
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2022

Detecting false alarms from automatic static analysis tools: how Detecting false alarms from automatic static analysis tools: how

far are we? far are we?

Hong Jin KANG

Khai Loong AW

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
KANG, Hong Jin; AW, Khai Loong; and LO, David. Detecting false alarms from automatic static analysis
tools: how far are we?. (2022). Proceedings of the 44th International Conference on Software Engineering,
Pittsburgh, PA, USA, 2022 May 21-29. 698-709.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7686

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Detecting False Alarms from Automatic Static Analysis Tools:
How Far are We?

Hong Jin Kang
Singapore Management University

Singapore, Singapore
hjkang.2018@phdcs.smu.edu.sg

Khai Loong Aw
Singapore Management University

Singapore, Singapore
klaw.2020@scis.smu.edu.sg

David Lo
Singapore Management University

Singapore, Singapore
davidlo@smu.edu.sg

ABSTRACT
Automatic static analysis tools (ASATs), such as Findbugs, have a
high false alarm rate. The large number of false alarms produced
poses a barrier to adoption. Researchers have proposed the use of
machine learning to prune false alarms and present only actionable
warnings to developers. The state-of-the-art study has identified a
set of “Golden Features” based on metrics computed over the char-
acteristics and history of the file, code, and warning. Recent studies
show that machine learning using these features is extremely effec-
tive and that they achieve almost perfect performance.

We perform a detailed analysis to better understand the strong
performance of the “Golden Features”. We found that several stud-
ies used an experimental procedure that results in data leakage
and data duplication, which are subtle issues with significant impli-
cations. Firstly, the ground-truth labels have leaked into features
that measure the proportion of actionable warnings in a given con-
text. Secondly, many warnings in the testing dataset appear in the
training dataset. Next, we demonstrate limitations in the warning
oracle that determines the ground-truth labels, a heuristic compar-
ing warnings in a given revision to a reference revision in the future.
We show the choice of reference revision influences the warning
distribution. Moreover, the heuristic produces labels that do not
agree with human oracles. Hence, the strong performance of these
techniques previously seen is overoptimistic of their true perfor-
mance if adopted in practice. Our results convey several lessons
and provide guidelines for evaluating false alarm detectors.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis.

KEYWORDS
static analysis, false alarms, data leakage, data duplication

ACM Reference Format:
Hong Jin Kang, Khai Loong Aw, and David Lo. 2022. Detecting False Alarms
from Automatic Static Analysis Tools: How Far are We?. In 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3510003.3510214

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510214

1 INTRODUCTION
It has been 15 years since Findbugs [5] was introduced to detect
bugs in Java programs. Along with other automatic static analysis
tools (ASATs) [8, 41, 43], FindBugs aims to detect incorrect code by
matching code against bug patterns [5, 18], for example, patterns of
code that may dereference a null pointer. Since then, many projects
have adopted these tools as they help in detecting bugs at low
cost. However, these tools do not guarantee that the warnings
are real bugs. Many developers do not perceive the warnings by
ASATs to be relevant due to the high incidence of effective false
alarms [19, 43, 52]. Prior work has suggested that the false positive
rate may range up to 91%. While the overapproximation of static
analysis may cause false alarms, false alarms do not only refer to
errors from analysis or overapproximation, but include warnings
that developers did not act on [19, 43, 44]. Developers may not act
on a warning if they do not think the warning represents a bug or
believe that a fix is too risky.

To address the high rate of false alarms, many researchers [15, 53]
have proposed techniques to prune false alarms and identify ac-
tionable warnings, which are the warnings that developers would
fix. These approaches [12, 13, 23, 25, 27, 42, 45, 55, 59] consider
different aspects of a warning reported by Findbugs in a project,
including factors about the source code [12], repository history [55],
file characteristics [29, 59], and historical data about fixes to Find-
bugs warnings [27] within the project. Wang et al. [53] completed
a systematic evaluation of the features that have been proposed in
the literature and identified 23 “Golden Features”, which are the
most important features for detecting actionable Findbugs warn-
ings. Using these features, subsequent studies [56–58] show that
any machine learning technique, e.g. SVM, performs effectively and
that the use of a small number of training instances can train effec-
tive models. In these studies, performances of up to 96% Recall and
98% Precision, and 99.5% AUC can be achieved. A perfect predictor
has a Recall, Precision, and AUC of 100%, suggesting that machine
learning techniques using the Golden Features are almost perfect.

