
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2022

ARSeek: identifying API resource using code and discussion on ARSeek: identifying API resource using code and discussion on

stack overflow stack overflow

Gia Kien LUONG
Singapore Management University, kiengialuong@smu.edu.sg

Mohammad HADI

Thung Ferdian
Singapore Management University, ferdianthung@smu.edu.sg

Fatemeh H. FARD

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
LUONG, Gia Kien; HADI, Mohammad; Ferdian, Thung; FARD, Fatemeh H.; and LO, David. ARSeek:
identifying API resource using code and discussion on stack overflow. (2022). Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension, Pittsburgh, United States, 2022 May 16 -
17. 331-342.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7692

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

ARSeek: Identifying API Resource using Code and Discussion
on Stack Overflow

Kien Luong1, Mohammad Hadi2, Ferdian Thung1, Fatemeh Fard2, David Lo1
1Singapore Management University, 2 University of British Columbia

{kiengialuong,ferdianthung,davidlo}@smu.edu.sg,{mohammad.hadi,fatemeh.fard}@ubc.ca

ABSTRACT

It is not a trivial problem to collect API-relevant examples, usages,

and mentions on venues such as Stack Overflow. It requires efforts

to correctly recognize whether the discussion refers to the API

method that developers/tools are searching for. The content of

the Stack Overflow thread, which consists of both text paragraphs

describing the involvement of the API method in the discussion

and the code snippets containing the API invocation, may refer to

the given API method. Leveraging this observation, we develop

ARSeek, a context-specific algorithm to capture the semantic and

syntactic information of the paragraphs and code snippets in a

discussion. ARSeek combines a syntactic word-based score with a

score from a predictive model fine-tuned from CodeBERT. In terms

of 𝐹1-𝑠𝑐𝑜𝑟𝑒 , ARSeek achieves an average score of 0.8709 and beats
the state-of-the-art approach by 14%.

KEYWORDS

API Resource, API Embedding, Content Classification

ACM Reference Format:

Kien Luong1, Mohammad Hadi2, Ferdian Thung1, Fatemeh Fard2, David

Lo1. 2022. ARSeek: Identifying API Resource using Code and Discussion on

Stack Overflow . In 30th International Conference on Program Comprehension

(ICPC ’22), May 16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3524610.3527918

1 INTRODUCTION

Developers typically use existing libraries or frameworks to imple-

ment common functionalities. Understanding which APIs to use,

the methods they offer, their distinctive names, and how to use them

is vital in this regard. There may be hundreds or even thousands of

APIs in a large-scale software library such as the .NET framework

and JDK. Microsoft conducted a survey in 2009 in which 67.6%

of respondents said that inadequate or absent resources hindered

learning APIs [40].

In order to gain a deeper understanding of APIs and their usage

information, developers need to inspect many web pages man-

ually and they use automated code search tools [25, 35, 49, 53].

Stack Overflow is a commonplace for the developers to discover

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527918

Figure 1: An example in thread 44902324 shows that API

when() and thenReturn() are ambiguous as both Powermockito

andMockito libraries have APIs with these simple names1

APIs, their simple method names, and their usages through crowd-

sourced questions and answers. As many API names share simple

names but provide different functionality, it is difficult to find code

snippets and APIs that correspond to the specific problems posted

by the developers on these platforms. Moreover, API mentions

in the informal text content of Stack Overflow are often ambigu-

ous, which makes it difficult to track down APIs and learn their

uses. Therefore, we require API disambiguation to support several

downstream tasks such as API recommendation [19, 39] and API

mining [19, 39]. To properly index and link APIs to their related

information in various sources (e.g., Stack Overflow, Javadoc, etc.),

it is important to link ambiguous API mentions to their actual APIs

correctly.

Figure 1 shows an issue created by the ambiguity of the simple

API names. The context is that an automatic tool is collecting the

Stack Overflow threads mentioning the API when(), which belongs

to the library Mockito. While collecting the Stack Overflow threads

by searching ones containing the simple API name, the tool cannot

find the fully qualified name of those APIs as the code snippet is

not complete. Powermockito is a library that depends on Mockito,

so the error log given in the thread is raised by the invocation

from Powermockito’s API. However, for automatic tools or novice

developers, they can be confused by the ambiguity and consider

that this thread is about APIs from the Mockito library. This may

lead to the result that the tool collects incorrect information and it

would take more time to clean the collected data. In case a developer

1https://stackoverflow.com/questions/44902324

331

30th IEEE/ACM International Conference on Program Comprehension

ICPC ’22, May 16–17, 2022, Virtual Event, USA

mistakenly applies the usage of another API, he might get confused

because of the incorrect usage and unnecessarily waste his time or

even introduce a bug. Therefore, there is a need for an approach

that can link the resources/threads containing the ambiguous API

mentions to the correct API.

Luong et al. recently proposed DATYS [27], which uses type-

scoping to disambiguate API mentions in informal text content

on Stack Overflow. In type scoping, they considered API methods

whose types appear in more parts (i.e., scopes) of a Stack Over-

flow thread as more likely to refer to the searched API method.

However, the statistical word alignment model it uses is based on

the appearance of words in a sentence rather than considering

in which context the sequence of words are being used and what

connotations do these words relay to the readers.

To incorporate a deeper understanding of the underlying seman-

tics in a natural language text content of Stack Overflow, we intro-

duce ARSeek, a context-specific algorithm to capture the semantic

and syntactic information of the paragraphs and code snippets in

a crowd-sourced discussion. We call this API resource retrieval

task because ARSeek focuses on finding Stack Overflow threads

mentioning a given API method. Our work also modified DATYS

to perform a better search over the code snippets in the Stack Over-

flow discussion threads. The modified DATYS, denoted as DATYS+

provides an additional metric to better capture the occurrence of

an API method type (i.e., class or interface) in the Stack Overflow

thread. By greedily matching the type name with the tokens in the

code snippet, DATYS+ performs the syntactic search in ARSeek. Yet,

both DATYS and DATYS+ are only searching based on the syntactic

information provided by the fully qualified name of a target API

method. It cannot capture the semantic meaning in paragraphs and

code snippets of threads on Stack Overflow and how similar they

are to the target API method. Thus, to capture the semantics, in ad-

dition to the weighted syntactic information provided by DATYS+,

ARSeek has a semantic search component that leverages a deep

attention-based Transformer model, CodeBERT [14]. This semantic

search component measures the similarity between the paragraphs

and code snippets of a Stack Overflow thread with the target API

method comment and implementation code. The more similar they

are, the more likely the thread is to be relevant to the target API

method that we search for. To efficiently leverage both semantic

and syntactic knowledge of the Stack Overflow thread and the API

method, ARSeek joins the semantic and the syntactic search ele-

ment to get the joint relevance score that determines whether a

thread relates to a given API method. The contributions of each

element in the joint relevance score are defined by a weighting

factor.

The significance of this work is thatmultiple types of information

(code snippets, informal textual content) related to API methods

are collected to identify relevant APIs for the queries. The collected

resources (e.g., thread) from Stack Overflow are a useful knowledge

base not only for studies regarding APIs such as API recommen-

dation but also software development in general. Considering that

the Maven Central Repository has over 3 million unique software

libraries [7], developers can use some help in selecting the right

ones for their tasks. To be able to give correct recommendations, the

information (e.g., usage, pros, cons, relevant libraries/APIs) related

to the libraries or APIs are required. Unfortunately, finding such

information for a specific API, which may be buried in the mass of

online discussions, is not trivial [55]. With ARSeek, since a large

set of related resources (e.g., Stack Overflow threads) from various

APIs is collected, developers can directly access the relevant API

resources without scouring through the irrelevant ones.

