
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2022 

SoftSkip: Empowering multi-modal dynamic pruning for single-SoftSkip: Empowering multi-modal dynamic pruning for single-

stage referring comprehension stage referring comprehension 

Dulanga WEERAKOON 
Singapore Management University, mweerakoon.2019@phdcs.smu.edu.sg 

Vigneshwaran SUBBARAJU 
Singapore Management University, vigneshwaran@smu.edu.sg 

Tuan TRAN 
Singapore Management University, tuantran@smu.edu.sg 

Archan MISRA 
Singapore Management University, archanm@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer Engineering Commons, and the Software Engineering Commons 

Citation Citation 
WEERAKOON, Dulanga; SUBBARAJU, Vigneshwaran; TRAN, Tuan; and MISRA, Archan. SoftSkip: 
Empowering multi-modal dynamic pruning for single-stage referring comprehension. (2022). MM '22: 
Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, October 10-14. 3608-3616. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7707 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7707&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


SoftSkip: Empowering Multi-Modal Dynamic Pruning for
Single-Stage Referring Comprehension

Dulanga Weerakoon
Singapore Management University

mweerakoon.2019@phdcs.smu.edu.sg

Vigneshwaran Subbaraju
IHPC, A*STAR, Singapore

vigneshwaran_subbaraju@ihpc.a-star.edu.sg

Tuan Tran
Singapore Management University

tuantran@smu.edu.sg

Archan Misra
Singapore Management University

archanm@smu.edu.sg

ABSTRACT
Supporting real-time referring expression comprehension (REC) on
pervasive devices is an important capability for human-AI collabo-
rative tasks. Model pruning techniques, applied to DNNmodels, can
enable real-time execution even on resource-constrained devices.
However, existing pruning strategies are designed principally for
uni-modal applications, and suffer a significant loss of accuracy
when applied to REC tasks that require fusion of textual and vi-
sual inputs. We thus present a multi-modal pruning model, LGMDP,
which uses language as a pivot to dynamically and judiciously select
the relevant computational blocks that need to be executed. LGMDP
also introduces a new SoftSkip mechanism, whereby ‘skipped’ vi-
sual scales are not completely eliminated but approximated with
minimal additional computation. Experimental evaluation, using
3 benchmark REC datasets and an embedded device implementa-
tion, shows that LGMDP can achieve 33% latency savings, with an
accuracy loss 0.5% - 2%.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Computing methodologies→ Computer
vision; Natural language processing; • Human-centered com-
puting → Human computer interaction (HCI).
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Human-Robot Interaction; Referring Expression Comprehension;
Pruning; Computer Vision; Natural Language Processing
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1 INTRODUCTION
Referring Expression Comprehension (REC) is a multi-modal task
where the goal is to correctly identify objects or segments within
an image that is being referred to by an accompanying verbal in-
struction. In this task, the input consists of (a) an image and (b)
an accompanying natural language text that refers an object or
objects within the art of the image, and the desired output is a set
of co-ordinates or a bounding box that encompasses the referred
part(s) of the image. REC is a foundational construct that under-
pins AI-driven capabilities such as Question-Answering [35] and
Human Robot Interaction [24]. A variety of deep learning based
approaches for REC, trained using large-scale datasets of crowd-
sourced “image—description" pairs [13, 14, 20, 21, 33], have been
proposed. Initial approaches adopt a three-stage process, viz., (Step
1) generate region proposals on the image, (Step 2) extract visual
features from the proposed regions and textual features from the
natural language text, and finally (Step 3) rank candidate proposed
regions using a metric that reflects the match between each region’s
visual features and the instruction’s textual features. Experimental
studies showed that REC performance was crucially dependent
on the effective modeling of visual context, at scales correspond-
ing to either the entire image [13], individual objects [33] or at
multiple levels [32]. To reduce the high computational complexity
and latency associated with the execution of three distinct stages,
more recent REC approaches [29, 30, 34] have adopted a single
stage approach with multi-modal fusion. These approaches employ
multi-modal attention mechanisms that fuse verbal and visual cues,
and often provide better modeling of contextual information at
both global and local scales.

Despite the reduced complexity, such single-stage neural models
for REC are still resource intensive and ill-suited to support real-
time, interactive applications on resource-constrained embedded
platforms, such as wearables and IoT devices. To support such real-
time pervasive REC execution, we thus explore the use of neural
optimization techniques that bypass redundant/inconsequential
computation blocks in such single-stage models. Broadly speaking,
such neural optimization can broadly involve either (a) static prun-
ing, which reduces the model size by eliminating neural nodes or
layers during the offline training phase, or (b) dynamic pruning tech-
niques, such as convolutional layer sparsification [2] or dynamic
routing [27], which selectively eliminate some of the computations
in the complex backbone network during the inference phase. While
dynamic pruning approaches are more nimble as they customize
the computation to each input sample, all extant methods have been

https://doi.org/10.1145/3503161.3548432
https://doi.org/10.1145/3503161.3548432
https://doi.org/10.1145/3503161.3548432


MM ’22, October 10–14, 2022, Lisboa, Portugal Dulanga Weerakoon, Vigneshwaran Subbaraju, Tuan Tran, and Archan Misra

designed for uni-modal tasks (e.g., solely based on visual input).
Our main contribution is to develop a novel, generalized dynamic
pruning strategy for REC tasks, which are inherently multi-modal
(consisting of both verbal and visual inputs).