Although the Golden Features have been shown to perform well,
we do not know why they are effective. Therefore, in this work
we seek to get a deeper understanding of the Golden Features. We
find a few issues: First, the ground-truth label was leaked into the
features measuring the proportion of actionable warnings in a given
context. Second, warnings in the test data were used for training. To
understand their impact, we addressed the two flaws and found that
the performance of the Golden Features declines. Our results show
that the use of the Golden Features do not substantially outperform
a strawman baseline that predicts all warnings are actionable.

ar
X

iv
:2

20
2.

05
98

2v
1

 [
cs

.S
E

]
 1

2
Fe

b
20

22

https://doi.org/10.1145/3510003.3510214
https://doi.org/10.1145/3510003.3510214
https://doi.org/10.1145/3510003.3510214

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hong Jin Kang, Khai Loong Aw, and David Lo

Next, we investigate the warning oracle used to obtain ground-
truth labels when constructing the dataset. To evaluate any pro-
posed approach, a large dataset should be built, where each warn-
ing is accurately labeled as either an actionable warning or a false
alarm. Many studies [53, 56, 58] use a heuristic, which we term the
closed-warning heuristic, as the warning oracle to determine the
actionability of a warning, checking if the same warning is reported
in a reference revision, a revision chronologically after the testing
revision. If the file is still present and the warning is not reported in
the reference revision, then the warning is closed and is assumed
to be fixed. It is, therefore, assumed to be actionable. Conversely, a
warning that remained open is a false alarm. A revision made a few
years after the simulated time of the experimental setting is used as
the reference revision. Prior studies [53, 56, 58] selected reference
revisions set 2 years after the testing revision. However, no prior
work has investigated the robustness of the heuristic.

There are several desirable qualities of a warning oracle. Firstly,
it should allow the construction of a sufficiently large dataset. Sec-
ondly, it should be reliable; the labels should be robust to minor
changes in the oracle. Thirdly, it should generate labels that human
annotators and developers of projects using ASATs agree with. An
advantage of the closed-warning heuristic is that it enables the con-
struction of a large dataset. However, our experiments demonstrate
the lack of consistency in the labels given changes in the choice of
the reference revision. This may allow different conclusions to be
reached from the experiments. Our experiments also uncover that
the oracle does not always produce labels that human annotators
or developers agree with. These limitations show that alone, the
heuristic do not always produce trustworthy labels. After removing
unconfirmed actionable warnings, the effectiveness of the Golden
Features SVM improves, indicating the importance of clean data.

Finally, we highlight lessons learned from our experiments. Our
results show the need to carefully design an experimental procedure
to assess future approaches, comparing them against appropriate
baselines. Our work points out open challenges in the design of a
warning oracle for the construction of a benchmark. Based on the
lessons learned, we outline several guidelines for future work.

We make the following contributions:

• We analyze the reasons for the strong performance from
the use of the “Golden Features” observed in prior studies.
Contrary to prior work, we find that machine learning tech-
niques are not almost perfect, and that there is still much
room for improvement for future work in this area.

• We study the warning oracle, the closed-warning heuristic,
that assigns labels to warnings used in previous studies. We
show that the heuristic may not be sufficiently robust.

• We discuss the lessons learned and their implications. Im-
portantly, we highlight the need for community effort in
building an accurate benchmark and suggest that future
studies compare new approaches with strawman baselines.

The rest of the paper is structured as follows. Section 2 covers
the background of our work. Section 3 presents the design of the
study. Section 4 analyzes the Golden Features. Section 5 investigates
the closed-warning heuristic. Section 6 discusses lessons learned
from our study. Section 7 presents related work. Finally, Section 8
concludes the paper.

