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ABSTRACT
Stack Overflow is often viewed as one of the most influential Soft-
ware Question & Answer (SQA) websites, containing millions of
programming-related questions and answers. Tags play a critical
role in efficiently structuring the contents in Stack Overflow and
are vital to support a range of site operations, e.g., querying rel-
evant contents. Poorly selected tags often introduce extra noise
and redundancy, which raises problems like tag synonym and tag
explosion. Thus, an automated tag recommendation technique that
can accurately recommend high-quality tags is desired to alleviate
the problems mentioned above.

Inspired by the recent success of pre-trained language models
(PTMs) in natural language processing (NLP), we present PTM4Tag,
a tag recommendation framework for Stack Overflow posts that
utilize PTMs with a triplet architecture, which models the com-
ponents of a post, i.e., Title, Description, and Code with indepen-
dent language models. To the best of our knowledge, this is the
first work that leverages PTMs in the tag recommendation task of
SQA sites. We comparatively evaluate the performance of PTM4Tag
based on five popular pre-trainedmodels: BERT, RoBERTa, ALBERT,
CodeBERT, and BERTOverflow. Our results show that leveraging
CodeBERT, a software engineering (SE) domain-specific PTM in
PTM4Tag achieves the best performance among the five considered
PTMs and outperforms the state-of-the-art Convolutional Neural
Network-based approach by a large margin in terms of average
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 . We conduct an ablation
study to quantify the contribution of a post’s constituent compo-
nents (Title, Description, and Code Snippets) to the performance
of PTM4Tag. Our results show that Title is the most important in
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predicting the most relevant tags, and utilizing all the components
achieves the best performance.
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1 INTRODUCTION
Software question & answer (SQA) sites [29, 30, 32, 35, 37, 40]
have emerged as essential resources for assisting software devel-
opers. Stack Overflow (SO), one of the largest SQA sites, features
a powerful platform that facilitates collaboration and communica-
tions among developers in a wide range of programming-related
activities. The site has accumulated extensive volumes of software
engineering knowledge. As of January 2022, Stack Overflow has
more than 17 million registered users and hosted over 22 million
questions with 33 million answers.1

The rapid growth of Stack Overflow highlights the need to effi-
ciently manage the site’s content at a large scale and support queries
from users. A standard solution employed by modern SQA sites is
to allow users to tag their posts with one or a few technical terms,
which play an essential role in structuring and navigating content.
Thus, selecting accurate and appropriate tags that summarize the
question post concisely can help many aspects of the site usage, e.g.,
connecting the expertise among different communities, delivering
the question to the appropriate set of people with the right expertise,
etc. In the early days, Stack Overflow set no restrictions on tagging
posts; users were free to create and choose any tags with arbitrary
input. However, the quality of tags highly depends on users’ level of
1https://stackexchange.com/sites?view=list#traffic
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expertise, English skills, writing styles and so on, making the tags
selected by different users likely to be inconsistent, which triggers
the tag synonym2 and tag explosion [1] problems. Such problems
emphasize the desirability of a tag recommendation technique
that learns to automatically predict tags for an unseen post based
on a large volume of historical posts.

The task of tagging posts can be characterized as a multi-label
classification problem, where the goal is to select the most relevant
subset of tags from a large group of tags. Tagging SO posts is consid-
ered challenging for several reasons. As the levels of expertise vary
by person, allowing users to tag their posts introduces much noise
and makes the tag set rather sparse. The posts in Stack Overflow
cover an extensive range of topics (e.g., over 10 thousand available
tags), making it challenging to build one model to accurately cap-
ture the semantics of the post and establish connections between
the posts and the related tags.

There is a growing body of literature that focuses on the tag rec-
ommendation task of SO posts. Recently, Xu et al. [37] have proposed
Post2Vec, a deep learning-based approach that has been applied
to the tag recommendation task and has been shown to achieve
state-of-the-art performance over a number of deep-learning-based
baselines [40]. Xu et al. adopted Convolutional Neural Networks
(CNNs) [22] as the feature extractors in Post2Vec. In this work,
we focus on further improving the tag recommendation perfor-
mance by leveraging the transformer-based pre-trained models
(PTMs), which enhanced CNN with the self-attention mechanism
and pre-trained knowledge.

The transformer-based PTMs such as BERT [5] and RoBERTa [16]
have established great progress in the field of Natural Language
Processing (NLP) and achieved phenomenal performance in several
downstream tasks, i.e., Question Answering [20], Text Classifica-
tion [10]. Inspired by the success of PTMs in the NLP domain, there
is increased interest in adapting pre-training models to the field of
software engineering (SE) [6, 26, 28]. Such PTMs have been very
effective in multi-class or pair-wise text classification tasks such as
sentiment analysis [39], API review [38]. However, not much SE
literature has investigated the performance of PTMs in handling
a multi-label classification problem with hundreds or thousands of
labels. This motivated us to explore whether BERT-based PTMs
could outperform the state-of-the-art SO tag recommendation ap-
proach [37].

Furthermore, several studies have shown that domain-specific
PTMs can perform significantly better than language models that
are pre-trained on the general domain text in modeling the target
domain [2, 8, 13, 19]. Generally speaking, text in different domains
usually obeys a different word distribution, and general-purpose
PTMs may fail to capture the correct semantics of technical jargon.
To give an example in the SE domain, the word "Cookies" would
refer to a small chunk of data stored in the user end by the web
browser to support easy access to websites, and it does not refer
to the "baked biscuit." However, a high-quality, large-scale corpus
of a specialized domain usually is extremely difficult to obtain.
General-purpose language models like BERT [5] are usually trained
on a vast amount of data which is usually significantly larger than
domain-specific data. Considering that each kind of model has its

2https://stackoverflow.com/tags/synonyms

potential strengths and weaknesses, it motivates us to explore the
impact and limitations of adopting different PTMs.

In this work, we propose PTM4Tag, a framework that trains a
BERT-based multi-label classifier to recommend tags for SO posts.
To examine the effectiveness and contain a better understanding of
PTM4Tag, we are interested in answering the following research
questions:
RQ1: Out of the five variants of PTM4Tag with different
PTMs, which gives the best performance? Considering that
each model has its potential strengths and weaknesses, it motivates
us to study the impact of adopting different PTMs in PTM4Tag.
Hence, we investigate this research question by implementing
PTM4Tag with different BERT-based models. Namely, we compare
the results of domain-specific PTMs: CodeBERT [6] and BERTOver-
flow [26] with general domain PTMs: BERT [5], RoBERTa [16], and
ALBERT [12].
RQ2: How is the performance of PTM4Tag compared to the
state-of-the-art approach in Stack Overflow tag recommen-
dation? In this research question, we examine the effectiveness
and performance of PTM4Tag by comparing it with the CNN-based
state-of-the-art baseline for the tag recommendation task of Stack
Overflow, i.e., Post2Vec [37].
RQ3:Which component of post benefits PTM4Tag themost?
PTM4Tag is implemented with a triplet architecture, which encodes
the three components of a SO post, i.e., Title, Description, and Code
with different Transformer-based PTMS. Considering that each
component may carry a different level of importance for the tag
recommendation task, it inspires us to explore the contribution of
each component by conducting an ablation study.