Our proposed approach adopts the same basic principle associ-
ated with all run-time pruning methods: skip computational blocks
on a per-input basis, thereby reducing latency and computational
energy overheads. However, our runtime pruning strategy explic-
itly uses the REC-specific property that the textual input contains
critical information in identifying important/relevant regions in
the image, and consequently develops mechanisms that optimize
the visual processing pipeline (and the subsequent stages, such as
attentional modules, that fuse visual and verbal cues) based on fea-
tures embedded in the textual input. To the best of our knowledge,
our work is the first to propose a multi-modal pruning approach for
REC tasks. More specifically, we hypothesize that computational
blocks at certain visual scale can be safely skipped depending on
the sizes of both the target object and the objects referred to in the
verbal input. Accordingly, in our approach, we use the textual fea-
tures as a pivot to determine the necessity or relative importance of
computing features at certain image scales. This approach contrasts
with traditional unimodal runtime skipping mechanisms, where
computational blocks are skipped primarily based on background
vs. foreground differentiation and without regard to the size or
saliency of individual objects.

Determining these scales are, however, a challenging problem for
REC tasks due to the possibility of multiple relevant visual scales
and saliency, such as when the textual reference is made with re-
spect to another anchor object–e.g.,“small clock on the table", where
the table and clock require different scales. Accordingly, adopting
the prior binarized approaches (where a specific computational
block is either executed in its entirety or completely skipped) runs
the risk of missing crucial contextual information. Based on empiri-
cal observations that corroborate this anticipated pitfall of binarized
skipping, we thus introduce a novel “soft-skipping” strategy, where
certain computational blocks determined to be suitable for skipping
are approximated using an alternate (convolutional) pathway that
consumes dramatically lower computational resources. We believe
that this approach, called SoftSkip, represents a general and pow-
erful design paradigm for optimizing neural computation for tasks,
such as REC, that involve correlated multi-modal inputs and require
processing at different visual scales. We design a modified single-
stage REC model, called LGMDP (Language-Guided Multi-modal
Dynamic Pruning), that incorporates the SoftSkip mechanism into
multiple stages, such as visual feature extraction, adaptive feature
selection and global attention computation, associated with the
execution of REC tasks. Via extensive studies, we demonstrate how
LGMDP provides significantly superior performance compared to
standard static and dynamic pruning approaches, achieving lower
latency while offering far higher comprehension accuracy (almost
comparable to a non-optimized heavyweight baseline model).
Key Contributions: Our key contributions are as follows:
• We introduce a novel run-timeDNNoptimization approach called
LGMDP that is useful for supporting multi-modal tasks such as
REC. To the best of our knowledge, LGMDP is the first model that
uses textual features as a pivot to skip computations in both the
visual processing and the subsequent multi-modal fusion stages.

In addition, LGMDP employs the novel concept of SoftSkip, where
computational blocks are not completely eliminated but rapidly
approximated, thereby ensuring that features at different visual
scales are at least partially preserved.

• We implement LGMDP, as well as a variety of competitive state-
of-the-art (SOTA) alternatives. Using three different benchmark
datasets (ReferIt[14], RefCOCO [33] and Cops-Ref [7]), we show
that LGMDP offers a far superior accuracy-vs.-latency tradeoff
and is able to offer a significant reduction in computational la-
tency with negligible loss in accuracy. In particular, LGMDP
suffers only an ∼0.5% loss (65.3%→64.6%) in comprehension ac-
curacy compared to the non-optimized RealGIN baseline, but
achieves more than 33% reduction in processing latency when
executed on a NVIDIA Jetson TX2 device. In addition, LGMDP’s
accuracy of 65.37% @ 220 ms of latency far outperforms the best
performing SOTA uni-modal pruning alternative (only 58.31% ac-
curacy at similar latency). In addition, in Section 4.2, we provide
more granular insights into how LGMDP’s multi-scale SoftSkip
mechanism is able to leverage on appropriate textual cues.

• We also demonstrate how LGMDP’s SoftSkip-based approach
can be combined with standard static pruning approaches to
support ultra-lightweight, real-time REC execution on the Jetson
TX2, a representative embedded platform. While the combined
model suffers an 18% loss in accuracy compared to the RealGIN
baseline, it achieves a significant 2.75x reduction in latency and
7x reduction in memory overhead, which is superior to that
achieved by static pruning alone (17% accuracy loss with 2.2x
and 7x reduction in latency and memory, respectively).

Overall, we believe that LGMDP’s paradigm of language-driven
SoftSkip-based dynamic pruning represents a significant, founda-
tional advance towards the goal of supporting accurate, real-time
REC on embedded and pervasive devices.

2 RELATED
Although the referring expression comprehension problem has
been studied for a while, deep learning based approaches gained
ground after the release of the large-scale ReferIt dataset [14] gen-
erated using a crowd-sourced two-player game. To generate ReferIt
samples, one of the players views an image and writes an expres-
sion that refers to the target object, while the other player using
this expression to click on the relevant region in the image. This
approach was later extended to include images in the MSCOCO
[18] dataset, with the instructions then as RefCOCO and RefCOCO+
datasets [33]. Using the ReferIt dataset, the authors also studied the
visuo-linguistic characteristics of referring expressions and showed
how visual attributes in the image input correlated with words
used in the verbal instruction (e.g.,‘Big’ is most commonly associ-
ated with larger target regions whereas ‘small’, tiny’, little’ etc are
associated with smaller regions).