In this paper, we are going to answer the following research

questions:

RQ1 Can ARSeek perform better than the baseline (DATYS)?

RQ2 How well does each component of ARSeek perform?

RQ3 Howdoes theweighting factor affect the F1-score of ARSeek?

These research questions will help us understand the effective-

ness of our approach ARSeek and the internal mechanism through

which it yields better results than the current baseline. Our work

has offered the following main contributions:

(1) To our knowledge, we are the first to adopt a transformer-

based deep learning technique to incorporate semantic knowl-

edge understanding for API resource retrieval task.

(2) As compared to state-of-the-art techniques, our approach

performs better while searching for the contents related to

the queried API. On a dataset of 380 Stack Overflow threads,

ARSeek beats the state-of-the-art by 14%.

(3) We have also open-sourced our code and additional arti-

facts required for recreating the results and re-purposing

our approach for other tasks. The source code of ARSeek is

available at https://github.com/soarsmu/ARSeek.

The rest of the paper is structured as follows: Section 2 deals

with the preliminary knowledge about the components on top of

which we have built our method. Section 3 provides an overview

of our proposed approach, while Section 4 elaborates the various

components of our proposed approach. We describe our experiment

details and results in Section 5. The related works and the threats to

validity are presented in Sections 7 and 6.3. Finally, we concluded

our work and present future work in Section 8.

2 PRELIMINARIES

2.1 DATYS

On Stack Overflow, APIs are mentioned informally and these men-

tions are often ambiguous. When seeking the discussions regarding

a specific API, this ambiguity impedes the identification and collec-

tion of the correct piece of content mentioning the API. To resolve

the ambiguity of the API mentions, API mentions disambiguation

links the API mentions with the APIs they refer to. Given identified

mentions, DATYS [27] disambiguates Java API mentions via type

scoping.

After extracting API method candidates from input Java libraries,

DATYS scores API method candidates based on how often their

types (i.e., classes or interfaces) appear in different parts (i.e., scopes)

of the Stack Overflow thread with identified API mentions. Having

a type that appears in more scopes will increase the API candidate

score. Here, DATYS considers three scopes: Mention scope, which

covers the mention itself. Text scope, which covers the textual con-

tent of the thread, including the mentions. Code scope, which covers

the code lines inside code snippets in the thread. API candidates

are ranked according to their scores for each API mention in the

thread. DATYS takes the top API candidate with a non-zero score

332

ARSeek: Identifying API Resource using Code and Discussion

on Stack Overflow

ICPC ’22, May 16–17, 2022, Virtual Event, USA

as the mentioned API. If the leading API candidate has a zero score,

DATYS considers the mention as an unknown API. Luong et al.

built a ground truth dataset containing 807 Java API mentions from

380 threads in Stack Overflow.

2.2 CodeBERT

CodeBERT [14] was developed using amultilayered attention-based

Transformer model, BERT [12]. As a result of its effectiveness in

learning contextual representation from massive unlabeled text

with self-supervised objectives, the BERT model has been adopted

widely to develop large pre-trained models. Thanks to the multi-

layer Transformer [52], CodeBERT developers adopted two differ-

ent approaches than BERT to learn semantic connections between

Natural Language (NL) - Programming Language (PL) more effec-

tively.

Firstly, The CodeBERT developers make use of both bimodal

instances of NL-PL pairs (i.e., code snippets and function-level com-

ments or documentations) and a large amount of available unimodal

codes. In addition, the developers have pre-trained CodeBERT us-

ing a hybrid objective function, which includes masked language

modeling [12] and replaced token detection [10]. The incorporation

of unimodal codes helps the replaced token detection task, which

in turn produces better natural language by detecting plausible

alternatives sampled from generators.

Developers trained CodeBERT from Github code repositories in

6 programming languages, where only one pre-trained model is

learned for all six programming languages with no explicit indica-

tors used to mark an instance to the one out of six input program-

ming languages. CodeBERT was evaluated on two downstream

tasks: natural language code search and code documentation gen-

eration. The study found that fine-tuning the parameters of Code-

BERT obtained state-of-the-art results on both tasks.

3 APPROACH OVERVIEW

3.1 Task Definition

Our goal is to find Stack Overflow threads that mention a given

API method2. Specifically, given an API method, we strive to find

Stack Overflow threads containing words matching the simple

name of the given API method. In Java, the simple name of an

API method is the name of the method without the class and the

package names. For example, m is the simple name of API method
com.example.Class.m. We want to classify whether the thread

having the simple name m is actually relevant to the API method
com.example.Class.m. In summary, the task is defined as: “For

each APImethod in a set of given APImethods, identify Stack Overflow

threads that refer to it.”

3.2 Architecture

The pipeline of ARSeek is presented in Figure 2. It is divided into 2

main steps:

(1) Collecting various API-related resources from a given API

method name; and (2) Recommending relevant threads using the

collected API-related resources.

2In this paper, we use the terms API, method, and API method interchangeably.

Query using the FQN of
the given API method

A given
API method

API comment &
API Implementation

code

ARSeek

DATYS+ API Relevance
Classifier

Predicted relevant
threads

St
ep

 1
St

ep
 2

Return

User or Tool

Potential
threadsAPI Candidates

Figure 2: The architecture of ARSeek

In step (1), ARSeek finds Potential Threads from Stack Overflow

using the simple name of the given API method as the query. Poten-

tial Threads are the threads that have at least one word matching

with the simple name of the given API. The API method comment

and implementation code are directly obtained from the source code

repository of the given API. Last but not least, the API Candidates

are obtained from a database of API methods as a knowledge base

as same as [27, 56]. The API Candidates are API methods that have

the same simple name as the given API method.

The objective of step (2) is to identify whether each Stack Over-

flow thread in the Potential Threads actually refers to the given API.

ARSeek has two components: API relevance classifier and DATYS+.

API relevance classifier is designed to draw the relevance between

a thread and an API method by capturing the semantic similarity

between (1) paragraphs and code snippets in the thread; and (2) API

method comment and implementation code. API relevance classifier

outputs a semantic relevance score representing the relevance it

measures. In contrast, DATYS+ outputs a syntactic relevance score

based on the existence of the terms from the fully qualified name

of the given API in different scopes of a Stack Overflow thread. For

example, API "A.B.c" has terms such as "A", "B", and "c". The last

term, "c", is the simple name of the API method. The second last

term, "B", is the type of the API method. Both DATYS and DATYS+

use type scoping [27] to give a score based on the existence of the

type of the API (i.e., "B" in the example) in different scopes of the

Stack Overflow thread (code scope, text scope, etc.). A new scope

of DATYS+ is modified to be suitable for the search task and we are

going to describe it in Section 4.1. It outputs a score that indicates

the syntactic relevance between the given API and the thread, we

call it DATYS+ score.

333

ICPC ’22, May 16–17, 2022, Virtual Event, USA

After step (2), each thread will have a score indicating if the

thread refers to the given API method. This score is combined

from semantic relevance score and DATYS+ score and is called joint

relevance score. Threads predicted referring to the given API method

are then returned to the user. We describe ARSeek components (i.e.,

DATYS+ and API relevance classifier) in detail in Section 4.

4 ARSEEK

ARSeek consists of two main components: DATYS+ and API rele-

vance classifier . DATYS+ takes as inputs Potential Threads and API

Candidates and outputs scores indicating its confidence that the

given API is referred to in the threads (Section 4.1). Given Potential

Threads and API method comment and implementation code, AR-

Seek first converts them to API relevance embedding (Section 4.2).

