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A Quality Metric for K-Means Clustering
Based on Centroid Locations
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manojt@smu.edu.sg

Abstract. K-Means clustering algorithm does not offer a clear method-
ology to determine the appropriate number of clusters; it does not have
a built-in mechanism for K selection. In this paper, we present a new
metric for clustering quality and describe its use for K selection. The
proposed metric, based on the locations of the centroids, as well as the
desired properties of the clusters, is developed in two stages. In the initial
stage, we take into account the full covariance matrix of the clustering
variables, thereby making it mathematically similar to a reduced x?. We
then extend it to account for how well the clustering results comply with
the underlying assumptions of the K-Means algorithm (namely, balanced
clusters in terms of variance and membership), and define our final met-
ric (Mc¢). We demonstrate, using synthetic and real data sets, how well
our metric performs in determining the right number of clusters to form.
We also present detailed comparisons with existing quality indexes for
automatic determination of the number of clusters.

Keywords: K-Means clustering - Quality metrics - K selection
problem - Number of clusters

1 Introduction

K-Means clustering [15] is conceptually simple and easily explained and under-
stood. Practically, however, one of the difficulties that we face in using the algo-
rithm is that we cannot clearly and objectively articulate why one clustering
output is better than another one for a given data set. We lack a quality mea-
sure. Because of the lack of a quality measure, we face difficulties when it comes
to selecting the optimal number of clusters to form.

In this paper, we propose a new quality metric that can be easily computed
during (or after) K-Means clustering and argue from basic principles that it
accurately captures the validity of the clustering run. We will study its perfor-
mance in determining the optimal number of clusters to form on a wide range
of synthetic data as well as some real data sets. We will demonstrate that it
compares favourably against the current metrics, several of which are reviewed
in [4].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 208-222, 2022.
https://doi.org/10.1007/978-3-031-22137-8_16
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2 Related Work

We have several quality indexes and statistics in the literature, which are fre-
quently used to automatically determine the right number of clusters (K). The
ones we will consider in the article for comparison are:

— Variance Ratio Criterion [5]: VRC

— Akaike Information Criterion [3]: AIC

— Bayesian Information Criterion [24]: BIC
— Silhouette Width [23]: Sil. Wid.

— Gap Statistic [26]: Gap

— Evaluation Function [20]: f(K)

In addition to these “classic” quality indexes, we have several other candi-
dates, some of which are algorithms specifically designed to determine the right
K automatically. A recent study [10] introduces the Projected Gaussian (PG-
Means) method, which performs a K-Means clustering for all K's in the range of
interest and projects both the data and model to a linear subspace. It then looks
for a good fit between the model and data using the Kolmogorov-Smirnov (KS)
test. PG-Means runs with ten sets of random starting seeds, which our studies
indicate may be too small to ensure convergence.

X-Means [19], originally developed to address the scalability issue of K-
Means, also helps determine the right K. An extension [16] of X-Means is found
in the literature, designed to automatically determine K through progressive
iterations and merging of clusters based on a BIC stopping rule. This method,
however, does not give an index, which is needed for other purposes such as
feature selection.

G-Means [14] is a method to repeatedly perform K-Means with increasing K
until statical tests show that the resulting clusters are Gaussian within a specified
confidence level. This method again does not provide a quality metric. Other
attempts to determine K include a visual assessment of clustering tendency
[18], again with no overall quality metric.

A recent comparative study [13] argues that relying on any single internal
metric or index is unwise, while noting that the WB index [28] (based on sum of
squares similar to VRC) seems to perform best. Our index, also loosely based
on sum of squares, seems to work well both in synthetic and real data sets.

One of the more recent studies that define quality metrics or indexes is a
probabilistic approach [6] on external validation of fuzzy clustering, where one
data point may belong to multiple clusters. Our approach also uses within-
standard deviations, and applies only to K-Means clustering, which is distinctly
non-fuzzy. Another approach [12] introduces a cluster-level similarity index called
the centroid index, focusing on the overall clustering output to quantify the
clustering quality. An external quality measure that can apply to many different
clustering algorithmes, it is not directly comparable to our internal metric focusing
on K-Means. Lastly, in a paper proposal [27], a new separation measure, (termed
“dual center”) is developed, based on which a validity index is proposed for fuzzy
clustering. It is not, however, employed for K selection.
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3 New Quality Metrics

To develop the metric proposed in this article, we will start from the standard
(z) scores of the centroid locations and combine them into a metric. We will then
generalize it using the full covariance matrix of the clustering variables (grouped
by cluster) to define a reduced x? metric. At the second stage, we will extend the
x? metric to incorporate extra information about how well the clusters conform
to the implicit assumptions in the K-Means algorithm and come up with the
proposed metric, M.