Initially, deep neural models for REC were based on the CNN-
LSTM [20, 33] framework, where the LSTM takes a word vector
at each time step and attempts to match it with CNN-based vi-
sual features extracted from a candidate region within the image.
These models adopt a max-margin based training method for the
LSTM such that the probability of referring expression is higher
for the referred image region. Many of these early works showed
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that accurate modeling of the contextual information was critical
for achieving effective target inference. For example, Yu et.al. [33]
used visual differences between objects to represent the visual
context, achieving higher comprehension accuracy than [20]. Sub-
sequently, [13] used whole-image CNN features to represent the
context, while [21] proposed the use of use multiple-instance learn-
ing for effective context modeling. With the advent of attention
mechanisms, MAttNet [32] introduced a modular framework that
further enhanced REC accuracy. In Mattnet, separate modules, each
with their individual attention mechanisms, utilize features of ob-
ject locations, context or relationships.

Such multi-stage pipelines, however, are computationally pro-
hibitive due to the need for a separate region proposal network. To
address this, recent single-stage neural approaches [23, 29, 30, 34]
have replaced the region ranking with a multi-modal bounding box
regression stage. Yang et al [30] proposed an approach based on
YOLOv3 [22], where they obtained a visual feature pyramid via
the Darknet-53 [22] backbone network, and the language features
for textual referring expression via BERT [8]. The visual feature
pyramid is then concatenated with the verbal features at each level,
and subsequently combined with a normalized spatial feature, to ex-
ecute the bounding box regression. The authors recently extended
their work further [29] by including a sub-query learning and mod-
ulation framework that decomposes long textual descriptions into
shorter sub-queries; they demonstrated that recursive use of such
visual features improved the ability to resolve ambiguity associ-
ated with longer verbal instructions. The Zero-Shot Grounding
(ZSG) method [23] extracted image features by combining a ResNet
(instead of Darknet) backbone with a feature pyramid network
(FPN), while using a Bi-LSTM to extract the language represen-
tation. More recently, Zhou et al. [34] further extended ZSG to
develop the RealGIN model. RealGIN includes a separate Adaptive
Feature Selection (AFS) method that uses textual information to
identify REC-relevant visual features and a multi-modal global at-
tention mechanism named GARAN, and achieved 30fps processing
throughput (a 10-fold increase over MattNet) for REC tasks.

A broader body of research has tackled the problem of pruning
DNNmodels, either statically or during run-time [2, 3, 16, 26, 31], to
support efficient, low-latency DNN execution on pervasive devices.
Efficient networks such as MobileNet & ShuffleNet embody the
principle of static model compression, where redundancy is identi-
fied and eliminated in the channels, weights and filters in a complex
visual backbone such as the VGG16, ResNet etc. Approaches such
as [16], SkipNet [27] and Dynamic Convolutions [26] are examples
of run-time pruning, where unwanted computations are eliminated
during inference time with minimal impact on overall accuracy.
Reinforcement learning is typically used to train the modules that
decide on such run-time, input-dependent skipping of specific com-
putational blocks. All extant approaches, however, tackle only uni-
modal neural models; refactoring them to our multi-modal REC
task is non-trivial due to the need to preserve relevant contextual
and relational information across the different modes.

2.1 Baseline Model: RealGIN
We use the RealGIN model [34] as the representative, state-of-the-
art single-stage model for real-time, multi-modal REC tasks. As

Figure 1: RealGIN single-stage REC model
shown in Figure 1, RealGIN employs a ResNet [12] based backbone
for extracting features from the image and a bi-directional LSTM
[10] for extracting language features from verbal instruction. Re-
alGIN then uses a novel Adaptive Feature Selection (AFS) module
that identifies image features that are relevant to the text instruc-
tion. This is followed by a new multi-modal attention mechanism
(GARAN) to facilitate language-guided visual attention. As shown
in [34], RealGIN achieves a 10x improvement in throughput, while
achieving accuracy very close to that of multi-stage approaches
such as MAttNet [32].

3 LGMDP
Figure 2 presents the architecture of our proposed LGMDP model
for single-stage, dynamically optimized REC. The model includes
(a) a novel skippable visual backbone which enables input-specific,
alternate efficient pathways for visual feature extraction, (b) a bi-
directional GRU for textual feature extraction, (c) a module to com-
pute multiple scale-specific skip factor, (d) a modified and skippable
multi-scale adaptive feature selection (borrowed from RealGIN), (e)
a global attention module (borrowed from RealGIN), (f) a skippable
feature pyramid network and finally (g) bounding box regression
layers (similar to YoLo3). The parameters of all these modules are
trained using an end-to-end supervised learning process.

Our run-time SoftSkip approach (shown in Fig 3) is based on the
following set of principles:

(a) The information embedded in the textual input should be used to
determine the relevant scales in the visual backbone. This choice
of verbal→visual dependence is modeled on known models of
human comprehension [4, 15], which show that humans utilize
verbal cues to adjust visual attention (and not vice versa) and
driven by the high complexity of the visual feature extraction.

(b) Since it is difficult to precisely determine whether the skipped
layers of the visual backbone contain pertinent contextual infor-
mation, we do not completely eliminate a computational block
but instead use an alternative computationally-lightweight com-
putational pipeline to approximate the features derived by the
block. The approximated features continue to serve as useful
input for the subsequent processing blocks.