The contributions of the paper are as follows:
(1) To the best of our knowledge, our work is the first to leverage

BERT-based pre-trained language models for tag recommen-
dation of SQA sites. We explore the effectiveness of different
PTMs by training five variants of PTM4Tag and compared their
performance by categorizing them into two groups, generic
and domain-specific. Based on our findings, we advocate SE
researchers considering CodeBERT as their first attempt or
baseline approach for SQA-related tasks.

(2) Our experiment results demonstrate that PTM4Tag with Code-
BERT outperforms the state-of-the-art CNN-based approach
by a large margin but PTM4Tag with ALBERT and BERTOver-
flow perform worse than the state-of-the-art approach. Thus,
we conclude that leveraging PTM can help to achieve more
promising results than the existing approach, but PTM within
PTM4Tag needs to be rationally selected.

(3) The results of our ablation study show that Title is the most sig-
nificant component for tag recommendation of SO. Still, consid-
ering all components of a post would yield the best performance
of PTM4Tag.
The paper is structured as follows: Section 2 introduces the

background knowledge of the tag recommendation task of SO,
the state-of-the-art baseline approach and five popular PTMs that
are investigated in our study. Section 3 describes our proposed
approach in detail, and then Section 4 specifies the experimental
settings. Sections 5 presents the experimental results with analysis.
In Section 6, we conducted a qualitative analysis, discussed the

https://stackoverflow.com/tags/synonyms
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threats to validity as well as summarized the lessons we learned
from our experiment results. Section 7 reviews the literature on
PTMs applied in SE, and the SQA-oriented tag recommendation
approaches. Finally, in Section 8 we conclude our work and mention
the future work.

2 BACKGROUND
In this section, we first formalize the task of recommending tags for
SO post as a multi-label classification problem. Then, we describe
Post2Vec [37], the current state-of-the-art tag recommendation ap-
proach. In the end, we briefly introduce the five pre-trained language
models that are investigated in this paper.

2.1 Tag Recommendation Problem
Considering a SO post can be labeled by one or multiple tags, we
regard the task of recommending tags for SO post as a multi-label
classification problem. We assume to have a corpus of SO posts
(denoted by X) and a collection of tags (denoted by Y). Formally
speaking, given a SO post 𝑥 ∈ X, the tag recommendation task
aims to acquire a function 𝑓 that maps 𝑥 to a subset of tags 𝑦 =

{𝑦1, 𝑦2, ..., 𝑦𝑙 } ⊂ Y that are most relevant to the post 𝑥 . We denote
the total number of training examples as 𝑁 , the total number of
available tags3 as 𝐿 and the number of tags of a training data as 𝑙 ,
such that 𝐿 = |Y| and 𝑙 = |𝑦 |. Noted that a SO post can be labeled
with at most five tags, so 𝑙 must be no larger than 5.

2.2 The State-of-the-art Approach
Xu et al. proposed Post2Vec [37], a deep learning-based tag rec-
ommendation approach for SO posts, and achieved the current
state-of-the-art performance. Xu et al. trained several variants of
Post2Vec to examine the architecture design from multiple aspects.
In this paper, we select their best-performing model as our baseline
model. More specifically, it leveraged CNN as the feature extractors
of the post and divided the content of a post into three components,
i.e., Title, Description, and Code. Each component of a post has
its own component-specific vocabulary and is modeled separately
with a different neural network. A major drawback of Post2Vec
is that their underlying neural assigns equal contribution to the
input tokens. We have addressed this limitation by leveraging the
Transformer-based PTMs, which enhanced the architecture with
a self-attention mechanism and pre-trained knowledge obtained
from other datasets. Additionally, the importance of each compo-
nent remains unknown in the experiments of Post2Vec. We have
further conducted an ablation study to investigate the contribution
of each component to the task.

2.3 Pre-trained Language Models
Recent trends in the NLP domain have led to the rapid development
of transfer learning. Especially, substantial work has shown that
pre-trained language models learn practical and generic language
representations which could achieve outstanding performance in
various downstream tasks simply by fine-tuning, i.e., without train-
ing a new model from scratch [10, 15, 20]. With proper training

3https://stackoverflow.com/help/tagging

manner, the model can effectively capture the semantics of indi-
vidual words based on their surrounding context and reflect the
meaning of the whole sentence.

In this section, we describe the five popular PTMs investigated
in our experiments. We first introduce three large-scale, general-
purpose PTMs. Namely, they are BERT [5], RoBERTa [16] and
ALBERT [12]. Besides, we also consider two additional pre-trained
languagemodels designed for software engineering tasks (i.e., Code-
BERT [6] and BERTOverflow [26]).

BERT. BERT [5] is based on the Transformer architecture [27]
and contains the bidirectional attention mechanism. BERT is pre-
trained on a large corpus of general text data, including the entire
English Wikipedia dataset and the BooksCorpus [43]. It has two
pre-training tasks: Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). Given an input sentence where some
tokens are masked out, the MLM task predicts the original tokens
for those masked tokens. Given a pair of sentences, the NSP task
aims to predict whether the second sentence in the pair is the
subsequent sentence to the first sentence.

RoBERTa. RoBERTa [16] is mainly based on the original architec-
ture of BERT but modifies a few key hyper-parameters. It removes
the NSP task and feeds multiple consecutive sentences into the
model. RoBERTa is trained with larger batch size and learning rate
on a dataset that is an order of magnitude larger than the training
data of BERT [5, 43].

ALBERT. ALBERT [12] is claimed as A Lite BERT. ALBERT in-
volves two parameter reduction techniques: factorized embedding
parameterization and cross-layer parameter sharing. Additionally,
it replaced the NSP task used by BERT with the Sentence Order
Prediction (SOP) task. By doing so, ALBERT can significantly re-
duce the number of model parameters and facilitate the training
process without sacrificing the model performance.

CodeBERT. CodeBERT follows the same architectural design as
RoBERTa. However, CodeBERT [6] is pre-trained on both natu-
ral language (NL) and programming language (PL) data from the
CodeSearchNet database provided by [9]. CodeBERT considers two
objectives at the pre-training stage: masked language modeling
(MLM) and Replaced Token Detection (RTD). The goal of the RTD
task is to identify which tokens are replaced from the given in-
put. CodeBERT uses bimodal data (NL-PL pairs) as input at the
pre-training stage. Thus, it understands both forms of data. The
CodeBERT model has been proven practical in various SE-related
downstream tasks, such as Natural Language Code Search [7, 42],
program repair [17], etc [6].

BERTOverflow. BERTOverflow is trained by Tabassum et al. [26]
as a domain-specific PTM on 152 million sentences from Stack
Overflow. Notice that BERTOverflow The authors have introduced
a software-related named entity recognizer (SoftNER) that combines
an attention mechanism with code snippets. The model follows the
same design as the BERT model with 110 million parameters.

