to estimate label accuracy and compensate crowdworkers
correspondingly, such that they are motivated and driven to invest high efforts and report
accurate data labels [112]. This task only appears in machine learning pipelines where
supervised machine learning models are produced.

– Revenue allocation in collaborative machine learning Collaborative machine learning
is an emerging paradigm, where multiple data owners collaboratively train machine
learning models on their aggregate data, and share the revenues of using/selling these
models. Data sets from different owners may have different contributions to the learned
models. Evenly distributing the revenues is not fair to data owners, particularly for those
who contribute more valuable data, and thus may discourage future collaborations. To
this end, a key challenge is how to fairly reward data owners’ contributions.
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– Pricing machine learning models Machine learning as a service (MLaaS) [18, 109] is a
rapidly growing industry. Customersmay purchasewell-trainedmachine learningmodels
or build models on top of those well-trained rather than building models from scratch by
themselves. For example, one may use Google prediction API to classify an image for
only $0.0015 [18]. While machine learning models and raw data sets share a series of
common ideas in pricing, the pricing models of raw data sets cannot be trivially adapted
to price machine learning models. How to version machine learning models and avoid
arbitrage among multiple versions is a key challenge in this task.

The four tasks are related to each other. They share some core ideas, that is, linking prices
of data products to their utilities to customers. But as the tasks have different application
scenarios and pricing goals, they are solved by orthogonal techniques.

The existing models in the first two tasks aim at pricing training data sets with absolute
utility functions, that is, the utility of a data product only depends on the properties of the
product.One important difference between thefirst two tasks is about the utility functions. The
utility (e.g., accuracy) of data labels is very hard to compute due to the lack of ground-truth
verifications. The third task evaluates the utility of a data set by its marginal contribution to a
machine learningmodel. Thus, the utility of a data set also depends on the utility of other data
sets used to jointly build themodel. The existingmethods in the last task also employ absolute
utility functions. But as machine learning models and data sets have different properties, new
pricing models are developed.

The four tasks are connected when machine learning models and data sets are priced in an
end-to-end manner. On the one hand, the price of a machine learning model limits the budget
of training data procurement and the revenue that can be split among data owners [1]. On the
other hand, the costs of data procurement and model training also influence the selling price
of machine learning models, as they are part of the manufacturing cost [67]. Figure 1 shows
the connections of the four tasks.

There are some previous surveys related to data pricing [35, 63, 120]. This article covers
a substantially deeper and more focused scope than those. In this article, we try to present a
comprehensive survey on data pricing in machine learning pipelines. Very recently, Pei [86]
presents a survey connecting economics, digital product pricing, and data product pricing. He
identifies a series of desirable properties in data pricing and reviews the techniques achieving
those properties. But Pei [86] does not focus on machine learning pipeline and does not cover
the studies of pricing data labels.

The rest of this survey is organized as follows. Section 2 reviews basic concepts and
essential principles in data product pricing. Section 3 reviews pricing raw data sets. Pricing
data labels is discussed in Sect. 4. In Sect. 5, we review the recent progress in revenue
allocation in collaborativemachine learning. Section 6 is about how to pricemachine learning
models. In Sect. 7, we discuss data and model marketplaces in practice and compare data
pricing models in action. We conclude this survey and discuss some future directions in
Sect. 8.

2 Datamarketplaces and pricing

In this section, we briefly review data marketplaces and pricing in general. We first discuss
the basic structures of data marketplaces. Then, we discuss some major pricing strategies
in general. Third, we discuss different types of data markets in terms of competition and
dominance. Last, we discuss the desiderata of data pricing.
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(a)

(b) (c)

Fig. 2 Architectures of data marketplace

2.1 Datamarketplaces

A data marketplace is a platform that allows people to buy and sell data products [95]. Some
examples of data marketplaces include Dawex [25], Snowflake data marketplace [104], and
BDEX [6].Muschalle et al. [76] identify seven categories of participants in datamarketplaces,
namely analysts, application vendors, data processing algorithm developers, data providers,
consultants, licensing and certification entities, and data market owners.

Figure 2a shows the conceptual architecture of data marketplaces. A data marketplace
mainly consists of three major entities, namely data sellers, an arbiter (also known as data
vendor [95] and data broker [84]), and data buyers. Data sellers own data products and are
willing to share those products with the arbiter in exchange for rewards. Data buyers want
to obtain data products to solve their problems. The function of an arbiter is to facilitate
transactions between data sellers and data buyers. The arbiter collects data products from
data sellers and sells them to data buyers. After collecting the payments from buyers, the
arbiter distributes the payments to data sellers. In general, arbiters are modeled as non-profit
participants in data marketplaces.

Some studies simplify the architecture of data marketplaces to sell-side marketplaces
and buy-side marketplaces. A sell-side marketplace [120], as shown in Fig. 2b, has a single
data provider and multiple data buyers. In a sell-side marketplace, the arbiter is operated
by a monopoly data seller to sell the single seller’s data products. In literature, sell-side
marketplaces are considered by pricing models of both general data sets [43] and specific
types of data products, such as XML documents [108] and data queries on a relational
database [29].

A buy-sidemarketplace [120], as shown in Fig. 2c, hasmultiple data providers and a single
consumer/data buyer. In a buy-side marketplace, the arbiter is operated by the single data
buyer for purchasing data products from providers. Buy-side marketplaces are considered
in many existing studies [26, 37, 49]. For instance, de Alfaro et al. [26] study a buy-side
marketplace, where a single consumer pays crowdsource workers for labeling the single
buyer’s data set.
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2.2 Pricing strategies

Many pricing strategies have been developed in pricing theory. Cost-based pricing, customer
value-based pricing, and competition-based pricing are three important categories [27].

Cost-based pricing considers that the price of a product is determined by adding a specific
amount of markup to the cost. This strategy is adopted in personal data pricing, where the
cost is the total privacy compensation to data owners [84]. A disadvantage of the cost-based
pricing strategy is that it only considers internal factors in determining the selling price.
External factors, such as competition and demands, are not included [71].

Customer value-based pricing determines the price of a product primarily based on how
much the target customers believe a product is worth [27]. To apply customer value-based
pricing, a seller needs to estimate customers’ demands for a product through their willingness
and affordability [71]. Customer value-based pricing is the most popularly used strategy for
data pricing.

Competition-based pricing determines the price of a product strategically based on com-
petitors’ price levels and behavior expectations [27]. Game theory provides a powerful tool
to implement the strategy. In a non-cooperative game, every seller is selfish and sets the
price that maximizes the seller’s profit independently [71]. The competition result, that is the
asking price of each seller, is the Nash equilibrium [80].

There are some other major pricing strategies in literature [8, 31, 48, 78, 82], such as
operation-oriented pricing, revenue-oriented pricing, and relationship-oriented pricing. The
remarkably rich body of studies in economics and marketing research on pricing tactics is
far beyond the scope and capacity of this survey.

2.3 Four types of data markets

Similar to physical goods, the prices of data products are also influenced by the dominance
and diversity of supplies and demands in the market.

Fricker and Maksimov [35] identify four types of data markets. First, in a monopoly, a
supplier holds enoughmarket power to set prices tomaximize profits. Second, in an oligopoly,
a small number of suppliers dominate the market. Third, in strong competition markets,
individual suppliers do not have enough market powers to set profit-maximizing prices, and
prices tend to align with marginal costs. Last, in a monopsony, a single buyer controls the
market as the only consumer of products provided by sellers.

Most studies assume explicitly or implicitly a monopoly (monopsony) market structure
where the data seller (data buyer) does not care about competing with others. Data pricing in
oligopoly market is considered by Balasubramanian et al. [5]. Jiang et al. [51] study a perfect
competition market where participants can directly trade with each other.

2.4 Desiderata of data pricing

There are some desiderata preferred bymost pricingmodels. In this section, we briefly review
the six desiderata suggested by Pei [86]. In addition, we complement the existing study by
an important desideratum, effort elicitation.

Truthfulness Truthfulness is an important economic property of robust markets [123].
In a truthful market, all participants are selfish and only offer prices that maximize their
utility values. Participants may have their own valuations on the same product, but a truthful
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market guarantees that for each participant, offering the real valuation is an individual’s best
strategy. In other words, no participants will lie about their valuations. Truthfulness simplifies
all participants’ strategies and ensures basic market fairness [34].

Reverse auction is a common tool to implement truthful data markets. In a reverse auction,
N sellers D = {s1, . . . , sN } compete for a buyer’s deal by submitting their asking prices
{b1, . . . , bN }. An auction mechanism takes as input the submitted bids, selects a subset of
sellers as winners, and determines the payment pi to each winner si , where pi ≥ bi . In a
truthful reverse auction, the best strategy (dominant strategy) for a seller si to maximize the
expected utility is submitting the individual’s real valuation, no matter what others submit.

In his seminal paper on optimal mechanism design, Myerson [77] shows that a sealed-bid
reverse auction mechanism is truthful if and only if (1) the selection rule is monotone, that
is, if a seller si wins the auction by bidding bi , it also wins by bidding b′

i ≤ bi ; and (2) each
winner is paid the critical value, that is, seller si would not win the auction if si bids higher
than this value.

Revenuemaximization Revenue maximization is a strategy to increase a seller’s customer
base by having low prices. This strategy is widely adopted by sellers in an emerging market
to build market share and reputations. For traditional physical goods, the curves of marginal
cost are U-shaped with respect to manufacturing level. The revenue of a seller is maximized
when the manufacturing level is set such that the marginal revenue is zero [11]. Since data
products can be re-produced at almost zero costs [1], the revenue maximization techniques
for data products and physical products are quite different [86].

Fairness In some scenarios, sellers need to cooperatively participate in a transaction. A
data market is fair to the contributors in a coalition if the revenue generated by the coalition
is fairly divided among the sellers.

Suppose a set of sellers D = {s1, . . . , sN } cooperatively participate in a transaction that
leads to a payment v. Shapley [99] lays out four axioms for a fair allocation.

– Balance The payment v should be fully distributed to the sellers in D.
– Symmetry Sellers making the same contribution to the payment should be paid the same.

For a set of sellers S and two additional sellers s and s′, if S ∪ {s} and S ∪ {s′} lead to
the same payment, sellers s and s′ should get the same payment.

– Zero element If a seller’s data do not contribute to the payment of any coalitions, the
seller should receive no payment.