(c) Processing blocks in the subsequent AFS and FPN stages, which
fuse verbal and visual features, utilize the same set of scale-
specific skipping parameters used by the visual backbone. In
other words, a single set of skipping parameters are used across
multiple processing modules, implying that if a particular NxN
scale is skipped (or approximated) in the visual backbone, the cor-
responding NxN scale is also approximated in the AFS and FPN
modules. Using a common set of 3 universally-applied skipping
parameters also avoids unnecessary additional computation, as
compared to an alternative approach where different stages of the
model are associated with different sets of skipping parameters.
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Figure 2: LGMDP - Model architecture Figure 3: Soft-Skipping

In this paper, we compute 3 distinct skipping parameters, which
are applied to conditionally skip the corresponding last three stages
of the visual pipeline. The choice of 3 parameters, corresponding
to scales of 28x28, 14x14 and 7x7, respectively, are chosen as they
intuitively correspond to small, medium and large-sized objects.

In the training mode, all the blocks are still computed and multi-
plied by the skipping parameter. This way we make sure the model
weights are differentiable for backward propagation. Formally, let
𝐶 be the computational block to be skipped, 𝑥 be the input to
the computational block, 𝑤 be the skipping parameter, 𝐶

′
be the

low complexity approximation to the computational block, 𝛼 be a
trainable scaling parameter and 𝑥𝑜𝑢𝑡 be the output. Then, forward
computation in training mode is defined as follows.

𝑥𝑜𝑢𝑡 = 𝑤 ∗𝐶 (𝑥) + 𝛼 ∗𝐶
′
(𝑥); 𝑤ℎ𝑒𝑟𝑒 𝑤 ∈ 0, 1, 𝛼 ∈ [0, 1] (1)

During run-time, in order to achieve true latency savings we pro-
pose a different forward propagation where the decision to execute
a computational block or not is based on the value of the relevant
skipping parameter. When the skipping parameter is 0, relevant
computational block will not be executed returning latency savings.
In general, let 𝐶 be the computational block to be skipped, 𝑥 be
the input to the computational block,𝑤 be the pruning weight, 𝐶

′

be the low complexity approximation to the computational block,
𝛼 be a trainable scaling parameter and 𝑥𝑜𝑢𝑡 be the output. Then,
forward computation in inference mode is defined as follows.

𝑥𝑜𝑢𝑡 =

{
𝐶 (𝑥) +𝐶′ (𝑥) 𝑖 𝑓 𝑤 = 1
𝛼 ∗𝐶′ (𝑥) 𝑖 𝑓 𝑤 = 0

(2)

3.1 Language-based scale-specific skipping
parameters

We use the Gumbell-Softmax on the language embedding gener-
ated by the GRU network to compute 3 discrete values that serve as
common skipping parameters across different stages of the overall
neural model. The language features (𝑓𝑡 ) are captured by a 256-
dimensional vector. This embedding vector serves as an input to

a fully-connected layer with 3 output neurons. We then use the
Gumbell-Softmax activation mechanism to obtain the 3 correspond-
ing discrete binary values as follows.

𝑤1,𝑤2,𝑤3 = 𝐺 (𝐹 (𝑓𝑡 )); 𝑤ℎ𝑒𝑟𝑒 𝑤1,𝑤2,𝑤3 ∈ {0, 1} (3)
In the above equation,𝐺 is the Gumbell-Softmax activation function
and 𝐹 is the Fully-connected layer function. A value of ‘0’ for a
skipping parameter implies that the relevant module will not be
executed (or, more precisely, will only be approximately executed),
while a value of ‘1’ implies normal execution of the module. In our
current design, for a given input referring expression, only one of
these parameters are assigned a value of ‘1’, while the others are
set to ‘0’. This discrete value of either ’1’ or ’0’ is taken through
the output of Gumbell-Softmax activation function which directly
returns a one-hot encoded 3-dim vector. Each dimension of this
vector refers to a skipping parameter.

3.2 Skippable visual backbone
We evaluated two visual backbones for LGMDP, viz. (i) ResNet [34]
and (ii) ShuffleNet [19]. Our baseline RealGIN model also uses the
same ResNet visual backbone. A Resnet-based backbone is, how-
ever, not amenable to execution on low-resource embedded devices,
such as the Jetson Nano. Therefore, we also consider lower com-
plexity ShuffleNet as the backbone, to support real-time, on-device
execution despite a loss in accuracy. ResNet has a residual struc-
ture and several earlier studies have proposed ways of skipping
convolutions, using strategies such as early exit [25] and gated skip-
ping [27], to reduce latency. However, such hard skipping strategies
simply terminate computation of visual features at lower scales and
thus cannot extract the multi-scale contextual information required
for effective REC. In contrast, as shown in Figure 3, we adopted
the SoftSkip approach: in LGMDP, whenever a certain block of
convolutions at a certain scale is identified as suitable for ‘skipping’
in the visual backbone, a single-layer convolution is always used as
an alternate pathway to provide approximate information at this
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scale. Accordingly, if 𝐹𝑣1, 𝐹𝑣2, 𝐹𝑣3 denote the 3 visual feature scales
in the backbone, we compute ¤𝐹𝑣1 , ¤𝐹𝑣2 and ¤𝐹𝑣3 which are ideally
low complexity alternatives for 𝐹𝑣1, 𝐹𝑣2 and 𝐹𝑣3. Then, we use𝑤1,
𝑤2 and𝑤3 for skipping 𝐹𝑣1, 𝐹𝑣2 and 𝐹𝑣3 as follows.

