
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2022

TransplantFix: Graph differencing-based code transplantation for TransplantFix: Graph differencing-based code transplantation for

automated program repair automated program repair

Deheng YANG

Xiaoguang MAO

Liqian CHEN

Xuezheng XU

Yan LEI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
YANG, Deheng; MAO, Xiaoguang; CHEN, Liqian; XU, Xuezheng; LEI, Yan; LO, David; and HE, Jiayu.
TransplantFix: Graph differencing-based code transplantation for automated program repair. (2022). ASE
'22: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering,
Rochester, MI, October 10-14. 1-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7731

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7731&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Deheng YANG, Xiaoguang MAO, Liqian CHEN, Xuezheng XU, Yan LEI, David LO, and Jiayu HE

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7731

https://ink.library.smu.edu.sg/sis_research/7731

TransplantFix: Graph Differencing-based Code Transplantation
for Automated Program Repair

Deheng Yang

yangdeheng13@nudt.edu.cn

National University of Defense

Technology

China

Xiaoguang Mao
∗

xgmao@nudt.edu.cn

National University of Defense

Technology

China

Liqian Chen

lqchen@@nudt.edu.cn

National University of Defense

Technology

China

Xuezheng Xu

xuezhengxu@126.com

Academy of Military Sciences

China

Yan Lei

yanlei@cqu.edu.cn

Chongqing University

China

David Lo

davidlo@smu.edu.sg

Singapore Management University

Singapore

Jiayu He

hejy47@nudt.edu.cn

National University of Defense

Technology

China

ABSTRACT
Automated program repair (APR) holds the promise of aiding man-

ual debugging activities. Over a decade of evolution, a broad range

of APR techniques have been proposed and evaluated on a set of

real-world bug datasets. However, while more and more bugs have

been correctly fixed, we observe that the growth of newly fixed

bugs by APR techniques has hit a bottleneck in recent years. In this

work, we explore the possibility of addressing complicated bugs

by proposing TransplantFix, a novel APR technique that leverages

graph differencing-based transplantation from the donor method.

The key novelty of TransplantFix lies in three aspects: 1) we pro-

pose to use a graph-based differencing algorithm to distill semantic

fix actions from the donor method; 2) we devise an inheritance-

hierarchy-aware code search approach to identify donor methods

with similar functionality; 3) we present a namespace transfer ap-

proach to effectively adapt donor code.

We investigate the unique contributions of TransplantFix by

conducting an extensive comparison that covers a total of 42 APR

techniques and evaluating TransplantFix on 839 real-world bugs

from Defects4J v1.2 and v2.0. TransplantFix presents superior re-

sults in three aspects. First, it has achieved the best performance

as compared to the state-of-the-art APR techniques proposed in

the last three years, in terms of the number of newly fixed bugs,

reaching a 60%-300% improvement. Furthermore, not relying on

∗
Xiaoguang Mao is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

https://doi.org/10.1145/3551349.3556893

any fix actions crafted manually or learned from big data, it reaches

the best generalizability among all APR techniques evaluated on

Defects4J v1.2 and v2.0. In addition, it shows the potential to synthe-

size complicated patches consisting of at most eight-line insertions

at a hunk. TransplantFix presents fresh insights and a promising av-

enue for follow-up research towards addressing more complicated

bugs.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Automated program repair, graph differencing, code transplantation

ACM Reference Format:
Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David

Lo, and Jiayu He. 2022. TransplantFix: Graph Differencing-based Code

Transplantation for Automated Program Repair. In 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’22), Octo-
ber 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3551349.3556893

1 INTRODUCTION
Automated program repair (APR for short), which aims to produce

bug fixes without human intervention [49], is regarded as a promis-

ing technique to alleviate the heavy burden of manual debugging

activities. In the APR community, fix ingredients are a commonly

used conception, which initially denoted the code fragment needed

to synthesize a patch (aka donor code) [48, 68]. In recent years, fix

actions, which encode instructions to modify source code at the

abstract level, have also been included as a type of fix ingredients

[22, 76, 80]. In the last decade, a broad range of APR techniques

have been proposed to better leverage fix actions and donor code

https://doi.org/10.1145/3551349.3556893
https://doi.org/10.1145/3551349.3556893

ASE ’22, October 10–14, 2022, Rochester, MI, USA Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He

[5, 22, 23, 29, 37, 67, 78, 82]. These techniques have achieved promis-

ing results in real-world bug datasets [24, 32] or even applied to

industrial pipelines [7, 45, 50, 64].

While an increasing number of real-world bugs have been fixed

by existing APR techniques, we observe that the growth of newly

fixed bugs by APR techniques is hitting a bottleneck via a literature

review. Figure 1 presents the trend of newly fixed bugs on a com-

monly evaluated dataset (i.e., Defects4J v1.2 [24]
1
). As shown in

the figure, the number of newly fixed bugs has experienced rapid

growth from 2016 to 2019. However, since 2020, the growth has

become much slower (e.g., there are only two new bugs are fixed in

2022). As reported in prior studies [25, 39], the bugs that are still

not fixed by APR techniques tend to be “complicated” in several

perspectives, e.g., involving multiple inserted lines (i.e., donor code)

[25] or multiple statements impacted by change actions (i.e., fix

actions) [39].

12

59

94

125
135

144 146

0

20

40

60

80

100

120

140

160

2016 2017 2018 2019 2020 2021 2022

#
 B

u
g

s

Figure 1: The total number of bugs that have been correctly
fixed by APR techniques on 395 bugs in Defects4J v1.2. Re-
pair data of 36 APR techniques proposed between 2016 and
2022 and evaluated on Defects4J are considered.

We summarize three challenges that hinder APR techniques

to repair more new bugs from the perspective of fix ingredients:

1) localization of fix ingredients; 2) extraction of fix actions; 3)

adaption of donor code. The first challenge is where we can find
complicated fix ingredients for patch synthesis. As for donor
code, existing APR techniques have explored a series of settings,

including searching donor code within the buggy file [37, 67], buggy

project [22], or even external projects [5, 38, 71]. In terms of fix

actions, existing APR techniques generally assume that fix actions

for fixing bugs reside in real-world human-written bug fixes of

external projects, which can be mined manually [27] or learned

automatically [10, 33, 82]. While fix ingredients are found to fix

a number of single-line or single-chunk bugs [39], where the fix

ingredients could be found for larger bug fixes still remains an

unanswered question.

The second challenge is how to distill complicated fix actions.
Existing APR techniques distill fix actions via multiple approaches

(e.g., manual summarization [14, 20, 27, 56, 71], statistical analysis

[22, 67], or learning models [10, 33, 82]). The key idea of these

approaches is to identify the most recurrent fix actions. However,

as the repetitiveness of fixing changes decreases exponentially as

the code change size grows [51], the ranking of complicated fixing

changes degrades and thus has a low probability to be chosen as fix

actions. Hence, such complicated changes are hard to be crafted or

learned. For example, Figure 2 presents a typical bug named Chart-6

from Defects4J that cannot be fixed by existing APR techniques.

The fix action of Chart-6 comprises multiple insertions of different

1
More detail of the review can be found at Section 4.3.

@@ -108,7 +108,14 @@
if (!(obj instanceof ShapeList)) {

return false;
}

- return super.equals(obj);
+ ShapeList that = (ShapeList) obj;
+ int listSize = size();
+ for (int i = 0; i < listSize; i++) {
+ if (!ShapeUtilities.equal((Shape) get(i), (Shape) that.

get(i))) {↪→

+ return false;
+ }
+ }
+ return true;

Figure 2: Chart-6 bug from Defects4J that has not been cor-
rectly fixed by any APR technique yet.
control structures, including assignments, branches, loops, and

return statements. Such actions are still out of the reach of existing

APR techniques.

The third challenge is how to adapt complicated donor code.
Existing APR techniques have proposed several approaches to trans-

fer donor code to buggy locations. GenProg [66] directly transfers

code from one location within the buggy program to the buggy

location without solving potential namespace conflicts. The subse-

quent APR techniques (e.g., SimFix [22], SOSRepair [5], ssFix [71])

have made significant progress by proposing variable renaming

approaches to adapt donor code snippets. But when the donor code

contains more entities (e.g., user-defined data types) other than

variables, a more comprehensive donor code transfer approach may

be desirable. For example, as shown in Figure 2, fixing such a bug

generally requires a set of new code fragments. Apart from multi-

ple variables, the Chart-6 patch contains both primitive and user-

defined data types, and even method calls from different classes.

Furthermore, the combination of these donor codes spans up to

eight-line insertions at a hunk.

In this paper, we present a novel graph differencing based code

transplantation approach to help address the three challenges. The

concept of code transplantation, which aims to transfer code from

the donor location to the host location, is proposed by Barr et al.