– Additivity If the data of a group of sellers can be used for two tasks t1 and t2 with payments
v1 and v2, respectively, then the payment to solve both tasks t1 + t2 should be v1 + v2.

It is proved that Shapley value ψ(s) is the unique allocation method that satisfies the four
axioms, which is defined as the average marginal contribution of si to all possible subsets of
sellers S ⊆ D\{si }

ψ(s) = 1

N

∑

S⊆D\{s}

U(S ∪ {s}) − U(S)
(N−1

|S|
) , (1)

where U(·) is the utility function [99]. For example, in the context of collaborative machine
learning, U(S) is the performance score of the machine learning model trained on the data
sets of S, such as precision.
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Equation 1 can be rewritten to

ψ(s) = 1

N !
∑

π∈∏
(D)

(U(Pπ
s ∪ {s} − U(Pπ

s ))), (2)

where π ∈ ∏
(D) is a permutation of sellers and Pπ

s is the set of sellers that precede seller s
in π .

The fact that Shapley value uniquely possesses Shapley fairness, combined with its flex-
ibility to support different utility functions, makes it a popular tool to implement fair data
marketplaces.

Arbitrage-free pricing Arbitrage is the activities that take advantage of price differences
between multiple markets. In a data marketplace, a data seller may offer multiple versions
of products. As a consequence, a critical concern is that a data buyer may circumvent the
advertised price of a product through buying a bundle of cheaper ones, which negatively
affects the seller’s revenue. For example, consider a data seller selling noisy queries to the
seller’s database [84, 86], and the seller perturbs each query answer independently with
random noise. An answer with a variance of 5 is sold at $5 and with a variance of 1 is sold
at $50. A data buyer wants to obtain an answer of variance 1. The buyer can purchase the
cheaper answer 5 times and compute their average. Since the noises are added independently,
the aggregated average has variance 1. Thus, the customer saves $25 by arbitrage. A desirable
pricing function should guarantee that no arbitrage is possible, in which case we call it
arbitrage-free.

Privacy-preservation Privacy protection during the transactions of data raises more and
more concerns. In data marketplaces, the privacy of buyers, sellers, and involved third parties
are highly vulnerable, and might be disclosed in many different ways [86]. Many different
solutions have been proposed for privacy protection in data markets [34, 47, 62]. In this
survey, we focus on the studies along the line of privacy compensation [62, 83, 84], which
investigate how to provide compensations for the privacy disclosure of data owners. For the
purpose of privacy protection, sensitive data sets are usually traded with injected random
noise [83]. A data set with less random noise is more accurate, but may leak more privacy
and thus more compensations should be made to the data owner.

Computational efficiency The numbers of transactions, sellers and buyers may be huge
in a data marketplace. Therefore, it is a fundamental requirement for a pricing model to
compute prices efficiently with respect to a large number of goods and participants. Prices
should be computed in polynomial time with respect to the number of participants [1] or the
number of data products [17]. In some application scenarios, however, it takes exponential
time to compute the pricing functions with desirable properties, such as Shapley fairness [37],
arbitrage-freeness [58], and revenuemaximization [17]. For example, Koutris et al. [58] show
that computing arbitrage-free prices of join queries on a relational database is in general
NP-hard. How to efficiently determine prices with desirable properties presents technical
challenges.

Effort elicitation In addition to the above six desiderata, here we propose a new one, effort
elicitation.

In a data marketplace, a data buyer may purchase training data labels via crowdsourcing.
Crowdworkers are presented with unlabeled data instances (for instance, images) and are
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asked to provide labels (for instance, a binary label indicating whether or not the image
contains pedestrians). A major challenge in label collection is to ensure that workers invest
their efforts and provide accurate answers. A poorly designed pricing model may result in
labels with very low quality [96]. For example, if each task has a fixed price, an obvious
strategy that maximizes a worker’s profit is to just provide arbitrary answers without even
solving the tasks [112]. Many techniques have been developed to post-process noisy answers
in order to improve their quality. However, when the inputs to these algorithms are highly
erroneous, it is difficult to guarantee that the processed answers will be reliable enough
for downstream machine learning tasks [96]. In order to avoid the troubles of “garbage in,
garbage out,” a desirable approach is to design proper rewards for crowdsourcing tasks that
incent workers to invest efforts and provide higher quality answers [112].

3 Pricing raw data sets

In this section, we review the existing studies focusing on pricing raw data sets. The existing
studies consider four types of scenarios. The most traditional methods price data sets as
indivisible units and do not consider supplier competitions. The intrinsic properties of data
sets, such as volumes, are factors determining prices. In the second scenario, how to price
indivisible data sets in a competitive market is studied. In the third scenario, data consumers
can purchase just a fraction of an entire data set, which is more flexible to consumers but
may have the issue of arbitrage. The last scenario addresses pricing personal data by privacy
compensation.

3.1 Pricing general data

Machine learning and statistical models are vulnerable to poor quality training data, and
thus, high-quality data are valuable to data buyers [112]. Pricing data sets based on quality
becomes a natural choice.

Heckman et al. [43] identify a list of factors to assess the quality of a data set, such as age
of data, accuracy of data, and volume of data. A linear model is proposed to set the price of
a data set as

price = Fixed cost +
∑

i

wi · factori .

Estimating the model parameters wi is a difficult task, as many data sets may not have
public prices associated with them. A more comprehensive list of quality criteria is proposed
in [106].

YuandZhang [117] study theproblemof tradingmultiple versions of a data set, constructed
by different data quality factors. They assume customers’ demands andmaximum acceptable
prices of different versions are public. A bi-level programmingmodel is established to address
the problem. At the first level, the data seller determines versions and their prices tomaximize
the total revenue. At the second level, a group of buyers select data products tomaximize their
utilities. Solving the bi-level programming model is NP-hard. Yu and Zhang [117] propose
a heuristic genetic algorithm to approach it numerically.
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3.2 Pricing crowdsensing data

Crowdsensing is a powerful tool to quickly and cheaply obtain vast amounts of training data
for machine learning models [112, 122]. In a crowdsensing marketplace, a task requester
initiates a data collection task and compensates participating workers according to their
reported costs. As workers may exaggerate their costs, pricing models should incentivize
workers to truthfully reveal their costs.

Yang et al. [115] design a reverse auction mechanism for mobile sensing data, that is
truthful, individually rational, and profitable.Apricingmodel is truthful if all sellers truthfully
report their data collection costs. A model is individually rational if all sellers have non-
negative net profits, and profitable if the data buyer has non-negative net profits. The authors
assume that a buyer has a set � = {τ1, . . . , τn} of sensing tasks, where each task τi has
a value vi to the buyer. Each seller si chooses a subset of tasks �i ⊆ � and has a private
cost ci for performing the tasks. Seller si decides a price bi for the sensed data and submits
the task-bid pair (�i , bi ) to the buyer. After collecting all bids, the buyer selects a subset of
sellers S as winners and determines the payment pi to each winner si .

The proposed auction mechanism, MSensing, selects winners S in a greedy manner.
Starting with S = ∅, it iteratively chooses the seller that brings the largest non-negative net
marginal profit. Each winner si ∈ S is paid the critical value pi of si , that is, seller si would
not win the auction if si bids higher than pi . Specifically, MSensing runs the winner selection
algorithm over users S′ = U\{si }. The payment pi is the largest price si can bid, such that
si can replace a user in S′. Please note that pi ≥ bi , this is because due to incomplete cost
information, the buyer provides extra compensations to sellers on top of their bids to motivate
them to reveal actual costs. MSensing satisfiesMyerson’s characterization of truthful auction
mechanisms [77].

The follow-up work by Jin et al. [52] considers the situation where a data buyer has
a data quality requirement Q j for each sensing task t j . The authors propose a Vickrey–
Clarke–Groves mechanism [4] like truthful reverse combinatorial auction. They assume that
the data quality qi of each seller si is public and qi is the same for all sensing tasks. The
authors first consider the scenario where each seller only bids for one bundle of sensing
tasks �i . The auction winners S must satisfy the quality requirement for each task t j , that is,∑

si∈S, if t j∈�i
qi ≥ Q j . The objective of the auction is to maximize the total utility of the

buyer and the sellers. The authors prove that winner determination under the setting is NP-
hard and propose a greedy winner selection algorithm with a guaranteed approximation ratio
to the optimal total utility. Each winner is paid by the winner’s critical payment. The authors
further study the total utility maximization problem in a more general scenario, where each
seller can bid for multiple bundles of tasks. They propose an iterative descending algorithm
that achieves close-to-optimal total utility. However, the auction is not truthful.

Koutsopoulos [60] considers a similar setting as Jin et al. [52] do, but assumes that a
data buyer has only one sensing task. The author proposes a truthful reverse auction that
minimizes the expected cost of the buyer while guaranteeing the data quality requirement.
The author assumes that the data buyer has prior knowledge about the distribution of each
seller si ’s unit participation cost ci . The units of participation xi of si is a positive real
value indicating how much data is purchased from si . Given the sellers’ bids, the data buyer
determines the auction winners and their participation units by solving a linear programming
model, whichminimizes the total expected payment under the data quality constraint. Critical
payments are made to the selected winners. All sellers bidding truthfully forms a Bayesian
Nash equilibrium [61].
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3.3 Pricing data queries

Query-based pricing models tailor the purchase of data to users’ needs. Customers can pur-
chase their interested parts of a data set through data queries, and are charged according
to their issued queries. While such a marketplace mechanism provides greater flexibility to
buyers, a less carefully designed pricing model may open the loophole for arbitrage, which
allows buyers to obtain a query result in a cost less than the advertised prices.

Given a database D and a multi-set of query bundles S = {Q1, . . . ,Qm}, a query bundle
Q is determined by S, if the answer toQ can be computed only from the answers to the query
bundles in S. A pricing function is arbitrage-free if the advertised price π(Q) ≤ ∑m

i=1 π(Qi),
that is, the answer to a query bundle Q cannot be obtained more cheaply from an alternative
set of query bundles.