Recently, Mosel et al. [28] have proposed seBERT, which is pre-
trained on textual data from Stack Overflow4, GitHub5, and Jira
4https://cloud.google.com/bigquery/
5https://www.gharchive.org/

https://stackoverflow.com/help/tagging
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Figure 1:An example of an SOPost. Apost contains a short ti-
tle that summarizes the main content of this post. The body
of a post can include detailed descriptions written in natural
languages and code snippets.

Issues [18]. In contrast to the PTMs as mentioned above, the seBERT
model has a larger size and contains more parameters since it
is implemented with the BERT𝐿𝐴𝑅𝐺𝐸 architecture. Fine-tuning
on seBERT requires a much longer training time and more GPU
memory consumption. Therefore, we did not consider seBERT in
our work due to restraints of limited computational resources.

3 METHODOLOGY
This section introduces our proposed tag recommendation frame-
work for SO posts, PTM4Tag in detail. The overall architecture
of PTM4Tag with three stages is illustrated in Figure 2, which are
Pre-processing, Feature Extraction, andClassification respec-
tively. We transform the raw SO data into a desirable format at the
pre-processing stage. Each SO post would be decomposed into three
components: Title, Description, and Code snippets. Thus, PTM4Tag
is implemented with a triplet architecture and leverages three PTMs
as encoders to generate representations for each component. At
the feature extraction stage, we feed the processed data into the
used PTMs and represent each component as a feature vector. The
obtained feature vectors are then fed to a fusion layer to construct
the representation of the SO post. At the classification stage, the
classifier maps the post representation to a tag vector that indicates
the probability of each tag.

3.1 Pre-processing
3.1.1 Post Component Extraction. Figure 1 illustrates a typical SO
post that consists of three components: Title, Body and Tags. The
Title summarizes the question, and the Body provides more details
and contexts to help other users understand the question. The Body
of a SO post usually contains two parts: textual description and
code snippets, which we refer to them as Description and Code in
the following part of the paper.

Some researchers [14, 32, 40] consider the Code in an SO post
to be of low quality. The intuition is that users typically write
the post to seek help, which means that the code snippets within
the post are likely to be written by novices and have low quality.
Besides, code snippets in different posts can cover a wide range of
programming languages and frameworks, making it challenging to

process them properly. As a result, many previous works [14, 32, 40]
have treated the Code as noise and discarded it during the pre-
processing stage. However, we observe that the Code in an SO post
provides valuable semantic information that can be leveraged to
help in recommending tags more accurately. Take a SO post shown
in Figure 1 as an example, one of its tags is ‘python’, but neither Title
nor Description explicitly mentions the post is python-related. If we
only look at the title and description sections, it is unclear which
programming language this post is asking about. However, by only
considering the Code, the grammar of Python can be easily used to
infer that the post is likely to relate to the tag ‘python’. Motivated
by this example, we further divide the Body into Description and
Code, where the Description corresponds to the part of Body mainly
written in natural languages and Code refers to the code snippets
within the Body.

According to the web design of Stack Overflow, the code snip-
pets contained within the Body of a SO post are usually wrapped
with HTML tags (<pre><code> <\code><\pre>). Thus, we first use a
regular expression formula "<pre><code>([\s\S]*?)<\\code><\\pre>"
to split the Body of a SO post into sections of natural language and
programming language. We then further remove the redundant
HTML tags within these sections since these HTML tags are used
for formatting and are irrelevant to the content of a post. By the
above mean, we extract the Description and Code from each SO post.
Following the above procedure, we consider that a post is made
up of four constituents: the Title, Description, Code, and Tags. Our
proposed PTM4Tag framework takes Title, Description and Code as
input and aims to predict the sets of tags that are most relevant to
this post (i.e., the Tags).

3.1.2 PTM-Oriented Tokenization. Since the design of PTM4Tag
leverages BERT-based PTMs, we rely on the corresponding tok-
enizer of the underlying pre-trained model to generate token se-
quences. The BERT-based PTMs usually accept a maximum input
sequence length of 512 sub-tokens which also always include two
special tokens < 𝐶𝐿𝑆 > and 𝑆𝐸𝑃 . The < 𝐶𝐿𝑆 > token (short for
CLaSsification) is the first token of every input sequence, and the
corresponding hidden state is then used as the aggregate sequence
representation. < 𝑆𝐸𝑃 > token (short for SEParator) is inserted at
the end of every input sequence. The problem of capturing long
text arises since a significant proportion of the training point has
exceeded the maximum acceptably input limit of the PTMs. Accord-
ing to our dataset statistics, more than 50% of the posts’ descriptions
and more than 40% of the posts’ code snippets are longer than the
given length limit. We tackle the problem using a head-only trun-
cation strategy [24], which only considers the initial 510 tokens
(excluding the < 𝐶𝐿𝑆 > and < 𝑆𝐸𝑃 > tokens) as the input tokens.
There are other truncation strategies such as tail-only truncation,
head+tail truncation [24] and other standard techniques to han-
dle longer text such as compression [24], hierarchical method [24].
However, such approaches are not attempted in our work since
there is no clear conclusion on which approach would give the
best performance in general, and the performance varies among
different situations. We leave the extensive exploration of the effect
of such methods for future work.
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Figure 2: The overview of the PTM4Tag framework. The ti-
tle, description, and code are extracted from an SO post and
fed into three different pre-trained models to obtain embed-
dings for each of them. A classification model takes the pro-
cessed embeddings as input and produces probabilities for
each tag.

3.2 PTM-based Feature Extraction
3.2.1 Language Modeling with PTMs. A language model learns the
probability distribution of sequences of words. Recently, the BERT-
based PTMs have been achieving outstanding results in a range of
natural language understanding tasks [10, 20]. The BERT architec-
ture [5, 27], which is also inherited in other models, e.g., RoBERTa
and CodeBERT is essentially the Encoder stack of transformer [27].
It is implemented with the self-attention mechanism [27] which
significantly enhances its ability in capturing long dependencies.
The BERT𝐵𝐴𝑆𝐸 model contains 12 layers and 110M parameters
in total with 512 hidden units and 8 attention heads. BERT-based
models usually are pre-trained on a large-scale corpus in order to
obtain a generalized representation. Taking the expensive computa-
tional cost at the pre-training stage into account, we leveraged the
released PTMs by the community in the design of PTM4Tag to gen-
erate contextual word embeddings. The encoder part of PTM4Tag is
replaceable, and we have empirically implemented five variants of
PTM4Tag with different PTMs (refer to Section 4.3) and investigate
the impact of the PTM selection within PTM4Tag (refer to our first
research question, i.e., RQ1 in Section 5).

3.2.2 Pooling and Fusion. After the word embeddings are gener-
ated, we obtain the post representation by applying a pooling strat-
egy. A pooling strategy executes the down-sampling on the input
representation and it is widely used to generate sentence embed-
dings from a sequence of word embeddings (wherein a BERT-based
model, each word embedding has 768 dimensions). We generate

post embeddings in the same way as generating sentence embed-
dings with BERT models. There are several common choices to
derive fixed size sentence embeddings from a BERT-based model,
include (1) using the first <CLS> token, (2) Average Pooling and (3)
Maximum Pooling [21].