The API relevance embedding is input to API relevance classifier ,

which outputs confidence scores indicating the likelihood that the

given threads refer to the API (Section 4.3). Finally, the scores from

DATYS+ and API relevance classifier are combined to a joint rele-

vance score, and threads with scores larger than a threshold are

returned as the relevant threads (Section 4.4).

4.1 DATYS+

DATYS+ is an extension of DATYS. DATYS used regular expressions

to capture the types of API method invocations available in code

snippets of the thread. However, these regular expressions are lim-

ited and thus DATYS may miss some mentions in code snippets. To

capture more types, DATYS+ modifies the type scoping algorithm

by adding a new score. This score helps capture the occurrence of

types that would be missed by DATYS scopes. To be specific, DATYS

has Code Scope and Text Scope to capture method types available in

the code snippets and textual content of the thread, respectively.

However, when a method type is available in a comment inside a

code snippet, DATYS cannot capture it as it neither belongs to Code

Scope nor Text Scope of DATYS. Thus, DATYS+ adds code comments

to the Code Scope and refers to the new scope as the Extended Code

Scope, highlighting the extension made by DATYS+ over DATYS.

Algorithm 1 indicates how modified type scoping works. Com-

pared to DATYS’s, DATYS+’s type scoping algorithm receives Code-

Comment as input. CodeComment represents the comments inside

code snippets of the Stack Overflow thread. In addition, inputs of

the original type scoping algorithm are also considered.APIMention,

PTypeList, APIMethodCandidate, and ThreadContent stand for the

simple name of the given API, the list of possible types extracted

from code snippets following the algorithm used by DATYS, the

API Candidates, and the thread’s textual content (i.e., title, text,

tags), respectively. The three scopes used by DATYS are also used

in DATYS+. In Mention Scope (Lines 3-8), DATYS+ increases an

API score if its type appears within the API mention. In Text Scope

(Lines 10-13), DATYS+ increases an API score if its type appears

within the textual content of the thread. In Code Scope (Lines 14-

18), DATYS+ increases an API score if its type matches with the

type of method invocations or imported types in the code snippet.

Additionally, in Extended Code Scope, DATYS+ also looks at the

content of the comments inside the code snippets and increases the

API score of the corresponding API candidate if there are tokens

Algorithm 1 Scoring an API Candidate with Type Scoping in

DATYS+

Input: 𝐴𝑝𝑖𝑀𝑒𝑛𝑡𝑖𝑜𝑛, 𝑃𝑇 𝑦𝑝𝑒𝑠𝐿𝑖𝑠𝑡,𝐴𝑃𝐼𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒,
𝑇ℎ𝑟𝑒𝑎𝑑𝐶𝑜𝑛𝑡𝑒𝑛𝑡,𝐶𝑜𝑑𝑒𝐶𝑜𝑚𝑚𝑒𝑛𝑡

Output: 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒
1: 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 = 0
2: 𝐶𝑎𝑛𝑑𝑇 𝑦𝑝𝑒 = 𝑔𝑒𝑡𝑇 𝑦𝑝𝑒 (𝐴𝑃𝐼𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
3: if ℎ𝑎𝑠𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝐴𝑝𝑖𝑀𝑒𝑛𝑡𝑖𝑜𝑛) then
4: 𝑃𝑟𝑒 𝑓 𝑖𝑥 = 𝑔𝑒𝑡𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝐴𝑝𝑖𝑀𝑒𝑛𝑡𝑖𝑜𝑛)
5: if 𝑒𝑛𝑑𝑠𝑊 𝑖𝑡ℎ (𝑃𝑟𝑒 𝑓 𝑖𝑥,𝐶𝑎𝑛𝑑𝑇 𝑦𝑝𝑒) then
6: 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 + 1
7: end if
8: end if
9: 𝑇𝑒𝑥𝑡𝑢𝑎𝑙𝑇𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑇ℎ𝑟𝑒𝑎𝑑𝐶𝑜𝑛𝑡𝑒𝑛𝑡)
10: 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑇𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝐶𝑜𝑑𝑒𝐶𝑜𝑚𝑚𝑒𝑛𝑡)
11: if 𝐶𝑎𝑛𝑑𝑇 𝑦𝑝𝑒 𝑖𝑛 𝑇𝑒𝑥𝑡𝑢𝑎𝑙𝑇𝑜𝑘𝑒𝑛𝑠 then
12: 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 + 1
13: end if
14: for 𝑃𝑇 𝑦𝑝𝑒 in 𝑃𝑇 𝑦𝑝𝑒𝑠𝐿𝑖𝑠𝑡 do
15: if 𝑖𝑠𝑆𝑎𝑚𝑒𝑇 𝑦𝑝𝑒 (𝑃𝑇 𝑦𝑝𝑒,𝐶𝑎𝑛𝑑𝑇 𝑦𝑝𝑒) then
16: 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 + 1
17: end if
18: end for
19: if 𝐶𝑎𝑛𝑑𝑇 𝑦𝑝𝑒 𝑖𝑛 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑇𝑜𝑘𝑒𝑛𝑠 then
20: 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒 + 1
21: end if
22: return 𝐶𝑎𝑛𝑑𝑆𝑐𝑜𝑟𝑒

in the code snippets or comments that match with the API type

(Lines 19-21).

After executing type scoping, DATYS+ returns scores for the

API Candidates. The scores are then normalized to a range of [0,

1] following the minimum and the maximum score from the API

Candidates. DATYS+ then takes the normalized score of the given

API method and passes it to the next step.

4.2 API relevance embedding

We follow the process described in Figure 3 to build API relevance

embedding. Firstly, each thread in Potential Threads needs to be

converted into an embedding. We define a thread as a question post

and its answer posts. Comments of posts are excluded, as was also

done in the DATYS paper [27]. A thread may containm paragraphs

and n code snippets. A paragraph is a piece of textual content on a

Stack Overflow thread that is separated from other contents in the

thread via a newline character. A code snippet is a piece of code

content on a Stack Overflow thread. It is typically enclosed with

a starting tag 〈𝑝𝑟𝑒〉〈𝑐𝑜𝑑𝑒〉 and an ending tag 〈/𝑐𝑜𝑑𝑒〉〈/𝑝𝑟𝑒〉. To be
more specific, the 〈𝑐𝑜𝑑𝑒〉 〈/𝑐𝑜𝑑𝑒〉 tags covered by the 〈𝑝𝑟𝑒〉 〈/𝑝𝑟𝑒〉
tag represent the code snippets while the ones without the 〈𝑝𝑟𝑒〉
〈/𝑝𝑟𝑒〉 tag are highlighted words/sentences within the paragraphs.
Each paragraph is paired with each code snippet to create a pair

of thread content. Therefore, a Stack Overflow thread would have

𝑚×𝑛 thread content pairs. A natural-programming language model,

CodeBERT3, is used to extract the semantic meaning of each thread

content pair. It encodes the𝑚 × 𝑛 thread content pairs into𝑚 × 𝑛
thread embeddings. thread embedding is the representation vector

of thread content created by CodeBERT’s encoder. By converting

the pairs from a textual form to a numerical vector form with a

pre-trained CodeBERT model, the semantic relationship between

the paragraphs and code snippets is extracted. Before feeding the

thread content pairs into the encoder of CodeBERT, each pair is

3https://github.com/microsoft/CodeBERT

334

ARSeek: Identifying API Resource using Code and Discussion

on Stack Overflow
ICPC ’22, May 16–17, 2022, Virtual Event, USA

pre-processed following the format:

〈𝐶𝐿𝑆〉 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ 〈𝑆𝐸𝑃〉 𝑐𝑜𝑑𝑒 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 〈𝐸𝑂𝑆〉

〈𝐶𝐿𝑆〉 is the token that informs the start of the pair according to
the design of RoBERTa model [26] which CodeBERT is based on.