The first formal framework for arbitrage-free query-based data pricing was introduced by
Koutris et al. [58]. The major idea is that a data seller can first specify the prices of a few
views V over a database, and then the price of a query bundle Q is decided algorithmically.
Theoretically, the authors show that if there are no arbitrage situations among the views in
V, there exists a unique arbitrage-free and discount-free pricing function π(Q). Specifically,
π(Q) is the total price of the cheapest subset of V that determines Q, which is found by
query determinacy [79]. They also show the complexity of evaluating the price functions.
Unfortunately, the pricingmodel isNP-hard for a large class of practical queries. Theydevelop
polynomial time algorithms for specific classes of conjunctive queries, chain queries, and
cyclic queries.

Subsequently, Koutris et al. [59] develop a prototype pricing system, QueryMarket, based
on the idea [58]. They formulate the pricing model as an integer linear program (ILP) with
the objective to minimize the total cost of purchased views Vp . The purchased views Vp

must satisfy the following requirements. For a tuple t in the query answer Q(D), there must
exist a subset of views in Vp that can produce t and for each relation R in Q, at least one
view on R should be purchased. For a tuple t not inQ(D), there must exist a subset of views
in Vp that can indicate t /∈ Q(D). Although the pricing problem in the setting is in general
NP-hard, QueryMarket shows that a large class of queries can be priced in practice, albeit
for small data sets. To handle the case that a query Q may require databases from multiple
sellers, they introduce a revenue sharing policy among sellers. Specifically, each seller gets a
share of the query price π(Q), which is proportional to the maximum revenue that the seller
can get among all minimum-cost solutions to the ILP.

The problem of designing arbitrage-free pricing models for linear aggregation queries is
studied by Li et al. [62]. Given a data set of n real values x = 〈x1, . . . , xn〉, a linear query
over x is a real-valued vector q = 〈w1, . . . , wn〉, and the answer is q(x) = ∑

i=1 wi xi .
The authors propose a marketplace, where a data buyer can purchase a single linear query q
with a variance constraint v defined by the buyer. The query Q = (q, v) is answered by an
unbiased estimator ofq(x)with a variance smaller than or equal to v. The authors first develop
a proposition that the pricing function π cannot decrease faster than 1

v
, that is, π(q, v) =

�( 1
v
). Then, they propose a family of arbitrage-free pricing functions, π(q, v) = f 2(q)

v
,

where the function f (·) is semi-norm. Last, they provide a general framework to synthesize
new arbitrage-free pricing functions from the existing ones. For any arbitrage-free pricing
functions π1, . . . , πk , the pricing function π(Q) = f (π1(Q), . . . , πk(Q)) is also arbitrage-
free if f (·) is a subadditive and non-decreasing function. A comprehensive list of celebrated
arbitrage-free pricing functions are listed by Niu et al. [84]. In addition to synthesized pricing
functions, Li et al. [62] also study a similar view-based pricing framework as Koutris et al.
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[58] do. By adapting the theoretical results in [58], the authors show that the view-based
pricing model for linear aggregation queries is NP-hard.

Lin and Kifer [65] study arbitrage-free pricing for general data queries. They propose
three pricing schemes, namely instance-independent pricing, up-front dependent pricing, and
delayed pricing. The authors further summarize five forms of arbitrages, namely price-based
arbitrage, separate account arbitrage, post-processing arbitrage, serendipitous arbitrage, and
almost-certain arbitrage.The authors point out that themodel byKoutris et al. [58] has pricing-
based arbitrage, that is, the computed prices may leak information about D. Theoretically,
they propose an instance-independent pricing function and a delayed pricing function that
are arbitrage-free across all forms. The major idea is to tackle the pricing problem from a
probabilistic view. Queries that are more likely to reveal the true database instance are priced
higher.

In the same vein, Deep and Koutris [28] characterize the structure of pricing functions
with respect to information arbitrage andbundle arbitrage,where information arbitrage covers
both post-processing arbitrage and serendipitous arbitrage defined by Lin and Kifer [65]. For
both instance-independent pricing and answer-dependent pricing of a query, an arbitrage-
free pricing function should be monotone and subadditive with respect to the amount of
information revealed by asking the query. Several examples of arbitrage-free pricing functions
are presented, including the weighted coverage function and the Shannon entropy function.

Deep and Koutris [29] later implement the theoretical framework [28] into a real time
pricing system, QIRANA, which computes the price of a query bundle Q from the view
of uncertainty reduction. They assume that a buyer is facing a set of all possible database
instances S with the same schema as the true database instance D. After receiving the query
answer E = Q(D), the buyer can rule out some database instances Di ∈ S that cannot be D
by checking whetherQ(Di ) = E . A query bundle that eliminates more database instances is
priced higher, as it reveals more information about D. The authors propose an arbitrage-free
answer-dependent pricing function, which assigns a weight wi to each database Di ∈ S, and
computes the price of a query bundle by

π(Q) =
∑

i∈{i |Di∈S},Q(D)�=Q(Di )

wi . (3)

By default, the sameweightwi = P
|S| is assigned to each possible database instance Di , where

P is a parameter set by the data owner. The data owner can also provide QIRANAwith some
example query bundles and their corresponding prices. Then, QIRANA will automatically
learn instance weights wi from the given examples by solving an entropy maximization
problem. Choosing S to be the complete set of possible database instances leads to a #P-
hard problem. To make the pricing function tractable, QIRANA uses a random sample of
database instances as S.

Chawla et al. [16] extend the pricing function in Eq. 3 to maximize seller revenue. They
consider the setting that the supply is unlimited and the buyers are single-minded, that is, a
buyer only wants to buy a single query bundle Q. A buyer will purchase Q if the advertised
priceπ(Q) is smaller than or equal to the buyer’s valuation vQ. The authors take a training data
set consisting of some query bundles and their customer valuations. Three pricing schemes
are investigated. The major idea of the pricing schemes is that, according to Eq. 3, a query
can be priced as a bundle of items (database instances). Uniform bundle pricing sets the same
price for all query bundles. Item pricing sets the price of a query bundle using Eq. 3, where
the weights wi are learned from the training data. XOS pricing learns k weights w1

i , . . . , w
k
i

for each item Di and sets the price of Q as π(Q) = maxkj=1

∑
i∈{i |Di∈S},Q(D)�=Q(Di )

w
j
i .
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Theoretically, the approximation rate of each pricing scheme to the optimal revenue is studied.
Although XOS pricing scheme enjoys the best approximation rate, the authors show that item
pricing usually achieves larger revenue in practice.

Miao et al. [75] study the problem of pricing selection-projection-natural join queries over
incomplete databases. An arbitrage-free pricing function is proposed based on the idea of
data provenance, which describes the origins of a piece of data and its processing history [10,
107]. Let t be a tuple in a query answer Q(D). The lineage L(t, D) of t is defined as the set
of tuples in the database D that contribute to t . The authors assume that each tuple t has a
base price p(t). The price ofQ is set to the weighted aggregation of the costs of all tuples in
M(Q, D) = ∪t∈Q(D)L(t, D). Specifically, πUCA(Q) = ∑

i∈{i |ti∈M(Q,D)} μi p(ti ), where μi

is the percentage of attributes of ti that are not missing. The authors also propose an answer
quality aware pricing function, πQUCA(Q) = �

n πUCA(Q)κ(Q, D), where κ(Q, D) is the
answer quality and � is a constant. However, πQUCA is not arbitrage-free.

Purchasing data is usually not a one-shot deal. A customer may purchase multiple queries
from the same data seller. A history-aware pricing function will not charge the customer
twice for already purchased information. QueryMarket [59] tracks the purchased views of a
customer and avoids charging those views when pricing future queries of the customer. Both
[29] and [75] support history-aware pricing in the same vein as [59]. One drawback of these
history-based approaches is that the seller must provide reliable storage to keep users’ query
history [111].

Upadhyaya et al. [111] propose an optimal history-aware pricing function, that is, a buyer
is only charged once for purchased data. The key idea is to allow buyers to ask for refunds
of already purchased data. In their setting, a query is priced according to its output size. The
seller computes an identifier (coupon) for each tuple in the query answer Q(D). Both Q(D)

and the corresponding coupons are sent to the buyer. If the buyer receives the same tuple t
from two queries, the buyer can ask for a refund of t by presenting the two coupons associated
with t in the two corresponding queries. To prevent buyers from borrowing coupons from
others and receiving unconscionable refunds, each coupon is uniquely associated with a
buyer. By tracking coupon status, the data seller guarantees that each coupon will be used
only once. However, the pricing function has no arbitrage-free guarantee [29].

3.4 Privacy compensation

Machine learning models in many areas, like recommendation systems [21] and personalized
medical treatments [72], require a large amount of personal data. However, trading and
sharing personal data may leak the privacy of data providers. Therefore, how to measure
and properly compensate data providers for their privacy loss is an important concern in
designing marketplaces of personal data.

Differential privacy [32] is amathematical framework rigorously providing privacy protec-
tion and plays an essential role in personal data pricing. Following the principle of differential
privacy, randomnoises are injected into a data set, such that data buyers can learn useful infor-
mation about the whole data set but cannot learn specifics accurately about an individual. The
magnitude of random noise impacts data providers’ privacy loss and the data price. A data set
with less injected random noise may leak more privacy and is priced higher. Pricing models
of personal data routinely adopt cost-plus pricing strategy, where sellers first compensate
data providers for their privacy loss, and then scale up the total privacy compensation to
determine the price for data buyers [84].
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Ghosh and Roth [38] initiate the study of pricing privacy by auction. They propose a
truthful marketplace to sell single counting queries on binary data. In their settings, a data
seller has a data set consisting of personal data di ∈ {0, 1} of individual i . The data seller
sells an estimator ŝ of the sum s = ∑

i di and compensates data providers for their privacy
loss. Under the framework of differential privacy, the authors treat privacy as a commodity
to be traded. In particular, if a provider’s data is used in an ε−differentially private manner, ε
privacy units should be purchased from the provider. Thus, the privacy compensation problem
can be transformed into variants of multi-unit reverse auction. The authors assume that each
data provider i has a privacy cost function

ci (ε) = vi ∗ ε, (4)

representing the cost for using the data in an ε-differentially private manner, where vi is
the unit privacy cost of i . In an auction, data providers are asked to submit their asking
prices bi for the use of their data. Ghosh and Roth [38] consider two situations. In the first
situation, a buyer has an accuracy requirement on ŝ, that is, Pr[|̂s − s| ≥ k] ≤ 1

3 . The authors
establish an observation that they only need to purchase data from m individuals and use
them in an ε-differential privacy manner, where m and ε only depend on the accuracy goal.
It’s shown that the classic Vickrey–Clarke–Groves auction minimizes the buyer’s payment
and guarantees the accuracy goal. The major idea is to selectm individuals with the cheapest
bids and provide each winner with a uniform compensation ε · b, where b is the (m + 1)-th
smallest bid. In the second situation, a buyer has a budget constraint and wants to maximize
the accuracy of ŝ. The authors propose a greedy-based approximation algorithm to solve the
problem.