Reimers and Gurevych [21] have evaluated the effectiveness of
different pooling strategies on the SNLI dataset [3] and the Multi-
Genre NLI dataset [34] in the sentence classification task, and the re-
ported Average Pooling gives the best performance in both datasets.
Inspired by the findings, our proposedmethod leverages theAverage
Pooling strategy on the hidden output to generate component-wise
feature vectors by default. Finally, we concatenate these three vec-
tors sequentially to obtain the final representation of an SO post.

3.3 Model Training and Inference
After performing average pooling, the output of the fusion layer is
fed into a feed-forward neural network to perform the task of multi-
label classification. Given a training dataset consisting of X and
corresponding ground truth tags 𝑦 for each 𝑥 ∈ X, we train a tag
recommendation model 𝑓 by minimizing the following objective:

L = − 1

𝑁

𝑁∑︁
𝑖=1

𝐿∑︁
𝑗=1

𝑦 𝑗×𝑙𝑜𝑔(𝑓 (𝑦 𝑗 |𝑥𝑖 ))+(1−𝑦 𝑗 )×𝑙𝑜𝑔(1−𝑓 (𝑦 𝑗 |𝑥𝑖 )) (1)

where 𝑁 = |X| is the total number of training examples and
𝑓 (𝑦 𝑗 |𝑥𝑖 ) is the probability that tag 𝑦 𝑗 is related to SO post 𝑥𝑖 . The
objective captures the binary cross-entropy loss on all the train-
ing examples and can be optimized by gradient descent via back-
propagation. Note that the gradient flow through the multi-label
classifier as well as the PTMs used to process Title, Description, and
Code. The parameters of both the tag predictor after the fusion layer
and the PTMs are updated during the training process of PTM4Tag.

Given an input 𝑥𝑖 , PTM4Tag produces a vector corresponding to
all the tags. An element 𝑓 (𝑦 𝑗 |𝑥𝑖 ) in the vector corresponds to the
probability that tag 𝑦 𝑗 is relevant with SO post 𝑥𝑖 . Stack Overflow
sets a limit 𝑘 for the number of tags a post can have, and we rank
the tags in descending order according to their probabilities pro-
duced by PTM4Tag. The top 𝑘 tags with the highest probabilities
are recommended to a SO post.

4 EXPERIMENTAL SETTINGS
This section describes the dataset investigated in our experiment,
the commonly-used evaluation metrics of a tag recommendation
technique, and the implementation details of all considered models.

4.1 Data Preparation
To ensure a fair comparison to the current state-of-the-art ap-
proach [37], we select the same dataset as Xu et al. as the benchmark.
The original data is retrieved from the snapshot of the Stack Over-
flow dump versioned on September 5, 2018.6 A tag is regarded as
rare if its occurrence is less than a pre-defined threshold 𝜃 . The
intuition is that if a tag appears very infrequently in such a large
corpus of posts (over 11 million posts in total), it is likely to be an
incorrectly-created tag that developers do not broadly recognize.

6https://archive.org/details/stackexchange

https://archive.org/details/stackexchange
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Therefore, we remove such rare tags as they may reduce the qual-
ity of the training and test data. Following the same procedure as
[14, 37], we set the threshold 𝜃 for deciding a rare tag as 50, and
we remove all the rare tags of a post, and we remove the posts
which contain rare tags only from the dataset. In the end, we have
identified 29,357 rare tags and 23,687 common tags in total. As a re-
sult, we obtained a dataset consisting of 10,379,014 posts. We select
100,000 latest posts as the test data and used the rest of 10,279,014
posts as the training data.

4.2 Evaluation Metrics
Previous studies of tag recommendation [14, 37, 40] on SQA sites
use 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 for evaluating the perfor-
mance of the approaches. To be consistent, we follow the same
evaluation metrics in this work. Formally speaking, given a corpus
of SO posts, X = {𝑥1, ...𝑥𝑛}, we report 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖 ,
𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘𝑖 on each post 𝑥𝑖 respectively where 0 ≤ 𝑖 ≤ 𝑛 and
calculate the average of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖 , 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘𝑖 as
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 to be the final measure.

Precision@kmeasures the average ratio of predicted ground truth
tags among the list of the top-k recommended tags. For the 𝑖th post
in the test dataset, we denote its ground truth tags of a particular
post by 𝐺𝑇𝑖 and predicted top-k tags of the model by 𝑇𝑎𝑔𝑘

𝑖
. We

calculate 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 =
|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑘

𝑖
|

𝑘
(2)

Then we average all the values of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 :

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =

∑ |X |
𝑖=1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖

|X| (3)

Recall@k reports the proportion of correctly predicted ground
truth tags found in the list of ground truth tags. The original formula
of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖 has a notable drawback: the 𝑅𝑒𝑐𝑎𝑙𝑙 score would be
capped to be small when the value of 𝑘 is smaller than the number
of ground truth tags. In the past literature [14, 37, 40], a modified
version of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is commonly adopted as indicated in Equations
4 and 5.We have adopted the modified𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 in our work, which
is as same as the one used to evaluate the current state-of-the-art
approach in [37].

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖 =


|𝐺𝑇𝑖∩𝑇𝑎𝑔𝑘𝑖

𝑘
| if |𝐺𝑇𝑖 | > 𝑘

|𝐺𝑇𝑖∩𝑇𝑎𝑔𝑘𝑖 |
|𝐺𝑇𝑖 | if |𝐺𝑇𝑖 | ≤ 𝑘

(4)

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =

∑ |X |
𝑖=1 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖

|X| (5)

F1-score@k is the harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘

and it is usually considered as a summary metric. It is formally
defined as:

𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘𝑖 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖
(6)

𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 =

∑ |𝑆 |
𝑖=1 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘𝑖

|X| (7)

A large volume of literature on tag recommendation of SQA sites
evaluates the result with k equals to 5, and 10 [14]. However, the
number of the tags for Stack Overflow post is not allowed to be
greater than 5; thus, we set the maximum value of k to 5, and we
evaluate 𝑘 on a set of values such that 𝑘 ∈ {1, 2, 3, 4, 5}.

4.3 Implementation
To answer the three research questions mentioned in Section 1,
we trained eight variants of PTM4Tag. Details about each variant
model is summarized in Table 1.

For RQ1, we trained five variants of PTM4Tag by using different
PTMs as the encoders (i.e., CodeBERT𝐴𝐿𝐿 , ALBERT𝐴𝐿𝐿 , BERT𝐴𝐿𝐿 ,
RoBERTa𝐴𝐿𝐿 , BERTOverflow𝐴𝐿𝐿 in Table 1) and empirically inves-
tigate their performance. More specifically, each variant follows
the triplet architecture as illustrated in Figure 2.