𝐹
′
𝑣𝑖 = 𝑤 (𝑖) ∗ 𝐿𝑏 (𝐹𝑣𝑖 ) + 𝛼𝑖 ∗𝐶𝑜𝑛𝑣2𝐷 (𝐹𝑣 (𝑖−1) ), 𝑓 𝑜𝑟 𝑖 ∈ 1, 2, 3 (4)

In the above equation, 𝐿𝑏 represents the usual convolutional blocks
in the backbone which computes the respective feature scales.
𝐶𝑜𝑛𝑣2𝐷 is a single convolutional layer with a stride of 2 and kernel
size of 1. In the event that the𝑤𝑖 is 0, corresponding feature scale
will be approximated with this single convolutional layer.

3.3 Skippable Adaptive Feature Selection
Outputs from different scales of the visual backbone are used as
input to AFS modules (described in [34]) operating at the corre-
sponding scales. The function of the AFS module is to take the
visual feature maps from different scales and project them to the
same resolution and depth using multiple convolutional layers. The
visual feature maps from different scales represent visual informa-
tion at different semantic levels. Separately, the language priors
for these semantic levels are learnt from the textual feature vec-
tor (𝑓𝑡 ) resulting in three separate fusion weights (𝑣1, 𝑣2 and 𝑣3)
corresponding to these feature scales. These language priors are
found to be useful to represent the wide variations in the content
of textual expressions. For example, when an expression contains
semantic information such as color/texture, AFS can increase the
fusion weights for low/mid-level features. After that, a final visual
feature map is computed as the weighted sum of these individual
feature maps.

In LGMDP, we use multi-scale AFS wherein three AFS modules
are involved each producing output at three different scales. We
then use the skipping parameters𝑤1,𝑤2 and𝑤3 calculated earlier
to determine whether the AFS modules at a certain scale should
be subjected to soft-skipping or not. By sticking to our principle
of soft-skipping, whenever an AFS module is subjected to soft-
skipping, its output is always approximated by a proportion of
the corresponding visual feature map obtained from the skippable
visual backbone (as described earlier). Formally,

𝑥𝑖 = 𝑤𝑖 ∗𝐴𝐹𝑆𝑖 (𝐹
′
𝑣1, 𝐹

′
𝑣2, 𝐹

′
𝑣3, 𝐹𝑡 ) + 𝛽𝑖 ∗ 𝐹

′
𝑣𝑖 (5)

When 𝑤𝑖 is 0, respective AFS stage output will be 0 and relevant
AFS activated features will be approximated with 𝛽𝑖 ∗ 𝐹

′
𝑣𝑖
.

3.4 Global Attention Module
In this module, the AFS-derived feature maps are used as input to
an attention mechanism (mimicking that used in [34]). This mod-
ule, called GARAN, uses the textual features to collect expression-
related information over the whole image and then selectively
diffuse this information to all anchors (predefined (location, size)
templates for objects). As described in [34], the differential atten-
tion maps can be obtained by using the ground-truth bounding
box of the target object, during training, as a supervision signal to
calculate the attention loss.

Even though scale-specific skipping behavior can conceptually
also be incorporated in the GARAN, we empirically found that
such skipping resulted in a significant drop in accuracy with only

minimal latency benefits. As the GARAN module is relatively com-
putationally lightweight, there is not much benefit in implementing
the skipping behavior at this stage. The output of the GARAN mod-
ule is the multi-modal feature matrix 𝐹𝑚 , which is then utilized to
perform a YoLo-style bounding box regression.

3.5 Skippable Feature Pyramids and bounding
box regression

The multi-modal feature matrix obtained from the GARAN module
is used by a feature pyramid network [17] to perform bounding box
regression. The feature pyramid network (FPN) is generally used
to overcome the problem of limited receptive field exhibited by
convolutional layers. FPN usually has two pathways: (1) Bottom-up
pathway, which ideally is the feed-forward computation of convo-
lutional layers with a scaling factor of 2, and (2) Top-down path-
way, which up-samples feature vectors that are spatially coarser
but semantically stronger, using a scaling step of 2. We apply our
soft-skipping approach only to the top-down pathway in a similar
fashion as described in the visual backbone. The FPN outputs fea-
ture maps at multiple scales that would be used for regression. Our
intuition is that the language may have a hint on the size of the
object of interest which may in turn help us to skip the irrelevant
feature scales.

4 RESULTS
We evaluate LGMDP’s performance for REC tasks using three
benchmark datasets.
(1) ReferIt or RefCLEF [14] - This dataset contains about 19997

images selected from the ImageCLEF competition [11], with
the objects in them referred through a two-player game, where
the players alternate between generating and comprehending
referring expressions. Apart from collecting this pioneering set
of data of <image,expression> pairs, the authors also provided
an analysis of the visuo-linguistic characteristics observed, such
as the relationship between target bounding-box area versus
the key-words used in the expressions etc. Thus, we used this
dataset first to evaluate multiple SoftSkip strategies and empiri-
cally identify the preferred LGMDP model.

(2) RefCOCO [33] - This dataset was also collected using the same
game paradigm as ReferIt dataset, but the stimulus images are
selected from the MSCOCO [18] dataset which is often used for
training deep learning based object detectors. In this, there are
142,209 expressions referring at 50,000 objects in 19,994 images.