〈𝑆𝐸𝑃〉 is the token that separates a Paragraph from a Code Snippet

and 〈𝐸𝑂𝑆〉 indicates the end of the pair.
The maximum number of tokens in a pair before being fed into

the CodeBERT encoder is 512, which is twice the number of tokens

used in the original CodeBERT [14]. This is intended to provide

more contextual information to the CodeBERT encoder. We con-

sider the paragraph and the code snippet to be equally important.

Therefore, each of them is given 256 tokens. However, we have

to cater the 〈𝐶𝐿𝑆〉, 〈𝑆𝐸𝑃〉, and 〈𝐸𝑂𝑆〉 tokens. Thus, the number of
tokens for a paragraph and a code snippet is set to 254 and 255

tokens, respectively. The two numbers add up to 512 when the three

tokens are counted. If the number of tokens in the paragraph is less

than 254, then padding tokens would be added to reach 254 tokens.

On the other hand, if the number of tokens in the paragraph is

more than 254, we truncate the paragraph following [26] and take

the first 254 tokens. The same process is applied to the code snip-

pet with 255 tokens. The CodeBERT encoder receives these thread

content pairs under this format as inputs and outputs embedding

vectors. For a thread with𝑚×𝑛 thread content pairs, there would be
𝑚 ×𝑛 thread embedding vectors created and each thread embedding
vector has a length of 768. We created𝑚 ×𝑛 embeddings for thread

content pairs rather than one embedding since the content of a

whole thread cannot be fit into CodeBERT at once (i.e., due to the

limited number of input tokens of the CodeBERT’s encoder) and

we want to capture all the information from the thread.

Secondly, to build API relevance embedding, API comment and

implementation code also need to be converted into an embedding.

The API method comment (i.e., Javadoc) is a piece of textual content

that describes the functionality of the API method and how to use

it. The API implementation code is the code inside the API method

body that implements the described functionality. JavaParser is

used to extract the API comment and implementation code from the

Javadoc and the JAR files, respectively. They are pre-processed to

the following format:

〈𝐶𝐿𝑆〉 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 〈𝑆𝐸𝑃〉 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑑𝑒 〈𝐸𝑂𝑆〉

They are then transformed into a numerical representation vector

via the CodeBERT encoder.

Finally, each thread embedding vector and themethod embedding

vector are then concatenated to a vector. We call this concatenated

vector API relevance embedding. In total,𝑚 × 𝑛 API relevance em-
bedding vectors would be created.

4.3 API relevance classifier

TheAPI relevance classifier is a binary classifier that utilizes a neural

network with two fully connected layers to predict whether the

API relevance embedding comes from a Stack Overflow thread that

refers to the given API method.

The API relevance classifier has two modes of operation: training

and deployment modes. In the training mode, the API relevance

embeddings are used to train the API relevance classifier . When

there is an imbalance between positive and negative labels, the API

A Thread

n Code Snippet

A given API
method

API method
comment

API method
implementation

code

m x n
Thread Content

pairs

1 Method
Content pair of
the given API

If Thread refers
the given API

method

CodeBERT

m x n Thread
embeddings

1 Method
embedding

Concatenate

m x n API relevance
embeddings

m Paragraph

Figure 3: How API relevance embeddings are created

relevance classifier upsamples the minority label. Whenever the

thread refers to the given API method, all API relevance embedding

created from the thread would be considered as positive by the

classifier. Otherwise, in case the given API method is not referred

to by the thread, every API relevance embedding of the thread would

have negative labels. In the deployment mode, the API relevance

classifier produces probability scores for the𝑚 × 𝑛 API relevance
embedding. These scores are averaged and passed to the next step.

The averaged score indicates the likelihood that the thread refers

to the given API.

4.4 Computing joint relevance score

We follow the process in Figure 4 to compute the joint relevance

score. DATYS+ and API relevance classifier output scores 𝐴 and 𝐵,
respectively. Both represent their confidence that the given API

method is mentioned in the thread. While 𝐴 represents the score

given by the syntactic information of DATYS+, 𝐵 is given by the se-

mantic information from API relevance classifier . The two scores are

then combined to a joint relevance score 𝐶 following this formula:

𝐶 = 𝑥 ×𝐴 + (1 − 𝑥) × 𝐵 (1)

The weighting factor 𝑥 decides the contributions of DATYS+ score

andAPI relevance classifier in joint relevance score𝐶 . The higher the
value of 𝑥 is, the more DATYS+ score contributes to the final joint

relevance score. The range of 𝐴, 𝐵, and 𝑥 is from 0 to 1. A thread is

considered to refer to the given API if the joint relevance score𝐶 is

335

ICPC ’22, May 16–17, 2022, Virtual Event, USA

API relevence
classifier

Average probability B
of the Positive class

DATYS+

Score A of the given
API method

Joint Relevance Score
C = x ✕ A + (1-x) ✕ B

if C > threshold Thread does not
refer to API

Thread refers to
API

Yes

No

Input
(a thread & a given API)

output output

combine

Figure 4: Computing joint relevance score

larger than a threshold 𝑡 . Otherwise, the thread is considered not
to refer to the given API. By default, 𝑡 is set to 0.5.

The value of 𝑥 will be estimated based on the training data. In

detail, we let 𝑥 increase gradually from 0 to 1 with a step of 0.1.

There are ten possible values of 𝑥 : {0, 0.1, 0.2, ..., 0.9, 1.0}. The value
of 𝑥 giving the highest performance on the training data is then

chosen.

5 EXPERIMENT RESULT

5.1 Dataset and Experimental Settings

We utilize the dataset provided in DATYS work [27] to evaluate

both ARSeek and DATYS. We split 380 Stack Overflow threads into

training threads and testing threads using 3-fold cross-validation.

The training threads are utilized to train the API relevance classifier

while the testing threads are used to evaluate ARSeek and the

baseline (i.e., DATYS). Next, as mentioned in Section 4.2, for each

Stack Overflow thread in the training threads, we extract its thread

embeddings and these thread embeddings are grouped into a training

set. Similarly, for each Stack Overflow thread in the testing threads,

we extract its thread embeddings and these thread embeddings are

grouped into a testing set. The number of API relevance embeddings

of each fold on the dataset is shown in Table 1. As the embeddings

are created from the combination of paragraphs and code snippets

in each Stack Overflow thread, the numbers of the embeddings on

training sets of fold 1, 2, and 3 are 57 690, 59 660, 58 017, respectively,

Table 1: Number of API relevance embeddings in each set

Fold 1 Fold 2 Fold 3

Training set 57,690 59,660 58,017

Testing set 26,212 24,242 25,885

Table 2: Number of positive and negative API relevance em-

beddings in each set

Fold 1 Fold 2 Fold 3

Positive Embeddings in Training set 9,934 10,878 10,131

Negative Embeddings in Training set 47,756 48,782 47,886

Positive Embeddings in Testing set 5,607 4,663 5,410

Negative Embeddings in Testing set 20,605 19,579 20,475

while the numbers on testing sets of fold 1, 2, and 3 are 26 212, 24 242,

and 25 885, respectively.

To generate API relevance embeddings for the API relevance clas-

sifier for training, for each thread, if the given API appears in the

thread, we generate API relevance embeddings for thread contents

and method contents as described in Section 4.2. These embeddings

would have a positive label because they are created from the API

that is referred to by the thread. To generate embeddings with a

negative label for a thread, we find APIs that have the same simple

name as the given API and are not mentioned in the thread. We

then create API relevance embeddings from these APIs and label

these API relevance embeddings as negative.

