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ABSTRACT
Many recent models in software engineering introduced deep neu-
ralmodels based on the Transformer architecture or use transformer-
based Pre-trained Language Models (PLM) trained on code. Al-
though these models achieve the state of the arts results in many
downstream tasks such as code summarization and bug detection,
they are based on Transformer and PLM, which are mainly studied
in the Natural Language Processing (NLP) field. The current studies
rely on the reasoning and practices from NLP for these models in
code, despite the differences between natural languages and pro-
gramming languages. There is also limited literature on explaining
how code is modeled.

Here, we investigate the attention behavior of PLM on code and
compare it with natural language. We pre-trained BERT, a Trans-
former based PLM, on code and explored what kind of information
it learns, both semantic and syntactic. We run several experiments
to analyze the attention values of code constructs on each other
and what BERT learns in each layer. Our analyses show that BERT
pays more attention to syntactic entities, specifically identifiers and
separators, in contrast to the most attended token [CLS] in NLP.
This observation motivated us to leverage identifiers to represent
the code sequence instead of the [CLS] token when used for code
clone detection. Our results show that employing embeddings from
identifiers increases the performance of BERT by 605% and 4% F1-
score in its lower layers and the upper layers, respectively. When
identifiers’ embeddings are used in CodeBERT, a code-based PLM,
the performance is improved by 21–24% in the F1-score of clone
detection. The findings can benefit the research community by us-
ing code-specific representations instead of applying the common
embeddings used in NLP, and open new directions for developing
smaller models with similar performance.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Pre-trained languagemodels (PLMs) such as BERT [10] and RoBERTa
[27] are based on Transformer networks [43] and have been widely
used in the field of Natural Language Processing (NLP). These lan-
guage models are trained on a large corpus of data and are able to
capture the general understanding of a language [33]. More recently,
the software engineering community has employed language mod-
eling on tasks such as code retrieval, program repair, code documen-
tation, code clone detection, and bug detection [12, 13, 19, 20]. The
results obtained by fine-tuning the language models pre-trained on
code corpora outperformed the previous state-of-the-art models
[12, 14, 28]. There have been attempts [12, 14] to develop code-
specific PLMs, which can leverage existing techniques in Software
Engineering (SE) to enrich the underlying Transformer networks
for SE-related tasks. However, all these works are based on stud-
ies in natural language and they do not investigate how code is
modeled differently.

Under the hood, these transformer-based language models use
the attention mechanism, which enables the model to attend to
more important tokens in a sequence. This is used in multiple soft-
ware engineering studies for developing models or explaining the
models’ predictions [3, 15, 23, 25, 38]. The importance of this ar-
chitecture with attention mechanism can be derived from the fact
that employing the vanilla Transformer based networks without
any additional techniques like utilizing abstract syntax tree and
information retrieval can generate state-of-the-art results in vari-
ous tasks such as code summarization, code retrieval, code clone
detection, and program repair [1, 2, 12, 14, 46]. However, there is
no study to explore how the PLMs attend toward different tokens
in code and whether the assumptions made in NLP for represent-
ing a text sequence apply to code, despite the differences between
programming languages and natural languages. For example, code
comprises of different constructs such as identifiers and data-types,
and how the PLMs model these constructs is unknown.
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Although there are studies in software engineering [7] that show
the similarities and dissimilarities between the programming lan-
guages and natural languages, assuming similar behavior in code
by directly applying the NLP knowledge may not be appropriate;
and it is necessary to study how the Transformer architecture using
language models learns the semantic and syntactic information
in code. The literature on this topic is limited. It is only recently
that Karmakar and Robbes [21] studied the comprehension abilities
of four different pre-trained models (BERT [10], CodeBERTa [48],
CodeBERT [12] and GraphCodeBERT [14]) trained on code. They
compare the performance of these models from the perspective of
probing classifiers without investigating the details of what the
architecture learns about code.

This study evaluates the BERT model, trained on code corpus.
BERT is chosen as it is the basis of RoBERTa used by CodeBERT and
other PLMs developed for code. In addition, we want to compare
our code-specific findings with what BERT learns about natural
language in the study of Clark et al. [8]. We evaluate the BERT
model that we pre-train on code as a classical NLP pipeline. An
NLP pipeline analyzes the language based on its linguistic features,
which can contain semantic and structural properties [30, 41]. In
our study, we explore the attention behavior of BERT on different
syntactic types (i.e., code constructs).Wewant to understandwhich
layers the model learns the semantic and syntactic knowledge of
code. To compare our findings (BERT trained on programming
languages) with (BERT trained on natural languages), a direct com-
parison is made with an existing NLP study by Clark et al. [8]. Our
study uses BERT as it is a popular and strong baseline used in NLP
and Software Engineering (SE) areas. Moreover, other variations of
BERT such as RoBERTa [27] are based on BERT and they have a
similar architecture that is used in many PLMs on code [12, 14]. Our
results show that, unlike NLP, the [CLS] and [SEP] tokens are not
attended much in code. This is important as the learned embedding
of [CLS] and and [SEP] are frequently used in the classification
tasks in both fields of NLP and SE. However, we observed that the
[CLS] is not the best token to capture the information of the code
sequence for classification tasks. On the other hand, BERT attends
more toward identifiers (e.g., class names) and separators (e.g., ;, {)
in code. This led us to the hypothesis that the embeddings learned
for identifiers in code can be a better representation in classification
tasks related to code. To validate our hypothesis, we conducted
experiments on code clone detection, where we compare the results
obtained using the embeddings from [CLS] and identifiers. When
the identifier’s embedding is used, the performance is improved by
605% and 4% in F1-score, using embeddings from the lower layers
and the upper layers of BERT, respectively. We apply our findings
on CodeBERT [12], a Transfomer based PLM developed for code
representation, which uses a different pre-training objective. Sim-
ilar behavior is observed when using the identifier’s embedding,
and the results of code clone detection are improved by 21–24% in
F1-score compared to when the [CLS] embedding is used.

