
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2022

Simple or complex? Together for a more accurate just-in-time Simple or complex? Together for a more accurate just-in-time

defect predictor defect predictor

Xin ZHOU

DongGyun HAN

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
ZHOU, Xin; HAN, DongGyun; and LO, David. Simple or complex? Together for a more accurate just-in-time
defect predictor. (2022). Proceedings of the 30th International Conference on Program Comprehension,
Virtual Event, 2022 May 16-17. 229-240.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7691

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Simple or Complex? Together for a More Accurate Just-In-Time
Defect Predictor

Xin Zhou, DongGyun Han, and David Lo
School of Computing and Information Systems, Singapore Management University

Singapore

xinzhou.2020@phdcs.smu.edu.sg,{dhan,davidlo}@smu.edu.sg

ABSTRACT

Just-In-Time (JIT) defect prediction aims to automatically predict

whether a commit is defective or not, and has been widely stud-

ied in recent years. In general, most studies can be classified into

two categories: 1) simple models using traditional machine learn-

ing classifiers with hand-crafted features, and 2) complex models

using deep learning techniques to automatically extract features.

Hand-crafted features used by simple models are based on expert

knowledge but may not fully represent the semantic meaning of

the commits. On the other hand, deep learning-based features used

by complex models represent the semantic meaning of commits

but may not reflect useful expert knowledge. Simple models and

complex models seem complementary to each other to some extent.

To utilize the advantages of both simple and complex models, we

propose a combined model namely SimCom by fusing the predic-

tion scores of one simple and one complex model. The experimental

results show that our approach can significantly outperform the

state-of-the-art by 6.0–18.1%. In addition, our experimental results

confirm that the simple model and complex model are complemen-

tary to each other.

ACM Reference Format:

Xin Zhou, DongGyun Han, and David Lo. 2022. Simple or Complex? To-

gether for a More Accurate Just-In-Time Defect Predictor. In 30th Interna-

tional Conference on Program Comprehension (ICPC ’22), May 16–17, 2022,

Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3524610.3527910

1 INTRODUCTION

Modern software development tends to release software in a short

period [53, 58], although developers often have limited testing

resources [33, 53]. Such limited testing resources and tight devel-

opment schedules often lead to introducing software defects [10].

To address the challenge, many defect prediction approaches have

been proposed to help developers to narrow down the testing and

debugging scope to software components that are highly likely to

contain defects [15, 36]. The Just-in-Time (JIT) defect prediction

approach is a specific type of defect prediction approach that can

identify the possible defective code changes as soon as they are sub-

mitted, which can avoid the defects being merged to the codebase.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527910

Besides, JIT defect prediction approaches can give fine-grained

predictions at the change level, while traditional defect prediction

approaches only give coarse predictions at the file level or module

level [15, 72]. Moreover, when a commit is submitted for a review,

developers need to comprehend it to see whether to integrate it

into the code base or not. JIT defect prediction approaches can help

to flag cases that require developers’ more scrutiny and thus guide

the comprehension process to focus on the more risky cases.

In the past decades, JIT defect prediction has attracted many

researchers and many approaches have been proposed [10, 12, 29,

30, 37, 44, 53, 75–77, 79, 81]. In general, most work can be clas-

sified into two categories: 1) models using traditional machine

learning (ML) classifiers with hand-crafted features, and 2) mod-

els using deep learning (DL) techniques to automatically extract

features. Hereafter, we refer to traditional machine learning as ML

and deep learning as DL for simplicity. Compared to the models

using traditional machine learning, deep learning-based models

usually have a larger number of parameters to train. Thus, usually,

DL-based approaches require much more training and evaluation

time than the approaches using ML classifiers with hand-crafted

features. In this paper, we regard deep learning-based models as

complex models (many parameters to train, slower). Also, we

consider the models using ML classifiers with hand-crafted features

as simple models (small number of parameters to train; much

faster than DL-based techniques). The majority of existing work

are simple models, which rely heavily on hand-crafted change-level

features [10, 12, 37, 44, 53, 75–77, 79, 81]. Simple models feed the

features to a traditional machine learning classifier (e.g. Logistic

Regression) to predict if code changes are defective. On the other

hand, the complex models usually extract the features automati-

cally from the content of commits (i.e. the commit logs and code

changes) by using deep learning techniques.

There exists a saga of simple vs. complex in the JIT defect pre-

diction task (and beyond) [19, 29, 46, 81]. Even though complex

models are slower than simple models, complex models usually

show their superiority over the simple models in predictive power.

For instance, DeepJIT (a complex model) outperforms prior simple

models by 7–9% in terms of Area Under the Receiver Operating

Characteristic Curve (AUC-ROC) [29]. However, recently, Zeng et

al. proposed a simple model namely LApredict that achieved 2.6%

improvements over complex models in AUC-ROC [81].

Simple models use a set of hand-crafted features to represent a

commit. These features are based on expert knowledge and describe

some properties of commits such as code change size, code change

diffusion, and history of code change. However, those hand-crafted

features may not fully represent the semantic meaning of the actual

code changes in commits. For instance, two commits with different

229

30th IEEE/ACM International Conference on Program Comprehension

ICPC ’22, May 16–17, 2022, Virtual Event, USA Xin Zhou, DongGyun Han, and David Lo

purposes and defectiveness labels may still have the same hand-

crafted features (e.g. code change size) [29].

On the other hand, complex models use features that are au-

tomatically extracted from the raw contents of commits via DL

techniques. These features represent the semantic meaning of com-

mits [29], which are proven useful in various software engineering

tasks including JIT defect prediction [27, 29, 59, 74]. However, these

automatically extracted features may not leverage useful expert

knowledge. For instance, code files changed by many developers in

the past may include defects [48]. However, the content in a single

commit does not explicitly contain information about the number

of developers who have changed the modified files of this commit

in the past.

In terms of the features, the simple model and complex model

seem complementary to each other, which motivates us to combine

these two models to build a better JIT defect prediction model. A

straightforward idea is to simply put all hand-crafted features as an

extra input to a complex model. However, these two features have

different properties: hand-crafted features are a list of numbers that

each number has a clear meaning while DL features are vectors

whose elements are not mutually exclusive and do not have clear

interpretations [22]. Besides, the commonly used classifiers for

hand-crafted features (e.g. Logistic Regression) and DL features (e.g.

the fully connected layers) are also different. Thus, to better make

use of two kinds of features, one potential approach is to assign

the most suitable classifier to each of two features: separately train

a simple model with hand-crafted features and a complex model

with DL features.

In this paper, we propose an approach that combines a simple

model and a complex model. Our approach leverages our own

simple and complex models that are inspired by previous work [29,

76, 81]. These simple and complex models are combined to provide

a prediction in the manner of late fusion [24, 68] (i.e. fusing the

prediction scores from different models).

Although previous work [29, 30, 81] use Area Under the Receiver

Operating Characteristic Curve (AUC-ROC) to evaluate the perfor-

mance, ROC curves can present an overly optimistic view of per-

formance in a largely skewed dataset [17]. Alternatively, Precision-

Recall (PR) curves are more informative than ROC curves when

evaluating binary classifiers on skewed datasets [65]. In JIT defect

prediction, usually, the number of defective commits is smaller than

the number of clean commits so that many JIT defect prediction

datasets are skewed datasets. For instance, in Zeng et al.’s work [81],

the QT dataset contains about 20,000 clean commits, while it only

contains about 3,500 defective commits. To ensure fairness and

validity, we use AUC-ROC, AUC-PR, and F1-scores, to evaluate the

performance of each approach.

The experimental results show that our approach can signifi-

cantly outperform the state-of-the-art by 6.0%, 12.4%, and 18.1% in

terms of AUC-ROC, AUC-PR, and F1-score respectively. Besides,

our approach (the combined model) shows better performance in a

diverse set of projects than the simple model only or the complex

model only.

Our main contributions can be summarized as follows:

• We propose an approach that combines a simple model and

a complex model. To the best of our knowledge, it is the

first approach to combine the simple and complex models to

build an effective approach for JIT defect prediction.