The value of personal data and privacy valuation may be correlated. For example, a patient
may assign a higher price to the patient’s medical report than the healthy people ask for.
Ghosh and Roth [38] show a negative result that in the situations having such correlations,
no individually rational direct mechanism can protect privacy.

In a follow-up study, Dandekar et al. [21] consider the scenario of selling linear aggregate
queries q = 〈w1, . . . , wn〉 over real-valued personal data D = 〈d1, . . . , dn〉. They assume
data providers have the same privacy cost function as Eq. 4, and propose a truthful reverse
auctionmechanism tomaximize the accuracy of estimators for budget-constraint buyers. The
error of an estimator ŝ of the true answer s = ∑

i wi di is its squared error (̂s − s)2. It is
shown that an ŝ computed frommore providers with large correspondingweights in q is more
accurate. Therefore, the problem is transformed into a knapsack reverse auction [103] that
maximizes the total weights of the selected providers under budget constraints. Specifically,
the authors treat the budget as the capacity of the knapsack, the privacy cost of a data entry
di as its weight in the knapsack, and wi as the value of di . A greedy-based algorithm with
an approximation ratio of 5 is proposed to solve the problem.

The aforementioned studies [21, 38] assume that data buyers can purchase an arbitrary
amount of privacy from each data provider. However, a conservative individual may not
want to sell the individual’s data if the privacy loss is too large. Nget et al. [83] study the
same problem as Dandekar et al. [21] do in a more realistic situation, that is, an individual
i can refuse to participate in an estimator if the privacy loss of i is larger than a threshold
εi . They assume that the privacy cost function of each data provider is public and propose
a heuristic method to determine query price. The model first randomly samples a subset of
data providers. Then, it uses the data from each sampled individual i in an εi -differentially
private manner and computes the compensations correspondingly. If the total compensation
is larger than the budget, the model decreases the differential privacy levels of the high cost
providers, such that the budget goal is met. Last, they generate the perturbed query answers
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by personalized differential privacy [54], which guarantees the differential privacy for each
selected individual i . They repeat the above steps several times and return the perturbed
answer with the smallest squared error.

Later, Zhang et al. [121] propose a truthful personal data marketplace, where each data
provider i can specify the personal maximum tolerable privacy loss εi . They first show that
the accuracy of query answers is proportional to the total amount of purchased privacy. Under
the assumption that the distributions of privacy costs of all individuals are public, they design
a variant of Bayesian optimal knapsack procurement [33], which maximizes the expected
total purchased privacy under the constraint of a data buyer’s expected budget. The authors
solve the problem by adopting the algorithm in [33]. The noisy query answer is generated
using personalized differential privacy [54], which guarantees εi -differential privacy for each
selected individual i .

Themodels proposed byDandekar et al. [21, 38]may be attacked by arbitrage. Li et al. [62]
consider the situation where a data buyer has a variance constraint v on the purchased noisy
query answers. They assume that the privacy costs of individuals are public, and propose
a theoretical framework for assigning arbitrage-free prices to linear aggregate queries q.
A perturbed answer is generated from the true answer by adding Laplace noise with the

expectation 0 and variance
√

v
2 . Measured by differential privacy, the privacy loss of an

individual i is upper-bounded by ε = w√
v
2
if the individual is involved in the query, and

0 otherwise, where w is the largest absolute weight in q. Several privacy compensation
functions are proposed, such as pi (ε) = ciε, where ci is the unit privacy cost of individual
i . The price of a query is the sum of the privacy compensations, which is proved to be
arbitrage-free.

Li et al. [62] only compensate individuals involved in queries.However, as two individuals’
data may be correlated, the privacy of a not-involved individual may be leaked due to the
revelation of the other individual’s data. To fairly compensate individuals for their privacy,
Niu et al. [84] extend the model by Li et al. [62] and propose a pricing model that is arbitrage-
free and dependency fair. Dependent fairness requires that a data provider should receive a
privacy compensation as long as some data of other providers that is correlated to the data
of this provider is involved in a query. Employing dependent differential privacy [66], the
privacy loss of a data provider i caused by a query is upper-bounded by εi = dsi√

v
2
, where

dsi is the dependent sensitivity of the query at provider i’s data. The authors propose a
bottom-up mechanism and a top-down mechanism to determine privacy compensations and
query prices. The bottom-up mechanism computes compensations in the same way as Li et
al. [62] do and determines query prices as a multiple of the total compensations. The top-
down mechanism first determines the query price using a user-defined arbitrage-free pricing
function and spares some fraction of a buyer’s payment for privacy compensation. Each data
provider receives a division of the compensation proportional to the provider’s privacy loss.

All of the privacy compensation methods discussed above assume a trustworthy plat-
form/agent to trade data providers’ privacy with data buyers. Data providers, however, cannot
control the usage of their own data.

In this concern, Jin et al. [53] develop a truthful crowdsensing marketplace, where data
owners can determine how much privacy to disclose. In their marketplace, obfuscated geo-
locations of data owners are traded by auctions. Data owners first inject random noise to their
data based on their own privacy preferences. Then, each data owner bids with the cost as well
as the mean and variance of the injected random noise. The buyer determines auction winners
to maximize data accuracy with respect to the buyer’s budget constraint. The authors show
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that the optimization problem is NP-hard and develop a greedy heuristic solution. The major
idea is to iteratively select data owners that bring the largest marginal utility contributions
until the budget is used up.

In this section, we review representative pricing models of raw data sets in four types
of scenarios, where different desiderata are considered. A limitation of the discussed pric-
ing models is that data sets are priced without considering their down-stream applications.
Fernandez et al. [34] argue that the value of a data set to customers is usually task depen-
dent and cannot be evaluated by the intrinsic properties of the data set alone. As the pricing
models of raw data sets are agnostic to the down-stream applications of raw data sets, these
pricing models can be used in machine learning pipelines of building both supervised and
unsupervised machine learning models.

4 Pricing data labels

Crowdsourcing is a popular method for collecting large-scale labeled training data for
machine learning tasks [96]. Unfortunately, crowdsourced data often suffers from quality
issues. This is mainly due to the existence of lazy and spamming workers, who submit low-
quality labels. Those workers can be discouraged from participating in the tasks by rewarding
themwith a performance-based payment [88].However, due to a lack of ground-truth verifica-
tion of the collected labels, how to evaluate label quality and price the labels correspondingly
is a challenging task. In this section, we review two types of label pricing models, which are
designed to motivate workers to exert efforts and submit accurate data labels.

4.1 Gold task-based pricingmodels

A gold task is one for which the answer is known to the data buyer a priori. Gold tasks can be
uniformly mixed at random within the tasks for workers to evaluate workers’ performance,
which determines the payments to workers. Since workers cannot distinguish gold tasks from
others, this strategy can motivate workers to provide accurate labels.

Shah and Zhou [96] consider a crowdsourcing setup where workers perform binary label-
ing tasks. The authors propose a multiplicative pricing model using gold tasks. The model
allows a worker to skip an assigned task if the worker is not confident about the answer.
The total payment to a worker u is computed based on u’s performance on the answered
tasks. The workers are selfish and want to maximize their individual expected payments. The
authors assume that each worker has a private belief Pr(yt = l) about how likely the true
label yt of a task t is l. The pricing model is designed to incentivize workers to only report
high-confidence labels with beliefs greater than a threshold p. The total reward starts at β.
For each correct answer in the gold tasks, the reward will be multiplied by 1

p . However, if
any of these gold tasks are answered incorrectly, the reward will drop to zero, that is,

π(u) = β · 1

pc
· 1(r = 0), (5)

where 1(·) is an indicator function and c and r are the number of correct and wrong answers,
respectively. This pricing model motivates workers to only answer tasks that they are suffi-
ciently confident about. The pricing model is incentive compatible, that is, a worker receives
the maximum expected payment if and only if the worker exerts efforts to report accurate
labels. The pricing model also satisfies the “no-free-lunch” axiom, that is, workers who only
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provide wrong answers will receive no payments. In their setting, the proposed method is the
unique incentive compatible model that satisfies the “no-free-lunch” axiom.

Shah et al. [98] further generalize the model [96] to multi-label tasks. For each task, a
worker can submit multiple answers Ŷ that the worker believes is most likely to be correct.
This multi-selection system provides workers more flexibility to express their beliefs, which
can use the expertise of workers with partial knowledgemore effectively than single-selection
systems. The authors assume that the workers’ beliefs for any label being the true label for
a task lie in the set {0} ∪ (p, 1], where p is fixed and known. The authors want to encourage
workers to only report the set of labels with positive beliefs. The reward of a worker for a
gold task is (1 − p)(|Ŷ |−1) if one of the worker’s answers is correct and 0 if otherwise. The
total payment to a worker is determined by the product of the worker’s rewards on all gold
tasks.

In a later study, Shah and Zhou [97] propose a two-stage multiplicative pricing model
to motivate workers to self-correct their answers. In the first stage, a worker answers the
assigned tasks. In the second stage, if the worker’s answer to a task t does not agree with
the answer from the peer workers, the worker has an opportunity to change the answer. The
worker u receives a high reward for a gold task t if the initial answer to the task is correct,
a low reward if the updated answer is correct, and 0 reward if the final answer is wrong.
The total payment is determined by the product of the worker’s rewards from gold tasks.
Theoretically, the authors prove that the proposed method is the unique incentive compatible
model that satisfies the no-free-lunch axiom. Empirically, they show in a simulation that the
self-correction setting can significantly improve the data quality compared to the standard
single-stage settings.