While the APIs on the training set are used to generate the

training method embeddings. The testing method embeddings on

the corresponding testing set are created from the APIs on that

testing set. Table 2 shows the numbers of positive and negative

API relevance embeddings created on training and testing sets. The

negative API relevance embeddings for an API method are collected

from threads that do not refer to the API method while the positive

ones are collected from threads referring to the API method. Since

the number of threads that do not refer to the API method is higher

than the number of threads that refer to it, the number of negative

API relevance embeddings is naturally higher than the number of

positive ones. The number of negative API relevance embeddings

is approximately four times the number of positive ones on the

set of threads in our dataset. Due to this imbalance, positive API

relevance embeddings are randomly up-sampled to balance the two

classes within the API relevance classifier training process. The API

relevance classifier is trained using 6 epochs and the learning rate

of 10−3. After the first 6 epochs, the value of the loss function has

relatively converged.

5.2 Metrics

To evaluate the proposed approach on identifying threads that are

relevant to an API, we use three metrics: Precision, Recall, and

𝐹1-𝑠𝑐𝑜𝑟𝑒 . In order to calculate the three aforementioned metrics,

True Positive, False Positive, and False Negative should be defined

first. Our task focuses on finding threads that actually refer to a

given API. True Positive is the case where a thread is deemed to

336

ARSeek: Identifying API Resource using Code and Discussion

on Stack Overflow

ICPC ’22, May 16–17, 2022, Virtual Event, USA

be relevant by the approach is indeed relevant. False Positive is the

case where the thread that is deemed to be relevant by the approach

is actually irrelevant. False Negative is the case where a thread that

is deemed to be irrelevant by the approach is relevant. The metrics

are calculated using the following formulas:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(3)

𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4)

We measure the above scores of all given APIs in the testing set

and report the averages of the scores.

5.3 Research Questions

Research Question 1: Can ARSeek perform better than the base-

line (DATYS)?

The baseline, DATYS, was designed for a task of API mention dis-

ambiguation. We adopt it to our task of finding threads that are

relevant to an API. If DATYS finds an API is mentioned in the thread,

the thread is considered to be relevant to the API. To evaluate the

improvement over DATYS, we evaluate them on the testing data

set and compare them in terms of 𝐹1-𝑠𝑐𝑜𝑟𝑒 . We also analyze some

cases that ARSeek can resolve and DATYS cannot in Section 6.1.

Research Question 2: How well does each component of ARSeek

perform?

There are three possible variants of ARSeek depending on which

component that comes along with it. The variants are (1) ARSeek

with API relevance classifier ; (2) ARSeek with DATYS+; and (3) AR-

Seek with DATYS+ and API relevance classifier . API relevance classi-

fier is a semantics-based algorithm while DATYS+ is a syntactic-

based algorithm. In this study, we aim to analyze the contribution

of each component to ARSeek. From the analysis, we would like

to answer the question of whether combining a semantic-based

algorithm and a syntactic-based algorithm leads to a better result

than running them individually.

Research Question 3: How does the weighting factor affect the

F1-score of the relevant thread classification? Does our strategy

work well?

The weighting factor is an important factor that would affect how

well ARSeek performs. We select the importance factor based on

the best performance on the training data. We analyze whether our

strategy leads to the best performance on the testing data. We vary

the values of the weighting factor in both the training data and

the testing data. The values that we use are {0, 0.1, 0.2, ..., 0.9, 1.0}.
We analyze whether picking values in the training data that leads

to the best performance on the training data also leads to the best

performance on the testing data.

5.4 RQ1: ARSeek Effectiveness

Table 3 shows the performance of the DATYS and ARSeek in find-

ing threads that are relevant to the given API. ARSeek, in general,

outperforms DATYS. On average, ARSeek achieves an F1-score of

Table 3: ARSeek vs DATYS in terms of average Precision, Re-

call, and 𝑭1-score on the testing set in 3-fold cross validation

Approach Avg. Avg. Avg.

Precision Recall 𝑭1-score
DATYS 0.7372 0.7718 0.7304

ARSeek 0.8725 0.8962 0.8709

Table 4: Contribution of ARSeek Components

Components Avg. Avg. Avg.

Precision Recall 𝑭1-score
ARSeek (1) 0.8725 0.8962 0.8709

ARSeek with only API 0.3792 0.4137 0.3821

relevance classifier (2)

ARSeek with only DATYS+ (3) 0.8673 0.8795 0.8596

Table 5: Average Precision, Recall, 𝑭1-score on testing sets in
3-fold cross validation when weighting factor varies

x Avg. Precision Avg. Recall Avg. 𝑭1-score
0 0.3792 0.4137 0.3821

0.1 0.4943 0.5187 0.4943

0.2 0.7795 0.8039 0.7770

0.3 0.8497 0.8800 0.8515

0.4 0.8725 0.8962 0.8709

0.5 0.8612 0.8782 0.8416

0.6 0.8631 0.8802 0.8573

0.7 0.8637 0.8802 0.8577

0.8 0.8637 0.8802 0.8577

0.9 0.8637 0.8802 0.8577

1.0 0.8673 0.8795 0.8596

0.8709, which is an improvement of 14% compared to DATYS. AR-

Seek also beats DATYS in terms of precision and recall. As DATYS

only focuses on the syntactic information available in a Stack Over-

flow thread, it returns incorrect results when the scopes (Code

Scope, Text Scope, Mention Scope) that it tracks do not contain

the API method name. DATYS+ improves the result by adding the

Extended Code Scope. By combining DATYS+ scope with the seman-

tic information from the API relevance classifier , ARSeek avoids

picking irrelevant threads that are within the scope.

5.5 RQ2: Ablation Study

Table 4 shows how well each component in ARSeek is. We can see

that the highest average 𝐹1-𝑠𝑐𝑜𝑟𝑒 , which is 0.8709, is achieved by
“ARSeek”(1) when weighting factor of 𝑥 is set to 0.4. The 𝐹1-𝑠𝑐𝑜𝑟𝑒 of
“ARSeekwith onlyAPI relevance classifier”(2) and “ARSeekwith only

DATYS+”(3) are 0.3821 and 0.8596, respectively. Since the “ARSeek

with only API relevance classifier” version gives the worst result,

the API relevance classifier may not be able to resolve the task well

independently. Partly, this might be due to the limited amount of the

training data (i.e., only 253 training threads). In addition, the “with

337

ICPC ’22, May 16–17, 2022, Virtual Event, USA

only DATYS+” version of ARSeek performs much better compared

to the “ARSeek with only API relevance classifier” version. As the

difference between the ARSeek (1) and “ARSeek with only DATYS+”

(3) is small in terms of average 𝐹1-𝑠𝑐𝑜𝑟𝑒 , we perform the statistical

test to examine whether there is a statistically significant difference

between the result (i.e., 𝐹1-𝑠𝑐𝑜𝑟𝑒) of ARSeek and “ARSeek with only
DATYS+”. In detail, Mann-Whitney U test [30] is used and the result

is significant at the 0.05 level. Thus, the semantic component API

relevance classifier helps improve the syntactic component DATYS+.

5.6 RQ3: Effect of the weighting factor

Table 5 shows the performance of ARSeek on the test set when

we vary the value of the weighting factor x. The bold numbers in

each column of the table are the results of the chosen weighting

factor from the training sets. To be specific, we vary the weighting

factor x on the training sets. Then we choose the value that results

in the highest average 𝐹1-𝑠𝑐𝑜𝑟𝑒 of the 3 training sets. This chosen
weighting factor is equal to 0.4 and it is used for the model to make

decisions on the testing sets. From Table 5, the results show us the

best combination is also achieved when the weighting factor is 0.4.