2 BACKGROUND
2.1 Automatic Static Analysis Tools
Many researchers have proposed Automatic Static Analysis Tools
(ASATs), such as Findbugs [5], to detect possible bugs during the
software development process. Research has shown these tools are
useful and succeed in detecting bugs that developers are interested
in at low cost. Compared to program verification or software testing,
these tools rely on bug patterns written by the authors of the static
analysis tools, matching code that may be buggy. Findbugs includes
over 400 bug patterns that match a range of possible bugs, such
as class casts that are impossible, null pointer dereferences, and
incorrect synchronization.

Studies have also shown that ASATs are able to detect real
bugs [11, 49]. Indeed, static analysis tools are adopted by large
companies [4, 8, 43] and open source projects [7] to detect bugs.
Developers may run them during local development, use them in
Continuous Integration [60] and during code review to detect buggy
code to catch bugs early [6, 36, 50, 52]. Projects may configure the
tools [60], for example, to suppress false alarms by configuring a
filter file to exclude specific warnings [2].

Developers largely perceive ASATs to be relevant, and the ma-
jority of practitioners have used or heard of ASATs [35, 48, 52].
Still, these tools are characterized by the large amounts of false
alarms that they produce, and among other reasons, this has led to
resistance in adopting them in many software projects [19].

2.2 Distinguishing between Actionable
Warnings and False Alarms

To minimize the overhead of inspecting false alarms, researchers
have proposed approaches based on machine learning to rank or
classify the warnings. A large number of features have been de-
signed over the past 15 years; for example, based on software met-
rics (e.g. size of the file, number of comments in the code), source
code history (e.g. number of lines of code recently added to a file),
and characteristics and history of the warnings (e.g. the number of
revisions where the warning has been opened).

Researchers have evaluated their proposed tools through datasets
of warnings produced by Findbugs [12–14, 16, 42, 45, 59]. Recently,
Wang et al. [53] performed a systematic analysis of the features
proposed in the literature. From 116 features, they identified 23
Golden Features, which are the features that achieve effective per-
formance. The features are listed in Table 1. These features include
metrics such as the code-to-comments ratio [29], and the number
of lines added in the past [14, 42]. Of note are several features of
the “Warning combination” feature type. We will refer to three of
these features, warning context in method, warning context
in file, and warning context for warning type, as the warn-
ing context features. We refer to another two features, the defect
likelihood for warning pattern, and discretization of defect
likelihood as the defect likelihood features. These features are
various measures of the proportion of actionable warnings within a
population of warnings, building on top of the insight that warnings
within the population share the same label, e.g. if a warning was
previously fixed in a file, it is more likely that the other warnings
in the same file will be fixed too.

Detecting False Alarms from Automatic Static Analysis Tools: How Far are We? ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: The Golden Features studied in prior work [53,
56, 58]. A warning context is defined [53] as the difference
of the number of actionable warnings and false alarms di-
vided by the total number of warnings reported in a given
method/file, or for a warning pattern. We provide more de-
scriptions of each feature in our replication package [1].

Feature type Feature
warning context in method
warning context in file

Warning combination warning context for warning type
defect likelihood for warning pattern
discretization of defect likelihood
average lifetime for warning type
comment-code ratio
method depth

Code characteristics file depth
methods in file
classes in package
warning pattern

Warning characteristics warning type
warning priority
package
file age

File history file creation
developers

Code analysis parameter signature
method visibility

Code history LOC added in file (last 25 revisions)
LOC added in package (past 3 month)

Warning history warning lifetime by revision

Further research [56] on the Golden Features of Wang et al. [53]
showed the lack of influence of the choice of machine learning
model on effectiveness. They suggested that a linear SVM was
optimal since it requires a lower cost of training. In contrast, while
a deep learning approach achieves similar levels of effectiveness,
it has a longer training time. Their analysis [56] suggested that
the detection of false alarms is an intrinsically easy problem. A
different study [58] demonstrated that, with the Golden Features,
only a small proportion of the dataset has to be labelled to train an
effective classifier. The Golden Features are a subject of our study.
In Section 4, we analyze them in detail.