Given the centroids (fi;) and the population mean (fi), we can compute the
significance of the difference between them for each variable as,

L Ok, Oy /My — ;)
k:j - (C) - Ukj o U]C

O-kij /M J

(1)

where § stands for the difference and (¢ for the within-cluster standard devi-
ation. Since the k" cluster has n; members, the standard error is o(® divided
by \/n. In order to interpret the squared sum as a weighted average, we divide
it by the number of observations n, so that each term in the sum has a weight
of ny/n, the fraction of the observations belonging to the cluster, and call it our
quality Score.
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3.1 Reduced x% Metric

The generalized version of the distance to be used in the presence of correlations
is the Mahalanobis Distance [17], Dys(fiy,, f) corresponding to the K cluster
centroids. The square of each one (denoted by D3, (fi,, fi)) is a random variable
which follows a x? distribution with a parameter (or degrees of freedom, DoF)
p—1, where p is the number of clustering variables. We can combine these Maha-
lanobis distances in quadrature using the same weightage as in the definition of
Score.

K P
X% = 1 Z D3, (., )
K(p-1) P n -

K
1 — — —1/- —
= ———— > iy, — @) (g, — )T
The sum of the squares of the K Mahalanobis distances, being the sum of K

random variables, each with a x? (of DoF = p — 1) distribution, is another x>
random variable of DoF = K (p — 1).
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Since K(p — 1) is actually the number of degrees of freedom, x% can be
thought of as the reduced x? per cluster, but with an extra (constant) scaling
factor of n. This scaling, being constant, does not impact the usage of X?{ in
determining the right K. We call this reduced and scaled x% our “Reduced x%
Metric.”

3.2 Implicit Assumptions in K-Means Algorithm

The K-Means algorithm works best when the data set has spherical clusters of
roughly equal sizes. The clusters are expected to be similar in terms of member-
ship, density and variance. If this assumption is violated, the K-Means algorithm
is likely to give unreliable results. Furthermore, if one cluster has significantly
smaller variance or number of members, it tends to “scavenge” observations
belonging to other clusters. This is because the cluster boundaries are perpen-
dicular bisectors and the statistical fluctuations in the observations always favor
the tighter or smaller cluster. The soft requirement of balanced clusters in terms
of membership and variance forms an implicit assumption in the algorithm.

3.3 Covariant Metric (Mc)

Since the metric is a reduced 2, it may be possible extend it to include compo-
nents that quantify these assumptions in the K-Means algorithm. We will show
how the cluster membership (or frequency) and the cluster standard deviation
are compared against their expected or ideal values, and a standard score for
each is generated, to be combined with y%. We will call the extended metric the
Covariant Metric (M) because it is built on the covariance matrix of the data.
We emphasize that it is weighted by ny/n and therefore does not numerically
equal standard score or the reduced x2, and it incorporates the components
described below in a heuristic way.

Cluster Frequency. Since we have n observations and K clusters, the “ideal”
frequency for each cluster is ny = n/K. Assuming Poisson statistics, we can
argue that the expected error on each frequency is y/n/K. Since we have K

measurements of the frequencies, we gain another factor of v K in its standard
error, giving us oy, = % and combine the individual z-scores in quadrature to
come up with a measure of how far away our clustering result is from the ideal,

in terms of the membership frequency.
K n A 2
k — Itk
= @
k=1 Ty,

M, is a standardized measure of how different the clusters are in terms of their
frequency. Ideally, we would like to have M, as close to zero as possible.
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Cluster Variance. Once the clustering is done, we have the sum of squared
errors SSE. If the clusters have the same variance, then SSE should be shared
among them in proportion to the frequency.

ng

SSE; =

-1
SSE 5
— (5)
SSE is the sum of the squared errors of the observations to their respective
centroids. The expected “ideal” variance, therefore, is this sum divided by ng —1.