The contributions of this paper are listed as follows:

• We present a first study that explores the attention com-
prehension abilities of BERT pre-trained on code.

• We compare BERT’s learning in the modeling of natural
language English and the programming language Java. Our

findings reveal some similarities and differences in modeling
the languages by the PLMs.

• We study whether BERT can intrinsically learn code struc-
ture. Our analysis shows that the models can understand the
general syntactic structure by predicting correct syntactic
entities; however, they cannot correctly predict the valid
tokens with high accuracy.

• We propose to use the embeddings generated from identifiers
in place of the vanilla embeddings used in BERT. When
employed for code clone detection, these embeddings create
better results than the vanilla techniques used in the PLM.

We have open-sourced our experiments for replication of the
results and further usage in the software engineering community1.

Significance of Study: Our study provides new insights on
two important entities in code: identifiers and separators. This also
includes how they are modeled in PLMs. The representation of
these code constructs can be used to generate better models for code
clone detection. The generated embeddings are effective as they
increase the performance significantly using the lower layers of
BERT. Researchers can use the findings presented in the paper to use
the current PLMs and obtain better results. Moreover, though this is
not the focus of our research, these findings can be used to reduce
model sizes, addressing the lack of computational accessibility and
enable a wider audience to use PLMs in practice, e.g. by having 6
layer models with similar performance to 12 layer models.

The rest of this paper is organized as follows. In section 2 we
detail the necessary background. Study design and the experimen-
tal setup are presented in section 3, followed by answers to each
research question in sections 4, 5, and 6. Related works are dis-
cussed in section 7, followed by threats to validity in section 8. We
conclude the paper in section 9.

2 TRANSFORMER AND BERT
ARCHITECTURE

In this section, we explain the necessary background.

2.1 Transformer
Transformer forms the fundamental units of BERT, a popular PLM
used in many studies [10]. A Transformer in a sequence gener-
ation setting uses multiple stacks of Encoder and Decoder [43].
Transformers primarily leverage Multi-Head Self Attention and
Feed-forward neural network to model the relationship within the
text [43]. BERT solely uses the Transformer’s encoder stack due to
its pre-training objectives used in its pre-training [10].

Multi-Head Self Attention Layer: The Transformer encoders
use the self-attention [43] mechanism to represent the input se-
quence by relating every input sequence element with each other.
For the given input sequence S (𝑆 = 𝑇1,𝑇2, ...𝑇𝑛), of length 𝑛, each
input token 𝑇𝑖 is first converted into its vector embedding 𝑥𝑖 .

Each encoder layer consists of three sets of weights matrices,
𝑊 (𝑞),𝑊 (𝑘), and𝑊 (𝑣) that is used for query, key, and value, re-
spectively. Initially, these matrices are randomly initialized and
they are trainable parameters. The vector multiplication between
input embedding 𝑥𝑖 and𝑊 (𝑞),𝑊 (𝑘), and𝑊 (𝑣) matrices generates

1https://github.com/fardfh-lab/Code-Attention-BERT
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unique query 𝑞(𝑖), key 𝑘 (𝑖), and value 𝑣 (𝑖) vectors, respectively.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇 )√︁
𝑑𝑘

𝑉 (1)

The attention scores are obtained by performing dot product be-
tween vector 𝑞(𝑖) and vector 𝑘 (𝑖). This score is then divided by the
square root of the dimension of the input embedding 𝑑𝑘 . The soft-
max function is applied to the attention scores to obtain attention
distribution as shown in (1). Each softmax score is multiplied with
the value vector 𝑣 (𝑖) to generate weighted vectors added to get the
final vector 𝑧 (𝑖). This same task is repeated for each token multiple
times, to form multi-headed attention. Each attention head learns
a different vector space which is then combined by concatenating
the information learned by each attention head.

Position Embeddings: Languages are sequential, and changing
the order of words may lead to a completely different meaning or an
erroneous sentence, which does not have any congruous meaning.
In Transformer, a complete sequence of text forms the input into the
multi-head attention layer, which helps in promoting parallelization.
To maintain and learn the syntactic correctness of the language, an
additional type of embeddings, position embeddings, is introduced.
Specifically, the word embedding 𝑥𝑖 and its corresponding position
embeddings 𝑝𝑖 are added, 𝑥𝑝𝑖 = 𝑥𝑖 + 𝑝𝑖 . Embedding 𝑥𝑝𝑖 is then
further fed into the multi-head attention layer:

Residual Connection and Add Normalize: The output of
multi-head attention is added to the residual connection from 𝑥 (𝑖),
and layer normalization is performed on the added vector.

Feed Forward Neural Network Layer: The output from the
Add Normalize layer is then fed into the feed-forward neural net-
work, which has a common architecture for all the tokens. However,
this step is done in parallel on each token as shown in equation (2).

𝐹𝐹𝑁 (𝑥𝑖 ) =𝑚𝑎𝑥 (0, 𝑥𝑖𝑊1 + 𝑏1)𝑊2 + 𝑏2 (2)

The output is then added and normalized. This finally completes
a single feed-forward propagation in one encoder unit. The out-
put from this encoder unit is fed into the next unit, and the same
processing is done on it.

2.2 BERT: Bidirectional Encoder
Representations From Transformers

BERT is a PLM trained with the core motivation to build a bi-
directional model, which can learn the general understanding of
the language and then it can be fine-tuned for various downstream
tasks.

BERT-Pretraining: BERT is pre-trained on two unsupervised
tasks (i) Masked Language Modelling (MLM) and (ii) Next Sentence
Prediction (NSP). Originally, BooksCorpus and English Wikipedia
datasets were used to train BERT [10]. The datasets contain books
and Wikipedia information that is available online.