[8]. As a promising approach to reuse code, code transplantation

opens an avenue for automated program repair [44]. Specifically, in

this paper, we choose to search fix ingredients at the method level

within the buggy project, and propose an inheritance-hierarchy-

aware code search approach that leverages the inheritance relations

to effectively locate fix ingredients (the first challenge). Then, we
represent methods via attributed control flow graphs and reformu-

late the fix action extraction as a graph edit computation problem.

We further propose to use a graph differencing approach to distill

semantic fix actions (the second challenge). As the donor code
residing in the donor method cannot be directly applied to the host

due to different variables, types, and methods, we propose a novel

namespace transfer approach to effectively adapt the donor code

to the buggy method (the third challenge).
In summary, the major contributions of this work include:

TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair ASE ’22, October 10–14, 2022, Rochester, MI, USA

(1) An inheritance-hierarchy-aware method-level donor search

approach, which captures both local feature (i.e., method signa-

tures) and global feature (i.e., inheritance relations) of methods

to effectively locate donor method within the buggy project.

(2) A graph differencing based approach to distill semantic fix ac-

tions. We reformulate the fix action extraction as a graph edit

distance computation problem, and distill fix actions from the

edit graph between the buggy and donor method.

(3) A comprehensive namespace construction approach that con-

siders the transfer of not only variables but also data types and

methods, which enables larger donor code adaption.

(4) TransplantFix brings new momentum to help break through

the bottleneck in the growth of newly fixed bugs, by correctly

fixing eight new bugs that have never been fixed by prior APR

techniques. This is the best performance as compared to the

state-of-the-art APR techniques proposed in the last three years.

TransplantFix has also shown the best generalizability among

all APR techniques evaluated on Defects4J v1.2 and v2.0. In addi-

tion, TransplantFix is found to have the capability to synthesize

correct patches consisting of at most eight-line insertions (e.g.,

Chart-6).

To facilitate follow-up research, we make our prototype and all

relevant artifacts publicly available at https://github.com/DehengY

ang/TransplantFix.

2 MOTIVATING EXAMPLE
103 public boolean equals(Object obj) {
104 if (obj == this) {
105 return true;
106 }
107 if (!(obj instanceof ShapeList)) {
108 return false;
109 }
110

111 return super.equals(obj);
112 }

Figure 3: The buggy method in ShapeList class of Chart-6.

In this section, we present a real-world bug example that moti-

vates our approach. Figure 3 lists the buggy method of Chart-6 that

cannot be fixed by prior state-of-the-art APR techniques.

We obtained insights for addressing the first challenge (i.e.,

where we can obtain such fix action and donor code) by taking a

closer look at the whole Chart-6 buggy program. We observed a

donor method that could potentially provide the two sources of fix

ingredients (i.e., fix action and donor code) for Chart-6. As shown in

Figure 4, the donor method equals() in PaintList class shares the
same method name as the buggy method of Chart-6. Instead of in-

voking super.equals(obj) as the buggymethod does (see line 111

in Figure 3), the donor method has its own implementation for com-

parison (see lines 98-107 in Figure 4). Such implementation in the

donor method is functionally similar to that in the human-written

patch of Chart-6 as shown in Figure 2. Interestingly, both the buggy

class (i.e., ShapeList) and donor class (i.e., PaintList) inherit the
same parent class (i.e., AbstractObjectList). This points out a
new avenue to obtain the complicated fix ingredients (e.g., Chart-6)

by properly searching donor methods inside the buggy project.

91 public boolean equals(Object obj) {
92 if (obj == null) {
93 return false;
94 }
95 if (obj == this) {
96 return true;
97 }
98 if (obj instanceof PaintList) {
99 PaintList that = (PaintList) obj;
100 int listSize = size();
101 for (int i = 0; i < listSize; i++) {
102 if (!PaintUtilities.equal(getPaint(i),

that.getPaint(i))) {↪→

103 return false;
104 }
105 }
106 }
107 return true;
108 }

Figure 4: One donor method in PaintList class of the Chart-
6 buggy project.

Targeting this problem, we design an inheritance-hierarchy-

aware method search approach. Considering that the buggy method

and donor method of Chart-6 are significantly different in terms

of identifiers, control structures, and patch size, we choose to use

the method signature to measure the similarity between the two

methods. However, when the method signature is very common in

the project (e.g., equals()), the candidate donor methods may have

the same similarity scores (i.e., being “tied”), which is undesirable

for donor method ranking. To break the ties, we further leverage

the inheritance relations by prioritizing the donor methods that lie

in the same inheritance graph of the buggy method (Section 3.2).

In this way, our approach accurately ranks the donor method at

the Top-1 position.

To address the second challenge (i.e., how to obtain compli-

cated fix actions), we propose to perform graph differencing to

extract the semantic differences between the buggy and donor

method. We first represent the method as a control flow graph, and

then design a graph differencing algorithm based on an exact graph

edit distance algorithm [4] to infer all possible fix actions. In this

example, our algorithm obtains an edit graph by differencing the

control flow graphs constructed from the buggy and donor method.

As shown in Figure 5, the edit graph specifies semantic fix actions

between the buggy and donor method, which comprises a search

space of fix actions. This search space includes the fix action (i.e.,

updating the statement at line 111 in the buggy method with state-

ments ranging from lines 98-107 in the donor method) needed for

fixing Chart-6.

Even when the fix action is obtained, it is still challenging to

adapt the donor code to the buggy method (the third challenge).
As shown in Figure 4, the data types (e.g., PaintList) and method

calls (e.g., PaintUtilities.equal()) are not compatible with the

buggy method. Such adaption is out of the scope of existing code

adaption approaches used in APR techniques [5, 22, 71]. To address

the third challenge, we devise a namespace transfer approach that

could deal with not only variables but also types and methods. This

enables us to successfully infer the ShapeUtilities.equal() that

https://github.com/DehengYang/TransplantFix
https://github.com/DehengYang/TransplantFix

ASE ’22, October 10–14, 2022, Rochester, MI, USA Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He

Entry Node

<95> obj == this

 (DEL) <92> obj == null (INS)

 (INS)

<96> return true;

true

<98> obj instanceof PaintList (UPD)

false (UPD)

<107> return true; (UPD)

 false (UPD)

<111> return super.equals(obj); (DEL)

 false (DEL)

<99> PaintList that=(PaintList)obj; (INS)

true (INS)

<101> int i=0 (INS)

<101> i < listSize (INS)

 (INS)

<102> !PaintUtilities.equal(getPaint(i),that.getPaint(i)) (INS)

<103> return false; (INS)

true (INS)

<101> i++ (INS)

false (INS)

<100> int listSize=size(); (INS)

 (INS)

<93> return false; (INS)

 (INS)

false (INS) true (INS)

false (INS) true (INS)

 (INS)

Figure 5: The edit graph of Chart-6 generated by our graph
differencing approach. Black boxes represent matched
nodes, gray boxes mean nodes to be deleted, blue boxes de-
note nodes to be updated, and red boxes denote nodes to be
inserted.
does not exist in the buggy file but is in fact compatible with the

buggy file. After correctly transferring the donor code, we can apply

the extracted semantic fix action and the transferred donor code to

the buggy method to produce a correct fix for Chart-6.

3 APPROACH
In this section, we first present an overview of TransplantFix in

Section 3.1. We then illustrate the three core algorithms, i.e., fix

ingredient search, donor method transfer, and fix action extraction,

in Section 3.2, Section 3.3, Section 3.4, respectively.

3.1 Overview
Figure 6 depicts the overall workflow of TransplantFix. Transplant-
Fix builds on top of the typical pipeline of automated program

repair that consists of three stages: 1) fault localization; 2) patch

generation; and 3) patch validation. For fault localization, Trans-
plantFix takes the buggy program and its associated test suite as

input and produces a ranking list of suspicious methods in descend-

ing order of their suspiciousness values. This list is then fed into

the patch generation stage to produce candidate patches. As the

core stage of TransplantFix, the patch generation stage is comprised

of three phases: 1) fix ingredient search; 2) donor code transfer;

and 3) fix action extraction. For each suspicious method, the fix

ingredient search phase measures its similarity to all methods in-

side the project, which are then ranked based on the similarity.

For each donor method, the donor code transfer phase translates

the entities in the donor method into entities that are compatible

with the suspicious method. After that, the fix action extraction

phase represents the methods with attributed control flow graphs,

and produces the edit graph by differencing the transferred donor

graph and the suspicious graph. Based on the edit graph, it extracts

the semantic fix actions to construct a search space. It applies fix

actions in the search space with concrete donor code to the suspi-

cious method to produce a list of candidate patches. In the last stage,

patch generation validates the candidate patches with the original

test suite of the buggy program. If no valid patch that passes the

test suite is found, TransplantFix goes back to the patch generation

stage for the next suspicious method. Otherwise, TransplantFix
exits and outputs the valid patch.