• We conduct a study to evaluate our proposed approach on a

large and diverse dataset with a total of 94,818 commits. The

results show that our approach outperforms the baselines

by a large margin. To better understand and analyze our

approach, we also carry out further experiments including

an ablation study.

• To ensure the validity of our experimental results, we choose

to add a suitable metric (i.e. AUC-PR) to evaluate the per-

formance in the JIT defect prediction task whose datasets

usually have a (large) skew in the class distribution (i.e. clean

or defective).

The rest of the paper is organized as follows. Section II pro-

vides background information on existing JIT defect prediction

approaches and model fusion techniques. Section III introduces

our proposed approach namely SimCom. Section IV describes our

experimental settings and research questions. Section V reports our

experimental results. Section VI discusses our findings. Section VII

presents the related work. Section VIII concludes the paper with

future work.

2 BACKGROUND

2.1 Just-in-time Defect Prediction

The Just-in-Time (JIT) defect prediction approach is to predict if a

commit is defective or not. We briefly introduce the well-known

simple and complex JIT defect prediction models.

Simple models. Simple models rely heavily on hand-crafted

change-level features [10, 12, 37, 44, 53, 75–77, 79, 81]. The simple

models feed the hand-crafted features to a machine learning classi-

fier (e.g. Logistic Regression, Decision Tree, and Random Forest) to

predict if commits are defective. LR-JIT is a classic simple model

that is proposed by Kamei et al. [37], which integrates 14 commit-

level hand-crafted features with the logistic regression model to

predict if a commit is defective or not. These 14 features describe

the properties of code changes, such as the size, diffusion, history,

and author experience of code changes. LR-JIT has been widely

adopted as an evaluation baseline for many previous JIT defect pre-

diction studies [77, 78, 81]. Yang et al. proposed DBN-JIT [77] which

uses Deep Belief Network (DBN) to extract high-level information

from the commit-level defect prediction features mentioned above.

Although DBN-JIT adopted Deep Learning techniques (i.e. Deep

Belief Network), its goal is still to make better use of hand-crafted

features and do not extract features automatically from the contents

of commits. Thus, we categorize it as a simple model (i.e. relying

heavily on hand-crafted features) in the context of this paper.

Complex models. Recently, two complex models are proposed,

namely DeepJIT [29] and CC2Vec [30]. DeepJIT uses the convo-

lutional neural network for text (textCNN) [40] to automatically

extract features from the content of code changes and commit

logs. CC2Vec learns the distributed representation of code changes

guided by their log messages. Hoang et al. integrated the output of

CC2Vec with DeepJIT and outperformed the original DeepJIT [30].

However, Zeng et al. argued that in their extended JIT defect predic-

tion datasets, CC2Vec cannot outperform DeepJIT consistently [81].

230

Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor ICPC ’22, May 16–17, 2022, Virtual Event, USA

State-of-the-art. LApredict is a simple model that only makes

use of the number of added lines feature with the logistic regression

classifier. In other words, LApredict gives defectiveness prediction

only based on the number of code lines added in a commit: the more

lines of code are added in a commit, the higher is its probability of

being defective. LAPredict [81] has outperformed the other exist-

ing JIT defect prediction approaches regardless of its simpleness.

Surprisingly, LAPredict even outperforms complex DL approaches

by 2.6% in terms of the AUC-ROC score on average.

2.2 Model Fusion

Model fusion techniques are widely used in tasks that have mul-

tiple data modalities such as object detection and video analy-

sis [18, 24, 45, 68, 71]. Generally, there are two typical fusion meth-

ods, namely early fusion and late fusion. Early fusion is carried

out at the feature level: various features of different modalities are

concatenated into one big vector for classification [24, 68]. Late

fusion (also called decision level fusion) is to build several models

independently for different modalities (or modality groups) and do a

fusion at a decision-making stage (on the prediction scores) [24, 68].

Late fusion has different rules to determine how to finally com-

bine each of the outputs of the independently trained models, e.g.

product, sum, average, or weighted average of the outputs of all

models [80]. Though late fusion seems similar to ensemble learn-

ing [64], they have differences between fused models. Late fusion

usually aggregate heterogeneous models that deal with different

inputs (modalities) while the ensemble learning models usually

aggregate homogeneous models that are fed with the identical

inputs.

JIT defect prediction task can also be regarded as a multi-modal

task: hand-crafted features, commit logs, and code changes can be

seen as three different aspects (modalities) of commits. These three

modalities have quite different properties: hand-crafted features are

numerical features and each feature has a clear meaning; commit

logs are natural language texts, and the code changes are written

in a programming language. In this case, it is natural to make use

of all of these three modalities by using a fusion technique.

3 SIMCOM

In this section, we present the details of our proposed approach: the

Simple andComplex (SimCom)model. Figure 1 presents the overall

framework of our proposed approach SimCom. The framework

mainly contains three modules: a simple model module, a complex

model module, and a model fusion module.

3.1 Simple Model: Sim

In this work, we call our simple model module as Sim for short. Fol-

lowing the well-known simple model, LR-JIT [37], we use the same

14 hand-crafted features (as presented in Table 1) in LR-JIT, which

describe the properties of commits.We choose the features of LR-JIT

because LR-JIT considers a comprehensive set of hand-made fea-

tures based onmany prior works [14, 23, 25, 26, 42, 48, 53, 54, 57, 61].

The effectiveness of the simple model will be affected by the set of

hand-made features we choose. For the ML classifier, we choose

Random Forest (RF) [7], which is one of the most popular ML clas-

sifiers. It is a fast and robust classifier that is capable of identifying

non-linear patterns in both continuous and categorical features [13].

In this model, we directly feed 14 hand-crafted features of com-

mits into the RF and the RF gives predictions on the labels (i.e.

defective or clean) of commits. We use the implementation of RF

in the Scikit-Learn package [8] with the default parameters of the

package.

3.2 Complex Model: Com

In this work, we call our complex model module as Com for short.

Following previous work, in the complex model module, we use

textCNN [40] as the basic feature extractor to automatically extract

features from the contents of commits. As a commit consists of a

commit log and a set of code changes, we first separately extract

features from the commit log and code changes respectively (i.e. a

commit log vector and a code change vector). Then, we concate-

nate the two vectors to get the final feature for the whole commit

(i.e. a commit vector). After getting the commit vector, we feed

the commit vector into a fully connected layer (which acts as a

classifier) to predict whether a commit is defective or not. In gen-

eral, this complex model has the similar framework as the prior

work DeepJIT. We follow the framework of DeepJIT since this

framework can hierarchically encode structures in commits (i.e.

line→hunk→file→commit), which is used in prior DL-based JIT

defect predictors [29, 30] and is proven useful. Though the frame-

work is similar, we make changes to reflect the code changes in a

better way. We will explain the details in Section 3.2.3.

3.2.1 textCNN. The textCNN, as the basic feature extractor, can

aggregate a sequence of token embeddings into a single vector that

contains the semantic meaning of the input sequence [40].