Closed-warning heuristic. The procedure to construct and
label the ground-truth dataset can be visualized in Figure 1. To
assess an approach that detects false alarms, a dataset of Findbugs
warnings is collected. While some researchers [13, 45] construct a
labelled dataset throughmanual labelling of the warnings in a single
revision, other researchers collect a dataset through an automatic
ground-truth data collection process [12, 13, 53, 56, 58]. Data for a
testing revision and at least one training revision, set chronologically
before the testing revision, is collected. This simulates real-world
use of the tool, in which training is done on the history of the
project, and then used at the time of the testing revision.

Using the closed-warning heuristic as the warning oracle, each
warning in a given revision is compared against a reference revision

Figure 1: The dataset comprises warnings created before the
training and testing revisions. The labels of each warning
are determined by the closed-warningheuristic; if awarning
is closed at the reference revision and the file has not been
deleted, then it is actionable.

set in the future of the test revision. Prior studies selected a reference
revision set 2 years after the test revision. If a specific warning is
no longer present in the reference revision (i.e., a closed warning),
the heuristic assumes that the warning is actionable. If the warning
is present in both the given and reference revision (i.e., an open
warning), then the heuristic assumes that it is a false alarm. If the
file that contains the code with the warning has been deleted, then
the warning is labelled unknown and is removed from the dataset.
In other words, according to the the closed-warning heuristic, a
closed warning is always actionable as long as the file has not
been deleted, and an open warning is always unactionable. Other
than detecting actionable warnings, researchers have applied the
heuristic to identify bug-fixing commits for mining patterns [32, 33].
The heuristic is a subject of our study, and we assess its robustness
and its level of agreement with human oracles in Section 5.

3 STUDY DESIGN
3.1 Research Questions

RQ1. Why do the Golden Features work? This research ques-
tion seeks to understand the Golden Features. While previous stud-
ies have highlighted their strong results, there has not been an
in-depth analysis of their practicality. We study the Golden Fea-
tures and the dataset used in the experiments by Wang et al. [53]
and Yang et al. [56]. We investigate the aspects of the features
and dataset that allow accurate predictions by the best performing
machine learning model, an SVM using the Golden Features. We
replicate the results of the previous studies and validate the predic-
tive power of the Golden Features. To understand the importance
of different features, we use LIME [39] to narrow our focus down to
the features that contribute the most to the predictions. Afterwards,
we switch to increasingly simpler classifiers and analyze the exper-
imental data to better understand why the choice of classifiers did
not influence the results in prior studies.

RQ2. How suitable is the closed-warning heuristic as a warn-
ing oracle? This research question concerns the suitability of the
closed-warning heuristic as a warning oracle. A good oracle should
be robust, and its judgments should agree with the analysis of a
human annotator. We investigate the robustness of the heuristic,
checking the consistency of labels under different choices of the
reference revision. While previous studies used a 2-years interval

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hong Jin Kang, Khai Loong Aw, and David Lo

between the test revision and reference revision, we investigate if
different conclusions can be reached with a different time interval.
Next, we compute the proportion of closed warnings that human
annotators labelled actionable, and the proportion of open warnings
that project developers suppressed as false alarms.

3.2 Evaluation Setting
To analyze the performance of machine learning approaches that
identify actionable Findbugs warnings, we use the same metrics
as prior studies [53, 56, 58]. A true positive (TP) is an actionable
Findbugs warning correctly predicted to be actionable. A false posi-
tive (FP) is an unactionable Findbugs warning incorrectly predicted
to be actionable. Note that we use the term false alarm to refer to
unactionable Findbugs warning. A false positive, therefore, refers
to a false alarm that is incorrectly determined to be an actionable
warning. A false negative (FN) is an actionable warning incorrectly
predicted to be a false alarm. A true negative is an unactionable
warning correctly predicted to be a false alarm.