.. SSE SSE
52 k

ne—1 n-K (6)

The actual variances of the clusters are estimated during the clustering pro-
cess, and is reported in terms of within standard deviations, but aggregated over
all variables. Ignoring the cases where nj; = 1,

57 =
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The standard error in the variance is obtained by recognizing that the sample
variance (when multiplied by (ny —1)/0%,) is a x* distribution of n, —1 degrees
k

of freedom, which itself has a variance of 2(ny — 1). Therefore, the standard error
of the variance is [2]
2

nk—l

(8)

Again, we have an “ideal” variance and a measured one, and we can compute
the significance of the difference between them (using the standard errors)and
combine their significances to come up with a measure of how the cluster vari-
ances compare to the ideal equal variance.

Mgz = (—5’3 — Sk) (9)

(0P
k=1 Sk

052 = Sk

In an ideal clustering solution, we will expect to have very small M 52

Extending the X% Metric. Now that we have the two new components encap-
sulating the uniformity among the clusters in terms of frequency and variance,
we can extend our x% with them to obtain the Covariant Metric (M) as follows.

X%
Mo = 10
7 M,, + Mg (10)

where My, and Mg2 are defined above in Eqgs. (4) and (9) above. We divide by
the sum of these two measures corresponding to the frequencies and variances

of the clusters because the overall quality of the K-Means clustering is inversely
proportional to them. In other words, if we have two clustering solutions with



A Quality Metric for K-Means Clustering Based on Centroid Locations 213

identical x%, but different values for M, and M 52, we have to choose the
one with the lower M,, and M 2. Note, however, that a more general way to
combine them would as a linear combination, w; M, + waM 525 where w; and
wo are relative weights whose values are not known a priori.

3.4 Quantifying Index Performance

Since we will be comparing multiple indexes with our metric, we may get the
same right K from several of them. It would then be fair to ask how we quantify
the performance of various indexes. For the first five out of the seven indexes
listed earlier (namely VRC, AIC, BIC, Sil. Wid. and DB), the selection of K
is based on a maximum or a minimum. The Gap statistic and the f(K) index
do not determine K by looking for a maximum or minimum in their variation.

For the Gap statistic, the best K recommended by this approach is the
smallest number of clusters that shows a decrease, while all values of K such
that f(K) < 0.85 are potential candidates as the right K.

The significance of K selection may be quantified using the concept of curva-
ture: the higher the curvature, the more prominent the minimum or maximum
signifying the right K. For a continuous function of a single variable, the cur-
vature is proportional to the second derivative. For a discrete function h(K)
(where K is an integer), we define a new quantity I", similar to the three-point
computation of the second derivative for a continuous functions.

h(K +1)—2h(K)+ h(K —1)

T T T ) s aE 1) )

The index with the largest I" value has the most clearly defined peak, signifying
the right K.

4 Experiments on Synthetic Data

4.1 Data Generation

We use the R package clusterGeneration [21], which can generate clus-
ters of specified sizes in spaces of prescribed number of variables. In
clusterGeneration, we can also specify the separation among the clusters,
using a separation index [22]. We will use various values for these three and
other parameters as described below.

Number of Clusters (G): We generate synthetic data sets with different num-
bers of clusters: G € {5, 10, 15,20}

Number of Variables (p): We use the values p € {2,4,8,16,32} for this
parameter

Separation Index (J*): This parameter controls how well separated the clus-
ters are, and we use the value J* = 0.34 (for cleanly separated clusters), since
we are defining and studying the metric for a data set well suited for K-Means
clustering.
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Since we are studying the metric for a data set perfectly suited for K-Means clus-
tering, we focus on these 20 data sets for detailed analysis, we use the following
values for the other parameters in the generation of the synthetic data.

Number of noisy variables = 0

Number of outliers = 0

Equal cluster membership (of 10p) for all clusters

Cluster uniformity (= Range for variances of the covariance matrix) = [1, 10],
which generates a reasonable variability.

4.2 Analysis of Synthetic Data

With the synthetic data, we first compute our metrics Mg, X%, and seven
indexes (VRC, AIC, BIC, Sil. Wid., DB, Gap and f(K)) discussed ear-
lier. For each run of the K-Means clustering algorithm, we use 100 random sets
of initial seeds from which the best run (based on the sum of squared errors)
is chosen. It is important to have large number of starting seeds because of the
sensitivity of K-Means to initial conditions, especially when we have large num-
ber of clusters and relatively small number of variables [25]. For smaller number
of starting seeds, we do see a large fraction of K-Means attempts failing to con-
verge. We also set a generous limit on the maximum number of iterations of
1000 and repeat the whole analysis multiple times and ensure that the results
reported are stable.