3.2 Fix Ingredient Search
Fix ingredient search aims to distinguish the donor method that

contains fix ingredients for bug fixing from other methods. To this

end, it leverages both local feature (i.e., method signature) and

global feature (i.e., inheritance relations) to measure the functional

similarity between the suspicious method and each candidate donor

method. First, we present definitions related to the local and global

features of methods as follows.

Definition 1 (Method Signature). Given a methodm, a method
signature is a pair: ⟨MethName , ArдTypeList⟩. The first element

is the method name, and the second element is a list of argument

types of the method, i.e., [ArдType1,ArдType2, ...,ArдTypen].

We define the method signature according to the Java Language

Specification (JLS for short) [2]. The JLS specifies that two methods

are considered to have the same signature if they have the same

method name and argument types, regardless of the return types

and argument names. Therefore, Definition 1 characterizes the

method signature by method name and a list of argument types.

Definition 2 (Inheritance DAG). The inheritance DAG I is a di-
rected acyclic graph (DAG for short) representing inheritance rela-

tions among classes. Each vertex in I denotes a class, and the edge

from vertexi to vertex j denotes that classi is inherited from classj .

Inheritance is an important feature of object-oriented program-

ming, as a mechanism to enable one class to inherit the fields and

methods of another class. It is also reported that about 74% of user-

defined classes use inheritance in at least half of the investigated

real-world Java applications [63]. As a class can extend at most one

super class but implement multiple interfaces in Java, we adopt

graph structure (i.e., inheritance DAG as shown in Definition 2)

rather than tree structure to represent inheritance relations. This is

also adopted by previous inheritance-related studies [63]. We use

IDAGs to denote the set of inheritance DAGs.

Definition 3 (Relative Class). classi is a relative class of classj iff
∃I ∈ IDAGs, classi ∈ I .vertices ∧ classj ∈ I .vertices .

We propose the concept of “relative class” to describe the relation

of two classes in the same inheritance DAG. The relative class

captures the global feature of methods, and thus can help further

prioritize donor methods. For example, the donor class PaintList
is a relative class of the buggy class ShapeList in Chart-6, and the

donor method will be given a higher score when measuring the

similarity.

Given two methodsm (from buggy code) andm′ (from donor

code), we measure their similarity based on the local feature (i.e.,

method signature) as follows:

Simlocal(m,m
′) = λ1 ∗ jacc(MethName(m),MethName(m′))

+λ2 ∗ jacc(ArgTypeList(m),ArgTypeList(m′))
(1)

TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair ASE ’22, October 10–14, 2022, Rochester, MI, USA

Buggy program

Fault Localization

Suspicious Method List

1 ···2 n

All Methods
Donor

Method

Suspicious Method

m

b
Graph

Differencing

Transferred

Donor Graph

Suspicious

Graph

Edit Graph

INS

DEL
UPD

···

Independent

action

Dependent

action

Candidate Patches

Fix Ingredient Search Donor Method Transfer Fix Action Extraction

Valid Patch

Donor Method

Search

Donor Code

Transfer
Donor Namespace

type PaintList,…

var obj, …

api …

Transferred

Donor Namespace

type ShapeList,…

var obj, …

api …

Suspicious

Namespace

type ShapeList,…

var obj, …

api …

Figure 6: The overview of TransplantFix.
As shown in Equation (1), we include two elements of method

signature (i.e., method name and the argument type list), and adopt

Jaccard similarity coefficient
2
(i.e., jacc()) to compute the similar-

ity of the two local features separately. As the naming convention

in Java generally conforms to CamelCase, we split the method name

into subtokens, and then feed the subtokens sets of two methods

into jacc(). We perform the same splitting operation on argument

types. λ1 and λ2 represent the weights assigned to the similarity

score of method name and argument type list, respectively.

We measure the similarity of the global feature (i.e., inheritance

relations) as follows:

Simдlobal (m,m′) =
1 if relative(cls(m), cls(m′))
µ1 ∗ jacc(PkgName(m),PkgName(m′)) +
µ2 ∗ jacc(ClsName(m),ClsName(m′)) otherwise

(2)

In Equation (2), we assign the similarity score as 1 when the

classes of the two compared methods are relative classes (i.e., rela-
tive(cls(m), cls(m′))). For the cases when there are no relative classes
for the buggy class, we further consider the similarity between two

elements, i.e., PkgName as the package name and ClsName as the
class name. For the two elements, we use the same similarity mea-

sure (i.e., Jaccard) and splitting operation to obtain a similarity score.

Likewise, µ1 and µ2 denote the weights assigned to the similarity

scores of package name and class name, respectively.

We finally merge the Simlocal and Simдlobal by computing their

average to obtain the overall similarity score between two methods.

In this way, we consider both local features and global features to

rank the candidate donor methods. Note that there are four weight

parameters in the similarity measure equations. As there is still

no work studying on how an exact value each weight should be

assigned, in this work, we straightforwardly assign all parameters

(i.e., λ1, λ2, µ1, and µ2) as 0.5. We finally obtain a ranking list of the

top 50 candidate donor methods in descending order of the overall

similarity score to the suspicious method.

3.3 Donor Method Transfer
Donor method transfer aims to align the donor namespace with

the suspicious namespace. It first constructs the namespace for the

suspicious method and the candidate donor method by collecting

2
https://en.wikipedia.org/wiki/Jaccard_index

three types of program entities in each method. Then, it creates

entities mappings that encode how entities in the candidate donor

method should be adapted to fit for the suspicious method.

3.3.1 Namespace construction. Before transferring the namespace

of the candidate donor method, it is indispensable to construct the

namespace for both the suspicious method and candidate donor

method. For a method, the namespace construction covers the fol-

lowing three kinds of program entities:

(1) Types: we consider two kinds of types. The first is all types used

in the method, serving as the “local types”. The second is the

corresponding suspicious class type that the method belongs to

(e.g., ShapeList for the suspicious method equals() as shown

in Figure 3), serving as the “global type”.

(2) Method calls: we collect all method calls invoked in the method.

To facilitate the comparison between two method calls, we iden-

tify and collect its local feature (i.e., method signature) as well

as global feature (i.e., inheritance relations).

(3) Variables: apart from collecting each variable defined or used in

the method, we further collect its type by tracing its declaration.

3.3.2 Namespace Alignment. Once the two namespaces are ob-

tained, we further build a namespace mapping that covers types,

method calls, and variables. As both variables and method calls

in the namespace are related to type information, we prioritize to

construct type mapping to facilitate mappings of other entities.

Type mapping. We first build mappings for the “global type”.

Given a “global type” of the suspicious method type and the other

of the candidate donor method type ′, we split type into a list of

subtokens based on the CamelCase naming convention, i.e., list =
[tk1, tk2, ..., tkm]. Likewise, we split type

′
into list ′ = [tk ′

1
, tk ′

2
, ..., tk ′n].

We then compute the longest common subsequences (LCS) between

the two lists. Finally, we build a function f1 ⊂ (S
′∪concat(S ′sub))×

(S ∪ concat(Ssub)), where S = list , S ′ = list ′, Ssub (and S ′sub)

means the set of subsets of S (and S ′), to map a subtoken or con-

catenation of subtokens in list ′ to that in list . Let tk ′i , tk
′
i+k be two

neighbour elements in LCS of the two lists. We define f1(tk
′
i) =

tkj where tkj = tk ′i , f1(tk
′
i+k) = tkj+r where tkj+r = tk ′i+k ,

f1(concat(tk
′
i , . . . , tk

′
i+k)) = concat(tkj , . . ., tkj+r). Taking the donor

method of Chart-6 in Figure 4 as an example, the LCS of PaintList
and ShapeList is [List], and the unique subtoken Paint in PaintList

ismapped to the unique subtoken Shape in ShapeList. Thus, f1(Paint) =
Shape .

https://en.wikipedia.org/wiki/Jaccard_index

ASE ’22, October 10–14, 2022, Rochester, MI, USA Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He

Based on the global type mapping f1, We then construct the local

type mapping f2. For each type in the candidate donor method,

if it contains S in dom(f1), we substitute the S in the type with

f1(S). Otherwise, we leave it unchanged. For example, the local

type mapping for the donor method of Chart-6 is f2(PaintList) =
ShapeList , f2(PaintU tilities) = ShapeUtilities .

Method call mapping. We define the method call mapping

with a function f3 ⊆ M ′ ×M , where M ′ = {m′
1
,m′

2
, ...,m′i },M =

{m1,m2, ...,mj }.M
′
andM represent the set of method calls in the

candidate donor method and suspicious method respectively. We

first map method calls from the candidate donor method to those

in the suspicious method by measuring their similarity. We use

the same measurement described in Section 3.2 to measure the

similarity between two method calls. When the similarity is larger

than the threshold score, we add the two method calls into the

mapping. We set the threshold as 0.6 in this paper.