We compute Precision and Recall as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

Finally, we compute and present F1, the harmonic mean of Pre-
cision and Recall. F1 is known to capture the trade-off between
Precision and Recall, and is used in place of accuracy given an
imbalanced dataset. F1 is computed as follows:

F1 = 2 × Precision × Recall
Precision+Recall

The Area Under the receiver operator characteristics Curve
(AUC) is a measure of the predictive power of a machine learn-
ing approach to distinguish between true and false alarms. Ranging
between 0 (worst discrimination) and 1 (perfect discrimination),
AUC is the area under the curve of the true positive rate against
the false positive rate, and recommended over accuracy when the
data is imbalanced. A strawman classifier that always outputs a
single label has an AUC of 0.5.

Our dataset consists of projects that were studied by Yang et
al. [56, 58] and Wang et al. [53]. Similar to previous studies [56, 58],
we use one training revision and one testing revision. We use the
same testing revision as previous studies [53, 56, 58]. We train one
model for each project.

4 ANALYSIS OF THE GOLDEN FEATURES
To answer the first research question, we investigate the perfor-
mance of the Golden Features by first using the same dataset used by
Yang et al. [56]. The dataset includes two revisions from 9 projects.
The testing revisions are the revisions of the projects on 1 January
2014, and the training revision is a revision of the projects up to
6 months before the testing revision. In total, 31,058 warning in-
stances were obtained by running Findbugs over the training and
testing revision. On average, 14.1% of the warnings in the dataset
were actionable. Table 2 shows the breakdown of the warnings.

We successfully replicate the performance observed in the exper-
iments of Yang et al. [56] and Wang et al. [53], obtaining high AUC
values of up to 0.99. An average F1 of 0.88 was obtained, with F1
ranging from 0.65 to 0.95. Table 3 shows our experimental results.

Table 2: The number of training, testing instances, and the
percentage of actionable warnings (Act. %) in the dataset.
The testing revision is the last revision checked into the
main branch on 2014-01-01.

Project Training With duplicates W/o duplicates
testing Act. % testing Act. %

ant 1229 1115 5% 21 71%
cassandra 2584 2601 14% 551 70%
commons 725 786 5% 4 50%
derby 2479 2507 5% 499 31%
jmeter 604 613 24% 57 19%
lucene 3259 3425 34% 893 59%
maven 813 818 3% 149 14%
tomcat 1435 1441 23% 227 41%
phoenix 2235 2389 14% 214 22%

Yang et al. [56] found that the dataset was intrinsically easy as
the data was inherently low dimensional. To further analyze their
findings, we used tools from the field of explainable AI, in particular
LIME [39], to identify the most important features contributing to
each prediction. LIME is an explanation technique that identifies the
most important features that contributed to an individual prediction.
To identify the most important features, we sampled 50 predictions
made by the Golden Features SVM, and used LIME to identify
the top features contributing to the predictions. We found that
two features, warning context of file and warning context of
package, appeared in the top-3 features of every prediction.

Warning context and defect likelihood features. On ana-
lyzing the source code of the feature extractor developed by Wang
et al. [53], we found a subtle data leak in the implementation of
the warning context and defect likelihood features. These features
utilize findings from previous studies [27] that found that the warn-
ings within a population (e.g. warnings in the same file) tend to be
homogenous; if one warning is a false alarm, then the other warn-
ings in the same population tend to be false alarms as well. Includ-
ing warning context of file and warning context of package,
there are another 3 features computed similarly (warning con-
text of warning type, defect likelihood for warning pattern,
Discretization of defect likelihood for warning pattern). At
a high level, the warning context features are computed as follows:

|𝑊 actionable
relevant |− |𝑊 false alarm

relevant
|

|𝑊relevant |

𝑊relevant refers to the set of warnings relevant to the feature
type. For example,𝑊relevant of warning context of file considers
the warnings that are reported in a given file, while𝑊relevant of
warning context of warning type considers all warnings for the
given category of patterns (e.g. STYLE, INTERNATIONALIZATION).
Note that a warning pattern refers to a specific bug pattern in
Findbugs (e.g. “ES_COMPARING_STRINGS_WITH_EQ”), and a
warning type is a category of patterns. The defect likelihood for
warning pattern [45] feature computes the proportion of warn-
ings that were actionable out of all warnings with the given bug
pattern, 𝑝:

Detecting False Alarms from Automatic Static Analysis Tools: How Far are We? ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Effectiveness of an SVM using the Golden Features after removing the leaked features and removing the duplicate
warnings between the training and testing dataset. The numbers in parentheses are the F1 obtained by the baseline classifier
that predicts all warnings are actionable.