For RQ2, we compared the performance of PTM4Tag (with the
best performing PTM) with the state-of-the-art approach, namely
Post2Vec. To reproduce the baseline introduced in Section 2.2, we
re-use the replication package 7 released by the original authors.

After the experiments of RQ1, we found that CodeBERT𝐴𝐿𝐿 had
the best performance. Thus, in RQ3we developed three ablatedmod-
els, CodeBERT𝑁𝑜𝑇𝑖𝑡𝑙𝑒 , CodeBERT𝑁𝑜𝐷𝑒𝑠𝑝 , and CodeBERT𝑁𝑜𝐶𝑜𝑑𝑒 ,
(as shown in Table 1). Notice that since each ablated model only
contains two components, they are implemented with a Twin archi-
tecture. To provide more details about the Twin architecture, it is
implemented with two PTM encoders, whereas the original design
of PTM4Tag involves three PTM encoders. The rest of the design is
much similar, where we concatenate the component representation
obtained from each encoder and trains a multi-label classifier.

Table 1: Variants of PTM4Tag

Model Name BERT-Base Model Considered Components Architecture
BERT𝐴𝐿𝐿 BERT Title, Description,Code Triplet

RoBERTa𝐴𝐿𝐿 RoBERTa Title, Description,Code Triplet
ALBERT𝐴𝐿𝐿 ALBERT Title, Description,Code Triplet
CodeBERT𝐴𝐿𝐿 CodeBERT Title, Description,Code Triplet

BERTOverflow𝐴𝐿𝐿 BERTOverflow Title, Description,Code Triplet
CodeBERT𝑁𝑜𝑇𝑖𝑡𝑙𝑒 CodeBERT Description,Code Twin
CodeBERT𝑁𝑜𝐷𝑒𝑠𝑝 CodeBERT Title, Code Twin
CodeBERT𝑁𝑜𝐶𝑜𝑑𝑒 CodeBERT Title, Description Twin

All the variants of PTM4Tag are implemented with PyTorch
V.1.10.08 and HuggingFace Transformer library V.4.12.39. Consid-
ering the extensive amount of the data set, we only trained the
models for one epoch at the fine-tuning stage. For each variant, we
set the batch size as 64. We set the initial learning rate as 7E-05 and
applied a linear scheduler to control the learning rate at run time.
7https://github.com/maxxbw54/Post2Vec
8https://pytorch.org
9https://huggingface.co

https://github.com/maxxbw54/Post2Vec
https://pytorch.org
https://huggingface.co


PTM4Tag: Sharpening Tag Recommendation of Stack Overflow Posts with Pre-trained Models ICPC ’22, May 16–17, 2022, Virtual Event, USA

5 EXPERIMENTAL RESULTS
In this section, we conduct experiments to evaluate the perfor-
mance of the five variants of our proposed framework and the base-
line approach. We further conduct an ablation study on our best-
performing variant. We present the mean values of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 ,
𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝐹1-𝑆𝑐𝑜𝑟𝑒@𝑘 for each model. Based on the results,
we answer the research questions presented in Section 1.

RQ1. Out of the five variants of PTM4Tag with
different PTMs, which gives the best
performance?
Motivation BERT-based pre-trained language models have wit-
nessed great success across multiple SE-related tasks. To the best of
our knowledge, our work is the first that leverages PTMs in recom-
mending tags for SQA sites. Past studies have shown that different
PTMs have different strengths and weaknesses. For example, Mosel
et al. [28] found BERTOverflow outperforms the general-purpose
PTM, BERT, by a substantial margin in issue type prediction and the
commit intent prediction. Mosel et al. further reported that the vo-
cabulary of SE domain-specific PTMs (i.e., BERTOverflow) contain
many programming-related vocabularies such as jvm, bugzilla and
debug which are absent in the vocabulary of BERT [5]. However,
Yang et al. reported that the generic PTMs BERT performs better
than domain-specific models, i.e., BERTOverflow in API review
classification task [38]. Domain-specific PTMs may understand the
text from the target domain better, but general-purpose data is
likely to be pre-trained on larger data. Thus, the efficacy of pre-
trained models on this task remain unclear. Since the underlying
BERT-based PTM of PTM4Tag is replaceable, it evokes our inter-
est in investigating the effectiveness of different PTMs under the
PTM4Tag architecture and finding the most suitable PTM for SO
posts tag recommendation.
Results and Analysis To answer the question, we report the per-
formance of five variants of PTM4Tag , which are implemented
with different PTMs, which are three general-purpose PTMs (BERT,
RoBERTa, and ALBERT) and two SE-specific PTMs (CodeBERT and
BERTOverflow). These variants are implemented with the Triplet
architecture, which considers Title, Description, and Code as in-
put. We refer to these variant models as BERT𝐴𝐿𝐿 , RoBERTa𝐴𝐿𝐿 ,
ALBERT𝐴𝐿𝐿 , CodeBERT𝐴𝐿𝐿 , and BERTOverflow𝐴𝐿𝐿 , respectively.

Table 2 illustrates the obtained results of all variants. We ob-
served that leveraging CodeBERT consistently outperformed other
models in all evaluationmetrics. BERT𝐴𝐿𝐿 and RoBERTa𝐴𝐿𝐿 showed
worse performance than CodeBERT𝐴𝐿𝐿 only by a small margin. In
terms of 𝐹1-𝑠𝑐𝑜𝑟𝑒@5, CodeBERT𝐴𝐿𝐿 , BERT𝐴𝐿𝐿 , and RoBERTa𝐴𝐿𝐿
achieved 0.513, 0.510 and 0.505, respectively. BERTOverflow𝐴𝐿𝐿

performed slightly better than ALBERT𝐴𝐿𝐿 , and ALBERT is the
worst-performing model. BERTOverflow𝐴𝐿𝐿 and ALBERT𝐴𝐿𝐿 only
achieved 0.427 and 0.406 in 𝐹1-𝑠𝑐𝑜𝑟𝑒@5, which are lower than
CodeBERT, BERT and RoBERTa by a large margin.

The potential reason for why CodeBERT𝐴𝐿𝐿 achieved the best
performance is that it is a bi-modal PTM for SE domain that has
leveraged both natural language and programming language at the
pre-training stage. Differently, the other models are trained with
natural language data only. Since PTM4Tag uses both natural and

Table 2: Comparison of all variants of PTM4Tag with a
triplet architecture and the baseline approach Post2Vec.