To reduce the variance in payoffs, the aforementioned methods [96–98] require each
worker to solve a sufficient number of gold tasks. This leads to a waste of procurement
budget, as the answers to the gold tasks are already known.

de Alfaro et al. [26] address the limitation by combining the ideas from peer prediction
and gold tasks. They arrange the workers in a hierarchy, where every worker shares one
common task with each of its children. A few gold tasks are used to incentivize high efforts
from the workers at the top level of the hierarchy. Assuming these workers exert sufficient
efforts to provide high quality answers, their answers can be used as pseudo gold tasks for
workers in the second layer, who can in turn provide pseudo gold tasks for the next level, and
so forth. A worker will be punished if the worker does not agree with the parent on the task
shared between them. As the workers at the top level are evaluated by the true gold tasks,
they are evaluated more accurately than the other workers, which is not fair to workers at
lower layers.

The follow-upwork byGoel and Faltings [40] considers fair payment amongworkers; that
is, the expected reward of a worker is directly proportional to the accuracy of the worker’s
answers and independent of the strategy and proficiency of the worker’s random peers. The
key idea is to estimate the proficiency of workers, which is the probability that a worker
can solve the tasks correctly. Goel and Faltings [40] start by estimating the proficiency of a
small group of workers with gold tasks. Then, the answers by the small group of workers to
non-gold tasks are used as contributed gold tasks, where the workers’ proficiencies are used
as the trustworthy degree of those tasks. The contributed gold tasks are used to estimate the
proficiency ofmoreworkers. Finally, the payoff of eachworker is proportional to theworker’s
estimated proficiency, such that workers with good proficiency receive high payments. The
model guarantees that exerting high efforts to provide accurate labels is a dominant strategy
for each worker.
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4.2 Peer prediction-based pricingmodels

Peer prediction-based pricing model can incentivize efforts and accurate data labels without
access to gold tasks. Those models take advantage of the stochastic correlation of answers
to the same tasks, and set up a game among workers, called a mechanism in game theory.
The game is designed such that workers who exert effort in solving the tasks can achieve
high expected rewards, whereas spammers providing random answers on average receive
no payments. A pricing model is incentive compatible if it admits exerting high efforts and
truthful reporting as an equilibrium.

Dasgupta and Ghosh [22] initiate the study of effort elicitation and propose the DGmodel
to price binary labels. A data buyer assigns a set of data labeling tasks to a group of workers,
such that each task is labeled bymultiple workers and eachworker labels multiple tasks. They
assume that a worker ui either invests no effort and thus provides a random label, or invests
full effort with a cost ci and provides a true label with probability pi . Here, pi is called the
proficiency of ui . The workers are self-interested, who want to maximize their payoffs.

The DG model pays a worker ui on an assigned task t based on how surprisingly ui ’s
report is consistent with that of the peer worker u p . Denote by ŷ and ŷp the answers from
ui and u p to a task, respectively. The model pays ui with a constant reward subtracting the
probability Pr(ui , u p) that ui and u p have the same answer to a random task, that is,

π(ui , t) = β · (1(ŷ = ŷp) − Pr(ui , u p)), (6)

where β is a non-negative payment scaling parameter that is chosen to cover workers’ effort
costs and Pr(ui , u p) is approximated from the submitted labels. The total payment to aworker
ui is the sum of ui ’s payment for each task.

The pricing model incentivizes efforts, as the expected payment for spammers who do not
solve their tasks and report random/constant labels is exactly zero. Under the assumption that
the proficiency of all workers are better than random guess, it is shown that the DG model
is incentive compatible. Even though the pricing model also has non-informative equilibria,
such as all workers reporting the same label, those equilibria are less profitable to theworkers,
and thus are not attractive to the workers.

In a multi-label situation, two labels l1 and l2 may be positively correlated. Shnayder et al.
[100] show that under theDGmodel [22], workers can achievemore profits bymisreporting l1
by l2. The correlated agreement (CA) mechanism [100] extends the DGmodel to multi-label
tasks. In theCAmechanism, knowledge about label correlation is required.A label correlation
matrix � is learned from workers’ submissions, where an element �i, j = Pr(li , l j ) −
Pr(li )Pr(l j ) is the correlation degree between labels li and l j . Denote by S(·) the sign function
of �, that is, S(li , l j ) = 1 if �i, j > 0, and 0 otherwise. A worker u will be rewarded for a
task t if u’s report is positively correlated with that of peer u p . To penalize the case where
all workers blindly report the same label, a worker u will be penalized if u is likely to
be consistent with worker u p on random tasks. In particular, the payment to worker u for
reporting ŷ is

π(u, t) = β · (S(ŷ, ŷp) − S(ŷa, ŷb)),

where ŷp is the answer to task t by worker u p , ŷa is the answer to a random task by worker
u, and ŷb is the answer to another random task by worker u p . When the number of tasks is
large, such that label correlations� can be accurately learned, the CAmechanism is incentive
compatible with the highest payment. However, the mechanism fails if two labels l1 and l2
are not distinguishable with respect to S(·), that is, ∀li ∈ Y , S(l1, li ) = S(l2, li ). In this
situation, workers may misreport l1 by l2 and still receive the same payoffs.
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Radanovic et al. [88] provide complementary theoretical results on pricing multi-label
tasks. They assume that the labels only have limited correlations, that is, Pr(op = l2|o =
l1) < Pr(op = l2|o = l2), where o and op are the observed labels of worker u and worker
u p , respectively. The mechanism pays the report ŷ by worker u on a task t by

π(u, t) = 1(ŷ = ŷp)

R(ŷ)
− 1,

where R(ŷ) is the empirical frequency of ŷ, which is computed from all submissions. It is
shown that exerting high efforts and truthful reporting is strictly more profitable than any
other equilibria. However, their assumptions on label correlations may not hold in some
applications [100].

The aforementioned methods [22, 88, 100] require that each task must be completed by
at least two workers, which leads to duplicate answers, and thus does not use the crowd
efficiently. For a setting with binary labels, Liu and Chen [68] propose to learn a classifier
M from workers’ reports, and use the classifier’s predictions M(t) as peer reports. Since
workers’ submitted labels are noisy, the classifier is trained by the techniques of learning with
noisy labels [81]. Specifically, they first estimate the error rates of submitted labels. Then,
the classifier is optimized by an error rate calibrated loss function ϕ(·) proposed by Natarajan
et al. [81]. A report ŷ to a task t is priced based on −ϕ(M(t), ŷ), such that labels with large
loss are priced lower. Under the assumption that M is better than random guess, exerting
efforts to find the truth labels is the highest-paying equilibrium.

Liu and Chen [69] study the problem of sequential label collection, where labeling tasks
are published in multiple rounds. In their settings, an accurately labeled task has a fixed
reward to a data buyer, whereas a mistakenly labeled task has no value to a data buyer. They
propose an incentive compatible pricing model that maximizes the expected utility for a data
buyer, which is the difference between the total rewards and the total payment.

They develop amulti-armed bandit algorithm to extend the DGmodel [22], which dynam-
ically adjusts the parameter β in Eq. 6. A larger β encourages more accurate labels but costs
more money. As the bandit algorithm requires a static environment, this method may fail to
learn the optimal β if adversarial workers adjust their strategies according to their interactions
with the mechanism [41, 46]. Hu et al. [46] solve the problem by reinforcement learning,
which is more robust to strategic behaviors of workers.

In practice, peer prediction-based models need to adjust payments to avoid negative pay-
ments. The adjustment may lead to an issue that spammers may receive positive and high
rewards. Radanovic and Faltings [87] address the issue by proposing a reputation system
PropeRBoost to adjust the payments. PropeRBoost publishes tasks to workers in multiple
rounds, and computes a reputation score for each worker based on the worker’s past submis-
sions. In each round r , it first applies the DG model [22] to compute workers’ payments, and
then re-scales the payments by the reputations of the corresponding workers. It is shown that
the average payment of a spammer converges to 0 as r approaches infinity.

In this section, we review gold task-based and peer prediction-based pricing models for
data labels. The developed pricing models guarantee that exerting efforts to report accurate
data labels is the most profitable strategy of all workers. A major concern of gold task-
based methods is that these methods require a sufficient number of gold tasks to obtain
good performance. In some scenarios, however, gold tasks are very expensive to obtain. For
peer prediction-based methods, the existence of multiple equilibria is a major limitation,
as workers may converge to an uninformative equilibrium, where workers do not exert full
efforts [101].
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5 Pricing in collaborative training of machine learningmodels

Collaborativemachine learning is an appealing paradigmwheremultiple data owners collabo-
ratively build high-qualitymachine learningmodels by contributing their data.As the data sets
from different data owners may have different contributions to the trained machine learning
models, data owners who contribute more valuable data should receive more rewards [102].
In this section, we review contribution evaluation and revenue allocation techniques in col-
laborative machine learning.

5.1 Revenue allocation by Shapley value

Shapley fairness iswidely adopted as the foundation of fair revenue allocation in collaborative
machine learning. It guarantees that each participant receives a payment proportional to the
participant’s marginal contribution to the performance of the trainedmachine learningmodel.
The challenge in adopting Shapley value lies in its exponential computational cost.

Maleki et al. [73] tackle the efficiency issue of Shapley value by proposing a permutation
sampling algorithm for bounded utility functions. By Eq. 2, the Shapley value of a seller
is the marginal utility contribution averaged over all possible subsets of sellers, which can
be estimated by sample mean. Denote by ψ̂(s) an (ε, δ)-approximator of a seller’s Shapley
value, that is, Pr(|ψ̂(s) − ψ(s)| ≤ ε) ≥ 1 − δ. To compute the estimators for all sellers,

by Hoeffding’s inequality [44], we need O( 2r
2N
ε2

log 2N
δ

) samples and evaluate the utility

function O(N 2 log N ) times, where N is the number of sellers and r is the range of the
utility function. Evaluating the utility function itself, such as computing testing accuracy, is
computationally expensive, as it requires training a machine learning model. Therefore, the
method is not scalable to a large number of sellers.

Ghorbani and Zou [37] extend theMonte-Carlo method byMaleki et al. [73] to price indi-
vidual data point in supervised learning, and propose truncated-based and gradient-based
approximation methods. Their truncated-based method reduces the number of utility evalu-
ations by ignoring coalitions of large size. The authors argue that it is sufficient to estimate
Shapley values up to the intrinsic noise in the prediction performance U on the test data set,
which can be measured as the bootstrap variance of U . In addition, the performance change
by adding one more training data point s to a large training data set S is ignorably small.
Therefore, if the utility of S is close to the utility of the whole data set D, the marginal con-
tribution of s to S can be regarded as 0 in practice, and thus its computation can be truncated.
Their gradient-based method speeds up the evaluation of utility functions by reducing train-
ing time, where a model is trained with only one pass through the training data. They update
the model by performing gradient descent on one data point s at a time and the marginal
contribution of s is the change in the model performance. The two approximation methods
introduce estimation bias into the approximated Shapley values and have no guarantees on
the approximation error.