Given a sequence of tokens denoted as 𝑀 = [𝑡1, 𝑡2, ..., 𝑡 |𝑀 |],

each token 𝑡𝑖 has its own embedding 𝑤𝑖 ∈ 𝑅𝑑 where 𝑑 is the

dimension of token embeddings.𝑤𝑖 :𝑗 stands for the concatenation

of token embeddings from position 𝑖 to 𝑗 in the sequence. To fuse

the embeddings of tokens in a sequence, a filter 𝑓 ∈ 𝑅𝑘×𝑑 is utilized
to a window of k files to compute a new feature:

𝑥𝑖 = 𝛼 (𝑓 ·𝑤𝑖 :𝑖+𝑘−1 + 𝑏𝑖)

where · is a sum of element-wise product, 𝛼 (.) is a non-linear
activation function, and 𝑏𝑖 ∈ 𝑅 is the bias value. The filter 𝑓 is

applied to every k-tokens in a sequence. The generated features are

Table 1: Widely used 14 hand-crafted features for code

changes

Name Description

NS The number of modified subsystems [53]
ND The number of modified directories [53]
NF The number of modified files [57]
Entropy Distribution of modified code across each file [14, 26]
LA Lines of code added [54, 56]
LD Lines of code deleted [54, 56]
LT Lines of code in a file before the change [42]
FIX Whether or not the change is a defect fix [25, 61]
NDEV The number of developers that changed the modified files [48]
AGE The average time interval between the last and current change [23]
NUC The number of unique changes to the modified files [14, 26]
EXP Developer experience [53]
REXP Recent developer experience [53]
SEXP Developer experience on a subsystem [53]

231

ICPC ’22, May 16–17, 2022, Virtual Event, USA Xin Zhou, DongGyun Han, and David Lo

Commit Property

Model Fusion

Commit Logs

Output

Code Changes

Simple Model Complex Model
Fully Connected Layer

textCNN

commit log
change in file 1 change in file 2

added lines + deleted lines added lines + deleted lines

textCNN textCNN

vector for file 1 vector for file 2

textCNN

code change vectorcommit log vector

…

14 Hand-crafted Features

Random Forest

prediction scores prediction scores

Figure 1: The framework of SimCom

then concatenated to form a vector 𝑋 such that:

𝑋 = [𝑥1, 𝑥2, ..., 𝑥 |𝑀 |−𝑘+1]

Following prior work [29, 40], for each filter, we then use a max-

pooling layer [22] to process the feature vector 𝑋 to obtain the

highest value:

𝑐 = max
1≤𝑖≤ |𝑀 |−𝑘+1

𝑥𝑖

where 𝑐 is the feature of the input corresponding to a particular
filter. Therefore, each filter extracts a feature 𝑐 from the input 𝑀 .

TextCNN uses multiple filters (with varying window sizes) to get

multiple features [40]. Features from all filters are concatenated to

form 𝑍𝑀 , a single vector that represents the whole sequence.

In brief, we can simply think of textCNN as a feature extractor

that turns a sequence of tokens into a single vector:

𝑍𝑀 = textCNN (𝑀)

where𝑀 is the input sequence and 𝑍𝑀 is the output feature (i.e. a

vector representing the input sequence).

3.2.2 Feature extraction on commit logs. Commit logs are

mainly natural language (NL) sentences that summarize the pur-

poses of those commits by authors. As a commit log𝑚 is a sequence

of NL tokens, textCNN can be used without any pre-processing

to extract a single vector from the commit log. We call this single

vector the commit log vector (i.e. 𝑍𝑚).

3.2.3 Feature extraction on code changes. Unlike a commit

log, code changes in a commit are not a simple sequence but a list

of sequences: code changes spread over different code files in a

project because a commit may modify several files simultaneously.

For changes in each code file, we first concatenate all added and

removed lines separately. Then we concatenate the added lines and

the removed lines using special headers. The concatenated added

and removed lines in each file are then processed to be one single

sequence to represent changes in a file. Figure 2 presents a simple

example of our processing of code changes. In this example, the

red lines are removed code lines in a code file and the green lines

are added code lines.

The motivation of this processing comes from the following ob-

servation. In the previous work [29], there is no difference in the

ways of processing the added code lines and removed code lines (i.e.

no special headers as indicators). We highlight the added (deleted)

parts by adding two special headers indicating the property of the

following code lines (i.e. added or deleted). Adding too many special

tokens may hurt the model’s performance. To avoid adding spe-

cial headers to every changed line, we first concatenate the added

(deleted) lines together and then only add two special headers.

As the added and removed lines in each file are processed to be

one single sequence to represent changes in a file, we then feed the

sequence into a textCNN to get the vector for changes in each file.

One important step for effective JIT defect prediction is to find the

most suspicious parts of commits. This process is very similar to

extracting important keywords/phrases from the text to do classi-

fication [40, 82]. TextCNN is an efficient deep learning sequence

feature extractor, which is good at capturing the key segments of

an input text [82] (e.g. most defective code token sequences in our

case). Thus, we use textCNN to extract features from code changes

in a code file.

To fuse the vectors (features) from different code files, we use

another textCNN to aggregate those vectors into a single vector 𝑍𝐶
representing the whole code changes (i.e. the code change vector).

3.2.4 Feature concatenation and prediction. After getting the

vectors for the commit log and the code changes, we concatenate

these two vectors to generate a final feature representation (i.e. 𝑍)
representing the commit:

𝑍 = 𝑍𝑚 ⊕ 𝑍𝐶

where ⊕ is the concatenation operator.

Finally, the vector 𝑍 is fed into a widely used DL classifier, a

fully-connected (FC) layer [29, 30], to get the prediction score.

𝑦 = sigmoid(𝛼 (𝑤ℎ · 𝑍 + 𝑏ℎ))

232

Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor ICPC ’22, May 16–17, 2022, Virtual Event, USA

small_items = []

if item < threshold:

large items = []

if item > threshold:
Removed: large items = [] \n if item > threshold: \n
\t large_items.append(item) \n
Added: small_items = [] \n if item < threshold: \n
\t small_items.append(item) \n

Single Sequence :

\t large_items.append(item)

\t small_items.append(item)

Figure 2: An example about the processing of the code

changes in a file into a single sequence. The red lines are

removed code lines and the green lines are added code lines.

“Removed:” and “Added:” are two special headers indicating

a code line is removed or added. “ \𝑛 ” is a separator between

different code lines.

where · is a dot product, 𝑤ℎ is a weight matrix of the FC layer,

𝑏ℎ is the bias term, 𝛼 (.) is a non-linear activation function, and

sigmoid(.) is a function to do normalization on the prediction

scores.

3.3 Model Fusion

Our proposed approach, SimCom, is a combined model of one

simple model (i.e. Sim) and one complex model (i.e. Com) by late

fusion. Each model will give a prediction score for a commit and

these scores are combined in the model fusion module to yield a

final prediction score. Common late fusion methods include the

average, maximum, sum, andweighted average of scores [80]. In our

preliminary experiment, we found that taking the average of two

models achieves the best performance. Thus, we simply calculate

the average of two prediction scores from the simple and complex

models as the final prediction score.

As JIT defect prediction is a binary classification task, the learn-

ing objective is to minimize the binary cross-entropy loss [55]

between the final prediction scores and the ground truths (i.e. de-

fectiveness labels).

4 EXPERIMENTAL SETTING

4.1 Datasets

In this paper, we select the datasets collected by Zeng et al. [81] for

the following reasons. First, to make a fair comparison, we choose

to use the same training and testing datasets with the state-of-the-

art [81]. Second, we would like to carry out experiments on high-

quality JIT defect prediction datasets. JIT defect prediction datasets

are mainly collected by utilizing the SZZ algorithm [29, 37, 75].

When collecting the datasets, Zeng et al. paid attention to two

known issues of the SZZ algorithm (i.e. the false label issue [39,

49] and authentication latency issue [10, 69]) and followed prior

works [10, 39, 49] to reduce the impacts of the known issues. Finally,

the dataset of Zeng et al. is a diverse set of real-world projects. They

collect all code commits in six popular projects over the last 10 years.

Table 2 shows the statistics of six studied datasets including the

project name and the number of commits in the training and test

set respectively. For the columns, the “Defect” presents the number

of commits that are defective in the dataset. The “Clean” column

stands for the number of commits that are clean (not defective).

4.2 Evaluation metrics

We use three widely-used evaluation metrics to evaluate the per-

formance of our approach and baselines.

AUC-ROC: Receiver Operator Characteristic (ROC) curves are

used in the binary classification tasks, which show how the number

of correctly classified positive examples varies with the number of

wrongly classified negative examples [60]. The Area Under the ROC

Curves (AUC-ROC) is commonly used to present the performance

of approaches in binary classification tasks in software engineer-

ing [29, 30, 43, 50–52, 63, 81]. Following the previous work in JIT

defect prediction [29, 30, 81], we adopt this widely-used AUC-ROC

score to evaluate the performance of models. Besides, the AUC-ROC

score does not need one to manually set a threshold [70].