Masked Language Modeling (MLM): Unlike other neural lan-
guage models, BERT is pre-trained using Masked Language Model-
ing. In masked language modeling, the task is to predict a randomly
masked token in a sequence rather than predicting the next token
in sequence. Within Masked Language Modeling in BERT, 15% of
the tokens are randomly masked. Masking of the tokens follows
a probability pattern where a token is either replaced with (1) a
[MASK] token 80% of the time, (2) a random token 10% of the time,

or (3) it will remain unchanged for 10% of the time.
Next Sentence Prediction (NSP): BERT is also pre-trained on a
binary next sentence prediction task. This task focuses on training
a language model that can discern whether the given sentence is
the next sentence of the current sentence. This is done by randomly
replacing the next sentence 50% of the time with random sentences.
This would enable the model to discern the difference between the
natural coherence of the sentences, which motivates the model to
learn the general understanding of a language.

Special Tokens inBERT: BERT introduces special tokens namely
[CLS] and [SEP] tokens as its input formatting. [CLS] is appended
at the start of the sentence, which is supposed to learn knowledge
of the whole sentence. [SEP] token is used as a “separator” between
sentences to highlight the end of a sentence. The representation
from the [CLS] token is also used during the NSP pre-training task
of the BERT model, as a “classification” token to predict whether a
sentence is the next sentence of a previous sentence.

3 BERT ATTENTION FOR CODE
The Transformer-based model primarily uses the multi-headed at-
tention to model languages [10, 27]. Therefore, attention plays a
vital role in training the PLMs, and thus it is important to study
the attention behavior of PLMs on the given text information. An
attention distribution for a given sentence can quantify the Trans-
former model’s importance to a particular token. A higher attention
value on a specific token means that token has a higher weight
in determining the representation of a given sentence, making it
a significant token to learn and represent a sentence. Therefore,
knowing the important tokens within the code is important for
extracting meaningful information from the PLMs. To understand
and visualize this attention information, we plot the attention maps
for different kinds of token types, similar to a study released for
the English language by Clark et al. [8]. We use this study as an
initial comparison of Transformer learning between code and natu-
ral language, and design different experiments to understand the
behavior of this architecture for programming languages.

3.1 Experimental Setup
There are two variants of BERT: BERT-Large and BERT-Base [10].
BERT-Base model contains 12 stacked encoders, with 12 attention
heads in each layer. In our study, we use the BERT-Base cased lan-
guage model as a direct comparison against the natural language,
English. The cased language model is used so that the BERT model
can learn the Java coding conventions for the identifiers, which
promotes the use of different casing styles. As we intend to com-
pare our results of the BERT model trained on code with natural
language, we need to keep the models the same. There are multiple
implementations available for BERT and its variants trained on
code, which are pre-trained with different objectives (e.g., MLM
and Replaced Token Detection).

However, for the comparison, we required a BERT model that is
pre-trained with the same objectives as the one used for the NLP
study [8] and also should purely be pre-trained on code. We are
unable to find an open-source pre-trained BERT-Base model that is
trained solely on code. Therefore, we trained a BERT-Base cased
model from scratch. All the pre-training decisions like the number
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of layers in the encoder and decoder, the casing of tokens, and
the pre-training objectives are consistent with the experimental
settings in the NLP study by Clark et al. [8]. For pre-training the
BERT model, we used the benchmark dataset released by Husain
et al. [18]. This dataset contains a large corpus for six different
programming languages collected from open source repositories
available on GitHub. However, we only confine our work to the
Java programming language in this study (we do not require a mul-
tilingual model) to keep it consistent with the NLP study where the
BERT model is only trained on a single natural language. Java is
chosen as the language in our study because it is a widely adopted
programming language to study program comprehension in the
software engineering community. It is also a commonly used pro-
gramming language in the industry. The statistics of the dataset
used is shown in Table 1.

Table 1: Dataset details for pre-training BERT

Split # Records in the Dataset
Train 164,923

Validation 5,183
Test 10,955

For training the BERT-Base cased model, we used the open-
source implementation of BERT that is available from its authors,
Devlin et al. [10]. In this study, as we focus only on code represen-
tation using BERT, we remove the JavaDoc comments, the inline
comments, and the block comments from the dataset. This cleaned
dataset only contains code and it is used for training the BERT
model. Further, to make the dataset eligible for the next sentence
prediction task, we keep the separation of the code sentences in
different lines, as mentioned on the BERT’s official implementation
repository2 and this separation process is also used in previous
study [26]. We then train BERT using this dataset. The training
continues for four consecutive days on a Tesla V100 GPU with
32GB memory. The performance of the BERT model on the valida-
tion dataset for the two pre-training objectives, Masked Language
Modeling and Next Sentence Prediction, is shown in Table 2. The
results obtained for BERT’s pre-training for the NSP objective on
code is 94.75%, which is close to the original pre-training result for
BERT model on English, as reported by the authors of the BERT
model. This result confirms that the model we have trained is con-
sistent with the original BERT model on English language. The
accuracy achieved by BERT for MLM is not reported in the original
paper. Therefore, we cannot make any direct comparison for this
pre-training objective. Nonetheless, we believe that 87.44% is a rea-
sonable accuracy for predicting the masked tokens, as it involves
the correct prediction of the code token in a sentence.

In the remaining paper, the BERT model that we refer to is the
model that we have pre-trained on Java.