Jia et al. [50] propose two approximation algorithms with provable error bounds for
Shapley value that significantly reduce the number of utility evaluations. The first algorithm
adopts the idea of group testing in feature selection [124]. Denote by βi a Boolean random
variable indicatingwhether a seller si is in a random sample of sellers. A sampling distribution
of β1, . . . , βN is designed such that the difference in Shapley values between a seller si and
a seller s j is
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ψ(si ) − ψ(s j ) = 1

N − 1

∑

S⊆D\{si ,s j }

U(S ∪ {si }) − U(S ∪ {s j })(N−2
|S|

)

= E[(βi − β j )U(β1, . . . , βN )],
whereU(β1, . . . , βN ) is the utility evaluated on the appearing sellers and D are all sellers. The
Shapley value of sellers can be derived from the estimated Shapley differences between all
datum pairs by solving a feasibility problem. They demonstrate that the algorithm returns an
(ε, δ)-approximation with O(N (logN )2) utility evaluations. The second algorithm is based
on their observation that Shapley values are approximately sparse, that is, most values are
around the mean. Exploiting this property, they apply the idea of sparse signal recovering in
compressive sensing [89], and develop an algorithm that produces an (ε, δ)-approximation
with only O(N log(log(N ))) utility evaluations.

Jia et al. [49] further discover that Shapley values for data points used in unweighted kNN
classifiers can be computed exactly only in O(N log N ) time. Given a testing point xtest with
label ytest , they define the utility of a kNN classifier as the likelihood of ytest , that is,

U(S) = 1

k

min(k,|S|)∑

i=1

1(yαi (S) = ytest),

where αi (S) is the index of the training data that is the i-th closest to xtest in the set of data
points S. The special utility function enables efficient computation of Shapley differences
between two data points xαi (S) and xαi+1(S), that is,

ψ(xαi (S)) − ψ(xαi+1(S)) = 1(yαi (S) = ytest) − 1(yαi+1(S) = ytest)

k

min(i, k)

i
. (7)

They start by computing ψ(xαN (S)) = 1(yαN (S)=ytest)
N and then exploiting Eq. 7 to recursively

compute the Shapley values in the order of xαN (S), . . . , xα1(S). They further develop an
(ε, δ)-approximation algorithm based on Locality Sensitive Hashing [23] with only sub-
linear complexity. The major idea is to only compute Shapley values for the retrieved
k∗ = max(k, 1

ε
) nearest neighbors of xtest and ignore the rest data points, as their Shap-

ley values are too small. Moreover, they present a Monte-Carlo approximation algorithm
with O( N

ε2
log(k) log( k

δ
)) time complexity for weighted kNN classifiers.

The aforementioned studies [37, 49, 50] evaluate the utility of a model by its performance
on a validation data set. Sim et al. [102] consider the situation where no validation data
sets are available, and propose to use information gain on model parameters as the utility
function. Denote by θ the model parameters. After training on data D, the information gain
IG(θ) = H(θ) − H(θ |D) is the reduction in the uncertainty of θ , where H(·) is the entropy
function. In addition to Shapley fairness, three additional incentive conditions for revenue
allocation are proposed, namely individual rationality, stability of the grand coalition, and
groupwelfare. They also present p-Shapley fairness,which assigns a rewardπ(si ) = kψ(si )p

to a seller si . By tuning parameter p ∈ [0, 1], they can trade off between achieving different
incentive conditions. Rather than monetary incentives, each participant receives a machine
learning model as a reward. To realize different levels of rewards, the models are trained by
injecting different levels of noise into training labels.

Federated Learning [7, 74] enables multiple decentralized participants to collaboratively
train a machine learning model while keeping their training data locally. The data sets con-
tributed by the participants are used in a sequential order determined by a central server.
Evaluating participants’ contributions using Shapley value incurs high communication costs
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among the decentralized participants. Moreover, Shapley value neglects the order of data
sources. To accommodate the challenges, Wang et al. [113] propose federated Shapley value.
Denote by U(si + s j ) the utility of the model, which is trained on si ’s data first, then on s j ’s
data. Let It be the set of selected participants in round t of the federated learning process.
The federated Shapley value of participant si at round t is defined as follows.

ψt (si ) =
⎧
⎨

⎩

1
|It |

∑
S⊆It\{si }

U(I1:t−1+(S∪{si }))−U(I1:t−1+S)

(|It |−1
|S| )

if si ∈ It

0 if si /∈ It
(8)

The federated Shapley value of si is ψ(si ) = ∑T
t=1 ψ(si ), where T is the total rounds in

federated learning. The authors show that federated Shapley values satisfy the balance and
additivity axioms of Shapley fairness. The other two axioms, symmetry and zero element,
are satisfied in each round. They extend the permutation sampling and group testing approx-
imation methods [50] to compute federated Shapley values.

Participants in federated learning spend some costs for contributing their data sets, such
as privacy cost [45] and energy costs [56]. Yu et al. [118] propose a fair revenue allocation
mechanism for federated learning that jointly considers the costs and contributions of par-
ticipants. At round t , each participant si has a public cost ci (t) and receives a reward πi (t).
The regret ri (t) of si is a function of the difference between the total cost and total reward
of si . A large value of ri (t) indicates that si is not well compensated for the costs incurred
to si . The authors argue that the payments of participants at each round should achieve con-
tribution fairness and regret fairness. Contribution fairness requires that the payment πi (t)
and the Shapley value ψt (si ) of each participant si should be positively correlated, that is,∑

i πi (t)ψt (si ) should be maximized. Regret fairness requires that the participants should
have similar regrets, that is, the difference of the regrets among participants should be min-
imized. The payments of participants are determined by solving an optimization problem
with respect to a budget constraint. Theoretically, they show that the time-averaged regret of
participants is upper-bounded by a constant value as t → ∞.

Shapley value is vulnerable to data-replication attacks. A data provider may replicate
his/her data with zero cost and acts as an additional provider to get extra unconscionable
rewards. Agarwal et al. [1] address the issue by penalizing similar data sets to disincentivize
replication, that is, the replication-robust Shapley value is defined as

ψr (si ) = ψ(si )e
−λ

∑
s j∈D\{si } SM(si ,s j )

,

where SM is a similarity metric and λ is a constant. However, the proposed replication-robust
Shapley value no longer satisfies the balance axiom in Shapley fairness.

Han et al. [42] study the replication attack in data markets with submodular utility func-
tions. They show that the total reward received by an attacker increases monotonically with
respect to the number of the attacker’s replications. They discover that the extra reward to the
attackermainly comes from themarginal contributions to small seller groups by the attacker’s
replication. To fix the issue, the authors propose to down-weigh those contributions when
computing Shapley values. Their method guarantees that attackers receive smaller rewards
with more replications.

Ohrimenko et al. [85] design a replication robust collaborative data market, where each
participant is asked to pay a participation fee. This method discourages replication, as the
extra reward received by an attacker cannot cover the attacker’s participation cost.
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5.2 Other revenue allocationmethods

There are some other revenue allocation methods in collaborative machine learning other
than Shapley value.

Leave-one-out [20] is a commonly used method to evaluate data importance. It compares
the performance of a model trained on the full data set with the performance trained on the
full set minus one point. The performance drop is defined as the value of the data point, that is,
π(si ) = U(D)−U(D\{si }). Leave-one-out is often approximated by influence function [20,
57], which measures how the model changes as the weight of a training point is changed
without retraining the model. Richardson et al. [93] apply an influence function to reward
participants in federated learning for their contributed data points. It is shown that the pricing
model is incentive compatible. Applying influence functions to price data points are also
investigated in [50, 92]. Compared with Shapley value, leave-one-out methods, in general,
are more efficient as they do not require model retraining. However, leave-one-out methods
may not accurately assess the values of data points. The methods may assign a low value to
one of the two exactly equivalent data points, regardless of how important the datum is, as
high performance may still be achieved by including the other datum [116].

Yan and Procaccia [114] design a data pricing model based on core [39], which is a
celebrated revenue allocation solution in cooperative game theory. The solution seeks to
achieve maximum stability of how participants team up with each other. Core requires that
the total reward of each coalition S should be at least equal to the utility U(S), that is,
∀S ⊆ D,

∑
si∈S π(si ) ≥ U(S), where π(si ) is the reward of participant si and D is the set

of all participants. When such a reward cannot be achieved, least core relaxes the constraints
by allowing a minimum difference ε between the utility of S and the total reward of S. In
particular, least core computes the payment to each participant by solving the following linear
program.

min ε

s.t.
∑

si∈D
π(si ) = U(D),

∑

si∈S
π(si ) + ε ≥ U(S) ∀S ⊆ D. (9)

The number of constraints in Eq. 9 grows exponentially with respect to the number of
participants. Maleki et al. [114] tackle the efficiency issue by proposing a Monte Carlo
approximation algorithmwith guaranteed approximation errors. Their approximationmethod
samples a relatively small number of coalitions and solves Eq. 9 on the sampled coalitions. If
Eq. 9 has multiple solutions, the solution with the smallest l2-norm is chosen. Their revenue
allocation satisfies the balance, symmetry, and zero element axioms of Shapley fairness.

Yoon et al. [116] propose a reinforcement learning algorithm to value data points. They
learn a data value estimator that estimates data values and selects the most valuable samples
to train a target classifier. They jointly learn the data value estimator and the corresponding
classifier, which enables the classifier and the data value estimator to improve the perfor-
mance of each other. However, this method cannot guarantee fair revenue distribution among
participants.

Most of the existing revenue allocation methods are developed in the settings that super-
vised machine learning models are jointly trained. The participants are rewarded based on
the contributions of their data sets to the utility of the jointly trained machine learning model.
To adapt existing pricing models to scenarios where unsupervised machine learning models
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are jointly trained, the major challenge is to develop a utility function that participants can
all agree on. For some traditional unsupervised machine learning models, there are some
widely accepted performance metrics that can serve as the utility functions. For example,
Silhouette Coefficient [94] and Calinski–Harabasz index [12] are widely used to evaluate
the performance of clustering algorithms when ground-truth clusters are unknown. How-
ever, developing a utility function for some unsupervised models, such as pre-trained deep
language models [9, 30], may be challenging, as they are evaluated differently in many
down-stream machine learning tasks.