In detail, the average 𝐹1-𝑠𝑐𝑜𝑟𝑒 of the 3 folds increases and reaches
its peak when the weighting factor is 0.4. After that, the results

slightly drop when the weighting factor increases to 1.

6 DISCUSSION

6.1 Cases where ARSeek outperforms DATYS

(1) The relevant thread does not contain the type name of the given

API method

Figures 5 and 6a show an example of a case where the content

of the thread does not relate to the given API method. As a Stack

Overflow thread may contain one question post and multiple an-

swer posts, Figure 6a represents the question post while the answer

post is shown in figure 5. Figure 5 contains a paragraph and code

snippet of a post belonging to thread 561353734. The fully qualified

name org.mockito.stubbing.OngoingStubbing.thenReturn5 is the API

method the thread refers to.

From the content of the thread in Figures 5 and 6a, it would

be difficult to find the relevance between the text written in the

paragraphs and the given API method (i.e., org.mockito.stubbing.

OngoingStubbing.thenReturn) since the type (i.e., OngoingStubbing)

does not appear in the thread. The text in figure 5 just shows the

user view towards the code snippet without having a description

mentioning the application or usage of the observed API method in-

vocation (e.g., thenReturn in the code snippet of Figure 5). Sentences

such as "This works like charm!" do not provide much information

to identify whether the observed API method refers to the given

API.

Therefore, we leverage the content of the thread which might

be relevant to the content of the API method. For example, in

the thread above, its title which is shown in Figure 6a, "Optional

cannot be returned by stream() in Mockito Test classes", relates to

the comment of the given API which is Sets a return value to be

returned when the method is called in Figure 6b. Due to this similar

4https://stackoverflow.com/questions/56135373/
5https://javadoc.io/doc/org.mockito/mockito-all/2.0.2-beta/org/mockito/stubbing/
OngoingStubbing.html

Figure 5: Thread 56135373 on Stack Overflow where API is

referred by a code snippet of the thread

relation, ARSeek can successfully consider this thread as relevant

while DATYS missed it.

(2) The irrelevant thread contains the type name of the given API

method

An example of this case is shown in Figure 7. In the thread6, the

given API method is com.google.common.base.CharMatcher.is and

there is a word that matches the simple name of the API method

is which we highlighted. Since the type of the given API method

(e.g., CharMatcher) appears in both the textual content and the code

snippet, DATYS mistakenly accepts the thread as referring to the

givenAPI. By leveraging the semantic knowledge learned by theAPI

relevance classifier , ARSeek is able to detect the irrelevance between

the textual content, code snippet around the word is and the API

comment and implementation code. ARSeek can conclude that the

thread is irrelevant to the given API com.google.common.base.Char-

Matcher.is.

6.2 Example case where ARSeek fail to exclude
irrelevant threads

Figure 8 shows a case where ARSeek fails to exclude the thread7 out

of the relevant results for the givenAPImethod org.mockito.Mockito-

.mock. The issue occurs when there is an API method that has

similar functionality as the given API method. These two methods

usually have the same simple name and highly similar description.

In Figure 8, PowerMock and Mockito, perform similar functions

such as mocking (i.e., creating a version of a service in order to

quickly and reliably run tests on that service8). Since both of them

have the API method whose simple name is mock, and both of their

mockmethods have the same API signature (i.e., parameters, return

type), it would be easy to mistakenly recognize one as the other. Fig-

ure 9 shows the comment of API method org.mockito.Mockito.mock9,

which is Creates mock object of the given class or interface. Because

of the similarity between the API method from Mockito library and

the title of thread 30127057 in Figure 8, ARSeek wrongly recognizes

that the simple API name mock in the thread refers to the given

API method org.mockito.Mockito.mock. In fact, the simple API name

mock refers to the one from the PowerMock library.

6https://stackoverflow.com/questions/16919751/
7https://stackoverflow.com/questions/30127057/
8https://circleci.com/blog/how-to-test-software-part-i-mocking-stubbing-and-
contract-testing/
9https://javadoc.io/static/org.mockito/mockito-all/2.0.2-beta/org/mockito/Mockito.
html

338

ARSeek: Identifying API Resource using Code and Discussion

on Stack Overflow
ICPC ’22, May 16–17, 2022, Virtual Event, USA

(a)

(b)

Figure 6: The similarity in semantic meaning between

the API comment of method org.mockito.stubbing.

OngoingStubbing.thenReturn in Figure 6a and the tex-

tual content (i.e., the title) of thread 56135373 in Figure 6b

Figure 7: Thread 16919751 on Stack Overflow where API com.

google.common.base.CharMatcher.is is not referred by the

content of the thread.

6.3 Threats to validity

A threat to internal validity is related to errors in our code base. We

check our code multiple times but there still could be errors that

we did not notice.

A threat to external validity is related to the generalizability

of our approach. This experiment mainly focuses on analyzing

Stack Overflow threads in Java programming language, therefore,

it is uncertain whether ARSeek can be applied to other discussion

Figure 8: Thread 30127057 on Stack Overflow that ARSeek

falsely recognize as referring to the API method org.mockito.

Mockito.mock.

Figure 9: The API comment of method org.mockito.Mockito.

mock

venues that also talk about API issues. We pick Stack Overflow

and Java as they are one of the most popular Software Question

and Answer (SQA) sites and programming languages, respectively.

Indeed, changing the target programming language could affect

the accuracy of ARSeek. However, although we focus on Java, the

features (e.g., API comment/documentation, API implementation

code, fully qualified name, class/type name, etc.) required for the

approach can be found in other programming languages.

A threat to construct validity in concerned on whether precision,

recall, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 is a suitable evaluation metric. Our task is a

classification task and a lot classification work in software engi-

neering have used precision, recall, and F1-score as the evaluation

metric [18, 27, 38, 56]. Thus, we believe the threat is minimal.

7 RELATEDWORK

API Disambiguation. Many publications [3, 4, 11, 31, 37, 43, 47,

56] deal with API disambiguation. There are two main groups:

informal text disambiguation [3, 4, 11, 31, 56] and code snippet

disambiguation [37, 43, 47]. As suggested by its name, the first aims

to disambiguate API mentions in textual content while the second

deals with disambiguating API mention in code snippets.

For informal text disambiguation, several works utilize classical

information retrieval approaches such as Vector Space Model and

Latent Semantic Indexing to disambiguate the API mentions [3,

4, 31] while some others use heuristics [11]. Bacchelli et al [4]

339

ICPC ’22, May 16–17, 2022, Virtual Event, USA

combined string matching and information retrieval algorithms

to link emails to source code entities. Dagenais and Robillard [11]

identified Java APIs mentioned in support channels (e.g., mailing

list, forums), documents, and code snippets. Ye et al. [56] worked on

API disambiguation in the textual content of Stack Overflow thread

by utilizing mention-mention similarity, mention-entry similarity,

and scope filter. Luong et al.[27] used type scoping to disambiguate

the API mentions in a Stack Overflow thread.

The work on API disambiguation on Stack Overflow thread can

be viewed as another side of the coin of the task in finding threads

that are relevant to the API. When we disambiguate an API in a

thread, the disambiguated API is relevant to the thread as the thread

is talking about the API.