AUC-PR: ROC curves can present an overly optimistic view of

the performance of a model if there is a large skew in the class distri-

bution [17]. Precision-Recall (PR) curves, often used in information

retrieval [47], have been used as an alternative to ROC curves for

tasks with a large skew in the class distribution[6, 9, 16, 17, 21].

Besides, Saito and Rehmsmeier found that PR curves are more in-

formative than ROC curves when evaluating binary classifiers on

imbalanced datasets [65]. As shown in Table 2, all of the six datasets

are imbalanced datasets. For instance, in the test set of Gerrit, the

number of clean commits is 13.88 times bigger than the number of

defective commits. Thus, we adopt the Area Under the PR Curves

(AUC-PR) as an evaluation metric in this study. Please note that the

AUC-PR score also does not need to set a threshold manually.

F1-scores: AUC-ROC and AUC-PR consider prediction scores

rather than predicted classes as inputs. Both metrics focus on rank-

ing predictions, rather than the correctness of predicted classes.

Specifically, both metrics compare the prediction scores assigned

to positive instances (in our case, defective commits) versus those

assigned to negative instances (in our case, clean commits). How-

ever, in practice, end-users may care more about the correctness of

predicted classes.

In the case of JIT defect predictions, at any point in time, the

tool needs to make a just-in-time prediction if a commit is defective

or clean. At a particular point in time, there may be only one or

a few commits being made to a version control system, and thus

ranking them may not be helpful. Users of a JIT defect prediction

tool may want to know how many correct just-in-time predictions

such a tool makes.

To measure the ability of the tool to make correct just-in-time

predictions while considering the imbalanced nature of the data, in

this work, we also consider the F1-score. F1-score is a popularmetric

Table 2: Datasets statistics

Statistics
Training set Test set #lines

10%Clean Defect Clean Defect

QT 16,242 2,887 4,088 695 146

Openstack 13,153 5,052 3,577 875 209

JDT 1,342 1,281 335 321 200

Platform 5,477 3,350 1,501 706 121

Gerrit 10,348 1,593 2,798 188 120

GO 8,530 6,677 2,334 1,468 197

233

ICPC ’22, May 16–17, 2022, Virtual Event, USA Xin Zhou, DongGyun Han, and David Lo

used in many prior software engineering studies [5, 20, 32, 62, 67],

and is defined as the harmonic mean of precision and recall: F1-

score = 2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . Precision and recall, in turn, are defined
based on the number of true positives (TP), false positives (FP), and

false negatives (FN). If a defective commit is classified as defective,

it is a true positive (TP), otherwise false negative (FN). If a clean

commit is mistakenly classified as defective, it is a false positive

(FP). Precision is the ratio of correctly predicted defective commits

to all commits predicted as defective (i.e. Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃). Recall

is the ratio of the number of correctly predicted defective commits

to the actual number of defective commits (i.e. Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁).

4.3 Research Questions

RQ1: How effective is SimCom? In this RQ, we aim to explore the

effectiveness of our proposed approach SimCom in JIT defect pre-

diction. To answer this RQ, we carry out experiments by adopting

typical baselines and different experimental settings to show the ef-

fectiveness of SimCom. To answer the RQ1, we set LR-JIT, DeepJIT,

and LApredict (the state-of-the-art) as the baselines and compare

the experimental results. We do experiments in two different setups

(i.e. Setup I and Setup II).

Setup I: Entire Datasets. In Setup I, each approach is trained on

the training sets and evaluated on the corresponding entire test sets.

Studied JIT defect prediction approaches are trained to learn the

relation between the inputs (i.e. hand-crafted features or contents

in commits) and the defectiveness labels by applying data in the

training sets. Then, the trained models are evaluated on hold-out

test sets to show their predictive power.

Setup II: Datasets Excluding Large Commits.Wan et al. [73]

surveyed practitioners to discuss the drawbacks of defect prediction

tools. Some practitioners are unwilling to adopt defect prediction

tools because they think the tools report nothing new. It is well-

known that commits that have large numbers of deleted or added

lines are more likely defective [34, 57]. Thus, it is necessary to ex-

plore the effectiveness of our approach in finding surprising defects

(i.e. defects hidden in the small or medium size commits). Besides,

many contribution guidelines of open-source software already ad-

vise developers to make small changes in a commit [1–3] because

large code changes may take a very long time to review and test.

There will be more and more small commits in the future.

Inspired by the observations above, we aim to investigate the

effectiveness of SimCom on the small or medium size commits by

using datasets that exclude large commits. To carry out experiments

on Setup II, we drop the top 10% of large commits (i.e. top 10%

commits that have the largest number of modified lines) in each

dataset. As shown in Table 2, the last column presents the thresholds

of the top 10% large commits for six datasets. For instance, we

drop the commits with code change sizes larger than 209 code

lines in the dataset of the OpenStack project. To better understand

how the models’ performance varies when dropping different ratio

of large commits, we conduct experiments by dropping top 20%,

30%, 40%, and 50% of large commits. Please note that we drop the

large commits in the entire dataset (i.e. the training, validation, and

testing data.)

RQ2: How do the component models of SimCom perform?

To answer this RQ, we first employ an ablation study to analyze

the contribution of each component model (i.e. the simple and

complex model). We use prediction scores from each component

model and evaluate the predictive power via AUC-ROC, AUC-PR,

and F1-scores.

RQ3: How do the different model fusion methods impact

the performance? To answer this RQ, we explore the model per-

formance when applying the early fusion method. Besides, we also

do experiments on SimCom variants using different late fusion

strategies.

4.4 Train-Test Pipelines

We follow the same data partitioning of the LAPredict work [81],

i.e. the earlier 80% data are the training set and the later 20% data

are the testing set. We use the same data split for all methods,

including the three baseline methods. As our complex model is a

DL-based model which has many hyper-parameters, we set aside

5% data from training data as the fixed validation set to tune the

hyper-parameters of the complex model. Therefore, the data split

ratio for SimCom is 75%, 5%, and 20% for training, validation, and

testing respectively. We use the original hyper-parameters for the

baselines. Since we do not need to tune the hyper-parameters for

the baselines, we use the whole training set (80% data) to train the

baseline approaches. Please note that all approaches are evaluated

on the same hold-out test sets in the manner of fair comparison.

For the training of baselines, we use scripts in the replication

packages and use the default hyper-parameters in the packages.

For SimCom, we separatedly train our simple model (i.e. Sim) and

our complex model (i.e. Com). For training of the simple model (i.e.

Sim), we use the default parameters of Random Forest (RF) in the

Scikit-Learn package. As shown in Table 2, the experiment datasets

are imbalanced: the number of defective commits is smaller than

clean commits. The imbalance may cause performance degradation

of the ML models if it is not handled properly [35, 37, 38]. To

mitigate the class imbalance issue for our simple model, we follow

the prior work [37] to use an undersampling approach for our

training data. We randomly delete the majority class instances (i.e.

clean commits in training data) until the majority class drops to

the same level as the minority class (i.e. defective commits). Please

note that we do not undersample the test data.

For training of the complex model (i.e. Com), we set the learn-

ing rate as 5𝑒−5 and the batch size as 64 after tuning them in the

validation. For other hyper-parameters, we set the size of the fully-

connected layer as 512, the number of epoch as 30, and the dropout

rate as 0.5. These hyper-parameter settings are commonly used

in prior work [28, 29, 31, 66]. We use the Adam optimizer [41] to

update model parameters. To address the class imbalance issue for

our complex model, we use the same loss function as the previous

work [29].