Project All Golden Features − leaked features − data duplication − leak, duplication
F1 AUC F1 AUC F1 AUC F1 AUC

ant 0.94 (0.09) 1.00 0.11 (0.09) 0.67 - - - -
cassandra 0.92 (0.24) 1.00 0.45 (0.24) 0.86 0.9 (0.41) 0.99 0.29 (0.41) 0.54
commons 0.65 (0.10) 0.99 0.16 (0.10) 0.65 0.75 (0.25) 0.97 0.11 (0.25) 0.49
derby 0.95 (0.09) 1.00 0.39 (0.09) 0.93 0.97 (0.28) 0.97 0.30 (0.28) 0.59
jmeter 0.94 (0.38) 0.99 0.53 (0.38) 0.76 1.00 (0.14) 1.00 0.25 (0.14) 1.00
lucene-solr 0.87 (0.51) 0.97 0.59 (0.51) 0.74 0.87 (0.53) 0.98 0.23 (0.53) 0.62
maven 0.86 (0.07) 1.00 0.27 (0.07) 0.9 0.95 (0.24) 0.99 0.27 (0.24) 0.58
tomcat 0.93 (0.37) 1.00 0.48 (0.37) 0.73 0.95 (0.70) 1.00 0.65 (0.70) 0.39
phoenix 0.89 (0.25) 1.00 0.42 (0.25) 0.78 0.83 (0.37) 0.99 0.40 (0.37) 0.63
Average 0.88 (0.23) 1.00 0.38 (0.23) 0.76 0.90 (0.37) 0.99 0.31 (0.37) 0.59

𝐷 (𝑝) = |𝑊 actionable
relevant |

|𝑊relevant |

Thediscretization of defect likelihood forwarning type [45]
feature, computed for each type/category 𝑇 of bug patterns, is a
measure of the difference in defect likelihood from the defect likeli-
hood of 𝑇 for each bug pattern in the category:

1
|𝑇 |−1

∑
𝑝∈𝑇 (𝐷 (𝑝) − 𝐷 (𝑇))2

The five warning context and defect likelihood features require
information about the actionability of each warning in the pop-
ulation of warnings considered. A data leakage occurs when the
classifier utilizes information that is unavailable at the time of its
predictions [22, 51]. As shown in Figure 2, while the ratio of ac-
tionable warnings are computed over the warnings reported in the
past (the black line in Figure 2), the closed-warning heuristic to
determine the ground-truth label of a warning (the red lines in Fig-
ure 1 and Figure 2) is utilized to determine if these warnings were
actionable. To compute the warning context of a given warning,𝑊𝑡

in the testing revision, the labels of all warnings in the population
of warnings (e.g. all warnings in the same file), including𝑊𝑡 , are
obtained based on comparison to the reference revision.

Since the ground-truth label is also obtained based on compari-
son to the reference revision, the ground-truth label is inadvertently
leaked into the computation of the warning context. This is not a
realistic assumption in practice; at test time, the ground-truth label
of the warning context of𝑊𝑡 is the target of the prediction. While
checking if a warning will be closed 2 years in the future is possible
within an experiment, there is no way to check if the warnings will
be closed 2 years into the future in practice. Table 3 shows the large
drop in F1, from an average of 0.88 to 0.38, when these five features
are dropped. We refer to these features as leaked features.