(3) COPS-Ref [7] - This is a recently released dataset containing
148,712 expressions, that collectively refer to 1,307,885 regions
on 75,299 images, making it the current largest real-world image
dataset for referring expressions. The <image,expression> pairs
in this dataset are considered challenging due to the presence of
“distractor" objects which are similar to the target objects. Thus,
this dataset serves to analyze the deeper reasoning abilities, such
as logic and relational inference, of various REC techniques.
To evaluate the inference latency (time taken to process a single

<image,expression> pair) of LGMDP and other competing models,
we implement and deploy these models on an NVIDIA Jetson TX2
[1], a representative embedded device. TX2 comprises of a 256-core
GPU,a dual-core NVIDIA processor and 8GB system memory.
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4.1 Different SoftSkip & HardSkip Strategies

Val Test Lat(ms)
LGMDP-skip1 68.21 65.17 290
LGMDP-skip2 67.90 64.98 255
LGMDP-skip3 63.16 60.18 200
LGMDP 67.19 64.56 220
LGMDP-Hardskip 57.54 53.11 218

Table 1: Comparison of LGMDP variants on referit dataset

We first start by evaluating, on the ReferIt dataset, four distinct
variants of our proposed SoftSkip strategy vs. a candidate Hardskip
alternative, to help establish the preferred LGMDP alternative and
its absolute performance. We evaluated a few variants of SoftSkip
behavior, resulting in 5 different LGMDP variants, as follows:
(a) LGMDP-skip1: In this variant, only the largest scale (scale 3=7x7)

is amenable to dynamic runtime soft-skipping, with SoftSkip
enabled across all of the backbone, AFS and FPN stages; the
other scales are always computed in their entirety.

(b) LGMDP-skip2: In this variant, SoftSkip is enabled for two scales
(7x7 & 14x14), across all of the backbone, AFS and FPN stages.

(c) LGMDP-skip3: Here, SoftSkip is enabled across all three scales
(7x7, 14x14 and 28x28), and throughout the entire DNN includ-
ing the backbone, AFS and FPN stages.

(d) LGMDP: In this preferred model (which diverges only minutely
from LGMDP-skip3), SoftSkip is enabled for all 3 scales in the
AFS and FPN stages, but it is applied only to the two larger
scales (7x7 and 14x14) on the visual backbone.

(e) LGMDP-HardSkip: This variant is identical to LGMDP, except
that it replaces SoftSkip with a hard skipping strategy, where the
computation for DNN states identified for skipping is eliminated
entirely (instead of computing an approximate set of features).
Table 1 compares their relative performance. As expected, the

average accuracy values degrade slightly as more scales are pro-
gressively possible candidates for soft-skipping; conversely, the
overall execution latency decreases as well. We observe that option
(d) (where skipping scale 1 in the visual backbone is prohibited)
performs significantly better (suffering an accuracy drop of < 1%)
than LGMDP-skip3 (which suffers an accuracy drop of ∼ 5%), while
exhibiting comparable latency. Accordingly, we pick and use (d) as
our preferred LGMDP embodiment for all subsequent experiments.

We also note that LGMDP-Hard suffers a significant (> 12%)
drop in accuracy, validating our belief that completely eliminating
feature extraction at certain scales is inadvisable for REC tasks
where language-guided visual reasoning often occurs at multiple
scales. We hypothesize that this performance loss could be due to
two different factors: (a) Vanishing Gradient Problem: During the
learning phase, if the skipping weight equals 0, the relevant feature
scale results in a null matrix, which results in a zero gradient that
in turn affects the efficacy of backpropagation; (b) Over-reliance on
language features: Hard-skipping implicitly assumes that the verbal
instruction provides sufficient cues for determining the appropri-
ate visual scales needed. This is, of course, not universally true; in
cases where the verbal cues are imprecise, hard skipping effectively
obliterates features at certain scales, making the eventual recogni-
tion of target objects extremely difficult. SoftSkip, in contrast, is

more permissive of situations where the language pruner makes
mistakes.

4.2 Qualitative Insights on Multi-Scale SoftSkip
Before returning to using macroscopic metrics, such as comprehen-
sion accuracy, to compare LGMDP against non-dynamic baselines,
we analyze the corpus of instructions in the ReferIt dataset to reveal
deeper insights into the functioning of our SoftSkip strategy.

Figure 4 provides some typical examples of the referring expres-
sions and the associated images in the ReferIt corpus. The top row
contains examples of images where the referred object is generally
large in size. The first two images in the middle row contain refer-
ences to small target objects, while third image contains a reference
to a prominent target. The last row of images are examples of where
the verbal expression employs color attributes. We can observe that
the textual references in these examples often provide indicative
hints about the most salient visual scale. Small objects may need a
scale of 28x28 (scale 1), big objects may need a scale of 7x7 (scale
3), references to low-level image properties like color/texture may
benefit from scale 1, while the presence of relative positional ref-
erences (left/right/foreground/background) may suggest the need
for multiple scales. A fairly detailed analysis of the visuo-linguistic
characteristics of the ReferIt dataset was provided by the authors in
[14]. We used this to examine the semantic relevance of the SoftSkip
behavior exhibited by LGMDP. The individual bars in Figure 4 pro-
vide the percentage of expressions where LGMDP chose a certain
scale for full execution without skipping (with the correspond-
ing skipping parameter 𝑤𝑖 == 1), for instructions that contained
specific keywords such as ‘big’, ‘little’, ‘foreground’, ‘background’
etc. In CNN-based object detection, spatial resolution diminishes
rapidly as computation proceeds to the deeper layers; accordingly,
deeper layers are likely to be less useful for capturing features of
smaller objects. Therefore, one would expect scale 1 to be active and
scale 3 skipped (𝑤1 = 1,𝑤3 = 0,) more often for scenarios involving
detection of small objects. Similarly, one would expect scale 3 to
be active (𝑤3 = 1) mainly for target images with larger bounding
box area and expressions needing visual context corresponding to
larger object sizes.