For validation, we tune the hyper-parameters of our complex

model by observing the performance of the trained model on the

validation set. Specifically, we tune the hyper-parameters using a

grid search procedure with the following set of parameters and

their possible values: the learning rate is in {1𝑒−5, 5𝑒−5, 1𝑒−4, 2𝑒−4}
and the batch size is in {16, 32, 64, 128}. We select the combination

of hyper-parameters that lead to the best performance on the vali-

dation set. The best-performing model in the validation is used for

234

Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 3: The performance of SimCom and baselines in Setup I with respect to AUC-ROC, AUC-PR, and F1 scores

Projects
Evaluation

Metrics

Traditional Machine Learning

JIT Models Only

Deep Learning JIT

Models Only

Ensemble

on Simple

Traditional ML + DL

JIT Models

LR-JIT DBN-JIT LApredict DeepJIT CC2Vec XGBoost SimCom (Improve. %)

QT

AUC-ROC 0.694 0.666 0.744 0.694 0.694 0.725 0.771 (+3.60%)

AUC-PR 0.289 0.249 0.319 0.280 0.279 0.308 0.370 (+16.0%)

F1 Score 0.337 0.343 0.011 0.332 0.283 0.235 0.402 (+17.2%)

OpenStack

AUC-ROC 0.742 0.729 0.749 0.713 0.723 0.730 0.786 (+4.94%)

AUC-PR 0.437 0.412 0.413 0.396 0.394 0.410 0.474 (+8.47%)

F1 Score 0.430 0.432 0.132 0.433 0.400 0.389 0.491 (+13.4%)

JDT

AUC-ROC 0.682 0.587 0.677 0.670 0.665 0.663 0.716 (+4.99%)

AUC-PR 0.655 0.584 0.644 0.644 0.640 0.643 0.694 (+5.95%)

F1 Score 0.623 0.533 0.425 0.623 0.631 0.618 0.645 (+2.22%)

Platform

AUC-ROC 0.646 0.697 0.747 0.771 0.761 0.784 0.829 (+5.74%)

AUC-PR 0.439 0.506 0.533 0.574 0.559 0.575 0.657 (+14.3%)

F1 Score 0.450 0.533 0.148 0.518 0.563 0.563 0.646 (+14.7%)

Gerrit

AUC-ROC 0.682 0.671 0.750 0.703 0.699 0.745 0.756 (+0.80%)

AUC-PR 0.174 0.171 0.184 0.135 0.134 0.158 0.178 (-3.27%)

F1 Score 0.158 0.197 0.093 0.155 0.167 0.090 0.270 (+37.1%)

GO

AUC-ROC 0.675 0.674 0.683 0.689 0.692 0.728 0.778 (+6.87%)

AUC-PR 0.546 0.549 0.549 0.569 0.577 0.625 0.681 (+8.96%)

F1 Score 0.558 0.548 0.051 0.559 0.564 0.600 0.640 (+6.67%)

Average

AUC-ROC 0.687 0.671 0.725 0.707 0.706 0.729 0.773 (+6.04%)

AUC-PR 0.423 0.412 0.440 0.433 0.431 0.453 0.509 (+12.4%)

F1 Score 0.426 0.433 0.143 0.437 0.435 0.416 0.516 (+18.1%)

evaluation on the test sets. For our simple model, we directly use

the default parameters of Random Forest and do not tune them.

For testing, the evaluation is carried out on a hold-out test set

which is the test set of each dataset. When testing in Setup I (using

entire test sets), we directly feed the whole test sets into approaches

and get the prediction scores. Then, we calculate the evaluation

metrics based on the prediction scores. When testing in Setup II

(using datasets that exclude large commits), we will first investi-

gate the code change size of each commit in the test sets and drop

the largest 10% commits. Then, we feed the commits left into ap-

proaches to get the prediction scores and calculate the evaluation

metrics.

5 EXPERIMENTAL RESULTS

5.1 RQ1: How effective is SimCom?

To answer this RQ, we carry out an experiment by adopting typical

baselines to show the effectiveness of SimCom. We do experiments

in two different setups.

5.1.1 Results on Entire Datasets. Table 3 shows the perfor-

mance of all the compared approaches for Setup I (Entire Datasets

Setup) in terms of AUC-ROC, AUC-PR, and F1-scores respectively.

In Table 3, we categorize baselines into three groups: traditional

machine learning models, deep learning-based models designed for

the JIT defect prediction, and a popular ensemble learning model

(i.e. Extreme Gradient Boosting (XGBoost)) [11]. We use the default

parameters of the XGBoost Classifier in the XGBoost package [4].

XGBoost is trained with the commit-level hand-made features de-

scribed in Table 1 and the defectiveness labels. In this paper, we

use XGBoost as a baseline to show the superiority of combining

both simple and complex models (e.g. SimCom) over simply en-

sembling multiple traditional ML models (e.g. XGBoost). In Table 3,

the last column shows the performance of our proposed model

SimCom, and the numbers in brackets are improvements over the

best-performing baseline in each project and evaluation metric.

Please note that the best-performing baseline varies based on the

subjects and metrics. We use light gray color to show the best-

performing baselines (excluding SimCom) and use numbers in bold

and dark gray color to indicate the best model (including SimCom).

The experimental results demonstrate that our approach Sim-

Com significantly and consistently outperforms all baselines for

different evaluation metrics except for only one case (i.e. AUC-PR

metrics on Gerrit). SimCom outperforms LApredict (the state-of-

the-art approach) by 6.6% and 15.7% in terms of the AUC-ROC

and AUC-PR on average. In addition, SimCom provides 2.6 times

more accurate predictions than LApredict in terms of F1 scores

on average. Particularly, SimCom leads to improvements of 13.9%

and 24.0% in AUC-ROC and AUC-PR on the GO dataset. Compared

to the ensemble model on multiple simple models (i.e. XGBoost),

SimCom leads to improvements of 6.0%, 12.4%, and 24.0% in AUC-

ROC, AUC-PR, and F1 on average. It indicates that combining both

235

ICPC ’22, May 16–17, 2022, Virtual Event, USA Xin Zhou, DongGyun Han, and David Lo

Figure 3: The average performance of SimCom and baselines in Setup II with different large commit drop rates.

simple and complex models can lead to better performance than

only combining simple models.

In general, our approach SimCom outperforms all baselines con-

sistently on different evaluation metrics and projects except for

the Gerrit project when using AUC-PR as the evaluation metric.

As shown in Table 2, however, Gerrit is highly imbalanced in both

the training and the testing dataset so that the number of defective

commits is small. Approaches including SimCom may not be able

to learn effective features (patterns) because of the lack of defective

commits in training data. In this case, we find that all approaches

show poor performance on Gerrit datasets in terms of AUC-PR.

5.1.2 Results on Datasets Excluding Large Commits. Figure 3

shows the average performance of approaches in Setup II with re-

spect to AUC-ROC, AUC-PR, and F1 scores, when dropping different

ratios of largest commits. The y-axis in Figure 3 is the average per-

formance over 6 datasets and the x-axis is the ratio of the largest

commits we drop. For instance, the drop rate equals 20% indicating

that we drop the top 20% of large commits in datasets. When the

drop rate is 0%, the Setup II is degraded into Setup I (i.e. no commits

dropped).

In general, comparing the performances in Setup I and Setup II,

all approaches perform worse in Setup II. One possible reason is

that distinguishing buggy commits from clean commits in datasets

that exclude large commits is harder. Because over 40% of those

dropped large commits are defective commits on average, the num-

ber of buggy commits in Setup II is smaller than that in Setup I.

Thus, it is easier to make false-positive predictions in Setup II. The

experimental results show that SimCom consistently and signif-

icantly outperforms the best-performing baseline by 5.5%, 13.0%,

and 12.9% in terms of AUC-ROC, AUC-PR, and F1 scores on average

across different drop rates. This indicates that the superiority of

SimCom over baselines does not change when the experimental

setup changes.

Answers to RQ1: In both Setup I and Setup II, SimCom

outperforms all baselines consistently and significantly

on diverse evaluation metrics and projects for most

cases. In general, SimCom achieves improvements of

5.5–6.0%, 12.4–13.0%, and 12.9–18.1% in terms of AUC-

ROC, AUC-PR, and F1 scores on average compared to

best-performing baselines.

5.2 RQ2: How do the component models of
SimCom perform?

5.2.1 Results of Setup I. To answer this RQ, we employ an abla-

tion study to analyze the contribution of each component model (i.e.

the simple and complex model). Table 4 shows the performance of

each component model of SimCom in Setup I in terms of AUC-ROC,

AUC-PR, and F1 scores respectively. We use light gray cell color to

indicate the better model between simple and complex models and

use boldface to indicate the best model (including SimCom).