Baseline using data leakage. Data leakage leads to an experi-
mental setting that overestimates the effectiveness of the classifier
under study [22, 51]. In Table 4, we show that a baseline equivalent
to the Golden Features can be developed using only the five leaked
features. Using just the leaked features with an SVM, we construct
a baseline that achieves performance comparable to the use of the
Golden Features. An SVM using the leaked features has a Precision
of 0.79, about 0.10 lower than the Golden Features SVM, however,

Figure 2: The warning context and defect likelihood fea-
tures use labels derived through the closed-warning heuris-
tic, using information from the reference revision, chrono-
logically in the future of the test revision. In a realistic set-
ting, this information will not be present at test time.

they achieve identical Recall of 0.94, which results in an F1 of 0.83,
just 0.05 lower than the Golden Features. This indicates that the
strong performance of the Golden Features in the experiments de-
pends largely on the leaked features, and is an optimistic estimate
of their effectiveness.
The computation of the warning context and defect likelihood fea-
tures caused data leakage, as it used labels determined by compari-
son against the reference revision, chronologically in the future of
the testing time.

Data duplication. Next, we progressively selected simpler ma-
chine learning models and surprisingly, found that a k-Nearest
Neighbors (kNN) classifier performs effectively. In particular, we
found a surprising trend where the lower values of 𝑘 led to better
results. The results of the experiment where we iteratively lowered
𝑘 to consider in the prediction are shown in Table 4.

Surprisingly, a kNN classifier with k=1 (i.e., only one neighbor is
considered to make a prediction) produces the best result, obtained
a Precision of 0.87, a Recall of 0.90, with an F1 of 0.84. With k=1,
the classifier was selecting a single most similar warning in the
training dataset. In typical usage of kNN, a low value of 𝑘 may cause
the classifier to be influenced by noise and outliers, which makes
the strong results surprising. To analyze the results further, we
observed that the number of training (15,363) and testing instances
(15,695) were similar, and we investigated the data carefully. We

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hong Jin Kang, Khai Loong Aw, and David Lo

Table 4: Average Precision (Prec.), Recall, and F1 of various
approaches on the original dataset by Yang et al.

Technique Prec. Recall F1
Golden Features SVM 0.84 0.94 0.88
− leaked features 0.26 0.70 0.38
− data duplication 0.88 0.93 0.90
− data duplication and leaked features 0.27 0.57 0.31
+ reimplemented leaked features 0.32 0.57 0.38
Golden Features kNN (with k=10) 0.91 0.57 0.68
Golden Features kNN (with k=5) 0.86 0.72 0.78
Golden Features kNN (with k=3) 0.87 0.78 0.82
Golden Features kNN (with k=1) 0.87 0.90 0.84
Only leaked features SVM 0.79 0.94 0.83
Repeat label from training dataset 0.72 0.80 0.75

found that many testing instances appeared in both the training
and testing dataset.

The data duplication was caused by the data collection process,
in which all warnings produced by Findbugs for both the training
and test revisions were included in the training and testing dataset.
Say we have a warning at the training revision, determined to be
open and, therefore, unactionable by the closed-warning heuristic.
In other words, the warning remained open in the period before the
training revision to the reference revision. Then, the warning would
certainly be opened at the testing revision, which is chronologically
before the reference revision but after the training revision. Like-
wise, if we have a warning only closed after the testing revision,
but was open during the testing revision, then the same warning
would be present at both the training and testing revision with the
same “actionable” label. Consequently, a large number of warnings
appear in both the training and testing dataset. This contributes to
an unrealistic experimental setting.

Baseline using duplicated data. Data duplication creates an
artificial experimental setting that inflates performance metrics [3].
To confirm that the data duplication contributes to the ease of the
task, we construct a weak baseline, a dummy classifier, that lever-
ages the duplication of testing data in the training dataset. Given a
warning from the testing dataset, the classifier heuristically identi-
fies the same warning from the training dataset by searching for a
training warning based on the class name (e.g. “BooleanUtils”) and
bug pattern name (e.g. “ES_COMPARING_STRINGS_WITH_EQ”).
If there are multiple warnings with the same class name and bug
pattern name, a random training instance is selected from among
them. The classifier then outputs the label of the training instance.
If there is no training instance with the same class and bug pattern
type, then the classifier defaults to predicting that the warning is a
false alarm, which is the majority class label.