In this section, we review pricing models in collaborative training of machine learning
models. The major idea is to price each participant’s data set based on its contribution to the
performance of the jointly trained machine learning model. Shapley value-based methods
guarantee fair revenue distribution among participants, but suffer from poor computational
efficiency and scalability. Some alternative methods [114, 116] enjoy better efficiency or
coalition stability, but lose fairness guarantee.

6 Pricingmachine learningmodels

Machine learning models are needed in many different applications and scenarios. Rather
than building machine learning models from scratch, many users and companies turn to
purchasewell-trainedmachine learningmodels, due to their lack of expertise and computation
resources [17, 119]. In this section, we review pricing models for machine learning models
and discuss the differences between pricing machine learning models and raw data sets.

6.1 Pricingmodels

Pricing machine learning models is an emerging research area. To the best of our knowledge,
the existing studies mainly focus on arbitrage-free and revenue maximization pricing.

Chen et al. [17] propose an arbitrage-free and revenue maximization machine learning
model marketplace. In their setting, a model owner sells multiple versions of a machine
learning model to different buyers. The seller first trains an optimal model on the whole raw
data set. Then, the seller produces different versions of the optimal model by addingGaussian
noises with different variances to the parameters of the optimal model. The expected error
rates of the generated model instances are monotonically increasing with respect to the
variance of the injected noise. An arbitrage-free pricing function guarantees that a buyer
cannot derive a high performance model by paying less. Under their mechanism, a pricing
function is arbitrage-free if and only if the function is monotone and subadditive with respect
to the inverse of the noise variance.Unfortunately, their pricingmodel onlyworks formachine
learning models trained with strictly convex objective functions.

Chen et al. [17] further study revenue maximization in pricing machine learning models
with respect to the demands and valuations of a set of buyers. They show that determining
the optimal prices is coNP-hard. To overcome the computational hardness, they relax the
subadditive constraints π(x + y) ≤ π(x) + π(y) by π̂(x)

x ≤ π̂(y)
y , where x ≤ y and π̂

is an approximation of the optimal pricing function π . They show that π̂ is arbitrage-free
and ∀x > 0, π(x)/2 ≤ π̂(x) ≤ π(x). They propose a dynamic programming algorithm to
compute π̂ in O(n2) time, where n is the number of model versions.

Liu et al. [67] present an end-to-end model marketplace, which jointly considers data
owners’ privacy costs and model buyers’ demands. A broker collects data from data owners,
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and produces multiple versions of a machine learning model for sale with different subsets
of training data and different differential privacy levels ε. The revenues are fully distributed
to data owners. Objective perturbation [15] is used to train models with required differential
privacy levels, which injects quantified random noise into the objective function of a model.
Each data owner si requests a minimum compensation for using the owner’s data to train a
model with ε-differential privacy, that is

π(si , ε) = bi · ci (ε),
where bi is proportional to the Shapley value of si with regard to all sellers’ data sets and ci (ε)
is the privacy cost of si . A desirable pricing model should guarantee revenue maximization,
arbitrage-freeness with respect to differential privacy levels, and covers the compensations
to data owners. Computing the optimal pricing function is coNP-hard, and thus they propose
a dynamic programming algorithm to solve the problem approximately. A limitation of the
pricing model is that it cannot adjust prices with respect to dynamic customer demands,
which may limit the broker’s revenue.

Agarwal et al. [1] consider an online auction for machine learning model market, which
is truthful and revenue maximizing. They assume buyers come one at a time, and each wants
to purchase a machine learning model for the buyer’s prediction task. Denote by G(Ŷi , Yi )
the quality of a model’s prediction Ŷi on buyer i’s validation data set Yi . The reward that
buyer i receives from the model is μi · G(Ŷi , Yi ), where μi is buyer i’s private valuation on
unit performance. Denote by pi and bi , respectively, the asking price of the broker and the
bid of buyer i for unit performance. The broker produces a noisy machine learning model
for buyer i based on the price difference pi − bi . Specifically, the model is trained on a data
set with quantified injected random noise, such that the model’s performance is degraded
proportionally to pi −bi . Buyer i is charged by a function RF(pi , bi , Yi ), which is designed
following Myerson’s payment function rule [77]. The utility that buyer i receives by bidding
bi is

U(bi ) = μi · G(Ŷi , Yi ) − RF(pi , bi , Yi ),

where Ŷi is the prediction of the returned noisy model. It is shown that truthfully bidding
the buyer’s valuation μi can maximize buyer i’s utility. The authors apply a multiplicative
weights method [3] to compute the price pi from historical revenues. They show that the
pricing mechanism achieves maximum revenue.

6.2 Pricing raw data products versus machine learningmodels

At a high level, pricing machine learning models and raw data sets share a series of common
desiderata and techniques. But their pricing models are essentially different from each other
on at least four aspects.

First, the pricing units of machine learning models are often well defined and fixed. A
machine learning model is usually priced and sold as a whole. Customers can purchase either
a machine learningmodel or the usage of a machine learningmodel via API calls, where each
call has a fixed price. In contrast, a raw data set can be consumed inmultiple granularities. For
example, a customer may be interested in the sales information of American customers in the
last year. Another customer, however, may want to purchase the sales information during the
Christmas season. Such flexibility makes it easier to version raw data products, and enables
more flexible pricing mechanisms. For example, according to how much information is
revealed, different prices can be assigned to different queries on the same database [29].
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Second, versioning in model markets is harder than that in data markets. As data sets have
strong and flexible aggregate-ability, different versions of a data set can be easily produced by
aggregating along different dimensions. Producing different versions of a machine learning
model requiresmore sophisticated techniques [17], since it is challenging to accurately control
the differences between multiple versions.

Third, the value of raw data sets to customers is generally harder to measure than that of
machine learning models. Often, raw data sets are used to train machine learning models.
The ultimate value of a data set dependents not only on its intrinsic properties but also on the
specific task that the data set is used for and the analyzingmethods [34]. Therefore, it is usually
hard for customers to understand the value of a data set. Many machine learning models are
designed for specific tasks and are directly used by people to support decision making [1]. It
is easier for people to verify and understand the value of such machine learning models. For
example, customers can value a classification model based on its prediction accuracy.

Last, preventing arbitrage is usually harder in model market than in raw data market. As
shown by Tramér et al. [109], Yu et al. [119], machine learning models may be stolen by
adversaries via a reasonable number of API calls. A customer with a large number of query
instances may first purchase some predictions from a target machine learning model. Then,
the customer can train a local model with near-equivalent outputs as the target model and use
the local model to predict the remaining query instances with almost no cost.

In this section, we review pricing machine learning models. We first revisit arbitrage-
free and revenue maximization pricing models. Then, we discuss several major differences
between machine learning model products and raw data set products, including pricing units,
versioning, arbitrage prevention, and customer valuation.

7 Data pricing in practice

Good progress has been made on pricing data products. There are, however, still very limited
studies about how to apply the theoretical data pricing models in real-world applications.
In this section, we first introduce some real-world data marketplaces and their data pricing
models. Then, we provide guidelines for data pricing practitioners to choose proper pricing
models for their application scenarios.

7.1 Data pricingmodels in industry

In recent years,many datamarketplaces have emerged, where raw and processed data sets, the
services of data labeling, and machine learning models are traded [105]. Six pricing models
are commonly used in the real-world data marketplaces [86, 105], namely free data, flat fee
tariff model, pay-per-use model, package pricing, two-part tariff model, and freemium. Data
marketplaces operated by authorities or non-profit organizations usually provide raw data sets
free of charge. The pay-per-use pricing model sets a price for each consumed unit of data
products, and charges data buyers based on their consumptions. In the package pricingmodel,
a data buyer can purchase a certain amount of data or API calls for a fixed price. In the flat
fee tariff (subscription) pricing model, data buyers pay a fixed price to get unlimited access
to a data product for a certain period of time. The two-part tariff model charges customers a
fixed basic fee plus an additional fee per unit consumed. Last, in the freemium model, a data
buyer can obtain basic access to data products for free and pay for advanced features.
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The UCI machine learning repository [91] and Kaggle [55] are data marketplaces offering
free data sets for some specific machine learning tasks. Till January 2022, the UCI machine
learning repository and Kaggle provide 622 and 125,771 free data sets, respectively.

Datarade [24] is one of the largest commercial data marketplaces in the world, where
data buyers can purchase commercial data sets from the Datarade authorized data vendors.
The data sets on sale extend across several industries and sectors, such as real estate data,
consumer data, andmobile application data.Datarade supports the pay-per-use pricingmodel,
the package pricing model, and the flat fee tariff pricing model. For instance, Datastream,
a US data vendor on the marketplace, sells a single query to its identity matching data set
for $1.9, a package of one thousand queries to the data set at a discount price of $19, and
unrestricted monthly access to the data set for a subscription fee of $28,500 [64].

The CARUSO dataplace [13] is a sell-side marketplace [120], which is operated by a
single data seller. The data seller first collects in-vehicle data from participating cars, such
as battery voltage, coolant temperature, and check control messages, and then sells the data
to data buyers. The marketplace employs the two-part tariff model, that is, data buyers are
charged a fixed membership fee plus additional fees for their consumed packages of data
items, which may range between 0.30 euros and 8.50 euros per package.

REKLAIM [90] is a buy-side marketplace [120], where the single data buyer pays indi-
viduals for sharing their personal data, such as identity information, browsing history, and
financial data. In REKLAIM, the flat fee tariff pricing model is used. The data buyer pays
different monthly rewards to the participating individuals who share different types of infor-
mation.

In addition to raw data sets, obtaining data labels is also critical in building machine
learning models. Amazon Mechanical Turk [110] and Appen [2] are leading crowdsourcing
marketplaces for this purpose, where the two-part tariff pricing model is adopted. A data
buyer first publishes a group of data labeling tasks, where each task is associated with a fixed
reward determined by the data buyer. The reward is commonly set between 1 and 3 cents
per label/judgment. To motivate workers to exert efforts and submit accurate labels, after
verifying the collected data labels, the data buyer is recommended to pay bonus rewards to
the workers submitting high-quality data labels.