4.3 Results and Discussion

First, we focus on the fraction of the times we can detect the right number of
clusters using the metrics Mg, X%, VRC, AIC, BIC, Sil. Wid., DB, Gap
and f(K). We define this fraction as the accuracy of the metric and scan for
the right K in % < K < 2G. We run the analysis on all our 60 synthetic data
sets (20 for each J* value), and report the average accuracy for our metric and
a variety of indexes in Table1l. Also reported are the average I' values when
the right K is detected. Since we are developing a metric that will work best
for data sets that are particularly suited for K-Means clustering, the column to
consider in Table1 is for well-separated clusters (J* = 0.34). We can see that
M performs very well with extremely well-defined peaks (I" ~ 28). Although
the Variance Ratio Criterion (VRC) and the Davies-Bouldin index (DB) also
detect the right K, the significance of the peak for VRC or the minimum for
DB is at much smaller levels (I" ~ 0.1 — 0.2).

VRC, DB and Gap perform better than M when the clusters are gener-
ated with more overlaps, by reducing the value of J* to 0.01, when the clusters
are expected to be more realistic. However, their performance in the real data
is poorer than out metric. Also of note is that both AIC and BIC perform
very poorly in the synthetic data, as well as in the real data. (The comparisons
of the performances of the metrics in real data is summarized in Table2 in a
subsequent section.)
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(a) G=5,p=2. (b) G =10, p = 16. (c) G=15,p=A4.
M fails with K = 2. M fails with K = 9. M gets K = G.

K=2 (T =NA) K=9 (I =13) K=15 (T =3.2)
0.00020

0.002
0.00015

% ;o000
0.001
0.00005
, ] * | 0000001, 0.0001 | : . :
2 4 6 8 10 o 15 20 25 30
K K
(d)G=5p=2. (e) G =10, p = 16. (f)y G =15, p=4.
VRC gets K =G. VRC fails with K = 9. VRC gets K = G.
2250 K=5 (T =0.3) K=9 (T =0) 2750 K=15 (T =0)
2000 175 2500
O O O
< 1750 € 150 & 2250

1500 2000

125

Fig. 1. Examples of M¢ (top row) and VRC (bottom row) for different K, when
realistic clusters (J* = 0.01) are used.

A comparison of the shapes of M and VRC can be found in Fig. 1, where
we see that Mo typically has a sharper peak. In the real data, M seems to
perform even better in detecting the right number of classes.

Table 1 shows that M performs better than %, both in terms of the accu-
racy and the sharpness of the peak. We can therefore conclude that our extension
of the x? by incorporating the scores corresponding to ideal cluster frequency
and within-standard deviation does add value to the metric.

5 Experiments on Real Data

We also perform our experiments in four different real data sets, where we detect
the optimal number of clusters automatically using M, and compare it to what
is known about the data sets independently. In these experiments, we assume
that the classes in the data sets form spherical clusters, easily separated by the
K-Means algorithm, and, as a consequence, that the ideal number of clusters
is the number of classes. If this assumption does not hold true for the data
set under consideration, our metric will not work. Indeed, the definition of our
metrics would also be invalid in that case.
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5.1 Variable Selection

Since we are testing our metrics on labeled data sets, we can directly compute the
purity of the clusters by counting the number of correctly assigned observations.
We assume that the ideal number of clusters (ideal K) is the number of distinct
values of the label. After selecting the best variables based on purity, we will
iterate over various values of K and expect to see a clear peak for the Covariant
metric when plotted against various K values. Note that we will use the same
“best” variables for all other indexes to which we compare our Covariant metric.
Therefore, there is no unfair advantage or biases in using the selected variables
in favor of our metrics. The four data sets used are briefly described below.

5.2 Data Sets

Iris Data Set. The classic Iris data set [11] contains 150 flower measurements
along four variables (Sepal Length, Sepal Width, Petal Length and Petal Width)
from three different iris species (Setosa, Versicolor and Virgnica). Each species
has 50 data points in the data set. Since there are three species, we know,
beforehand, that the ideal number of clusters should be three. We select the
variables Petal Length and Petal Width as the variables (based on the highest
purity) to use when looking for the best K.

We can now look at how the Covariant metric (M) varies when we cluster
with different K's. The dependence is shown in Fig. 2a. We can see that the ideal
K = 3 clearly shows up as a peak in both distributions, much more clearly

in Mc.