3.2 Research Questions
This study investigates answers to the following research ques-
tions, which require analysis of the BERT’s attention behavior and
comprehension abilities for code.
2https://github.com/google-research/bert

Table 2: Accuracy of pre-trained BERT-Base on Valid dataset.
The results are close to the original pre-training results re-
ported in BERT

Pre-Training Task % Accuracy
Masked Language Modeling 87.44
Next Sentence Prediction 94.75

RQ1 (Attention Behavior): What is the surface level be-
havior of BERT attention over code? In this research question,
we study the attention scores set by BERT on the special tokens
available within BERT. Moreover, we also study the divergence of
information learned by different attention heads in various layers
of BERT. The relative position on tokens is used to investigate the
short or long-range attention over different layers.

RQ2 (Code Construct Relationships): How does BERT en-
code the code-specific relationships among different code
constructs? In this research question, we explore the code con-
structs that receive the highest attention, which can reveal im-
portant code constructs learned by the model. Furthermore, we
investigate how each code construct, specifically identifiers, dis-
tributes its relationship with other code artifacts like separators and
keywords in different layers. Moreover, we study whether BERT
can encode syntactic information of code by using a non-parametric
probing.

RQ3 (Semantic Knowledge): How does BERT learn the se-
mantic knowledge in code? In this research question, we inves-
tigate which layers within the BERT model can learn the semantic
understanding of code. We do this by analyzing the performance of
each layer for the code clone detection task. Finally, based on our
findings from RQ1 and RQ2, we leverage the embeddings learned
from identifiers to better represent code in place of the vanilla
[CLS] token.

3.3 Generating Attention Maps
Once BERT is pre-trained on the Java dataset, we use the model’s
trained weights to extract the attention distribution. For extracting
the attention scores, following Clark et al. [8], we do not use the
train dataset for understanding the attention mechanism. Instead,
we select samples from the test dataset. As BERT uses sentence
piece tokenization of text, it can lead to sub-tokenization of a token
into multiple tokens depending on the vocabulary used within the
tokenizer. Therefore, we can sample code examples using two dif-
ferent strategies (i) Select only code examples from the test dataset
for which the length before and after the tokenization remains the
same, (ii) Randomly sample code where tokens are sub-tokenized
and are later combined for attention analysis. We conducted the
same experiments using both strategies; however, the results are
similar irrespective of the sampling strategy. Therefore, to avoid
redundancy, we only include the experiments of the second strategy
and combine the tokens for the analysis.

4 ATTENTION BEHAVIOR
Here, we would only focus on the surface-level behavior of BERT’s
attention on code. We follow the surface level analysis as conducted
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in [8], and only include the attention over special tokens, the rela-
tive positioning of the tokens, and the similarity and difference in
attention distribution over different layers and heads.

4.1 Attention on Special Tokens
Before studying the attention behavior of code constructs, we look
at the attention behavior over the special tokens introduced by the
BERT’s pre-processing. It is important to study these special tokens
as they play an important role in pre-training the BERT model.
Two special tokens are introduced to feed input to the BERT model,
namely [CLS] and SEP. The [CLS] token’s representation is used
during pre-training for the next sentence prediction objective and
assumed to contain the complete information about the sequence,
and the [SEP] token acts as a delimiter between two sentences.

To visualize the attention distribution of these tokens, we apply
the following process. The BERT architecture we use has 12 layers,
and each layer contains 12 attention heads. As discussed previously,
each attention head is trained to learn different aspects of the in-
put, and when all the heads are combined, they should reflect the
complete knowledge. Therefore, for each layer and each head in
the layer, we aggregate the attention scores of the model for the
[CLS] and [SEP] tokens, separately. We aggregate the total atten-
tion scores on these special tokens (the scores for each of the [CLS]
and [SEP] are computed separately), which is the attention given
to these tokens by all the other words in the sequence. This score
is then normalized with the token’s total number of occurrences,
giving us the average attention put on each of [CLS] and [SEP]
tokens in each given code. The results are shown in Figure 1. The
multi-scatter plot on the y-axis of each layer shows the values of
different attention heads at each layer.

Figure 1: Attention on special tokens [CLS] and [SEP]

As shown in Figure 1, both of these special tokens have very low
attention values, which means BERT has little focus on the [CLS]
and [SEP] tokens when modeling code. This reduces the signifi-
cance of special tokens in learning the relationship of code tokens.
This result is contrary to what has been seen in the NLP study [8].
In NLP, the average attention on [CLS] and [SEP] ranges between
0 to 0.6 over different layers. This score ranges only between 0 to
0.10 for code.

For the [SEP] token, the average attention increases between
Layers-4 to Layers-6, and then there is a consistent decline until
layer 10, and then remains uniform for the remaining layers. Overall,
the [SEP] token consistently gets more attention over the [CLS]
token in all layers. However, in the case of NLP, Clark et al. [8]
reported that the initial layers until Layer-4 attend more towards
[CLS] over the [SEP] token, which is not the case as seen in Figure
1. We see a gradual decrease for the [CLS] token until Layer-5 and
then a gradual increase until Layer-9.

4.2 Attention on Relative Positioning of
Tokens

The attention score of the relative positioning of the tokens can
reveal the range (long and short) of attention distribution learned
by the model. Attention towards immediate neighbor tokens means
the model primarily understands the local context of the code. In
this study, we find the model’s attention that is put on the current
token, previous token, and the next token. As shown in Figure
2, BERT focuses less towards the token itself while learning its
representation when compared to attention towards its left and
right token. In the initial layers, the concentration on the token itself
is lower, which gradually increases in the middle layers (Layer-5 to
Layer-9). At Layer-11, the attention of the current token increases
and it is close to the attention value of its left and right token.

Figure 2: Attention on relative position of tokens

On average, 30% of attention is put by BERT on the left and right
token. Uniform attention values are seen over each layer. Also, it
demonstrates that the BERT for code model attends better locally
than the long-range attention. This is similar to what we see in
NLP, as BERT attends more towards local tokens in the English
language.