For method calls that still have no mappings, we further create

method call mappings based on the global type mapping. Similar to

the construction of local type mapping, only when the method call

contains one S in dom(f1), do we substitute the S in the method

call with f1(S). For instance, the method call mapping for the donor

method of Chart-6 is f3(дetPaint) = дetShape .
Variable mapping. The variable mapping f4 is built on top of

the type mapping. Specifically, for each variable vari in the candi-

date donor method, we include a set of variables vars in the sus-

picious method that conform to the following constraint: ∀var j ∈
vars, type(var j) = type(vari)∨type(var j) = f2(type(vari)), where
type(var)means the type of the variable. We further rank variables

in vars in ascending order of the Levenshtein distance to the vari .
For example, the variable mapping for Chart-6 donor method is

f4(obj) = {obj}.

3.4 Fix Action Extraction
Fix action extraction aims to extract the semantic fix actions be-

tween the candidate donor method obtained in Section 3.2 and

the suspicious method, based on the transferred namespace of the

candidate donor method in Section 3.3. Specifically, it consists of

the following steps:

3.4.1 Graph Construction. As discussed in Section 1 and Section 2,

when the fix action involves complex control structures, it is often

out of reach of existing APR techniques. Therefore, we propose to

represent methods via control flow graphs (CFGs for short), as a

CFG could model the control dependencies between statements in

a method [6] and facilitate the extraction of semantic fix actions.

We adopt Soot [65], an open-source and well-maintained tool

that has been extensively used for various program analyses, to

obtain the CFG for each method. Soot has also been used in prior

APR techniques [26, 62, 74]. Note that Soot produces a CFG of

methods by analyzing the bytecode of a class, but our approach

generates candidate patches by modifying the Abstract Syntax Tree

(AST) at the source-code level. Therefore, we further translate the

CFG produced by Soot to a CFG in which each node corresponds

to an AST node. In the translated CFG, the branch nodes (e.g., the

if expression) is represented at the expression AST level, and other

nodes are represented at the statement AST level. Such CFGs are

then fed into the graph differencing algorithm to infer semantic fix

changes.

3.4.2 Graph Differencing. Based on the constructed CFGs, we re-

formulate the fix change extraction as a graph edit distance compu-

tation problem. We present related definitions as follows:

Definition 4: (Attributed CFG).An attributed CFG is a tuple with

four elements: ⟨V , E, µ, ξ ⟩, where V and E denote a set of vertices

(i.e., AST nodes) and edges (i.e., flow transitions), respectively. µ :

V → AV is a function that associates attribute ae to a vertex, and

ξ : E → AE is a function that assigns attribute ae to an edge.

As shown in Definition 4, we represent AST nodes with vertices

and flow transitions with edges in an attributed CFG. In terms of

the attributes, we use the formatted string of each AST node in the

CFG as the vertex attribute, and associate the flow transition label

(i.e., "true" and "false" for branch flow transition, and the empty

string for other transitions) with the edge attribute.

Definition 5: (Graph Edit Distance). Given two attributed CFGs:

д : ⟨V , E, µ, ξ ⟩, д′ = ⟨V ′, E ′, µ ′, ξ ′⟩, the graph edit distance from д
to д′ is:

GED(д,д′) = min

(eo1, ...,eok)∈φ(д,д′)

k∑
i=1

c(eoi)

where eoi denotes an edit operation between two vertices or two

edges, and c(eoi)means the cost of the edit operation eoi . (eo1, ..., eok)
represents an edit path (i.e., a sequence of edit operations), and

φ(д,д′) represents all possible edit paths from д to д′.
Graph edit distance (GED) is a graph differencing approach that

aims to find the best edit path from φ(д,д′) with minimum cost. As

shown in Definition 5, eoi is an edit operation for two vertices or

two edges, and there are four types of edit operations: 1) update:
{v → v ′} means updating v with v ′; 2) deletion: {v → ε} means

deleting v; 3) insertion: {ε → v ′} means inserting v ′; 4) match:
match operation is a special case of update operation, but its cost is
zero (i.e., c(eoi) = 0), indicating that v and v ′ are exactly matched.

The edit operation for edges shares the same types as these of

vertices.

With the above definitions, we have reformulated the fix action

extraction as a graph edit distance computation problem. To solve

the problem, we adopt the DF-GED algorithm, a novel GED ap-

proach proposed by Abu et al. [4], and we further design the cost

function to compute the cost of each pair of vertices and each pair

of edges:

Cost (v , v ′) =

min

Av′ j ∈Av′
levensh(Av , Av ′ j) if typeMatched(v , v ′)

maxCost otherwise
(3)

where Av is the attribute of vertex v in д, and Av ′ denotes the
attribute of vertex v ′ in д′.

Cost(e, e ′) = (levensh(Ae ,Ae ′) +Cost(Av ine ,Av ine′
)+

Cost(Avoute
,Avoute′

))/3
(4)

where Ae is the attribute of edge e . Av ine is the attribute of the start

vertex of e , and Avoute
is the attribut of the end vertex of e .

TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair ASE ’22, October 10–14, 2022, Rochester, MI, USA

As shown in Equation (3), if both vertices are expressions or both

are statements (i.e., typeMatched()), we compute the Levenshtein

distance (i.e., levensh()) for the string of v and each of mapped

strings ofv ′ obtained in Section 3.3. We normalize each Levenshtein

distance into the range [0, 1], and select the least cost as the final

cost. Otherwise, we regard the two vertices are not matched, and

thus assignmaxCost . Note that themaxCost should be larger than

the cost of matched nodes, we set it as 10 in this work.

The cost computation of two edges builds on top of that of

vertices. As shown in Equation (4), we compute the average cost

of the Levenshtein distance between the label of e and e ′, the cost
between the start vertices (i.e., vine ,v

in
e ′) of the two edges, and that

between the end vertices (i.e., voute ,voute ′) of the two edges.

3.4.3 Search Space Construction. Note that the graph edit distance

algorithm in Section 3.4.2 finally outputs a best edit path (i.e., a

sequence of edit operations (eo1, ..., eok)), which contains all edit

operations needed to transform д to д′. However, in the context

of automated program repair, the buggy method may only need a

subset of the edit operations for fixing the bug, and introducing

all edit operations may lead to side effects or errors. On the other

hand, the search space could explode if considering all subsets of

the set of edit operations involved in the best edit path. For example,

as shown in Figure 5, there are 12 edit operations for vertices (i.e.,

nine insertions, two updates, and one deletion), which correspond

to a search space of 2
12 = 4, 096 candidate patches. The search

space could grow up to a million candidate patches when there are

over 20 edit operations. To effectively shape the search space, we

propose the notion of “cut point” and use cut point pairs to group

fix actions. After grouping, each group can be considered as one

“large” edit operation.

Definition 6 (Cut Point). A cut point is an edit operation for two

vertices: eoc = v → v ′, where vertex v ∈ д, vertex v ′ ∈ д′, and eoc

is of update or match type.

As shown in Definition 6, a cut point is defined as an update or
edit operation, where the two vertices exist in the two graphs. A

cut point indicates a mapping between one vertex in the suspicious

method and one vertex in the candidate donor method, and can be

further leveraged to group dependent edit operations.

Algorithm 1 describes how we group edit operations and gener-

ate fix actions. We first get all cut points by performing a depth-first

search on дs (line 5). Then, we leverage a pair of cut points, i.e.,

(eoci , eo
c
j), where eo

c
i = {vi → v ′i }, eo

c
j = {vj → v ′j }, to cut the

whole edit path into pieces (lines 6-14). In this way, we can charac-

terize a sequence of continuous edit operations that lie between the

eoci and eo
c
j . These continuous operations can be combined as one

“large” dependent fix action (line 13). When identifying the pair of

cut points, we further introduce a line order constraint that encodes

syntactic rules: vi .lineNo < vj .lineNo ∧ v ′i .lineNo < v ′j .lineNo,

where lineNo indicates the line number of the corresponding ver-

tex. This requires that the two vertices of the eoci and eocj in the

suspicious method are supposed to have the same line number

order as those in the candidate donor method (lines 8-11). For

generating fix actions (line 13), apart from obtaining a “large” fix

action considering the complete sequence of edit operations, we

further enrich the search space by generating fix actions that apply

Algorithm 1 The cut-and-group algorithm to extract fix actions.

Input: The edit path, ep : (eo1, ..., eok)
Input: The suspicious CFG, д
Input: The candidate donor CFG, д′

Output: Fix actions, actions
1: function cutAndGroup(ep, д, д′)
2: // Group

3: actions ← �
4: visited ← �
5: cutPoints = DFS(д, ep)
6: for eoci ∈ cutPoints ∧ eo

c
i < visited do

7: eocj ← cutPoints .nextCutPoint(eoci)

8: while violateLineOrderConstraint(eoci , eo
c
j ,д,д

′) do
9: visited ← visited ∪ eocj
10: eocj ← cutPoints .nextCutPoint(eocj)

11: end while
12: // Generate

13: actions ← actions ∪ дenerateActions(eoci , eo
c
j ,д,д

′)

14: end for
15: // Further include branch-dependent actions

16: branchDepActions ← groupActsInSameIfOrLoop(actions)
17: return actions ∪ branchDepActions
18: end function

one single edit of the sequence. Once all fix actions are generated

from cut point pairs, we further consider to combine “large” fix

actions that lie in the same if or loop control structure to form the

branch-dependent fix actions (line 16). With these actions, we could

then apply them one by one with the concrete adapted donor code

to the buggy project to generate a list of candidate patches.