API Resource Retrieval. Several studies have explored how to

search for the code for API and related information retrieval. Lv

et al. [28] proposed Codehow to deal with the lack of query un-

derstanding ability of the existing tool. By expanding a user query

with APIs, Codehow can identify potential APIs and perform a

code search based on the Extended Boolean model, which considers

the impact of APIs on code search. Gu et al. [17] proposed Deep-

API to search for API usage sequences. As opposed to assuming a

bag of words, it learns the sequence of words within a query and

the sequence of APIs associated with it. DeepAPI encodes a single

user query into a fixed-length context vector to generate an API

sequence.

Other studies have also exploited different aspects of APIs and

natural language to better retrieve the APIs and their related infor-

mation. The techniques include: using global and local contexts of

the queries [34], leveraging usage similarity for effective retrieval

of API examples [5], employing word embeddings to document

similarities for improved API retrieval [57], exploiting user knowl-

edge [42], and task-API knowledge gap [20] during retrieval of

semantically annotated API operations.

Wang et al. [54] developed a transformer-based framework for

unifying code summarization and code search. Shahbazi et al. [44]

proposed API2Com to improve automatically generated code com-

ments by fetching API documentation. Alhamzeh et al. [2] built

DistilBERT-based argumentation retrieval for answering compara-

tive questions. Dibia et al. [13] and Vale et al.[51] developed a usable

library for question answering with contextual query expansion

and a question-answering assistant for software development using

a transformer-based language model, respectively. Ciniselli et al.[9]

performed an empirical study on the usage of Transformer Models

for code search and completion.

Our study also works on API resource retrieval. Specifically, we

retrieve Stack Overflow threads that are relevant to a target API

that we are searching for.

API Documentation. Treude et al. [48] studied the augmenting

API documentation with insights from stack overflow. [35] explored

the Crowd documentation by examining the dynamics of API discus-

sions on Stack Overflow, whereas [45] dubbed the Stack Overflow

as the Social Media for Developer Support in terms of provided util-

ities. [1] and [6] worked on classifying stack overflow posts on API

issues and contextual documentation referencing on stack overflow.

The dichotomy of these studies is notable where some research

like [50] and [58] studies how API documentation fails via the API

misuse on stack overflow, other studies [32, 41] heavily lean on the

Crowdsourced knowledge on stack overflow for automated API

documentation with tutorials. Similarly, crowdsourced knowledge

was hailed by [16] and [24], who explored the innovation diffusion

and web resource recommendation for hyperlinks through link

sharing on stack overflow.

Our work supports the effort in this line of study. ARSeek can

automatically find threads about a particular API in Stack Overflow

that can be augmented to the corresponding API documentation.

Word Sense andEntityDisambiguation Study.There are several

works focused on the disambiguation task [11, 33, 37, 47]. We also

have found a variety of word sense and entity disambiguation meth-

ods employed for different objectives [8, 15, 21–23, 29, 36, 46, 59].

These studies have solved myriads of problems via solving lexical

disambiguations in literature. The task of word sense disambigua-

tion is to identify a target word’s intendedmeaning by examining its

context. Researchers have used Word Sense Disambiguation to pre-

dict election results by enhanced sentiment analysis on Twitter data.

Researchers have associated place-name mentions in unstructured

text with their actual references in geographic space using word

disambiguation. Other research has also proposed unsupervised,

knowledge-Free, and interpretable Word Sense Disambiguation

for various applications. Researchers used this approach to add

meaning to social network posts when it comes to named entity

recognition and disambiguation. Different Entity-fishing tools were

also developed for facilitating the recognition and disambiguation

service. In recent years, tools that allow researchers to recognize

and extract named entities have become increasingly popular.

8 CONCLUSION AND FUTUREWORK

We present ARSeek, an approach to search Stack Overflow threads

that refer to API of which users or tools may want to find the usage.

We utilize the semantic and syntactic features of the paragraphs

and code snippets in a thread to determine whether the thread is

related to a given API. Our evaluation shows that ARSeek has an

improvement compared to DATYS when adapting both approaches

to the search task. We have added a weight parameter to balance

the usage of syntactic and semantic information for retrieving API

mentions and related threads. We have proved the utility of the

weight factor by incorporating an ablation study. In the future, we

plan to improve our approach with a larger dataset that has more

threads and APIs. Also, we plan to make our approach become

robust with more programming languages so that it can be more

useful to developers.

Replication Package. The source code for ARSeek is available at

https://github.com/soarsmu/ARSeek.

Acknowledgment. This research / project is supported by the

Ministry of Education, Singapore, under its Academic Research

Fund Tier 2 (Award MOE2019-T2-1-193). Any opinions, findings

and conclusions or recommendations expressed in this material are

those of the author(s) and do not reflect the views of the Ministry

of Education, Singapore.

340

ARSeek: Identifying API Resource using Code and Discussion

on Stack Overflow
ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] Md Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K Roy, and Kevin A

Schneider. 2018. Classifying stack overflow posts on API issues. In 2018 IEEE
25th international conference on software analysis, evolution and reengineering
(SANER). IEEE, 244–254.

[2] Alaa Alhamzeh,Mohamed Bouhaouel, Előd Egyed-Zsigmond, and JelenaMitrović.
2021. DistilBERT-based Argumentation Retrieval for Answering Comparative
Questions. Working Notes of CLEF (2021).

[3] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-
tore Merlo. 2002. Recovering traceability links between code and documentation.
TSE 28, 10 (2002).

[4] Alberto Bacchelli, Michele Lanza, and Romain Robbes. 2010. Linking e-mails and
source code artifacts. In ICSE.

[5] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. 2010. Leveraging
Usage Similarity for Effective Retrieval of Examples in Code Repositories. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10). As-
sociation for Computing Machinery, New York, NY, USA, 157–166. https:
//doi.org/10.1145/1882291.1882316

[6] Sebastian Baltes, Christoph Treude, and Martin P Robillard. 2020. Contextual
documentation referencing on stack overflow. IEEE Transactions on Software
Engineering (2020).

[7] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and
Olivier Barais. 2019. The maven dependency graph: a temporal graph-based
representation of maven central. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 344–348.

[8] Ping Chen, Wei Ding, Chris Bowes, and David Brown. 2009. A fully unsupervised
word sense disambiguation method using dependency knowledge. In Proceed-
ings of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. 28–36.

[9] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad
Aghajani, Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele Bavota. 2021.
An Empirical Study on the Usage of Transformer Models for Code Completion.
arXiv preprint arXiv:2108.01585 (2021).

[10] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020.
Electra: Pre-training text encoders as discriminators rather than generators. arXiv
preprint arXiv:2003.10555 (2020).

[11] Barthélémy Dagenais and Martin P Robillard. 2012. Recovering traceability links
between an API and its learning resources. In 2012 34th international conference
on software engineering (icse). IEEE, 47–57.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[13] Victor Dibia. 2020. Neuralqa: A usable library for question answering (contextual
query expansion+ BERT) on large datasets. arXiv preprint arXiv:2007.15211 (2020).

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[15] Luca Foppiano and Laurent Romary. 2020. entity-fishing: a DARIAH entity
recognition and disambiguation service. Journal of the Japanese Association for
Digital Humanities 5, 1 (2020), 22–60.

[16] Carlos Gómez, Brendan Cleary, and Leif Singer. 2013. A study of innovation
diffusion through link sharing on stack overflow. In 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE, 81–84.

[17] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 631–642. https:
//doi.org/10.1145/2950290.2950334

[18] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identifying
self-admitted technical debt in open source projects using text mining. Empirical
Software Engineering 23, 1 (2018), 418–451.

[19] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap.
In ASE. IEEE.