Some key points we observed are given below,
• As reported in [14], in the ReferIt dataset, the bounding box
area of the target objects was found to be larger for expressions
involving the keyword ‘big’, whereas the keywords ‘tiny, little
and short’ were often associated with target objects with smaller
bounding boxes. Correspondingly, in our skipping mechanism,
the scale 1 (28x28) is used without skipping (𝑤1 = 1) for 43% of
the instructions containing ‘tiny, little and short’, whereas the
scale 3 (7x7) is used without skipping (𝑤3 = 1) for 26% of such
instructions.Whenwe looked at instructions containing theword
‘big’, the proportion of the instructions for 𝑤1 = 1 dropped to
38% while the proportion for scale 3 (𝑤3 = 1) increased to 32% of
the instructions. The results broadly confirm our hypothesis that
larger target objects would preferentially activate coarse scales
(scale 3) more often. However, note that additional contextual
factors, beyond just the target’s bounding box size, can affect the
choice of scale, and in fact, require multiple scales. For example,
consider the ReferIt expression: "the door of the big building".
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Figure 4: Examples of size, position and color based references in the ReferIt dataset and a visualization of scale activation
weights, for different keywords in images

Here, while the target object is a ‘small’ door, comprehension
requires identification of the ‘big building’ first.

• We then explored to filter out cases where the references to the
same object are made but with different size adjectives. We chose
‘Building’ as our target object and selected the expressions con-
taining the word ‘Building’. Within these expressions, we looked
at references to ‘big’ building and ‘small’ building separately.
We found that in cases involving ‘small’ buildings, scale 1 was
used for 59% of the expressions. In contrast, for expressions that
involved ‘big’ building, scale 1 was used only about 30% of the
time, while the use of scales 2 and 3 increased dramatically.

• In this dataset, color adjectives were used very often to refer to
relatively smaller target objects, such as ‘car’ and ‘fabric’. Accord-
ingly, we observed that scale 1 was activated in LGMDP (𝑤1 = 1)
for a vast majority of instructions involving these objects.

• Relative references in referring expressions may involve a mix
of words such as positional keywords or objects. In ReferIt, the
words ‘foreground’, ‘background’, ‘side (left side, right side)’,
‘guy’, ‘man’, ‘woman’, ‘tree’ and ‘wall’ were among the most fre-
quently used to describe relative location of the target object. We
observed a mix of scales being activated for these keywords. First,
we looked at expressions that involved explicit references to fore-
ground/background and side keywords. From a visual analysis
in Figure 4, we could not determine an obvious ‘preferred’ scale
associated with these words. Next, we looked at the expressions
involving relative position with respect to the objects (‘tree’ and
‘wall’). We observed that Scale 3 (𝑤3 = 1) was fully activated for
a large proportion of such expressions. However, for references
to human objects (e.g., girl, boy, woman, man, child, lady, gen-
tleman) or constituent body parts (e.g., face, hand, arm and leg),
Scale 1 was activated more often. We note that human objects
and/or their body parts are often easily described via the use of
low-level adjectives (e.g., color/texture for skin or clothing).

• The authors in [14] had reported that the target object ‘bed’ was
very often referred by ‘absolute location’ (“center bed", “bed on
the left" etc.). In LGMDP, we find that medium scale 2 is invoked
for a large proportion of these expressions.

These observations intuitively justify the scale-specific skipping
strategy adopted in LGMDP, where a necessary scale is activated
according to the semantic level of the visual context needed. Given
that a single visual scale may not be directly inferred from verbal
instructions or may not be appropriate for many images, LGMDP’s
SoftSkip approach helps cushion the effect of erroneous computa-
tion of skip weights.

4.3 Comparison of LGMDP with RealGIN
We now compare the performance of LGMDP with our chosen
baseline - RealGIN. From Table 2, we observe that LGMDP’s per-
formance is very close to that of the baseline RealGIN approach.
The drop in accuracy is a very meager <1% for ReferIt and Ref-
COCO (testB) datasets. The overall accuracy of RealGIN as well
as LGMDP is lower for the more challenging COPS-Ref dataset,
with LGMDP suffering a more discernible (∼1.3%) relative loss in
comprehension accuracy. Such modest loss in accuracy is, however,
balanced by the significant (∼33%) reduction in latency achieved by
our dynamic pruning approach. The latency of LGMDP (220 msec,
225msec and 218msec for the ReferIt, COPS-Ref and RefCOCO
dataset respectively) is about 105-110msec lower than the baseline.