4 EVALUATION
4.1 Implementation
We have implemented TransplantFix for Java programming lan-

guage in about 20.4 KLoc of source code. Apart from the core

modules described in Section 3, TransplantFix includes the fault

localization and patch validation modules to form a complete repair

pipeline. For fault localization, we leverage the GZoltar API [9] and

Ochiai similarity coefficient [3], which are commonly used in exist-

ing APR tools [22, 35, 67, 75, 82], to implement a method level fault

localization. For patch validation, we first run bug failing test cases

on the candidate patch. If all failing test cases pass, we then run

a regression test by executing all positive test cases on the patch.

For plausible patches that pass the test suite, we manually assess

the correctness of these patches by checking if they are identical or

semantically equivalent to the human-written patches. We set the

time budget for each repair trial as two hours, following the prior

practice in the APR community [15].

4.2 Dataset
Wemeasure the effectiveness of TransplantFix on the Defects4J v1.2

dataset [24], and further evaluate the generalizability of Transplant-
Fix on the Defects4J v2.0 dataset. Defects4J v1.2 is an extensively

used real-world bug dataset where tens of APR tools have been

evaluated [15, 37, 40]. It consists of 395 bugs from six open source

ASE ’22, October 10–14, 2022, Rochester, MI, USA Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He

projects, i.e., jfreechart, commons-lang, commons-math, closure-

compiler, joda-time, and mockito. The size of these buggy programs

ranks from 22 to 96 KLoc.

To alleviate the benchmark overfitting problem reported by

Durieux et al. [15], we adopt the extended version of Defects4J,

i.e., v2.0, to further measure TransplantFix, which is also used in the

literature to evaluate state-of-the-art APR techniques [25, 78, 82].

Defects4J v2.0 covers 17 real-world software systems and consists

of 835 real-world bugs [17], including 444 new bugs as compared to

v1.2. To avoid repeated repair trials on the same bug, we evaluate

TransplantFix on the 444 new bugs in Defects4J v2.0. The full bug

list and repair data in our evaluation are also publicly available [1].

4.3 Effectiveness of TransplantFix
In this section, we evaluate the effectiveness of TransplantFix on

the 395 bugs from Defects4J v1.2, and compare it with existing APR

techniques.

Since the patch overfitting problem is observed [53, 61], assessing

the correctness of APR-generated patches has become a consensus

in the literature. Accordingly, the number of correctly fixed bugs

(Ncorrect for short) has been widely evaluated to show the effective-

ness of APR techniques [22, 33, 37, 42]. In recent years, the number

of bugs that are correctly fixed for the first time (Nunique) has been

an increasingly popular metric to emphasize the unique contribu-

tions of an APR techniques, and has been extensively adopted by

the literature [12, 22, 57, 78, 82]. As the number of APR techniques

grows continuously, how to correctly fix more bugs for the first

time is a challenging task for the APR community.

In this paper, we focus on measuring Nunique of TransplantFix
against existing APR techniques and perform a thorough compari-

son by including 42 APR techniques. To conduct such a comparison,

we conducted a systematic literature review to identify all APR tools

that have been evaluated on Defects4J dataset. We consider four in-

clusion criteria during the review: 1) the paper presents a new APR

technique and evaluates it on Defects4J, e.g., APR tools targeting

C language are excluded; 2) the paper must be peer-reviewed, i.e.,

we exclude grey literature [69] including technical reports, Ph.D

dissertations, etc.; 3) the full-text of the paper ought to be publicly

accessible to enable our check on which bugs are fixed by this APR

tool. For example, DEAR [34] which still has no publicly available

full-text at the time of our literature review
3
is excluded.

Based on such inclusion criteria, we finally identified 42 APR

tools. As shown in Table 1, our comparison covers a seven-year time

period (i.e., from 2016 to 2022), and characterizes the differences

in the fault localization configuration among APR techniques. We

observed that existing evaluation of APR techniques mainly employ

two fault localization configurations:

(1) Fault Localization (FL for short) that deploys a specific fault

localization technique (i.e., spectrum-based [22, 37] or informa-

tion retrieval-based [30]) and outputs a ranking list of suspicious

program entities to the APR tool;

(2) Non-Fault Localization (Non-FL for short) that straightfor-

wardly provides the faulty lines [10, 33] or methods [31] to

the APR tool.

3
The literature review was performed on Apr 12, 2022.

Table 1: The 42 APR tools included in our comparison with
TransplantFix.
Year # APR Tools

2016 6

DynaMoth [16], jGenProg [46], jKali [46],

jMutRepair [46], Nopol [75], HDRepair† [31]

2017 4 ssFix [71], JAID [11], ACS [72], Elixir [55],

2018 10

Cardumen [47], SimFix [22], CapGen [67],

SketchFix [20], RSRepair-A [79], Kali-A [79],

GenProg-A [79], SOFix [41], Arja [79],

LSRepair [38],

2019 11

Avatar [36], DeepRepair [68], Hercules [57],

GENPAT [21], ConFix [28], Vfix [74], PraPR [18],

iFixR [30], SequenceR† [13], kPAR‡ [35],

TBar‡ [37]

2020 7

Arja-e [80], Restore [73], JAID-extend [12],

FixMiner [29], CODIT† [10], DLFix†[33],

CoCoNut†[42]

2021 3 VarFix [70], Recoder‡ [82], CURE†[23]

2022 1 RewardRepair‡ [78]

means the number of APR tools proposed in each year. † means the APR tool is

evaluated in Non-FL scenario (i.e., the faulty lines or methods are directly given), and

‡ indicates the APR tool is evaluated in both FL scenario and Non-FL scenario. For the

rest of APR tools, they are all evaluated in FL scenario.

As the two fault localization scenarios have significantly different

impacts on the effectiveness of APR tools [35, 40], we compare the

two fault localization scenarios separately. Following prior studies

[22, 37, 78, 82], we collect repair results of the 42 investigated tools

from the literature.

5

jGenProg/

Nopol

19

Elixir

15

SimFix

12

Hercules

5

Restore
4

Recoder/

VarFix

2

RewardRepair
0

4

8

12

16

20

2016 2017 2018 2019 2020 2021 2022

M
a

x
im

u
m

N

u
n

iq
u

e

8

TransplantFix

Figure 7: The maximum Nunique achieved on Defects4J v1.2
in each year with FL scenario. Apart from TransplantFix, 36
APR techniques using the FL scenario are considered.

[Tendency ofNunique in the last seven years.] Figure 7 presents
the maximum Nunique in each year in FL scenario. For each APR

tool, Nunique is the number of bug fixes that have never been fixed

by prior APR tools proposed before the year when the APR tool is

created. For example, Elixir [55] is proposed in 2017, and thus we

compute its Nunique by checking how many new bugs are not fixed

by the five APR tools (i.e., in the FL scenario, HDRepair is excluded

as it relies on Non-FL scenario) proposed in 2016 but fixed by Elixir.

Accordingly, the maximum Nunique is the highest Nunique achieved

each year. In 2017, the Nunique of Elixir is 19, which is higher than

TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair ASE ’22, October 10–14, 2022, Rochester, MI, USA

the other three tools proposed in 2017. Therefore, the maximum

Nunique is 19 in 2017.

As indicated in Figure 7, the growth of newly fixed bugs in the

dataset has hit a bottleneck in recent years. The maximum Nunique
rapidly rises to 19 in 2017, and steadily declines in the next two

years (i.e., 2018 and 2019). The maximum Nunique suddenly shrinks

into five and four in 2020 and 2021. Furthermore, this number drops

into two in 2022, without considering TransplantFix. This indicates
that, as a number of APR techniques have been continuously proposed,
fixing new bugs is becoming increasingly difficult.
[Effectiveness of TransplantFix in FL scenario.] In Figure 7,

36 APR tools that are evaluated in FL scenario have been considered,

and a total of 146 bugs in Defects4J v1.2 have been correctly fixed by

at least one of the 36 tools. To compute the Nunique of TransplantFix,
we not only consider all fixed bugs between 2016 and 2021, but also

include the newly fixed bugs achieved by RewardRepair in 2022.

Accordingly, TransplantFix correctly fixes eight new bugs that have

not been fixed by any of the 36 APR techniques. Furthermore, as

compared to the number of newly fixed bugs of the seven APR

tools proposed in the last three years and evaluated in FL scenario,

TransplantFix achieves the best performance, which is 60% (3 bugs)

more than Restore and 300% (6 bugs) more than RewardRepair.