[20] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
Method Recommendation without Worrying about the Task-API Knowledge
Gap. In 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 293–304. https://doi.org/10.1145/3238147.3238191

[21] Rincy Jose and Varghese S Chooralil. 2015. Prediction of election result by
enhanced sentiment analysis on Twitter data using Word Sense Disambiguation.
In 2015 International Conference on Control Communication Computing India
(ICCC). 638–641. https://doi.org/10.1109/ICCC.2015.7432974

[22] Morteza Karimzadeh, Wenyi Huang, Siddhartha Banerjee, Jan Oliver Wallgrün,
Frank Hardisty, Scott Pezanowski, Prasenjit Mitra, and Alan M. MacEachren.
2013. GeoTxt: A Web API to Leverage Place References in Text. In Proceedings

of the 7th Workshop on Geographic Information Retrieval (Orlando, Florida) (GIR
’13). Association for Computing Machinery, New York, NY, USA, 72–73. https:
//doi.org/10.1145/2533888.2533942

[23] Dan Klein, Kristina Toutanova, H Tolga Ilhan, Sepandar D Kamvar, and Christo-
pher D Manning. 2002. Combining heterogeneous classifiers for word sense
disambiguation. In Proceedings of the ACL-02 workshop on Word sense disambigua-
tion: recent successes and future directions. 74–80.

[24] Jing Li, Zhenchang Xing, Deheng Ye, and Xuejiao Zhao. 2016. From discussion
to wisdom: web resource recommendation for hyperlinks in stack overflow. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing. 1127–1133.

[25] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How do api changes trigger stack overflow dis-
cussions? a study on the android sdk. In proceedings of the 22nd International
Conference on Program Comprehension. 83–94.

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[27] Kien Luong, Ferdian Thung, and David Lo. 2021. Disambiguating Mentions of
API Methods in Stack Overflow via Type Scoping. In ICSME. IEEE.

[28] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. CodeHow: Effective Code Search Based onAPI Understanding
and Extended Boolean Model (E). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 260–270. https://doi.org/10.1109/ASE.
2015.42

[29] Alexios Mandalios, Konstantinos Tzamaloukas, Alexandros Chortaras, and Gior-
gos Stamou. 2018. Geek: Incremental graph-based entity disambiguation. In
LDOW@WWW.

[30] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[31] Andrian Marcus and Jonathan I Maletic. 2003. Recovering documentation-to-
source-code traceability links using latent semantic indexing. In ICSE. IEEE.

[32] Sarah Meldrum, Sherlock A Licorish, and Bastin Tony Roy Savarimuthu. 2017.
Crowdsourced knowledge on stack overflow: A systematic mapping study. In
Proceedings of the 21st International Conference on Evaluation and Assessment in
Software Engineering. 180–185.

[33] Anh Tuan Nguyen, Peter C Rigby, Thanh Nguyen, Dharani Palani, Mark Karanfil,
and Tien N Nguyen. 2018. Statistical translation of English texts to API code
templates. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 194–205.

[34] Thanh Nguyen, Ngoc Tran, Hung Phan, Trong Nguyen, Linh Truong, Anh Tuan
Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2018. Complementing Global
and Local Contexts in Representing API Descriptions to Improve API Retrieval
Tasks. In Proceedings of the 2018 26th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 551–562. https://doi.org/10.1145/3236024.3236036

[35] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd documentation: Exploring the coverage and the dynamics of API discus-
sions on Stack Overflow. Georgia Institute of Technology, Tech. Rep 11 (2012).

[36] Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. 2005. Senserelate::
Targetword-A generalized framework for word sense disambiguation. In ACL,
Vol. 2005. 73–76.

[37] Hung Phan, Hoan Anh Nguyen, Ngoc M Tran, Linh H Truong, Anh Tuan Nguyen,
and Tien N Nguyen. 2018. Statistical learning of api fully qualified names in code
snippets of online forums. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 632–642.

[38] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. 2019. Categorizing the content of github readme files. Empirical
Software Engineering 24, 3 (2019), 1296–1327.

[39] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In SANER 2016,
Vol. 1. IEEE.

[40] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software 26, 6 (2009), 27–34. https://doi.org/10.1109/MS.2009.
193

[41] Adriano M Rocha and Marcelo A Maia. 2016. Automated API documentation
with tutorials generated from Stack Overflow. In Proceedings of the 30th Brazilian
Symposium on Software Engineering. 33–42.

[42] Michał Rój. 2011. Exploiting User Knowledge during Retrieval of Semantically
Annotated API Operations. In Proceedings of the Fourth Workshop on Exploiting
Semantic Annotations in Information Retrieval (Glasgow, Scotland, UK) (ESAIR
’11). Association for Computing Machinery, New York, NY, USA, 21–22. https:
//doi.org/10.1145/2064713.2064726

[43] CM Khaled Saifullah, Muhammad Asaduzzaman, and Chanchal K Roy. 2019.
Learning from examples to find fully qualified names of api elements in code
snippets. In ASE. IEEE.

341

ICPC ’22, May 16–17, 2022, Virtual Event, USA

[44] Ramin Shahbazi, Rishab Sharma, and Fatemeh H Fard. 2021. API2Com: On the
Improvement of Automatically Generated Code Comments Using API Documen-
tations. arXiv preprint arXiv:2103.10668 (2021).

[45] Megan Squire. 2015. " Should We Move to Stack Overflow?" Measuring the Utility
of Social Media for Developer Support. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, 219–228.

[46] Thomas Steiner, Ruben Verborgh, Joaquim Gabarró Vallés, and Rik Van de Walle.
2013. Adding meaning to social network microposts via multiple named entity
disambiguation apis and tracking their data provenance. International Journal of
Computer Information Systems and Industrial Management 5 (2013), 69–78.

[47] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proceedings of the 36th International Conference on Software
Engineering. 643–652.

[48] Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 392–403.

[49] Gias Uddin and Foutse Khomh. 2019. Automatic mining of opinions expressed
about apis in stack overflow. IEEE Transactions on Software Engineering (2019).

[50] Gias Uddin and Martin P Robillard. 2015. How API documentation fails. Ieee
software 32, 4 (2015), 68–75.

[51] Liliane do Nascimento Vale and Marcelo de Almeida Maia. 2021. Towards a
question answering assistant for software development using a transformer-
based language model. arXiv preprint arXiv:2103.09423 (2021).

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[53] Pradeep K Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E
Hassan. 2016. What do client developers concern when using web apis? an
empirical study on developer forums and stack overflow. In 2016 IEEE International
Conference on Web Services (ICWS). IEEE, 131–138.

[54] Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. 2020. Transˆ
3: A transformer-based framework for unifying code summarization and code
search. arXiv preprint arXiv:2003.03238 (2020).

[55] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951–976.

[56] Deheng Ye, Lingfeng Bao, Zhenchang Xing, and Shang-Wei Lin. 2018. APIReal:
an API recognition and linking approach for online developer forums. Empirical
Software Engineering 23, 6 (2018), 3129–3160.

[57] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From Word
Embeddings to Document Similarities for Improved Information Retrieval in Soft-
ware Engineering. In Proceedings of the 38th International Conference on Software
Engineering (Austin, Texas) (ICSE ’16). Association for Computing Machinery,
New York, NY, USA, 404–415. https://doi.org/10.1145/2884781.2884862

[58] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are code examples on an online Q&A forum reliable?: a
study of API misuse on stack overflow. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 886–896.

[59] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. 2013. Do We Need
Entity-Centric Knowledge Bases for Entity Disambiguation?. In Proceedings of
the 13th International Conference on Knowledge Management and Knowledge
Technologies. 1–8.

342

	ARSeek: identifying API resource using code and discussion on stack overflow
	Citation

	ARSeek: Identifying API Resource using Code and Discussion on Stack Overflow