4.3 Attention Redundancy at Attention Heads
and Layers

BERT uses a multi-head self-attention mechanism to learn the
representation of tokens. Multiple attention heads within the same
encoder layer are expected to learn different language features.
The variety of information learned by these attention heads is
then concatenated to generate the representation for the language.
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Hence, it is important to study howmuch knowledge these attention
heads learn from each other.

Figure 3: Attention redundancy at attention heads and lay-
ers

To understand this information, the Jensen-Shannon divergence
[31] between different attention heads in the BERT model is cal-
culated. Jensen-Shannon divergence finds the similarity between
two probability distributions. Therefore, we use the probability
distribution of these attention heads to learn the differences. The
more the distance between the two heads, the more disparate infor-
mation is retained by them. In total, BERT contains 144 attention
heads. Therefore, we have a 144 × 144 matrix to represent such
information, as shown in Figure 3. The middle layers retain diverse
information compared to the lower and higher layers. Similar to
the NLP study, redundancy in the attention distribution insinuates
that not all attention heads learn unique information. Therefore,
there is scope for applying model distillation strategies that can
help reduce the model size and maintain equivalent performance.
The only difference we see between Java and English is the absolute
divergence values. The divergence in the information learned in
different attention heads in English is slightly more than the code,
possibly due to the repetition of code tokens and code syntax [7].

RQ1 Summary: We studied the surface level behavior of BERT
for code. Our experiments show that this behavior for code is mostly
similar to NLP. Therefore, surface-level behavior is dependent more
on the architecture of BERT, and the language differences have a
minor effect on the surface-level behavior. The primary finding is
the difference between code and NLP in the amount of attention
learned by BERT for the special tokens [CLS] and [SEP], which is
much less for code; indicating that the [CLS] representation cannot
efficiently capture the information about the code sequence.

5 CODE CONSTRUCT RELATIONSHIPS
Code has rich grammar and syntax. It contains multiple syntactic
constructs such as identifiers, separators, and data types. These
code constructs are not available in natural languages. Therefore,
we study the comprehension abilities of BERT for these syntactic
types and the relationship of each syntactic entity with other code
constructs.

Figure 4: Attention on identifier (IDF) and separators
SEPS

5.1 Analysing Attention on Code Constructs in
Code

Syntax plays an important role to increase the performance of
neural models on different software engineering tasks, including
code comment generation [17, 24, 50], code clone detection [12, 14],
program repair [47], software vulnerability detection [16], type
prediction [29], and bug detection [34]. Here, we study the attention
scores of BERT on the code constructs.

We draw an attention distribution plot similar to the plot for
special tokens, [SEP] and [CLS] as done in section 4.1. In this plot,
we collect the attention distribution for each of the syntactic types
(i.e., code constructs). In order to tag each token to a syntactic type,
we use the JavaLang Parser3. The JavaLang parser provides both
parser and tokenizer for the Java programming language and it has
been used widely in other software engineering studies [26, 45, 50].
The syntactic types included by the parser are identifiers, separa-
tors (e.g., ‘,’, ‘;’, ‘{’, ‘}’), operators (e.g., =, +, -), data-types (int,
float, double, etc.), keywords (e.g., abstract, continue, const),
and access-modifiers (e.g., public, private). We group all the sepa-
rators into a single token SEPS. Note that the [SEP] token in Figure
1 is different from SEPS in Figure 4. The former is a special token
introduced by BERT to act as a delimiter between two sentences,
and the latter is for the syntactic types (e.g., ‘,’, ‘;’, ‘{’) available
within code.

The plots are shown in Figures 4 and 5. Figure 4 demonstrates
that identifiers (IDF) and separators (SEPS) get the most amount
of attention. The higher attention values over identifiers and separa-
tors demonstrate that BERT considers them as important tokens for
code modeling. Therefore, both of these tokens should encode the
latent knowledge of code better than the [CLS] and [SEP] special
tokens.

Interestingly, BERT models most of its attention over identifiers
inherently, which could be a possible reason for the success of the
BERT model. Between identifiers and separators, identifiers have
higher attention values ranging between 30%-45%, until Layer-11.
At the final layer, the separators tend to get the most amount of
attention. A possible reason for high attention values for identifiers
and separators could be that both types are the most frequently

3https://github.com/c2nes/javalang
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occurring tokens in the code. Also, the same token repeats at dif-
ferent positions with the same code sample due to the structure of
the code [7].

Literature on program comprehension has also acknowledged
the importance of identifiers for easier program understanding
[4, 11, 32, 37]. Based on the obtained results of Figure 4, a question
is that “when modeling code, can using the IDF embeddings boost
the performance of the same model over using the embeddings from
[CLS]”? We answer this question in section 6.2.

Figure 5: Attention on Syntactic types including Operators
(OP), Data-type (DTP), Keywords (KEY) and Modifier (MOD)

The attention plots of other syntactic tokens, including opera-
tor (OP), data-type (DTP), keywords (KEY), and access-modifiers
(MOD) are shown separately in Figure 5. They are shown separately
in Figure 5, as their attention scores are very low compared to iden-
tifiers and separators. Data type gets the least attention, followed
by modifier, keyword, and operator. Such low attention values for
these code constructs are surprising because Java is a statically
typed language, and knowing data types is important for the cor-
rect compilation of code. Moreover, all of these syntactic types are
related to the structural part of the code.

5.2 Modeling the Relationship Among
Syntactic Tokens and Identifiers

The results shown in the previous section indicate that BERT has the
most attention on identifiers. As identifiers have previously shown
to be important code constructs for program comprehension [4, 11,
32, 37], we analyze where identifiers focus when BERT models the
identifiers’ representation.