Model Name Precision@k
P@1 P@2 P@3 P@4 P@5

CodeBERT𝐴𝐿𝐿 0.848 0.701 0.579 0.486 0.415
BERT𝐴𝐿𝐿 0.845 0.696 0.575 0.482 0.413

RoBERTa𝐴𝐿𝐿 0.843 0.694 0.571 0.478 0.409
BERTOverflow𝐴𝐿𝐿 0.725 0.592 0.489 0.412 0.354

ALBERT𝐴𝐿𝐿 0.748 0.586 0.469 0.386 0.327
Post2Vec 0.786 0.628 0.507 0.421 0.359

Model Name Recall@k
R@1 R@2 R@3 R@4 R@5

CodeBERT𝐴𝐿𝐿 0.848 0.756 0.724 0.733 0.757
BERT𝐴𝐿𝐿 0.845 0.750 0.719 0.728 0.752

RoBERTa𝐴𝐿𝐿 0.843 0.747 0.714 0.722 0.746
BERTOverflow𝐴𝐿𝐿 0.725 0.635 0.607 0.619 0.644

ALBERT𝐴𝐿𝐿 0.748 0.630 0.588 0.588 0.605
Post2Vec 0.786 0.678 0.636 0.639 0.659

Model Name F1-score@k
F@1 F@2 F@3 F@4 F@5

CodeBERT𝐴𝐿𝐿 0.848 0.719 0.625 0.561 0.513
BERT𝐴𝐿𝐿 0.845 0.714 0.621 0.557 0.510

RoBERTa𝐴𝐿𝐿 0.843 0.711 0.617 0.553 0.505
BERTOverflow𝐴𝐿𝐿 0.725 0.606 0.527 0.475 0.427

ALBERT𝐴𝐿𝐿 0.748 0.600 0.506 0.447 0.406
Post2Vec 0.786 0.646 0.549 0.488 0.445

programming languages as input for tag recommendations, the
nature of the input of the task well matches with CodeBERT.

ALBERT𝐴𝐿𝐿 and BERTOverflow𝐴𝐿𝐿 are largely outperformed
by the rest of the variants. A potential reason could be that ALBERT
includes fewer parameters since the design of ALBERT aspires to
address the GPU memory limitation. BERTOverflow follows the
same architecture as BERT, but BERT𝐴𝐿𝐿 performs better than
BERTOverflow𝐴𝐿𝐿 by a large margin. By intuition, BERTOverflow
is formulated with a much more appropriate vocabulary for the
SE domain, which would also produce promising results, but the
experimental results may have indicated that BERTOverflow still re-
quired more training. It is potentially caused by the quality and the
size of the datasets used at the pre-training stage. BERTOverflow is
pre-trained with 152 million sentences from SO. BERT is trained on
the entire English Wikipedia and the Book Corpus dataset, written
by professionals and constantly reviewed. However, sentences from
SO could be written by arbitrary authors and the existence of in-
line code within a post would introduce extra noise. Additionally,
the training corpus of BERT contains 3.3 billion words in total,
and the average sentence length of BookCorpus is 11 words. By
estimation, the training corpus of BERT is likely to be twice more
than BERTOverflow.

Although the CodeBERT and BERTOverflow both are SE domain-
specific PTMs, fundamentally, are different from each other. In
architecture-wise, CodeBERT is initialized with RoBERTa’s parame-
ters and adds a second phase of pre-training on the CodeSearchNet
dataset [9], whereas BERTOverflow is trained from scratch. More-
over, both BERT and RoBERTa are models designed for natural
language only. Although we include code snippets as input, BERT
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and RoBERTa still achieve outstanding results (slightly worse than
CodeBERT). It possibly indicates that pre-trained models trained
with a large scale of natural language data also be helpful for pro-
gramming language modeling.

Answers to RQ1: Among the five considered PTMs of
PTM4Tag , the one implemented with CodeBERT produces
the best performance.

RQ2. How is the performance of PTM4Tag
compared to the state-of-the-art approach in
Stack Overflow tag recommendation?
Motivation The current state-of-the-art approach for recommend-
ing tags of SO posts is implemented based on Convolutional Neural
Network and trained from scratch [37]. However, Transformer-
based PTMs are strengthened with the self-attention mechanism
and transferred pre-train knowledge. In this research question, we
investigate whether the variants of PTM4Tag can achieve better
performance than the current state-of-the-art approach.
Results andAnalysisAs presented in Table 2, the best performing
variant of PTM4Tag, i.e., CodeBERT𝐴𝐿𝐿 , substantially outperformed
Post2Vec in terms of 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 (k from 1 to 5) by 7.9%, 11.3%,
13.8%, 15.0% and 15.3%, respectively. Furthermore, BERT𝐴𝐿𝐿 and
RoBERTa𝐴𝐿𝐿 also surpassed Post2Vec. BERT𝐴𝐿𝐿 improved the 𝐹1-
𝑠𝑐𝑜𝑟𝑒@1-5 of Post2Vec by 7.5%, 10.5%, 13.1%, 14.1% and 14.6%; and
RoBERTa𝐴𝐿𝐿 improved by 7.3%, 10.1%, 12.4%, 13.3% and 13.5%;
However, we also observe that not all PTMs are able to achieve
outstanding performance under PTM4Tag. Post2Vec outperformed
BERTOverflow𝐴𝐿𝐿 by 8.4%, 6.6%, 8.5%, 2.7%, 4.7% and outperformed
ALBERT𝐴𝐿𝐿 by 5.1%, 7.7%, 8.5%, 9.2%, 9.6% in 𝐹1-𝑠𝑐𝑜𝑟𝑒@1–5.

Different from Post2Vec, PTM4Tag involves a vast amount of
knowledge accumulated from the dataset used for pre-training.
PTM4Tag leverages PTMs to extract feature vectors and optimize the
post representation during the fine-tuning stage, whereas Post2Vec
learns post representations from scratch. Thus, PTMs provide a
more decent initial setting. Furthermore, CodeBERT provides in-
domain knowledge of SE. Our results indicate that the knowledge
learned in the pre-training stage is valuable to the success of the
tag recommendation task.

Another potential reason for the superior performance of PTM4Tag
is that transformer-based models are more powerful than CNN in
capturing long-range dependencies [27]. The architecture of BERT-
based PTMs is inherited from a Transformer. One of the critical
concepts of Transformers is the self-attention mechanism, which
enables its ability to capture long dependencies among all input
sequences. Our results demonstrate the effectiveness and generaliz-
ability of transfer learning and reveal that the PTMs can achieve
outstanding performance in the tag recommendation task for SO
posts.

Answers to RQ2: CodeBERT𝐴𝐿𝐿 , BERT𝐴𝐿𝐿 and
RoBERTa𝐴𝐿𝐿 outperform the state-of-the-art approach by
a substantial margin. However, BERTOverflow𝐴𝐿𝐿 and
ALBERT𝐴𝐿𝐿 demonstrated worse performance than the
state-of-the-art approach.

Table 3: Experiment Results of RQ3, the ablation study con-
ducted for each post component.