[Effectiveness of TransplantFix in Non-FL scenario.] Using
the Non-FL scenario has been a common practice since 2019, es-

pecially among deep learning based APR tools (i.e., 8 out of 12

tools in Table 2). Table 2 lists the Nunique of 12 APR tools, including

TransplantFix, which employ the Non-FL scenario. As one of the

pioneer tools that performed evaluation in Non-FL scenario, TBar

fixed 64 bugs for the first time as compared to HDRepair. After

2019, the Nunique has never exceeded 20. In 2021, Recoder achieved

a relatively high Nunique as compared to all (i.e. seven) tools pro-

posed between 2016 and 2020. The difficulty of repairing new bugs

has become larger in 2022. One representative fact is that, the state-

of-the-art APR technique proposed in 2022, i.e., RewardRepair, has

fixed only 5 bugs for the first time, respectively. We compute the

Nunique of TransplantFix based on all bugs that are correctly fixed

by APR tools evaluated in Non-FL scenario, including the two APR

tools proposed in 2022. In such a situation, TransplantFix has still
successfully fixed 10 new bugs that have never been correctly fixed by
all 10 prior APR tools.
Table 2: The Nunique achieved on Defects4J v1.2 in each year
with Non-FL scenario. Apart from TransplantFix, 10 APR
techniques evaluated in the Non-FL scenario are included.

Year Tool Nunique Year Tool Nunique

2016 HDRepair 6 2020 CoCoNut 12

2019 KPar 33 2021 CURE 0

2019 TBar 64 2021 Recoder 16

2019 SequenceR 14 2022 RewardRepair 5

2020 CODIT 4 2022 TransplantFix 10

2020 DLFix 8

4.4 Generalizability of TransplantFix
Since Durieux et al. revealed the benchmark overfitting problem

[15], evaluating the generalizability of a newly proposed APR tool

has been becoming increasingly popular. In this work, we evaluate

the generalizability of TransplantFix on the 444 new bugs in De-

fects4J v2.0. Note that existing APR tools evaluated on this dataset

use different fault localization scenarios. For a fair comparison, we

run TransplantFix in both FL and Non-FL scenarios. Table 3 presents
the number of correctly fixed bugs achieved by each APR tool.

We observed that prior evaluation of the generalizability of an

APR tool mainly focuses on the absolute number of correctly fixed

bugs [25, 82], but this may introduce threats to the reliability of

the conclusion. For example, an APR technique correctly fixes 20

bugs in 395 bugs from Defects4J v1.2, and 20 bugs from 444 bugs

in Defects4J v2.0. There will be no performance degradation in

terms of the absolute number, but actually the performance of the

tool slightly degrades when considering the differences between

the dataset size (i.e., 395 vs. 444). To capture such differences, we

propose the following metric to compute the generalizability of an

APR technique:

DegradationRatio =
Ncorrect
|usedBugs|

−
N ′correct
|usedBugs′ |

(5)

where Ncorrect means the number of correctly fixed bugs in the

original dataset, and N ′correct means the number of correctly fixed

bugs in the new dataset. |usedBugs| and |usedBugs′ | represent the
number of used bugs for evaluation from the original dataset and

new dataset, respectively. The lower the DegradationRatio score,
the more generalizable the APR tool.

Table 3: The DegradationRatio score of each APR tool.

Tool v1.2 v2.0 DegradationRatio

SimFix (FL) 34/357 2/420 9.05%

TBar (FL) 43/395 8/420 8.98%

Recoder (FL) 53/395 19/420 8.89%

RewardRepair (FL) 29/120 24/257 14.83%

TransplantFix (FL) 30/395 14/444 4.44%

RewardRepair (Non-FL) 45/120 45/257 20.0%

TransplantFix (Non-FL) 36/395 25/444 3.48%
x/y represents the number of correctly fixed bugs (i.e., “x”) and the number of used

bugs of the dataset (i.e., “y”). “(FL)” means the evaluation was performed in FL sce-

nario and “(Non-FL)” means that in Non-FL scenario.

[Comparison in terms of Generalizability.] Table 3 presents

the DegradationRatio score of five APR tools evaluated on both

Defects4J v1.2 and v2.0 datasets. In FL scenario, there are five APR

tools evaluated on both datasets. TransplantFix achieves the best
performance by reaching the lowest DegradationRatio, as compared
to the other four APR tools. Note that RewardRepair fixes the largest
number of bugs in 257 bugs in Defect4J v2.0, as compared to all the

five APR techniques. However, it fixes 29 bugs in 120 bugs in De-

fects4J v1.2, but this number decreases to 24 when twice more bugs

(i.e., 257) are provided in Defects4J v2.0. Therefore, its Degradation-
Ratio is the highest among the five APR tools. In Non-FL scenario,

TransplantFix also achieves the best performance with the lowest

DegradationRatio score (i.e., 3.48%) as compared to RewardRepair

evaluated on both datasets.

One explanation for the better performance of TransplantFix
over other APR tools is that TransplantFix does not rely on any

manually crafted or automatically learned fix actions. Such crafted

ASE ’22, October 10–14, 2022, Rochester, MI, USA Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He

or learned fix actions might overfit a specific dataset. Instead, it

extracts semantic fix actions from the donor method within the

buggy project without any human intervention or adjustment of

neural models, and thus is more generalizable than investigated

APR tools.

4.5 Case Studies
While Chart-6 illustrated in Section 1 and 2 has shown the unique-

ness of TransplantFix, we further performed two case studies on

bugs in Defects4J to show how TransplantFix leverages its names-

pace transfer (i.e., the case study for Chart-17) and graph differenc-

ing (i.e., the case study for Chart-1) to produce correct patches for

real-world bugs.

@@ -856,5 +856,5 @@
public Object clone() throws CloneNotSupportedException {

- Object clone = createCopy(0, getItemCount() - 1);
+ TimeSeries clone = (TimeSeries) super.clone();
+ clone.data = (List) ObjectUtilities.deepClone(this.data);

return clone;
}

(a) The human-written patch in TimeSeries class.
public Object clone() throws CloneNotSupportedException {
XYSeries clone=(XYSeries)super.clone();
clone.data=(List)ObjectUtilities.deepClone(this.data);
return clone;

}

(b) A donor method in XYSeries class.
Figure 8: The case study for Chart-17.

Figure 8(a) presents a bug named Chart-17. Although the size

of the human-written patch is relatively small, i.e., consisting of a

single-line deletion and two-line insertion, this bug has never been

fixed by other APR tools in both FL and Non-FL scenarios. Fixing

this bug requires an APR technique to well address the insertions

of multiple method calls, types, as well as variables. To fix this bug,

TransplantFix first located the donor method shown in Figure 8(b)

via the inheritance-hierarchy-aware code search, i.e., the Clone()
method in XYSeries class that is inherited from the same parent

class Series as the buggy class TimeSeries. Then, it leverages
namespace transfer to construct the type mapping {XYSeries →
TimeSeries}, and finally apply the extracted fix actions (i.e., deleting
the faulty statement and inserting the two donor statements) to

produce a correct fix.

Figure 9(a) illustrates another bug named Chart-1, which corre-

sponds to an if condition switch. Unlike existing APR techniques

that fix the bug, TransplantFix fixes this bug in an interesting way,

without relying on any manually crafted or automatically learned

fix actions. Note that there is no donor code (i.e., “==” operator) in

the donor method shown in Figure 9(b), TransplantFix identifies

the semantic differences via our graph differencing based approach.

That is, in the control flow graph representation, the buggy method

shows the opposite behavior (i.e., return result when the condi-

tion dataset != null is true) to the donor method (i.e., return
result when the condition dataset != null is false). Thus,

TransplantFix identifies this semantic fix action (i.e., switching if

condition) and correctly fixes it by applying the action.

public LegendItemCollection getLegendItems(){
...
if (dataset != null) { // human fix: dataset == null

return result;
}
if (...) {

... // Block A: 8 lines
}else {
... // Block B: 8 lines

}
return result;

}

(a) The buggy method of Chart-1.
public LegendItemCollection getLegendItems(){

...
if (dataset != null) {

... // Block A: same as the Block A in buggy method
}
return result;

}

(b) A donor method in a relative class of the buggy class.
Figure 9: The case study for Chart-1.