To analyse this attention distribution, we extracted the attention
matrix of indexes where identifiers were available in code. Then,
we leverage the identifier attention distribution, to model its rela-
tionship with other identifiers (IDF), separators (SEPS),operators
(OP), data type (DTP), keywords (KEY) and modifiers (MOD) as shown
in Figure 6.

As seen in the top plot of Figure 6, from Layer-1 to Layer-11
identifiers attends most towards identifiers, similar to the overall
attention behavior of the BERT model. This is followed by sepa-
rators and operators within the code. Again, data-type, keyword,
and modifiers have the least attention values. As discussed in sec-
tion 4.2, the attention is generally focused on local context. Hence,
this attention behavior of identifiers should also be from the local
context.

Figure 6: Modeling the relationship among syntactic tokens
with identifier

Figure 7: Attention of identifiers observable and t at layer 10.
This representation has been generated using Bertviz [44]

Figure 7 shows an example of a code sequence and the attention
distribution of tokens. There are two identifiers observable and t,
for which the attention distribution over other tokens is highlighted,
with links to those tokens. The darker the link, the higher is the
attention value towards that token.We observe that these identifiers
attend mostly on themselves. Each of them models its relationship
with other local tokens (i.e., its immediate left and right tokens)
to learn their representation, focusing on longer distance tokens
with low attention values. Identifiers are generally associated with
a data type; however, BERT fails to understand such associations
intrinsically as data-type gets the least attention.



ICPC ’22, May 16–17, 2022, Virtual Event, USA Rishab Sharma, Fuxiang Chen, Fatemeh Fard, and David Lo

5.3 Predicting Syntactic Entities Within Code
To further investigate the abilities of BERT to capture the syntactic
information of code, we conducted an experiment to understand
whether BERT can generate the correct syntax of Java programming
language that is compiled using a compiler. Please note that here
we do not want to find the accurate token; rather, we aim to know
whether BERT can accurately predict the syntax type of the missing
tokens that follow the Java language’s syntactic rules. We use a
non-parametric probing task as used in [12]. In this task, we mask
the tokens available in the code. However, we mask these tokens
based on their syntax type. For instance, given a code sample, we
first mask all the identifiers within the code and test the ability of
the BERT model in predicting the identifiers in the masked spaces.
Similarly, we repeat this masking for data-type, decimal integer,
keywords, modifier, operator and separators. The results are shown
in Table 3.

Table 3: Predictions for Syntactic Entities

Type Precision Recall F1
data type 0.66 0.96 0.78

decimalinteger 0.59 0.69 0.61
identifier 0.98 0.88 0.93
keyword 0.68 0.95 0.79
modifier 1.00 0.99 0.99
operator 0.93 0.98 0.96
separator 0.98 0.97 0.98

We evaluate the performance of this task using Precision, Recall,
and F1 scores as follows: Precision = TP/(TP + FP) ; Recall = TP/(TP
+ FN) ; F1 = 2×Precision×Recall/(Precision + Recall) . Here, True
Positive (TP) is the number of tokens correctly identified to replace
the MASK tokens. False Positive (FP) is the number of samples
incorrectly labeled as belonging to a group. False Negative (FN) is
the sample model incorrectly marked as not belonging to a group.

Overall, BERT can correctly predict token types for identifier,
separator, modifier, and operators. Syntactic types decimal integer,
data-type, and keyword have lower performance than other types.
The lower scores of these types can be related to the lower attention
values they receive during the modeling as described in Section
5.1. The obtained scores for modifiers are high, despite the lower
attention values. This can be related to the fact that the total number
of modifiers in Java is less than five, making it an easy prediction.

RQ2 Summary: BERT can learn different code constructs with
varying performance. Mostly, BERT focuses on identifiers and sep-
arators. Therefore, the representation of identifiers can be useful
for the downstream tasks. Also, the representation learned for an
identifier is mostly contributed by the token itself or its immediate
left and right tokens.

6 SEMANTIC KNOWLEDGE
Semantic learning is pivotal to any language. It helps the model
learn representation meanings/ relationships within the learned
space. In this section, we use code clone detection, a classification
task that requires semantic information of code, to learn semantic
information captured by BERT in each layer. Code clones is chosen
as it provides the ability to study both the semantic and structural

properties of code using one task. In this experiment, we use the
embedding of the code sequence at each layer of BERT for iden-
tifying code clones. Code clone detection is chosen as it requires
the model to capture some semantics about the code, where code
samples can have structural or semantic equivalences.

This experiment is two fold: First, we assess the ability of BERT
in capturing the semantics of code in different layers, using the
learned embedding of the [CLS] token. In the second part, we
seek the answer to our question: whether we can improve the
performance by using the embeddings from IDF instead of [CLS],
based on our findings in RQ1-2, which are explained below.

6.1 Semantic Representation of Code for Code
Clone Detection Using [CLS]

Code clones are code samples that are identical to each other [6, 22].
These code samples can have structural or semantic equivalences
[40]. Generally, code clone detection finds target code that has
similar attributes to the given code [40]. If the code samples have the
same functionality, they are tagged as semantic clones. Otherwise,
they are classified as non-clones of each other. For the code clone
detection, we use the pipeline made available by Lu et al. [28], with
few changes. The original pipeline was built for ROBERTa [27],
which is changed to accommodate the BERT model. The pipeline
uses the BERTmodel to initialize the encoder, and then a linear head
is used over the pre-trained model for the classification into clones
and non-clones. The classification model is trained end-to-end, and,
similar to works in NLP [41, 42], we freeze the weights of the BERT
model because we want to learn the model’s capabilities on the
target task without further training the BERT model. Therefore,
the weights of the encoder are not fine-tuned on the task, and we
can only extract the embeddings to assess the semantic capabilities
of the pre-trained model. The linear head over BERT encoder is
still fine-tuned on the task of code clone detection. The linear head
is not originally part of the BERT model and it is only introduced
as a projection for BERT representation. The linear head uses the
hidden representation from BERT to detect the code clones. The
fine-tuning is done for three epochs, following similarly to how
fine-tuning was done in the original BERT paper [10]. For fine-
tuning, we use the Big-Clone-Bench dataset [40]. The statistics of
the dataset is shown in Table 4.