In the ablation study, we could still see the saga of simple vs.

complex: for some projects, the simple model performs better while

the complex model is better in some other projects. In general, we

find that the superiority of simple and complex models varies with

different projects and different evaluation metrics. One advantage

of combining the simple and complex models is that the combined

Table 4: Ablation study of each component model of SimCom in Setup I

AUC-ROC AUC-PR F1-score

Simple Complex SimCom Simple Complex SimCom Simple Complex SimCom

QT 0.739 0.757 0.771 0.315 0.349 0.370 0.384 0.394 0.402

OpenStack 0.760 0.764 0.786 0.433 0.456 0.474 0.478 0.457 0.491

JDT 0.707 0.696 0.716 0.689 0.677 0.694 0.656 0.619 0.645

Platform 0.798 0.814 0.829 0.605 0.641 0.657 0.626 0.633 0.646

Gerrit 0.753 0.720 0.756 0.174 0.146 0.178 0.255 0.222 0.270

GO 0.740 0.764 0.778 0.635 0.652 0.681 0.606 0.634 0.640

Mean 0.750 0.753 0.773 0.475 0.487 0.509 0.501 0.493 0.516

236

Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 4: The average improvement percentage of SimCom over its components in Setup II with different large commit drop

rates.

model (i.e. SimCom) leads to consistently better (3%–6% in aver-

age, up to 5.1%, 17.5%, 7.5% in AUC-ROC, AUC-PR, and F1-scores

respectively) performance for most cases in this study.

5.2.2 Results of Setup II. We can still see the superiority of

SimCom over its component models in Setup II. Figure 4 depicts the

improvement rates of SimCom over the simple model and complex

model in terms of the average performance across six projects. As

Figure 4 shows, when dropping different ratios of large commits,

SimCom still consistently outperforms its component models by

3–6% on average for most cases.

Answers to RQ2: In the ablation study, the superiority

of simple and complex component models varies with

different projects and metrics. By combining simple and

complex models, SimCom demonstrates consistently

better performance (3–6% on average) for both Setups

I and II.

5.3 RQ3: How do the different model fusion
methods impact the performance?

5.3.1 Early Fusion v.s. Late Fusion. In general, there are two

ways to do model fusion: early fusion and late fusion. Early fusion

is a way of fusing multiple data (usually multi-modal data) before

feeding them into a classifier [18, 24, 68]. To carry out the early fu-

sion, in this study, we concatenate the hand-made features with the

commit representation 𝑍 in the complex model (described in 3.2.4)

and feed the concatenated vector into a Fully Connected Layer (FC).

The deep learning modules of the complex model and the last FC

are updated together to minimize the binary cross-entropy.

5.3.2 Different Late Fusion Strategies. Late fusion can have

different strategies to determine how to finally combine the out-

puts of the independently trained models (e.g. product, average, or

weighted average of the outputs of all models [80]). We conduct

experiments to show how the model performance changes when

late fusion strategies vary.

5.3.3 Results. Table 5 presents the average performance of the

SimCom variants using different model fusion methods and strate-

gies. For rows of weighted average strategy, we set different weights

from predictions from simple and complex models other than the

Table 5: The average performance of different model fusion

methods

Fusion Methods Opeartion ROC PR F1

Early Fusion Concatenation 0.745 0.487 0.486

Late Fusion

Average 0.773 0.509 0.516

Product 0.769 0.507 0.514

Weighted

Average

(Sim:

Com)

3:7 0.767 0.507 0.507

4:6 0.770 0.508 0.516

6:4 0.771 0.508 0.516

7:3 0.769 0.504 0.516

equal contributions (the average strategy). The experimental results

show that late fusion is 4%–6% better than early fusion on average

across the projects. The result supports our design to adopt late

fusion in SimCom. Among different late fusion strategies, averaging

is simple and very effective. Besides, the performance differences

among different late fusion strategies are very small (0.8%–1.8%),

indicating that different strategies only slightly affect the perfor-

mance of SimCom.

Answers to RQ3: The late fusion method performs

consistently better (about 4%–6%) than the early fusion

method for all projects. Different late fusion strategies

only slightly affect the performance of SimCom and

averaging is the best strategy in our experiments.

6 DISCUSSION

Time Cost. A slow speed will impair the practical usability of

the approach. It is interesting to investigate the time efficiency of

SimCom in both training and testing. To measure the speed, we

experiment on a desktop computer equipped with Nvidia GeForce

RTX 2080 Ti and Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz. To

avoid the randomization bias, we repeat the experiment 5 times.

As Table 6 shows, SimCom could be trained within 450 seconds

(i.e. 7.5 minutes) and SimCom could give all predictions within 3.7

seconds, demonstrating its efficiency.

Simple &Complex: Better Together. Simple models and complex

models can be partners rather than adversaries. In prior work of

237

ICPC ’22, May 16–17, 2022, Virtual Event, USA Xin Zhou, DongGyun Han, and David Lo

Table 6: Time cost of SimCom

Time QT OpenStack JDT Platform Gerrit GO

Train 432s 450s 66s 192s 252s 402s

Test 3.7s 3.6s 2.7s 3.1s 3.4s 3.7s

JIT defect prediction, most works focused on either how to make

better use of hand-made features by traditional ML classifiers, or

how to effectively extract features from the commit content by DL

techniques. As there is a big gap between commit-level hand-made

features (a list of numbers) and commit contents (commit message

tokens and code tokens), there is little work to leverage these two

distinct input data. Our results indicate that combining both the

simple model (dealing with hand-made features) and the complex

model (dealing with commit contents) is promising in JIT defect

prediction. Our work suggests that future work should explore

further this idea on other software engineering tasks that have both

meaningful hand-made features and effective DL models.

Threats to Internal Validity. For all baselines considered in this

study, we directly use the source code in the replication packages

of the studied techniques and use the default hyper-parameters. To

reduce the threat, we carefully reviewed the experimental scripts

to ensure the correctness. We also release our replication package

for others to check.

Threats to External Validity. Threats to external validity are

concerned with the generalizability of our findings. To reduce the

threat, we use a diverse and large-scale JIT defect prediction dataset

of real-world projects in different programming languages collected

by Zeng et al. [81]. As this dataset contains a large number of labeled

commits from six projects, our findings on this larger-scale dataset

have the generalizability to other projects to some extend.

Threats to Construct Validity. One of the main threats to con-

struct validity is the evaluation metrics we choose. To mitigate

this threat, following the DeepJIT and LApredict studies, we adopt

the widely-used AUC-ROC score to evaluate the performance. As

ROC curves can lead to an overly optimistic view of a model’s

performance on skewed datasets [17], we also adopt an alternative

metric for AUC-ROC (i.e. AUC-PR) that is more suitable for the

skewed datasets. Besides, to evaluate the ability of the approaches

in making correct predictions, we also consider the F1-score, which

is computed based on the number of true/false positive/negatives.

7 RELATEDWORK

Many approaches have been proposed for JIT defect prediction.

Mockus et al. [53] built a model by using the historic information

in commits and use the model to predict the risk of new com-

mits. Kamei et al. [37] built an effort-aware prediction model using

Logistic Regression with 14 change-level, hand-crafted metrics (fea-

tures). Yang et al. [77] applied Deep Belief Network (DBN) to extract

higher-level information from the change-level metrics. Later, Yang

et al. [76] proposed a two-layer ensemble learning model that com-

bines decision tree and ensemble learning. This two-layer model

achieved better performance for JIT defect prediction. Young et

al. [79] proposed a new ensemble approach by using arbitrary clas-

sifiers and optimizing the weights of the classifiers. Liu et al. [44]

proposed an unsupervised learning approach based on code churn

in effort-aware settings. Cabral et al. [10] proposed a new sampling

method to address the issues of verification latency and class im-

balance evolution in the online JIT defect prediction setting. Then,

Yan et al. [75] proposed a two-phase framework that can handle

the identification and localization tasks at the same time. Recently,

Hoang et al. [29] proposed DeepJIT, which uses deep learning tech-

niques to extract the features automatically from commit logs and

code changes. To enhance it, Hoang et al. [30] proposed a new

approach that learns the representation of code changes through

the supervision of commit logs. Recently, Zeng et al. [81] conducted

a study on the deep learning-based JIT defect prediction models

(i.e. DeepJIT and CC2Vec) on an extended dataset and found that

deep learning-based approaches cannot outperform a simple model

namely LApredict.