Model Name Precision@k
P@1 P@2 P@3 P@4 P@5

CodeBERT𝐴𝐿𝐿 0.848 0.701 0.579 0.486 0.415
CodeBERT𝑁𝑜𝐶𝑜𝑑𝑒 0.823 0.682 0.562 0.472 0.408
CodeBERT𝑁𝑜𝐷𝑒𝑠𝑝 0.822 0.671 0.549 0.458 0.390
CodeBERT𝑁𝑜𝑇𝑖𝑡𝑙𝑒 0.808 0.664 0.547 0.460 0.394

Model Name Recall@k
R@1 R@2 R@3 R@4 R@5

CodeBERT𝐴𝐿𝐿 0.848 0.756 0.724 0.733 0.757
CodeBERT𝑁𝑜𝐶𝑜𝑑𝑒 0.823 0.733 0.702 0.712 0.737
CodeBERT𝑁𝑜𝐷𝑒𝑠𝑝 0.822 0.723 0.686 0.693 0.714
CodeBERT𝑁𝑜𝑇𝑖𝑡𝑙𝑒 0.808 0.715 0.683 0.693 0.718

Model Name F1-score@k
F@1 F@2 F@3 F@4 F@5

CodeBERT𝐴𝐿𝐿 0.848 0.719 0.625 0.561 0.513
CodeBERT𝑁𝑜𝐶𝑜𝑑𝑒 0.823 0.699 0.607 0.545 0.500
CodeBERT𝑁𝑜𝐷𝑒𝑠𝑝 0.822 0.688 0.593 0.530 0.483
CodeBERT𝑁𝑜𝑇𝑖𝑡𝑙𝑒 0.808 0.680 0.591 0.531 0.487

RQ3. Which component of post benefits
PTM4Tag the most?
Motivation PTM4Tag is designed with a triplet architecture where
each component of a post, i.e., Title, Description, and Code, are
modeled by utilizing separate PTMs. Title, Description, and Code
snippets complement each other and describe the post from its own
perspective. Title summarizes the question with a few words; De-
scription further expands the content from the Title; Code snippets
often is a real example of the problem. Thus it motivates us to in-
vestigate which component produces the most critical contribution
in the PTM4Tag framework.
Results and Analysis To answer this research question, we con-
duct an ablation study to investigate the importance of each com-
ponent, i.e., Title, Description, and Code, respectively. Note that
PTM4Tag is implemented with a triplet architecture by default. To
answer this research question, we modified it to a twin architecture
to fit two considered components at a time. We train three ablated
models with our identified best-performing PTM, i.e., CodeBERT.

The results for RQ3 are presented in Table 3. From the table, we
identified that CodeBERT𝐴𝐿𝐿 remained the best performing model
on all the evaluation metrics. To provide a more intuitive under-
standing of the result, we further illustrate the performance gap of
𝐹1-𝑠𝑐𝑜𝑟𝑒@1–5 between the ablated models and CodeBERT𝐴𝐿𝐿 by
visualizing in Figure 3, where the value on the y axis is calculated
using the score of CodeBERT𝐴𝐿𝐿 minus the score of the ablated
model. CodeBERT𝑁𝑜𝐶𝑜𝑑𝑒 yielded the most promising performance
among the ablated models, which implies that the code snippets
are beneficial, but they are the least significant among all three
components.

An interesting finding is that CodeBERT𝑁𝑜𝐷𝑒𝑠𝑐 performed bet-
ter in 𝐹1-𝑠𝑐𝑜𝑟𝑒@1–3 and CodeBERT𝑁𝑜𝑇𝑖𝑡𝑙𝑒 performed better in
𝐹1-𝑠𝑐𝑜𝑟𝑒@4–5, which suggests that Title is more important for
boosting the performance of 𝐹1-𝑠𝑐𝑜𝑟𝑒@1–3 andDescription is more
critical for improving 𝐹1-𝑠𝑐𝑜𝑟𝑒@4–5. A possible explanation could
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Figure 3: A line chart demonstrate performance differ-
ence in 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 between each ablated models and
CodeBERT𝐴𝐿𝐿 , where 𝑘 ∈ {1, 2, 3, 4, 5}. The value on the
y axis is calculated using the corresponding score of the
candidate ablated model minus the corresponding score of
CodeBERT𝐴𝐿𝐿 .

be that Title always succinctly describes a post’s central message,
which could directly help the system predict the top few tags. De-
scription is usually much longer and elaborates the Title with more
explanations; thus, it is more beneficial to recommend the last few
tags. Moreover, as CodeBERT𝐴𝐿𝐿 is the best performing model,
which suggests that Code is beneficial in the tag recommendation
task of SO.

Answers to RQ3: Under PTM4Tag, Title and Description
are more important than Code for tag recommendation.
Title plays the most important role in predicting the top
3 most relevant tags, and the contribution of Description
increases when the number of predicted tags increases
from 4. Still, considering all the components can achieve
the best performance.

6 DISCUSSION
6.1 Error Analysis
We conduct qualitative analysis to illustrate the capability of our
proposed framework PTM4Tag. Take a Stack Overflow post10 titled
Pass Input Function to Multiple Class Decorators in the test dataset
as an example. The ground truth tags of the post are decorator,
memoization, python, python-2.7, and python-decorators. The
tags predicted by Post2Vec are class, timer, python-decorators,
decorator, and python while PTM4Tag gives the exact prediction
as to the ground truth tags. Although the word memoization has
occurred several times in the post, Post2Vec still failed to capture its
existence and the connection between memoization and decorator.
Moreover, we found that the CodeSearchNet database [9] which is
used to pre-train CodeBERT includes source code files that relate to
both memoization and decorator 11, This potentially could indicate
that the pre-trained knowledge learned by CodeBERT is beneficial
for our task.

10https://stackoverflow.com/questions/51910978
11https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/
src/rez/utils/memcached.py#L248-L375

6.2 Threats to Validity
Threats to internal validity. To ensure we implement the base-
line (i.e., Post2Vec) correctly, we reused the official replication pack-
age released by the Xu et al.12 To instantiate variants of PTM4Tag
with different pre-trained models, we utilized a widely-used deep
learning library Hugging Face.13 Similar to prior studies [31, 33, 37],
our work assumes that the tags are labeled correctly by users in
Stack Overflow. However, some tags are potentially mislabelled.
Still, we believe that Stack Overflow’s effective crowdsourcing pro-
cess helps to reduce the number of such cases, and we further
minimize this threat by discarding rare tags and posts (as described
in Section 4.1).

Threats to external validity. We analyzed Stack Overflow, the
largest SQA site, with a massive amount of questions. These ques-
tions cover diverse discussions on various software topics. As soft-
ware technologies evolve fast, our results may not generalize to
those newly emerging topics. Instead, our framework can adapt to
new posts by fine-tuning models on more and new questions.

Threats to construct validity. Threats to construct validity are
related to the suitability of our evaluation metrics. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 ,
𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒@𝑘 are widely used to evaluate many tag
recommendation approaches in software engineering [31, 33, 36,
37]. Thus, we believe the threat is minimal.

6.3 Lessons Learned
Lesson #1. Pre-trained language models are effective in tag-
ging SO posts. The tag recommendation task for SQA sites has
been extensively studied in the last decade [14, 32, 37, 40]. Re-
searchers have tackled the problem via a range of techniques, e.g.,
collaborative filtering [14] and deep learning [37]. Furthermore,
these techniques usually involve separate training of each com-
ponent. Our experiment results have demonstrated that simply
fine-tuning the pre-trained Transformer-based model can achieve
state-of-the-art performance, even if there are thousands of tags.
CodeBERT, BERT, and RoBERTa are capable of providing promising
results for tag recommendation. Even though BERT and RoBERTa
did not leverage programming language at the pre-training stage.