Table 1. Accuracy and I' of various metrics

Metric Well-separated | Medium Realistic
(J* =0.34) (J*=0.21) | (J* =0.01)
Mc 100.0% (28.6) 90.0% (18.0) | 45.0% (7.0)
X% 45.0% (0.1) 65.0% (0.1) | 35.0% (0.1)
VRC 100.0% (0.2) 100.0% (0.2) | 60.0% (0.1)
AIC 0.0% (—) 0.0% (—) 0.0% (—)
BIC 0.0% (—) 0.0% (—) 0.0% (—)
Sil. Wid. | 95.0% (0.1) 75.0% (0.1) | 65.0% (0.1)
DB 100.0% (0.2) 85.0% (0.2) | 85.0% (0.1)
Gap 55.0% 70.0% 70.0%
F(K) 20.0% 25.0% 30.0%

Accuracy of K selection: the fraction of the times when
the reconstructed number of clusters is the same as
the generated number (K = G). The numbers between
parentheses are the mean I' (averaged when K = G).
Note that Gap and f(K) do not detect the ideal K using
maximum or minimum, and therefore I is not reported.
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(a) Iris Data Set (b) Young Adults Data Set
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Fig. 2. Using our quality metrics to select the optimal number of clusters in various
data set. The Covariant Metric M ¢ shows clear peaks at the known number of clusters
(K = 3 for the Iris, Wine and Seeds, and K = 2 for the Young Adults).

Young Adults Data Set. We collected anonymous data from our students.
The data set has 127 observations of four numeric variables (Height, Weight, Age
and HairLength) and a label (M or F for male or female). Note that in Singapore,
male university students are expected to be about 2 to 3 years older than their
female classmates because of their military service obligation. Therefore, we may
expect the Age variable to have some differentiating power while clustering the
data. Following the same procedure as in the iris data set, we select Weight and
HairLength as the best variables to use, for the best possible purity of 98.4%.

A blind K-Means clustering (with K = 2) using the four numeric variables
is likely to segment the Young Adults data into male and female students. The
ideal number of clusters is indeed two. In Fig.2b, we have plotted M as a
function of K, and it shows a clear peak at K = 2.

The Wine Data Set. The publicly available Wine data set [1], from the UCI
Machine Learning Repository [9], has 12 attributes, making the combinatorial
problem of selecting the best variables for K-Means clustering challenging with
over 8000 possible combinations. From among the multiple variable combina-
tions, we select the combination of Alcohol, Ash, Flavanoids and OD280-0OD315
based on the highest purity of 90.5%. The Wine data set also has three classes,
and Fig. 2c shows that the Covariant metric (M¢) has a clear peak at K = 3.
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The Seeds Data Set. The publicly available Seeds data set [7] (again from the
UCI Machine Learning Repository) contains three classes of wheat seeds with 70
observations each. It has seven attributes, giving us 120 different combinations
of variables to choose from. From these combinations, we select Area, Perimeter,
Compactness and Asymmetry based on the highest purity of 90.0% that we can
get. KSelection-Seeds shows that the Covariant metric (M¢) has a clear peak
at K = 3, as expected.

6 Comparison with Other Indexes

Table 2. Performance comparison of our proposed metric and other indexes

Data Set (Standardized)

Index Iris YA Wine Seeds
G 3 2 3 3
M 3(1.15) 2(65.92) 3(2.32) 3(13.30)
VRC 10(0.01) 2(0.27) 3(0.14) 3(0.10)
AIC 4(0.04) 7(0.02) 10(0.00) 12(—)
BIC 3(0.24) 4(0.07) 7(0.01) 7(0.01)
Sil. Wid. 2(0.10) 2(0.21) 3(0.07) 2(0.07)
DB 2(0.38) 2(0.12) 3(0.08) 2(0.01)
Gap 3 2 4 3
f(K) 2 2 2 2
Data Set (Raw)
Index Iris YA Wine Seeds
G 3 2 3 3
Mc 3(2.51) 2(16.83) 3(1.52) 3(3.69)
VRC 10(0.03) 2(0.08) 3(0.25) 3(0.11)
AIC 5(0.04) 12 (—) 6(0.01) 12(-)
BIC 4(0.05) 12(—) 3(0.17) 9(0.01)
Sil. Wid. 2(0.16) 2(0.12) 3(0.16) 2(0.09)
DB 2(0.41) 2(0.20) 3(0.22) 2(0.10)
Gap 5 3 3 3
f(K) 2 2 2 2

The top row is GG, the number of classes in our data
sets. When an index predicts the right K, it is high-
lighted in bold. (I" is reported between parentheses. It
cannot be calculated at the end of the range K = 12.)
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Some of the indexes to which we are comparing our metric may perform dif-
ferently when the data set is standardized (such that all variables zero mean
and unit standard deviation). For this reason, we study the performance of the
indexes and our metric on both standardized data sets as well as the raw ones.
Our proposed metric, however, does not require the data set to be standardized.
In fact, since our metric takes into account the full covariance matrix on a per-
cluster basis, it can be argued that it should perform as well or better in the raw
data set.