Most of the existing work focused on either how to make better

use of hand-made features by traditional ML classifiers, or how to

extract better features from the commits by DL techniques. Dif-

ferent from the prior work, our model combines the simple model

with the complex model by late fusion technique and outperforms

the baselines significantly. Our results indicate that it is promising

to combine the simple model (hand-crafted features with ML classi-

fiers) and the complex model (commit contents with DL methods)

to achieve better performance.

8 CONCLUSION AND FUTUREWORK

In this work, we propose an approach that combines one simple

model and one complex model via late fusion. The experimental

results show that our approach can significantly outperform the

baselines and the state-of-the-art by 6.0%, 12.4%, and 18.1% in terms

of AUC-ROC, AUC-PR, and F1-score on average. To further evalu-

ate the effectiveness of our approach in different settings, we also

explore the performance of JIT defect predictors in another set-

ting that excludes large commits (i.e. top 10%–50% large commits):

our approach can outperform the best-performing baselines by a

large improvement (5.5%, 13.0%, and 12.9% in terms of AUC-ROC,

AUC-PR, and F1-score) in this setting, indicating the effectiveness

of our approach in different settings. Besides, we also carried out

the ablation study and further analysis. We found that our approach

(combining simple and complex models) performs consistently bet-

ter (3–6% on average) than the simple model only or the complex

model only in all different evaluation metrics and software projects.

We share the replication package1 for further evaluation and

extension of our study. In the future, we are interested in investi-

gating the effectiveness of combining simple models and complex

models in other SE tasks.

Acknowledgment. This research / project is supported by the

National Research Foundation, Singapore, under its Industry Align-

ment Fund – Pre-positioning (IAF-PP) Funding Initiative. Any opin-

ions, findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not reflect the views

of National Research Foundation, Singapore.

1https://github.com/soarsmu/SimCom_JIT

238

Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] [n.d.]. Code Contribution Guidelines for DSPACE. https://wiki.lyrasis.org/

display/DSPACE/Code+Contribution+Guidelines.
[2] [n.d.]. Contribution Guidelines for Cake. https://cakebuild.net/community/

contributing/contribution-guidelines.
[3] [n.d.]. Contribution guidelines for SKY UX. https://developer.blackbaud.com/

skyux/contribute/contribution-process/guidelines.
[4] [n.d.]. XGBoost Documentation. https://xgboost.readthedocs.io/en/stable/index.

html.
[5] Erik Arisholm, Lionel C. Briand, and Magnus Fuglerud. 2007. Data Mining

Techniques for Building Fault-proneness Models in Telecom Java Software. The
18th IEEE International Symposium on Software Reliability (ISSRE ’07) (2007),
215–224.

[6] Joseph Bockhorst and Mark W. Craven. 2004. Markov Networks for Detecting
Overalpping Elements in Sequence Data. In NIPS.

[7] Leo Breiman. 2004. Random Forests. Machine Learning 45 (2004), 5–32.
[8] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[9] Razvan C. Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Raymond J.
Mooney, Arun K. Ramani, and Yuk Wah Wong. 2005. Comparative experiments
on learning information extractors for proteins and their interactions. Artificial
intelligence in medicine 33 2 (2005), 139–55.

[10] George G. Cabral, Leandro L. Minku, Emad Shihab, and Suhaib Mujahid. 2019.
Class Imbalance Evolution and Verification Latency in Just-in-Time Software
Defect Prediction. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE) (2019), 666–676.

[11] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[12] Xiang Chen, Yingquan Zhao, Qiuping Wang, and Zhidan Yuan. 2018. MULTI:
Multi-objective effort-aware just-in-time software defect prediction. Inf. Softw.
Technol. 93 (2018), 1–13.

[13] Adele Cutler, D. Richard Cutler, and John R. Stevens. 2012. Random Forests.
Springer US, Boston, MA, 157–175. https://doi.org/10.1007/978-1-4419-9326-7_5

[14] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive com-
parison of bug prediction approaches. 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010) (2010), 31–41.

[15] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2011. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering 17 (2011), 531–577.

[16] Jesse Davis, Elizabeth S. Burnside, Inês de Castro Dutra, David Page, Raghu
Ramakrishnan, Vítor Santos Costa, and Jude W. Shavlik. 2005. View Learning for
Statistical Relational Learning: With an Application to Mammography. In IJCAI.

[17] Jesse Davis and Mark H. Goadrich. 2006. The relationship between Precision-
Recall and ROC curves. Proceedings of the 23rd international conference onMachine
learning (2006).

[18] Yuan Dong, Shan Gao, Kun Tao, Jiqing Liu, and Haila Wang. 2013. Performance
evaluation of early and late fusion methods for generic semantics indexing.
Pattern Analysis and Applications 17 (2013), 37–50.

[19] Wei Fu and Tim Menzies. 2017. Easy over hard: a case study on deep learning.
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(2017).

[20] Harold Valdivia Garcia, Emad Shihab, and Meiyappan Nagappan. 2018. Charac-
terizing and predicting blocking bugs in open source projects. J. Syst. Softw. 143
(2018), 44–58.

[21] MarkH. Goadrich, Louis Oliphant, and JudeW. Shavlik. 2004. Learning Ensembles
of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical
Information Extraction. In ILP.

[22] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2015. Deep Learning.
Nature 521 (2015), 436–444.

[23] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey P. Siy. 2000. Predicting
Fault Incidence Using Software Change History. IEEE Trans. Software Eng. 26
(2000), 653–661.

[24] Hatice Gunes and Massimo Piccardi. 2005. Affect recognition from face and body:
early fusion vs. late fusion. 2005 IEEE International Conference on Systems, Man
and Cybernetics 4 (2005), 3437–3443 Vol. 4.

[25] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Mur-
phy. 2010. Characterizing and predicting which bugs get fixed: an empirical
study of Microsoft Windows. 2010 ACM/IEEE 32nd International Conference on
Software Engineering 1 (2010), 495–504.

[26] A. Hassan. 2009. Predicting faults using the complexity of code changes. 2009
IEEE 31st International Conference on Software Engineering (2009), 78–88.

[27] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2016. On the naturalness of software. Commun. ACM 59 (2016), 122–131.

[28] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of
feature detectors. ArXiv abs/1207.0580 (2012).

[29] Thong Hoang, K. Dam, Yasutaka Kamei, D. Lo, and N. Ubayashi. 2019. DeepJIT:
An End-to-End Deep Learning Framework for Just-in-Time Defect Prediction.
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR) (2019), 34–45.

[30] Thong Hoang, Hong Jin Kang, Julia L. Lawall, and David Lo. 2020. CC2Vec:
Distributed Representations of Code Changes. 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE) (2020), 518–529.

[31] Xuan Huo, Ming Li, and Zhi-Hua Zhou. 2016. Learning Unified Features from
Natural and Programming Languages for Locating Buggy Source Code. In IJCAI.

[32] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect prediction.
2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (2013), 279–289.

[33] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita,
Naoyasu Ubayashi, and A. Hassan. 2015. Studying just-in-time defect prediction
using cross-project models. Empirical Software Engineering 21 (2015), 2072–2106.

[34] Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken ichi Matsumoto, Bram
Adams, and A. Hassan. 2010. Revisiting common bug prediction findings using
effort-aware models. 2010 IEEE International Conference on Software Maintenance
(2010), 1–10.

[35] Yasutaka Kamei, Akito Monden, Shinsuke Matsumoto, Takeshi Kakimoto, and
Ken ichi Matsumoto. 2007. The Effects of Over and Under Sampling on Fault-
prone Module Detection. First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007) (2007), 196–204.

[36] Yasutaka Kamei and Emad Shihab. 2016. Defect Prediction: Accomplishments and
Future Challenges. 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER) 5 (2016), 33–45.