Machine learning as a service (MLaaS) [18, 109] is a rapidly growing industry. Google
Cloud [19] sells the API access to its well-trained machine learning models. The freemium
and the package pricing models are adopted to price the API calls. For instance, a customer
of Google cloud can obtain 1000 free API calls to an image classifier per month, and pay
$1.5 for each additional 1000 API calls.

7.2 A quick summary and comparisons of data pricingmodels

Different data pricing models have their particular suitable application scenarios. This sug-
gests that the data pricing practitioners need to pick the data pricing models on a case-by-case
basis for their settings at hand. Whether a pricing model is suitable to a setting often depends
on multiple factors, including the practitioner’s pricing task, the type of data products to be
priced, the practitioner’s optimization goals, and the theoretical assumptions that the pricing
model relies on.

As discussed in Sect. 1, we focus on four data pricing tasks in machine learning pipelines,
namely pricing raw data sets, pricing data labels, revenue allocation in collaborative machine
learning, and pricing machine learning models. We summarize all of the representative data
pricing models for the four data pricing tasks in Tables 1, 2, 3, and 4, respectively. The four
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Table 1 The representative data pricing models of raw data sets

Product Objectives References

General data No specific optimization goals [43]

(1) Revenue maximization [117]

Sensing data (1) Truthfulness; (2) Individual rationality; (3)
Profitability

[115]

(1) Truthfulness; (2) Social welfare
maximization

[52]

(1) Truthfulness (2) Buyer’s cost minimization [60]

Chain queries, conjunctive queries,
and cyclic queries

(1) Arbitrage-freeness; (2) Discount-freeness [58]

Conjunctive queries (1) Arbitrage-freeness; (2) Discount-freeness;
(3) History-awareness; (4) Fairness

[59]

General data queries (1) Arbitrage-freeness [28], [65]

(1) Arbitrage-freeness; (2) History-awareness [29]

(1) Arbitrage-freeness; (2) Revenue
maximization

[16]

Selection-projection-natural join
queries over incomplete databases

(1) Arbitrage-freeness; (2) History-awareness [75]

Selection queries (1) History-awareness [111]

Counting queries on binary data (1) Privacy compensation; (2) Truthfulness; (3)
Buyer’s cost minimization

[38]

Linear aggregation queries (1) Privacy compensation; (2) Query accuracy
maximization under budget constraint

[21]

(1) Privacy compensation; (2) Personalized
maximum tolerable privacy loss; (3) Query
accuracy maximization under budget
constraint

[83]

(1) Privacy compensation; (2) Truthfulness; (3)
Personalized maximum tolerable privacy loss;
(4) Query accuracy maximization under
budget constraint

[121]

(1) Privacy compensation; (2) Arbitrage-freeness [62]

(1) Privacy compensation; (2)
Arbitrage-freeness; (3) Dependency fairness

[84]

Geo-location data (1) Privacy compensation; (2) Data accuracy
maximization under budget constraint

[53]

tables can be used as a starting point in helping data pricing practitioners to choose the right
pricing models for their settings.

Tables 1, 2, 3, and 4 have three columns. The first column displays the data products that
can be priced by the model. Pricing models with the value “general data” in the column
means that the models have no restrictions on the types of data sets to be priced. For instance,
the pricing models can be applied to image data, time series data, video data, etc. The
second column shows the optimization goals of the pricing models. A pricing model may
be optimized toward multiple objectives. The last column shows the references to the data
pricing models.
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Table 2 The representative data pricing models of data labels

Product Objectives References

Binary-label tasks (1) Effort elicitation with gold tasks; (2)
No-free-lunch axiom

[96]

(1) Effort elicitation without gold tasks [22]

(1) Effort elicitation without gold tasks; (2)
Reducing duplicate answers

[68]

(1) Effort elicitation without gold tasks; (2) Buyer’s
utility maximization

[46, 69]

(1) Effort elicitation without gold tasks; (2)
Spammers’ rewards minimization

[87]

Multi-label tasks (1) Effort elicitation without gold tasks [88, 100]

(1) Effort elicitation with gold tasks; (2)
No-free-lunch axiom

[98]

(1) Effort elicitation with gold tasks; (2)
No-free-lunch axiom; (3) Motivating workers to
self-correct answers

[97]

(1) Effort elicitation with gold tasks; (2) Improving
scalability of gold tasks; (3) Fairness

[40]

Binary-label tasks and
numeric-label tasks

(1) Effort elicitation with gold tasks; (2) Improving
scalability of gold tasks

[26]

Table 3 The representative data pricing models of collaborative model training

Product Objectives References

Data sets for general ML models (1) Shapley fairness [37, 50, 73]

(1) Shapley fairness; (2)
Individual rationality; (3)
Stability of the grand
coalition; (4) Group welfare
maximization

[102]

(1) Shapley fairness; (2) Data
replication-robustness

[1, 42, 85]

(1) Coalition stability [114]

(1) Improving the
performance of the
collaboratively trained
model

[116]

Data sets for kNN classifiers (1) Shapley fairness [49]

Data sets for federated learning (1) Shapley fairness [113]

(1) Shapley fairness; (2)
Regret fairness

[118]

(1) Truthfulness [93]

Tofind an appropriate data pricingmodel, a practitioner canmatch the pricing task, the type
of data products, and the optimization goals in his/her setting with the ones in Tables 1, 2, 3,
and 4. Most of the pricing models shown in Tables 3 and 4 are developed in the settings that
classifiers are trained. As discussed in Sect. 5, we can adapt those models to the scenarios
where unsupervised machine learning models are trained and traded by developing proper
utility functions.
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Table 4 The representative data pricing models of machine learning models

Product Objectives References

ML models (1) Arbitrage-freeness; (2)
Revenue maximization

[17]

(1) Arbitrage-freeness,
revenue maximization; (2)
Privacy compensation

[67]

(1) Truthfulness; (2) Revenue
maximization

[1]

Please note that many data pricing models are developed under some assumptions on
their application scenarios. For example, the pricing model of revenue allocation proposed
by Maleki et al. [73] requires that the utility function of the collaboratively trained machine
learning model is bounded. Therefore, before applying a selected pricing model, the prac-
titioner also needs to carefully verify whether the assumptions of the pricing model hold in
the application setting. If the assumptions do not hold, the pricing model may not function
as expected and thus needs to be changed or refined.

In this section, we discuss how to perform data pricing in practice. We first review the
pricing models adopted by some representative data marketplaces in industry. Then, we
provide guidelines for the data pricing practitioners to choose proper pricing models for their
settings.

8 Conclusions and future directions

In this paper, we survey data pricing in end-to-end machine learning pipelines. We con-
sider three important steps in machine learning pipelines where pricing may be substantially
involved, namely raw data collection and labeling, collaborative training machine learning
models, and machine learning model marketplaces. We systematically review representative
studies in those steps, discuss the pricing principles and review the existing methods. End-
to-end machine learning pipelines are playing a more and more important role in the current
big data and AI economics era. To the best of our knowledge, this is the first survey on data
pricing in machine learning pipelines.

Data pricing is still in its early stage. There are many research challenges for future works.
We list some of them here.

First, the existing studies focus on designing proper rewarding models in each separate
stage of machine learning pipelines. There is a lack of systematic study of an end-to-end
revenue allocation solution.As presented in our survey, themanufacturing process ofmachine
learning models involves multiple parties, including data owners, data processors, machine
learning model designers, and other possible participants. Each party provides value-added
contributions at one stage of the pipeline and receives a reward. A natural question is how to
allocate manufacturing budgets among different parties. To answer the question, we need a
mechanism to measure and compare the contributions of different parties in different stages.
We also need a system that can dynamically adjust the budget allocations in response to the
changes in supply and demand.

Second, almost all pricing models of collaborative model training formulate revenue allo-
cation as a cooperative game, and use Shapley value to carry out the allocation. They justify
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the usage of Shapley value through the four axioms, namely balance, symmetry, zero element,
and additivity. However, Yan and Procaccia [114] argue that the necessity of additivity for
data valuation is debatable. Except for the additivity axiom, many other celebrated alloca-
tion solutions in cooperative game theory can also satisfy the other three axioms. Compared
with Shapley value, the other solutions have their advantages and limitations. For example,
normalized Banzhaf value [14] computes the payment to each player as the player’s average
marginal contribution toward all coalitions of other players. Even though normalizedBanzhaf
value does not satisfy the additivity axiom, it is more robust to data replication attacks than
Shapley value [42]. In a marketplace where robustness is more important than additivity,
normalized Banzhaf value is more preferable than Shapley value. Different types of data
marketplaces may have different goals [34], and thus require different axioms. Therefore,
we need a better understanding about the necessary axioms in different marketplaces and
explore revenue allocation solutions in specific marketplaces.

Third, fine-grained data procurement for machine learning tasks is not fully explored.
In practice, data sets from two sellers may have similar or overlapping parts. A data buyer
with a limited budget may not want to purchase many similar data points, as the diversity of
training data sets is critical to the performance of machine learningmodels [34]. Query-based
pricing models [58] allow data buyers to only purchase their interested parts of a data set.
However, the existing query-based pricing models are only designed for relational data sets
in monopoly markets. Supporting query-based pricing in marketplaces of general data sets
with competing sellers brings new challenges and opportunities. For example, it is interesting
for data buyers to explore how to distribute their budgets among data sellers to maximize
the utility of purchased data sets. For data sellers, it is important to assign prices to different
parts of their data sets based on supply and demand, such that the data sellers and their data
sets can remain competitive in the market.

Last, rigorous evaluation methods for data pricing models need to be developed. Many
existing pricing models are only evaluated in oversimplified experimental environments,
where many assumptions are made on the behaviors of market participants. A theoretically
sound model, however, may not work in practice, as some model assumptions may break.
For example, in a real-world market, participants can have adversarial, ignorant, or coalition-
building behaviors. However, the effects of those behaviors on the performance of pricing
models are largely dismissed in detailed analysis. Therefore, as suggested by Fernandez et
al. [34], a simulation platform that can simulate different behaviors of market participants
should be developed. The platform can help us study the advantages and limitations of pricing
models in target environments, and choose the best one to deploy.
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