5 DISCUSSION
Potential of TransplantFix in complicated patch synthesis.
We observed that there are about 20% of six-line-insertion patches

or larger patches among the 36 patches generated by TransplantFix
on Defects4J v1.2. Particularly, TransplantFix successfully synthe-

sizes a patch of 15-line insertions that spans five chunks for Time-3

bug. It also synthesizes patches of eight-line insertions at a single

hunk for both Math-13 and Chart-6. The three bugs all lie in the set

of newly fixed bugs by TransplantFix. This indicates the potential
of TransplantFix in synthesizing complicated patches for real-world

bugs. When evaluated on Defects4J v2.0, this proportion has de-

creased into 8%. One explanation is that the new projects added in

Defects4J v2.0 are much smaller, which makes it difficult to generate

complicated patches. For example, the Cli project consists of 4 KLoc

of source code, where the patches generated by TransplantFix for

three Cli bugs are all one-line insertion patches. In such scenario,

TransplantFix may need to search donor method from external

projects. We leave the extension of code search as future work for

exploring the full potential of TransplantFix in synthesizing more

complicated patches.

Explainability of TransplantFix. Explainability of an APR

technique (i.e., interpreting how the patch is generated) is important

for greater adoption of APR techniques in the practical pipelines

[19]. Recently, Noller et al. [52] reported that side products (e.g.,

identified faulty or fix locations) of APR techniques could enhance

trust in APR-generated patches. In this work, the whole repair

pipeline of TransplantFix is transparent and deterministic. Apart

from the faulty or fix locations, TransplantFix could further provide

more side products, including the identified donor method with

similar functionalities as a repair reference, the edit graph that

indicates the semantic differences between the donor and buggy

method, and the exact fix actions applied to the buggy method.

TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair ASE ’22, October 10–14, 2022, Rochester, MI, USA

These information provided by TransplantFix could benefit develop-

ers in patch correctness assessment, and thus enhance the developer

trust on the patches generated by TransplantFix.
Next steps of TransplantFix. In this paper, we propose Trans-

plantFix and present its promising results in terms of newly fixed

bugs and generalizability. As future work, we envision two sce-

narios where TransplantFix could further fulfill its potential: 1)

industrial deployment where TransplantFix could be integrated

into the realistic repair pipeline of Repairnator [50] to aid manual

debugging activities in the real world. 2) global-search based re-

pair where TransplantFix extends the fix ingredient search scope

to external projects. Accordingly, a set of new challenges arise as

the inheritance relations may not work in this scenario and the

namespace differences may be more significant.

Threats to validity. One threat to internal validity is that our

literature review performed in Section 4.3 may fail to cover all

existing APR techniques evaluated in Defects4J. To mitigate the

threat, wemanually checked all publications that cited the Defects4J

publication [24] and identified qualified publications based on the

inclusion criteria defined in Section 4.3. Another threat is that we

extracted repair results of the 42 investigated APR tools from the

literature, following prior practices [22, 37, 42, 78, 82]. However,

such results are often derived from different hardware and timeouts,

which may lead to a biased comparison. Considering the huge engi-

neering effort and time cost required for re-running all APR tools

with the same hardware and time budget (e.g., the RepairThemAll

experiment [15]), we leave such experiment as future work.

A threat to external validity is that the bugs used for evaluating

TransplantFix may not represent all real-world bugs. To mitigate

the threat, we use a total of 839 real-world bugs from the most

commonly used dataset Defects4J and its extended version. As

future work, we plan to evaluate TransplantFix on more real-world

datasets (e.g., Bears [43], Bugs.jar [54]).

6 RELATEDWORK
6.1 Automated Program Repair
Automated program repair has attracted much attention in recent

years. Since the proposal of the pioneer technique GenProg [66],

a broad spectrum of APR techniques have been proposed. Goues

et al. [19] divided existing APR techniques into three categories,

i.e., heuristic search-based repair [22, 38, 46, 71, 79], constraint-

based repair [16, 75], and learning-based repair [23, 25, 33, 78, 82].

TransplantFix lies in the scope of heuristic search-based repair that

constructs and iterates the search space of program modifications.

A closely related set of work include SimFix [22] and ssFix [71].

Both APR techniques search donor code at the method snippet level.

SimFix searches donor code within the buggy project, while ssFix

leverages the Apache Lucene search engine to collect similar code

snippets from a codebase. In terms of fix action extraction, both

techniques perform AST differencing to extract fix actions from the

donor code snippet, but SimFix further leverages mined fix actions

to shape the search space. For donor code transfer, SimFix focuses on

transfering variables. We notice that ssFix considers variables, types

and methods. But it transforms all these entities into symbolized

identifiers and builds all mappings at the same time, and it cannot

deal with the donor transfer case when the needed entities (e.g.,

getShape() in Chart-6) do not appear in the buggy method. Another

related work is LSRepair [38] that performs method-level search for

method transplantation. LSRepair straightforwardly replaces the

buggy method with the donor method when their method signa-

tures are the same, or otherwise modifies four statement types (e.g.,

if statement). As compared to all these techniques, TransplantFix
characterizes itself by an inheritance-ware method level approach

within the buggy project, a graph based differencing approach to

distill semantic fix actions, and a comprehensive donor method

transfer approach.

6.2 Automated Software Transplantation
Barr et al. [8] proposed the notion of automated software trans-

plantation (aka autotransplantation) that aims to automatically

extract a functionality of the donor program and apply it into a

host program. This motivated a series of avenues in the software

engineering community. As reported by Marginean [44], existing

autotransplantation approaches have been used in various areas,

including automated program repair [60], security [77], testing

[81], and functionality transplantation [59]. TransplantFix lies in

the scope of using transplantation to automatically fix buggy pro-

grams.

Marginean identified two transplantation-based APR techniques

via a literature review [44], i.e., GenProg [66] and CodePhage [60].

GenProg transfers donor code within the buggy program to the

buggy location via genetic programming, and CodePhage operates

on the binary code and transfers the correct code in one application

into another one to fix errors (e.g., buffer overflow). Besides, we no-

ticed that LSRepair [38] also mentions the notion of transplantation,

and recently, Shariffdeen et al. [58] proposed an AST differencing

based transplantation approach to transfer patches of vulnerabili-

ties from one project to the buggy application. Different from these

techniques, we present a new attempt to the APR community by

exploring graph differencing based transplantation at the method

level to mine semantic fix actions within the buggy project.

7 CONCLUSION AND FUTUREWORK
In this paper, We propose an inheritance-hierarchy-aware donor

search approach to locate fix ingredients, a graph differencing

based approach to distill semantic fix actions, and a comprehensive

namespace transfer approach to adapt donor code. We highlight the

uniqueness of TransplantFix via an extensive comparison involving

42 APR tools and an evaluation on 839 bugs in Defects4J v1.2 and

v2.0. TransplantFix achieves the best performance in terms of both

the number of newly fixed bugs and generalizability as compared to

baseline APR tools. Also, it has shown its capability of synthesizing

complicated patches consisting of at most eight-line insertions. In

future work, we plan to extend TransplantFix with more scenar-

ios (e.g., the integration into Repairnator) and experiments (e.g.,

evaluation with more datasets) as described in Section 5.

ACKNOWLEDGEMENT
This work is supported by the National Natural Science Foundation

of China (No. 61872445).

ASE ’22, October 10–14, 2022, Rochester, MI, USA Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and Jiayu He

REFERENCES
[1] [n. d.]. Artifact page of our study. [Online]. Available: https://github.com/Deh

engYang/TransplantFix, 2022.

[2] [n. d.]. The Java Language Specification. https://docs.oracle.com/javase/specs/jls

/se7/html/jls-8.html#jls-8.4.2. last accessed: Jan. 2022.

[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of

spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89–98.

[4] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau.

2015. An exact graph edit distance algorithm for solving pattern recognition

problems. In 4th International Conference on Pattern Recognition Applications and
Methods 2015.

[5] Afsoon Afzal, Manish Motwani, Kathryn Stolee, Yuriy Brun, and Claire Le Goues.

2019. Sosrepair: Expressive semantic search for real-world program repair. IEEE
Transactions on Software Engineering (2019).

[6] Frances E Allen. 1970. Control flow analysis. ACM Sigplan Notices 5, 7 (1970),
1–19.

[7] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27.

[8] Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.

2015. Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis. 257–269.

[9] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. Gzoltar: an

eclipse plug-in for testing and debugging. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. 378–381.

[10] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.

2020. Codit: Code editing with tree-based neural models. IEEE Transactions on
Software Engineering (2020).

[11] Liushan Chen, Yu Pei, and Carlo A Furia. 2017. Contract-based program re-

pair without the contracts. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 637–647.

[12] Liushan Chen, Yu Pei, and Carlo Alberto Furia. 2020. Contract-based program

repair without the contracts: An extended study. IEEE Transactions on Software
Engineering (2020).

[13] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,

Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-

sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

[14] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus. 2017.

Dynamic patch generation for null pointer exceptions using metaprogramming.

In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 349–358.

[15] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.

Empirical review of Java program repair tools: a large-scale experiment on 2,141

bugs and 23,551 repair attempts. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 302–313.

[16] Thomas Durieux and Martin Monperrus. 2016. Dynamoth: dynamic code synthe-

sis for automatic program repair. In Proceedings of the 11th International Workshop
on Automation of Software Test. 85–91.