Table 4: Dataset details for Code Clone Detection

Split # Records in the Dataset
Train 901,028

Validation 415,416
Test 415,416

To understand the semantic comprehension abilities of each
layer, we extract the output hidden representation of the [CLS]
token starting from Layer-1 until Layer-12. As explained previously,
the embedding of [CLS] token captures the information about the
input sequence and is used in classification tasks. The linear head
then uses the extracted hidden state over the BERT encoder. The
fine-tuning results showing the predictions of BERT for code clones
are shown in Figure 8.



An Exploratory Study on Code Attention in BERT ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 8: Performance of BERT for Code Clone Detection
with [CLS] token embedding

Table 5: Using BERT identifier embedding for code clone de-
tection

Layer Precision Recall F1
Layer1 0.8136 (1090%) 0.9013 (80%) 0.8483 (605%)
Layer2 0.8243 (49%) 0.9150 (62%) 0.8603 (185%)
Layer3 0.8264 (33%) 0.9173 (28%) 0.8625 (38%)
Layer4 0.8333 (34%) 0.9170 (25%) 0.8674 (40%)
Layer5 0.8331 (32%) 0.9211 (24%) 0.8686 (37%)
Layer6 0.8307 (30%) 0.9211 (22%) 0.8668 (23%)
Layer7 0.8259 (29%) 0.9201 (23%) 0.8629 (33%)
Layer8 0.8266 (31%) 0.9198 (24%) 0.8634 (35%)
Layer9 0.8243 (31%) 0.9182 (24%) 0.8613 (35%)
Layer10 0.8293 (30%) 0.9182 (22%) 0.8649 (34%)
Layer11 0.8207 (15%) 0.9201 (11%) 0.8591 (15%)
Layer12 0.8365 (11%) 0.9240 (7%) 0.8719 (10%)

Layer-Pool 0.8405 (4%) 0.9260 (3%) 0.8754 (4%)

We evaluate the performance of the code clone detection using
evaluation metrics for classification tasks: Precision, Recall, and F1
score, as defined in previous sections.

As seen in Figure 8, the lower layers have lower performance
compared to the upper-level layers. Thismeans that upper layers are
better at representing the semantic relationship of the code. There-
fore, semantic tasks should use upper-level layers to represent code
to achieve the best performance. Interestingly, the performance
remains uniform in the middle layers (4-10). This can be related to
the uniform attention of identifiers, values we see in the Figure 4.

Table 6: Using CodeBERT identifier embedding for code
clone detection

Layer Precision Recall F1
CodeBERT[CLS] 0.6337 0.7632 0.6294
CodeBERTIDF 0.7263 0.8631 0.7619

CodeBERT-MLM[CLS] 0.5101 0.8369 0.6339
CodeBERT-MLMIDF 0.6887 0.9319 0.7921

6.2 Semantic Representation of Code for Code
Clone Detection Using Identifiers

Current works [12, 14, 26] use the representation of the special
tokens, i.e. [CLS] for code representation in downstream tasks for
further fine-tuning. However, based on the attention distribution
we saw in sections 4 and 5, we find that most of the BERT’s atten-
tion is on the identifiers in code, and the attention on [CLS] token is
very low. In this part, we evaluate representing code using the iden-
tifiers’ embeddings. We perform an experiment similar to the one
in Section 6.1 on the performance of code clone detection for each
layer, instead, using the IDF representation for code. To incorporate
the representation of identifiers, we calculate a weighted sum of all
the identifiers present within the code. Each identifier embedding
is normalized with its attention value and then added to form the
weighted attention embedding of the identifiers. Finally, we extract
the weighted embedding of the identifier from each layer and use
it inside the classification head. Table 5 represents the results for
each layer. The number inside parenthesis shows the performance
change percentage compared to the model that uses representations
of the [CLS] token. The results show an increase in the performance
for all metrics at each layer. Using the IDF representation increases
the scores for the initial layers significantly, making the difference
in the results of the lower and upper layers very small. Comparing
this to what we saw in Figure 8, the Precision and Recall scores are
below 75 for Layer-1 to Layer-11. The performance of the pooled
layer is also increased by 3–4% for all scores.

To evaluate the benefits of using embeddings from IDF over
[CLS], we repeat our experiments on CodeBERT [12]. CodeBERT
is chosen as it is a pre-trained model on code and it is previously
evaluated on the same task by its authors, using the [CLS] token.
The experiments are conducted on both variations of CodeBERT,
namely, CodeBERT-MLM and CodeBERT (which considers two
training objectives) [12]. We use the CodeBERT models available
on HuggingFace and use the same code made available by the
authors for fine-tuning on code clone detection. Similar to the
pre-processing we applied for BERT to pre-trained it on code, we
tokenize the code first using the JavaLang tokenizer. The tokenized
code is used for code clone detection. This tokenization is neces-
sary to extract and map the tokens to their respective syntactic
types. We experimented only for the pooled layer of CodeBERT as
it was the best performing model in our experiments conducted
on BERT. The results are shown in Table 6, where the subscript to
the models’ name indicates the representation of the token that
is used. When embeddings from identifiers are used, the perfor-
mance of CodeBERT is increased for both variations of CodeBERT.
CodeBERT results are improved by 14.61%, 13.08%, and 21.05% for
Precision, Recall, and F1 scores, respectively. The three metrics in
order are 35.01%, 11.035%, and 24.95% for CodeBERT-MLM. Note
that CodeBERT is based on RoBERTa [27], which is a Transformer
model based on BERT.