[37] Yasutaka Kamei, Emad Shihab, B. Adams, A. Hassan, A. Mockus, Anand Sinha,
and N. Ubayashi. 2013. A large-scale empirical study of just-in-time quality
assurance. IEEE Transactions on Software Engineering 39 (2013), 757–773.

[38] Taghi M. Khoshgoftaar, Xiaojin Yuan, and Edward B. Allen. 2004. Balancing Mis-
classification Rates in Classification-Tree Models of Software Quality. Empirical
Software Engineering 5 (2004), 313–330.

[39] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. JamesWhitehead. 2006. Au-
tomatic Identification of Bug-Introducing Changes. 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06) (2006), 81–90.

[40] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP.

[41] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[42] Akif Günes Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. 2009.
An Investigation into the Functional Form of the Size-Defect Relationship for
Software Modules. IEEE Transactions on Software Engineering 35 (2009), 293–304.

[43] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.
Benchmarking Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings. IEEE Transactions on Software Engineering 34
(2008), 485–496.

[44] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. 2017.
Code Churn: A Neglected Metric in Effort-Aware Just-in-Time Defect Prediction.
2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM) (2017), 11–19.

[45] Jiayi Ma, Yong Ma, and Chang Li. 2019. Infrared and visible image fusion methods
and applications: A survey. Inf. Fusion 45 (2019), 153–178.

[46] Suvodeep Majumder, Nikhil Balaji, Katie Brey, Wei Fu, and Tim Menzies. 2018.
500+ Times Faster than Deep Learning: (A Case Study Exploring Faster Methods
for Text Mining StackOverflow). 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR) (2018), 554–563.

[47] Christopher D. Manning and Hinrich Schütze. 2002. Foundations of statistical
natural language processing. In SGMD.

[48] Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden, Ken ichi Matsumoto, and
Masahide Nakamura. 2010. An analysis of developer metrics for fault prediction.
In PROMISE ’10.

[49] Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes a Moving
Target? A Longitudinal Case Study of Just-In-Time Defect Prediction. IEEE
Transactions on Software Engineering 44 (2018), 412–428.

[50] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data Mining Static Code
Attributes to Learn Defect Predictors. IEEE Trans. Software Eng. 33 (2007), 2–13.

[51] Tim Menzies, Burak Turhan, Ayse Basar Bener, Gregory Gay, Bojan Cukic, and
Yue Jiang. 2008. Implications of ceiling effects in defect predictors. In PROMISE
’08.

[52] Ayse Tosun Misirli and Ayse Basar Bener. 2009. Reducing false alarms in software
defect prediction by decision threshold optimization. 2009 3rd International
Symposium on Empirical Software Engineering and Measurement (2009), 477–480.

239

ICPC ’22, May 16–17, 2022, Virtual Event, USA Xin Zhou, DongGyun Han, and David Lo

[53] Audris Mockus and David M. Weiss. 2000. Predicting risk of software changes.
Bell Labs Technical Journal 5 (2000), 169–180.

[54] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative
analysis of the efficiency of change metrics and static code attributes for defect
prediction. 2008 ACM/IEEE 30th International Conference on Software Engineering
(2008), 181–190.

[55] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[56] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-

sures to predict system defect density. Proceedings. 27th International Conference
on Software Engineering, 2005. ICSE 2005. (2005), 284–292.

[57] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics
to predict component failures. Proceedings of the 28th international conference on
Software engineering (2006).

[58] Ning Nan and Donald E. Harter. 2009. Impact of Budget and Schedule Pressure
on Software Development Cycle Time and Effort. IEEE Transactions on Software
Engineering 35 (2009), 624–637.

[59] Anh Tuan Nguyen and Tien Nhut Nguyen. 2015. Graph-Based Statistical Lan-
guage Model for Code. 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering 1 (2015), 858–868.

[60] Foster J. Provost, Tom Fawcett, and Ron Kohavi. 1998. The Case against Accuracy
Estimation for Comparing Induction Algorithms. In ICML.

[61] Ranjith Purushothaman and Dewayne E. Perry. 2005. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software Engineering
31 (2005), 511–526.

[62] Foyzur Rahman, Daryl Posnett, and Premkumar T. Devanbu. 2012. Recalling the
"imprecision" of cross-project defect prediction. In SIGSOFT FSE.

[63] Z. Rana, Mian M. Awais, and Shafay Shamail. 2009. An FIS for Early Detection
of Defect Prone Modules. In ICIC.

[64] Omer Sagi and Lior Rokach. 2018. Ensemble learning: A survey. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 8, 4 (2018), e1249.

[65] Takaya Saito and Marc Rehmsmeier. 2015. The Precision-Recall Plot Is More
Informative than the ROC PlotWhen Evaluating Binary Classifiers on Imbalanced
Datasets. PLoS ONE 10 (2015).

[66] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. Proceedings of the 38th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (2015).

[67] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira,
Bram Adams, A. Hassan, and Ken ichi Matsumoto. 2012. Studying re-opened bugs
in open source software. Empirical Software Engineering 18 (2012), 1005–1042.

[68] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders. 2005. Early
versus late fusion in semantic video analysis. In MULTIMEDIA ’05.

[69] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online Defect
Prediction for ImbalancedData. 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering 2 (2015), 99–108.

[70] C. Tantithamthavorn, A. Hassan, and Ken ichi Matsumoto. 2020. The Impact of
Class Rebalancing Techniques on the Performance and Interpretation of Defect
Prediction Models. IEEE Transactions on Software Engineering 46 (2020), 1200–
1219.

[71] Sofia Tsekeridou and Ioannis Pitas. 2001. Content-based video parsing and
indexing based on audio-visual interaction. IEEE Trans. Circuits Syst. Video
Technol. 11 (2001), 522–535.

[72] Burak Turhan, Tim Menzies, Ayse Basar Bener, and Justin S. Di Stefano. 2008.
On the relative value of cross-company and within-company data for defect
prediction. Empirical Software Engineering 14 (2008), 540–578.

[73] Zhiyuan Wan, Xin Xia, A. Hassan, D. Lo, Jianwei Yin, and Xiaohu Yang. 2020.
Perceptions, Expectations, and Challenges in Defect Prediction. IEEE Transactions
on Software Engineering 46 (2020), 1241–1266.

[74] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically Learning Semantic
Features for Defect Prediction. 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE) (2016), 297–308.

[75] Meng Yan, Xin Xia, Yuanrui Fan, A. Hassan, David Lo, and Shanping Li. 2020.
Just-In-Time Defect Identification and Localization: A Two-Phase Framework.
IEEE Transactions on Software Engineering (2020), 1–1.

[76] Xinli Yang, D. Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble
learning approach for just-in-time defect prediction. Inf. Softw. Technol. 87 (2017),
206–220.

[77] Xinli Yang, D. Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep Learning for
Just-in-Time Defect Prediction. 2015 IEEE International Conference on Software
Quality, Reliability and Security (2015), 17–26.

[78] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton K. N. Leung. 2016. Effort-aware just-in-time defect
prediction: simple unsupervised models could be better than supervised mod-
els. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (2016).

[79] Steven Young, Tamer Abdou, and Ayse Basar Bener. 2018. A Replication Study:
Just-in-Time Defect Prediction with Ensemble Learning. 2018 IEEE/ACM 6th
International Workshop on Realizing Artificial Intelligence Synergies in Software

Engineering (RAISE) (2018), 42–47.
[80] Shi Yu, Tillmann Falck, Anneleen Daemen, Léon-Charles Tranchevent, Johan

A. K. Suykens, Bart De Moor, and Yves Moreau. 2010. L2-norm multiple kernel
learning and its application to biomedical data fusion. BMC Bioinformatics 11
(2010), 309 – 309.

[81] Zhen Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang. 2021. Deep
just-in-time defect prediction: how far are we? Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (2021).

[82] Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820 (2015).

240

	Simple or complex? Together for a more accurate just-in-time defect predictor
	Citation

	Simple or Complex? Together for a More Accurate Just-in-Time Defect Predictor