[17] Gregory Gay and René Just. 2020. Defects4J as a Challenge Case for the Search-

Based Software Engineering Community. In International Symposium on Search
Based Software Engineering. Springer, 255–261.

[18] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-

pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 19–30.

[19] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated

program repair. Commun. ACM 62, 12 (2019), 56–65.

[20] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards

practical program repair with on-demand candidate generation. In Proceedings of
the 40th international conference on software engineering. 12–23.

[21] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring

program transformations from singular examples via big code. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 255–266.

[22] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.

2018. Shaping program repair space with existing patches and similar code. In

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 298–309.

[23] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-aware neural

machine translation for automatic program repair. In 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[24] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-

isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[25] Sungmin Kang and Shin Yoo. 2022. GLAD: Neural Predicate Synthesis to Repair

Omission Faults. ISSTA (2022).

[26] Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman. 2021. Eval-

uating Automatic Program Repair Capabilities to Repair API Misuses. IEEE
Transactions on Software Engineering (2021).

[27] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic

patch generation learned from human-written patches. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 802–811.

[28] Jindae Kim and Sunghun Kim. 2019. Automatic patch generation with context-

based change application. Empirical Software Engineering 24, 6 (2019), 4071–4106.
[29] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,

Martin Monperrus, and Yves Le Traon. 2020. Fixminer: Mining relevant fix

patterns for automated program repair. Empirical Software Engineering (2020),

1–45.

[30] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim,MartinMonperrus,

Jacques Klein, and Yves Le Traon. 2019. iFixR: bug report driven program repair. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 314–325.

[31] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program

repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 213–224.

[32] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar

Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and

IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236–1256.

[33] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. DLFix: Context-based Code

Transformation Learning for Automated Program Repair. In 2020 ACM/IEEE 42th
International Conference on Software Engineering. IEEE, 602–614.

[34] Yi Li, Shaohua Wang, and Tien N Nguyen. 2022. DEAR: A Novel Deep Learning-

based Approach for Automated Program Repair. In ICSE.
[35] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,

and Yves Le Traon. 2019. You cannot fix what you cannot find! an investigation

of fault localization bias in benchmarking automated program repair systems. In

2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
IEEE, 102–113.

[36] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar:

Fixing semantic bugs with fix patterns of static analysis violations. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 1–12.

[37] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar:

revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 31–42.

[38] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F Bissyandé.

2018. LSRepair: Live search of fix ingredients for automated program repair. In

2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 658–662.
[39] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and

Tegawendé F Bissyandé. 2021. A critical review on the evaluation of automated

program repair systems. Journal of Systems and Software 171 (2021), 110817.
[40] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé François D As-

sise Bissyande, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and

Yves Le Traon. 2020. On the Efficiency of Test Suite based Program Repair: A

Systematic Assessment of 16 Automated Repair Systems for Java Programs. In

42nd ACM/IEEE International Conference on Software Engineering (ICSE).
[41] Xuliang Liu and Hao Zhong. 2018. Mining stackoverflow for program repair.

In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 118–129.

[42] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and

Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models

using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 101–114.

[43] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.

Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies.

In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 468–478.

[44] Alexandru Marginean. 2021. Automated Software Transplantation. Ph.D. Disser-
tation. UCL (University College London).

[45] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,

Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sapfix: Automated end-to-

end repair at scale. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 269–278.

[46] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library

for java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis. 441–444.

[47] Matias Martinez and Martin Monperrus. 2018. Ultra-large repair search space

with automatically mined templates: The cardumenmode of astor. In International
Symposium on Search Based Software Engineering. Springer, 65–86.

[48] Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the fix

ingredients already exist? an empirical inquiry into the redundancy assumptions

https://github.com/DehengYang/TransplantFix
https://github.com/DehengYang/TransplantFix
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.2
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.2

TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair ASE ’22, October 10–14, 2022, Rochester, MI, USA

of program repair approaches. In Companion Proceedings of the 36th international
conference on software engineering. 492–495.

[49] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–24.

[50] Martin Monperrus, Simon Urli, Thomas Durieux, Matias Martinez, Benoit Baudry,

and Lionel Seinturier. 2019. Repairnator patches programs automatically. Ubiquity
2019, July (2019), 1–12.

[51] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen,

and Hridesh Rajan. 2013. A study of repetitiveness of code changes in software

evolution. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 180–190.

[52] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.

Trust Enhancement Issues in Program Repair. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering.

[53] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of

patch plausibility and correctness for generate-and-validate patch generation

systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. 24–36.

[54] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R Prasad.

2018. Bugs.jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings
of the 15th International Conference on Mining Software Repositories. 10–13.

[55] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir:

Effective object-oriented program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 648–659.

[56] Ripon K Saha, Hiroaki Yoshida, Mukul R Prasad, Susumu Tokumoto, Kuniharu

Takayama, and Isao Nanba. 2018. Elixir: an automated repair tool for Java pro-

grams. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. 77–80.

[57] Seemanta Saha et al. 2019. Harnessing evolution for multi-hunk program repair.

In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 13–24.

[58] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik Roychoud-

hury. 2020. Automated Patch Transplantation. ACM Transactions on Software
Engineering and Methodology (TOSEM) 30, 1 (2020), 1–36.

[59] Stelios Sidiroglou-Douskos, Eric Lahtinen, Anthony Eden, Fan Long, and Martin

Rinard. 2017. CodeCarbonCopy. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 95–105.

[60] Stelios Sidiroglou-Douskos, Eric Lahtinen, and Martin Rinard. 2014. Automatic

error elimination by multi-application code transfer. (2014).

[61] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure

worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 532–543.

[62] ShinHwei Tan, ZhenDong, XiangGao, andAbhik Roychoudhury. 2018. Repairing

crashes in android apps. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 187–198.

[63] Ewan Tempero, James Noble, and Hayden Melton. 2008. How do Java programs

use inheritance? An empirical study of inheritance in Java software. In European
Conference on Object-Oriented Programming. Springer, 667–691.

[64] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How

to design a program repair bot? insights from the repairnator project. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). IEEE, 95–104.

[65] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In

CASCON First Decade High Impact Papers. 214–224.
[66] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically finding patches using genetic programming. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE, 364–374.

[67] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.

Context-aware patch generation for better automated program repair. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
1–11.

[68] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys

Poshyvanyk. 2019. Sorting and transforming program repair ingredients via deep

learning code similarities. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 479–490.

[69] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[70] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues.

2021. VarFix: balancing edit expressiveness and search effectiveness in automated

program repair. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
354–366.

[71] Qi Xin and Steven P Reiss. 2017. Leveraging syntax-related code for automated

program repair. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 660–670.

[72] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu

Zhang. 2017. Precise condition synthesis for program repair. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 416–426.

[73] Tongtong Xu, Liushan Chen, Yu Pei, Tian Zhang, Minxue Pan, and Carlo Al-

berto Furia. 2020. Restore: Retrospective fault localization enhancing automated

program repair. IEEE Transactions on Software Engineering (2020).

[74] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-

guided precise program repair for null pointer dereferences. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 512–523.

[75] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-

las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016.

Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2016), 34–55.

[76] Deheng Yang, Kui Liu, Dongsun Kim, Anil Koyuncu, Kisub Kim, Haoye Tian, Yan

Lei, Xiaoguang Mao, Jacques Klein, and Tegawendé F Bissyandé. 2021. Where

were the repair ingredients for Defects4j bugs? Empirical Software Engineering
26, 6 (2021), 1–33.

[77] Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. 2017. Malware detection

in adversarial settings: Exploiting feature evolutions and confusions in android

apps. In Proceedings of the 33rd Annual Computer Security Applications Conference.
288–302.

[78] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural Program Repair

with Execution-based Backpropagation. (2022).

[79] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated repair of java pro-

grams via multi-objective genetic programming. IEEE Transactions on Software
Engineering (2018).

[80] Yuan Yuan and Wolfgang Banzhaf. 2020. Toward Better Evolutionary Program

Repair: An Integrated Approach. ACM Transactions on Software Engineering and
Methodology (TOSEM) 29, 1 (2020), 1–53.

[81] Tianyi Zhang andMiryung Kim. 2017. Automated transplantation and differential

testing for clones. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 665–676.

[82] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,

and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341–353.

	TransplantFix: Graph differencing-based code transplantation for automated program repair
	Citation
	Author

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Overview
	3.2 Fix Ingredient Search
	3.3 Donor Method Transfer
	3.4 Fix Action Extraction

	4 Evaluation
	4.1 Implementation
	4.2 Dataset
	4.3 Effectiveness of TransplantFix
	4.4 Generalizability of TransplantFix
	4.5 Case Studies

	5 Discussion
	6 Related Work
	6.1 Automated Program Repair
	6.2 Automated Software Transplantation

	7 Conclusion and Future Work
	References