RQ3 Summary: BERT can learn the semantic characteristics
of code. The lower layers contain semantic knowledge, whereas
the upper layers in BERT are rich in semantic context. Employing
embeddings generated from identifiers in place of [CLS] token for
the code clone detection task can boost the performance of the
model by 4% in the pooled layer and achieve results in the initial



ICPC ’22, May 16–17, 2022, Virtual Event, USA Rishab Sharma, Fuxiang Chen, Fatemeh Fard, and David Lo

layers (0.848 F1 score), which are close to the final results (0.875
F1 score). This finding is not bound to BERT and improves the
performance of CodeBERT (by 21–24% F1 score), which is based
on RoBERTa when using IDF embeddings over [CLS].

7 RELATEDWORK
Attention-based neural networks are extensively used in software
engineering [3, 23]. Attention networks within the deep learning
models help the model focus more on the important tokens, which
can eventually affect the predictions made by the model. An at-
tention mechanism would assign higher attention values/energy
to important entities inside the input and its analysis or value in
different studies to build a model or explain its predictions. LeClair
et al. [23] provide attention heat maps for the predictions of their
model for code summarization to explain the prediction based on
the amount of attention the model puts on relevant tokens. Alon et
al. [3] use an attention framework to select import Abstract Syntax
Tree paths between the node to predict the appropriate function
names. Similarly, Haque et al. [15] leverage the attention framework
to select relevant parts of the context file to generate summaries.
Shuai et al. [38] learn interdependent representations for code and
query with an attention mechanism for code search, and Li et al.
[25] leverage attention-based network for bug detection. Unlike
previous works, we do not leverage the attention mechanism to
train a neural model; rather explore the attention mechanism and
analyze it for code.

Literature for analyzing the behavior of PLMs is limited. Kar-
makar et al. [21] studies the comprehension abilities of four different
pre-trainedmodels trained on code namely, BERT[10], CodeBERTa[48],
CodeBERT[12] and GraphCodeBERT. They compare the perfor-
mance of these models from the perspective of probing classifiers.
Other studies [5, 9, 35, 49], show that identifiers are important
code entities and can be used in the modeling of Transfoemr based
models. This work presents the first study in software engineering,
which analyses the multi-headed attention framework of BERT,
which is not done previously [21]. Another difference between this
work and [21] is the use of different probing classifiers. We use code
clone detection and non-parametric probing for syntax tagging of
code whereas in [21], it uses other probing tasks. Also, they com-
pare the semantic and syntactic performance of different PLMs, but
we explore the semantic and syntax abilities of BERT with respect to
what it learns about code constructs.

Differences among our work and previous studies: Our
study analyses where and how attention exists within the pre-
trained models for code and what kind of information, both seman-
tic and syntactic, is learned by the model. The current research
recognizes the success and importance of pre-trained models; how-
ever, the software engineering research community has not focused
on understanding the comprehension abilities of the PLMs for pro-
gramming languages. The current studies do not generate any new
embedding using identifiers, do not draw comparison with NLP,
and do not study the attention mechanism of the models. A body
of research in NLP focus on exploring the internal working of the
PLMs on English. Our work is inspired and is closer to [8, 36, 39, 41].
The difference between our work and these studies is on different

domains: software engineering and NLP. We explore BERT’s se-
mantic and syntactic behavior with respect to code constructs and
assess our findings on code clone detection.

8 THREATS TO VALIDITY
Internal threats in this study can be related to inadequate train-
ing of the models. To eliminate this threat, we used the official
implementation of BERT that is made available by its authors. The
results obtained for training BERT on our dataset are similar to
the original results of the BERT model reported by the authors of
BERT, thus, ensuring the proper training of the model. Moreover,
for CodeBERT, we use its official pre-trained weights provided by
the authors, mitigating threats related to the training of CodeBERT.

External Threats relate to the dataset used in our work. We
use a popular open-source dataset, CodeSearchNet [18]. The same
dataset has been used in multiple PLM studies for code [12, 14,
28]. As the dataset is commonly used for pre-training PLMs, we
anticipate low threats related to the choice of the dataset. Another
threat is related to the chosen task. We only applied our analysis
on code clone detection. Although more studies are needed, our
results shed lights for other tasks as code clone detection uses both
semantic and syntactic knowledge about the code. We only study
Java, and the results might not be generalizable to other languages.

Conclusion Threats in our work refer to the threats caused by
bias used in sampling code from the dataset. To mitigate this threat,
we apply random sampling, and the experiments are repeated for
both cased and uncased code sequences. The same results were
obtained in both cases. Another bias could be related to the choice of
model. To reduce this threat, we applied the identifier embedding for
code clone detection on two different models, BERT and CodeBERT..

9 CONCLUSION AND FUTUREWORK
In this work, we studied the attention behavior of BERT for code
and compared it to the attention behavior in NLP studies. We ex-
plored the relationship among the code constructs and found that
identifiers have higher attention. An identifier attends towards it-
self more than other tokens; some of its attention value is made to
its immediate left and right token rather than on the tokens farther
from it. Based on this finding, we proposed to use the representa-
tion of identifiers in code clone detection, which requires the code
semantic information. We showed this improves the clone detection
results in all layers, and this finding is not restricted to BERT. The
findings can be used to build smaller models which can then be
used to employ the identifiers’ embeddings in the downstream task
(e.g. by models with 6 layers instead of 12 layers), to attain the
similar performance to that of larger models. A future direction
could be evaluating the results on other software engineering tasks
requiring code intelligence. It would also be interesting to confirm
whether the combination of the identifiers’ and separators’ embed-
dings would generate meaningful embeddings or introduce noise
for code.
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