We can see from Table 2 that our metric M performs very well on standard-
ized data sets, detecting the right K in all four data sets, while the other indexes
seem to struggle. Of the seven other indexes considered, the VRC index seems
to perform best with three right predictions. However, its significance measure
(I") is low. When run on the data sets without any normalization, M continues
to perform well, as we can see in Table2. The other indexes seem to perform
marginally worse on the raw data sets than on the standardized ones.

Note that the sharpness of the peaks representing the right value of K, as
measured by I is significantly higher for the Covariant metric Mo, both in
the standardized as well as the raw data sets (Table2), when compared to any
other index. The significance of the peaks (I') for our metric improves with
standardization for three data sets, while decreases for the other one, which
is consistent with our expectation that standardization should not affect its
performance.

7 Limitations

The main motivation behind this work, in addition to pure academic interest,
is to automate K-Means clustering such that it can be deployed in situations
where automatic insight generation is desired. (For example, consider customer
segmentation for marketing purposes where new customers are continually added
to the database.) Since the impetus behind this work is automated processing,
we have not attempted to prepare the data in any fashion.

The mathematical validity of the Covariant Metric (M), being a ratio of
two entities that may be thought of as x?2, is not yet fully established. It is similar
to the odds ratio calculation commonly used in the data science community, but
on shakier theoretical footing. It is hoped that other researchers may be able to
find a more theoretically sound way of combining the components (defined in
Eq. (4) and (9)) into a better metric than the one in Eq. (10). We can see from
our results that there is information in the Covariant Metric when it comes to
K selection (Fig. 2).

We may be able to use the significance of the peak, I" as defined in Eq. (11),
either directly or in combination with the peak value of M in order to select
the right K. We have not explored this idea further due to the uncertainty in
the mathematical foundation of such an approach. Again, other researchers may
be able to come up with theoretically defensible methods of using I'.

Lastly, in defining our Covariant Metric, we implicitly assumed the need
for a balanced data set (in which distinct classes occur with roughly the same
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frequency, and with similar within-standard deviation), which may prove to be
impractical in unattended deployments. While it is easy to see that the K-Means
algorithm works best with balanced data sets, the usability of the Covariant
Metric is limited to K-Means because of this assumption.

8 Conclusion

In this paper, we proposed a new quality metric for K-Means clustering and
benchmarked it against existing indexes. From our comparative studies on syn-
thetic data, we see that the Variance Ratio Criterion [5] (VRC) works remark-
ably well, followed closely by the Davies-Bouldin index [8] (DB). Our own index
M proposed in this article came in third when tested on synthetic data, but
easily outperformed both VRC and DB in real data. Besides, the significance
of the peak indicating the right K was substantially larger for M¢.

All other indexes performed poorly on both synthetic as well as real data.
Either M or VRC seems to be preferable to the popular “elbow” method
(which looks for a kink in the variation of the sum of squared errors, and is
very subjective). Furthermore, our results indicate that both the Akaike and the
Bayesian Information Criteria (AIC [3] and BIC [24]) are ineffectual in select-
ing the right K in K-Means clustering. The Gap Statistic [26] (Gap) performs
slightly better than the information criteria, but it is prohibitively expensive,
computationally.

Although more systematic exploration on more data sets is indicated, our
Covariant Metric (M) metric does show promise in the real data sets that we
studied so far, as well as on an extensive collection of synthetic data. When it
comes to discovering the right number of clusters, M performed remarkably
well. In fact, in real data, it outperformed the all other commonly used indexes
of clustering quality by impressive margins.

Once we have a reliable metric for the quality of clustering, we can auto-
mate and build upon the current K-Means clustering algorithm. For instance,
we can create scripts that will automatically select the optimal number of clus-
ters (and possibly the best variables to use). Much like the forward selection
or backward elimination processes in linear regression, K-Means clustering then
becomes amenable to automatic optimizations. Furthermore, with robust met-
rics enabling automatic discovery of the right number of clusters, it may become
possible to deploy K-Means clustering in situations where automated generation
of insights without manual supervision is desired.
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