4.3.1 Pervasive versions: Static Pruning vs. Dynamic SoftSkip. The
original RealGIN uses ResNet-152 as its visual backbone. How-
ever, ResNet-152 is computationally intensive and not suitable for
pervasive applications–e.g., the original RealGIN model cannot be
executed on the Jetson Nano, a more resource-constrained perva-
sive device. As a form of static pruning, RealGin’s ResNet-152 visual
backbone can be replaced Shufflenet [19], a lightweight DNNmodel
specially curated for pervasive applications with low latency and
memory requirements. Thus, we experimented both with (a) a static
pruning model, RealGIN-staticPr (where Shufflenet is used as part
of the RealGIN backbone), and as well as (b) LGMDP-staticPr (an
exemplar of dynamic soft skipping, where our SoftSkip paradigm is
applied on top of RealGIN-staticPr). Applying static pruning does
result, as expected, in a significant ( 18%) loss of accuracy, while
enabling a 2x faster execution on the Jetson Nano. In comparison,
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Method Backbone ReferIt COPS-Ref RefCOCO
Val (%) Test (%) Lat(ms) Test (%) Lat(ms) Val (%) Test A (%) Test B (%) Lat(ms)

RealGIN ResNet-152 68.29 65.37 330 48.17 330 75.10 76.71 68.22 330
LGMDP ResNet-152 67.19 64.56 220 46.81 225 73.27 75.19 67.23 218
RealGIN-SkipNet ResNet-152 61.49 58.31 250 38.66 250 69.12 70.23 72.10 250
RealGIN-staticPr Shufflenet 51.21 48.29 150 45.98 150 60.45 62.29 64.97 150
LGMDP-staticPr Shufflenet 49.90 47.11 120 44.12 124 58.10 61.11 63.27 120

Table 2: Performance comparison of LGMDP against RealGIN, Static Pruning and Dynamic Pruning

LGMDP suffers only a marginal 0.8% degradation in performance
while enabling a 33% further reduction of latency (from 330 msec
to 220 msec). Similar results also hold for the execution on our
representative Jetson TX2 (see Table 2), demonstrating the general
applicability of our proposed SoftSkip approach.

4.4 Dynamic Pruning: SkipNets vs LGMDP
In contrast to existing dynamic pruning approaches designed for
uni-modal neural models, LGMDP is designed for a multi-modal
REC task. To evaluate the benefit of our multi-modal dynamic prun-
ing strategy against the existing uni-modal pruning approaches, we
take Skipnet [27] as an alternative baseline. Skipnet uses a gated net-
work architecture where individual layers are dynamically skipped
(or not), based on gating parameters computing using the Gumbell
Softmax activation function applied on existing residual blocks
in the convolutional backbone. For comparative assessment, we
implement RealGIN-SkipNet, a model where we replace RealGIN’s
visual backbone with the Skipnet architecture. As shown in Table
2, RealGIN-Skipnet suffers an accuracy loss of ∼7%, in contrast to a
mere 0.8% accuracy loss for LGMDP, while also incurring a ∼10%
higher latency than LGMDP. This result conclusively establishes
the superiority of our proposed SoftSkip-based dynamic pruning
for multi-modal REC tasks.

5 DISCUSSION
While we have demonstrated that the soft-skipping strategy in
LGMDP has several benefits in saving computational resources in
REC task alone, we believe that the same paradigm could be applica-
ble in several related tasks such as referring expression generation,
simultaneous REC + segmentation, natural language image editing
and video based REC as well. Video-based REC would also bring in
new challenges in the form of varying levels of visual context in
different frames, even though the textual referring expression may
remain unchanged. Therefore, there may be a need to constantly
iterate between visual and textual information to achieve an ac-
curate grounding. However, even in this case, we believe that our
principle of “scale-specific soft-skipping" would still prove relevant
in helping ascertain the visual scales most pertinent for accurate
instruction comprehension.

An important recent trend in this field is to use additional,
naturally-occurring non-verbal cues (e.g. pointing) as part of the
referring expression [6, 28]. This opens up more opportunities
and challenges–e.g., pointing gestures can provide crucial hints
regarding the location of the target object on the image/video, even
though pointing accuracy degrades with distance. Furthermore,
verbal expressions could be very different when users are allowed
to point at the target object (an aspect not explicitly considered

in the game setup of [14]). However, we note that LGMDP can be
easily extended to accommodate pointing gestures by including a
pointing affinity field in the GARAN mechanism. We also believe
that calculating pointing affinity maps would also involve deep
neural networks operating at multiple scales, while factoring in the
aforementioned distance dependence of pointing fidelity. Thus, we
believe that scale-specific soft-skipping could still be relevant in
such situations. Another important capability pursued is zero-shot
grounding, where the textual expression contains words that have
not been encountered during training. Limited recent work [23] has
shown that it is still possible to achieve accurate comprehension.
One would imagine that non-verbal cues like pointing and gaze
would facilitate zero-shot grounding of referring expressions.

Further, recently transformer-based methods such as GPT3[9],
DETR [5] have demonstrated superior performance in both tra-
ditional natural language processing and computer vision tasks.
Hence, transformers may also be useful in REC tasks. However,
these models are still computationally very complex and resource-
intensive, and face the same challenges for pervasive deployment
discussed earlier. While developing scale-specific skipping strate-
gies for such transformer-based models is an interesting propo-
sition, it is likely that this will require significant changes to the
methods and design proposed in this paper.

6 CONCLUSION
We have demonstrated that it is possible to save computational re-
sources for real-time execution of REC tasks using a novel dynamic,
multi-scale, soft-skipping mechanism. Proposed LGMDP model uti-
lizes the textual information to determine which scale of visual fea-
tures is more crucial for comprehension, and then reduces (but does
not eliminate) computational effort, across multiple DNN stages, at
other visual scales. Using this strategy, we show, across 3 bench-
mark datasets, that LGMDP is able to (a) save about 33% of latency,
with just an∼0.5% loss in accuracy, and (b) substantially outperform
other static and uni-modal dynamic pruning approaches.
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