Although PTMs are already widely adopted in SE tasks, most
tasks are formulated as either binary classification problems or
multi-class classification problems. In binary or multi-class classifi-
cation problems the label classes are mutually exclusive, whereas
for multi-label classification problems each data point may belongs
to several labels simultaneously. We encourage practitioners to
leverage pre-trained models in themulti-label classification settings
where the size of the label set could go beyond thousands. Moreover,
our experiments also validate the generalizability of pre-trained
models. We recommend practitioners apply pre-trained models in
more SE tasks and consider fine-tuning pre-trained models as one
of their baselines.

Lesson #2. CodeBERT is recommended as one of the first at-
tempts for SQA-related tasks which involve both natural lan-
guage and programming language. CodeBERT is trained on

12https://github.com/maxxbw54/Post2Vec
13https://huggingface.co/

https://stackoverflow.com/questions/51910978
https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/rez/utils/memcached.py#L248-L375
https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/rez/utils/memcached.py#L248-L375
https://github.com/maxxbw54/Post2Vec
https://huggingface.co/
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both bimodal and unimodal data. Our results showed that Code-
BERT consistently outperforms other pre-trained models as well as
the recent state-of-the-art deep learning model in tag recommenda-
tion task of Stack Overflow. We found that SE domain-specific
model, i.e., CodeBERT is powerful, and researchers are recom-
mended to use CodeBERT as one of their first attempts when their
tasks are based on SQA data and involve both NL and PL.

Lesson #3. All components of a post from Stack Overflow are
valuable pieces of semantics. Most previous literature has re-
moved the code snippets from the pre-training process because
they are considered noisy, poorly structured, and written in many
different programming languages [14, 32, 40, 41]. However, our
results show that code snippets are also beneficial to capture the
semantics of SO posts and further boost the performance of the
tag recommendation task. We encourage researchers to consider
both the natural and programming languages parts of a post when
analyzing SQA sites.

7 RELATEDWORK
7.1 Pre-trained Models in SE
Recent works [2, 8, 13] have shown that the in-domain knowledge
acquired by PTMs is valuable in improving the performance on
domain-specific tasks, such as ClinicalBERT [8] for clinical text,
SciBERT [2] for scientific text, and BioBERT [13] for biomedical
text. Evoked by the success of PTMs in other domains, researchers
start the work in the SE domain-specific PTMs [4, 6, 11, 26, 28].
Developers are free to create and pick arbitrary identifiers, mak-
ing texts in the SE field frequently involve technical jargon and
tokens from the programming languages [23]. This makes models
pre-trained on general texts (e.g., BERT [5]) unsuitable to represent
texts in the software engineering domain. Tabassum et al. [26] pro-
vided BERTOverflow for completing tasks related to Stack Overflow.
BERTOverflow [26] inherits the architecture from BERT [5] and is
trained on more than 152 million programming-related questions
extracted from Stack Overflow. Mosel et al. [28] aims to provide
a better SE domain-specific pre-trained model than BERTOver-
flow [26] and propose seBERT [28]. Since seBERT is developed
upon the BERT𝐿𝐴𝑅𝐺𝐸 architecture, we did not investigate the effec-
tiveness of seBERT under the PTM4Tag framework due to restraints
on computational resources and GPU memory consumption.

The aforementioned PTMs focus on modeling the natural lan-
guage texts in the SE domain. In addition, there is a proliferation of
studies onmodel programming languages with PTMs. Svyatkovskiy
et al. trained GPT-C [25], a multi-layer generative transformer
model, and leveraged GPT-C to build a code completion tool. GPT-C
is pre-trained on 1.2 billion lines of source code written by multiple
programming languages, including Python, JavaScript, C-sharp,
etc. Feng et al. proposed CodeBERT [6], a bi-model pre-trained
model for both natural and programming languages (NL and PL).
CodeBERT is trained on bi-modal data of NL-PL pairs and a vast
amount of uni-modal data. CodeBERT has two pre-training tasks:
Masked Language Modeling (MLM) and Replacement Token Detec-
tion (RTD). The experimental results show that CodeBERT achieves
the state-of-the-art performance on natural language code search
and code document generation, and in a zero-shot setting, Code-
BERT persistently outperforms RoBERTa [16].

7.2 Tag Recommendation for SQA Sites
Researchers have already extensively studied the tag recommenda-
tion task in the SE domain and proposed a number of approaches.
Wang et al. introduced EnTagRec [29] that utilizes Bayesian in-
ference and an enhanced frequentist inference technique. Results
show that it outperformed TagCombine by a significant margin.
Wang et al. then further extends EnTagRec [29] to EnTagRec++ [30],
the latter of which additionally considers user information and an
initial set of tags provided by a user. Zhou et al. proposed Tag-
MulRec [41], a collaborative filtering method that suggests new
tags of a post based on the results of semantically similar posts.
Li et al. proposed TagDC [14], which is implemented with two
parts: TagDC-DL that leverages a content-based approach to learn
a multi-label classifier with a CNN Capsule network, and TagDC-CF
that utilizes collaborative filtering to focus on the tags of similar
historical posts. Post2Vec [37] distributively represents SO posts
and is shown useful in tackling numerous Stack Overflow-related
downstream tasks. We select Post2Vec [37] as the baseline in our
experiments as it achieves the state-of-the-art performance in the
tag recommendation task for SO posts.

8 CONCLUSION AND FUTUREWORK
In this work, we modeled the tag recommendation task of SO as a
multi-label classification problem and introduced PTM4Tag, a pre-
trained model-based framework for tag recommendation. We imple-
mented five variants of PTM4Tag with different PTMs as the under-
lying Encoder. Our experiment results showed that the best variant
of PTM4Tag is CodeBERT-based, and it outperforms the state-of-the-
art approach by a large margin in terms of 𝐹1-𝑠𝑐𝑜𝑟𝑒@5. Leveraging
BERT and RoBERTa could also achieve desirable performance that
only slightly loses CodeBERT and beat the state-of-the-art approach
by a large margin. However, PTM4Tag models implemented with
BERTOverflow and ALBERT did not give promising results. Even
though the BERT-based PTMs are shown to be powerful and effec-
tive, PTMs behave differently, and the selection of PTMs needs to
be carefully decided. Besides, we conducted an ablation study to
investigate the contribution of each component under PTM4Tag.
The result shows that Title is the most vital part for recommending
the most relevant tags, and considering all components simulta-
neously and separately can produce the best performance. In the
future, we plan to consider more diverse information of a post
into account, such as the attached pictures, author information, etc.
Also, we are interested in applying PTM4Tag on more SQA sites
such as AskUbuntu14, etc., to further evaluate its effectiveness and
generalizability. We release our replication package15 to facilitate
future research.
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