Table 4 shows the comparison of various approaches, includ-
ing the baseline approaches, on the dataset. The dummy classifier
achieves strong performance, achieving a Precision of 0.72, a Recall
of 0.80, and an F1 of 0.75.While the dummy classifier underperforms
the model using the leaked features, it outperforms the Golden Fea-
tures SVM without the leaked features. This indicates that using
just two attributes, (1) the class name and (2) the bug pattern of the
warning, is enough to obtain strong performance on a dataset with

Figure 3: We reimplemented the leaked features. The reim-
plemented features use only information (represented by
the blue, dashed lines) available at the present (i.e., either
the training or test revision) to determine if a warning (i.e.,
created before the training or test revision) has been closed.
Under this setting, no information from the reference revi-
sion is used for making predictions.

data duplication. Therefore, we conclude that the data duplication
between the training and testing dataset contributes to the strong
performance observed in previous studies.

The experimental results are summarized in Table 4. With both
the leaked features and duplicated data, the average F1 was 0.88.
After the data leakage features are removed, F1 decreased to 0.38.
After removing the duplicated data, F1 decreases further to 0.31.
The average project’s AUC decreased from 1.00 to 0.59. In compari-
son, using a strawman baseline that predicts that every warning is
actionable produces an F1 of 0.52 (with an AUC of 0.5).

All warnings reported by FindBugs on both the training and testing
revisions were included in the datasets. Warnings reported at the
training revisionmay still be reported at the testing revision, leading
to data duplication between the training and testing dataset.

Experiments under amore realistic setting. To better under-
stand the performance of the Golden Features SVM, we ran another
experiment where the two issues of data leakage and data dupli-
cation have been fixed. First, we deduplicated the test data from
the training dataset. Instead of including all warnings in the test-
ing revision, we only consider new warnings introduced between
the time after the training revision and before the testing revision.
Figure 3 shows our procedure. As compared to the previous dataset
construction process in Figure 1, only the warnings created after
the training revision and before the testing revision are used for
testing. This better reflects real-world conditions where all warn-
ings prior to usage are used for training, but none of the testing
data involves warnings that have already been classified. In total,
the number of warnings in the testing revisions decreased from a
total of 15,695 to 2,615 after deduplication. Without the duplicated
data and without using the leaked features, the average F1 drops
from 0.88 to 0.31 as seen in Table 3.

Next, we reimplemented the leaked features to investigate the
effectiveness of Golden Features SVM. To prevent data leakage, we
modified the definition of the leaked features. Figure 3 visualizes the
computation of the warning context and defect likelihood features.
Instead of considering all warnings, we consider only warnings
that were introduced in the 1 year duration before the training or
testing revision. Instead of using the reference revision, we use
the given revision (i.e., either the training or testing revision) to

Detecting False Alarms from Automatic Static Analysis Tools: How Far are We? ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

determine if the warning was closed. A warning is closed at a
given revision if Findbugs does not report it. In other words, for the
training revision, only the warnings created within the past year
before the training revision are considered. For testing, only the
warnings created within one year before the testing revision are
considered. A time interval of 1 year was selected in contrast to
the study by Wang et al. [53], which used time intervals of up to 6
months. UnlikeWang et al. [53], for the testing revision, we consider
only warnings created after the training revision to prevent data
duplication. Consequently, we found fewer newly created warnings
in the short time interval between the training and testing revisions.

Note that after reimplementing the warning context and defect
likelihood features, we could not run the experiments for the project
Phoenix as we faced many difficulties building old versions of the
project. Moreover, their revision history did not go back beyond
3 years, required for computing the warning context and defect
likelihood features for the training revision. This limitation is not
present for Wang et al. [53], as they compute the features by check-
ing if the given warning is closed in the reference revision, set in
the future of the test revision (causing data leakage). As such, we
omit Phoenix for the rest of the experiments.

Table 4 shows the performance of the Golden Features SVM
using the reimplemented features. Without the leaked features,
the Golden Features SVM achieves an F1 of 0.38. Even with the
reimplementation of the leaked features, the Golden Features SVM
underperforms the strawman baseline, which predicts all warnings
are actionable, with an F1 of 0.43. However, it has an AUC of 0.59,
greater than 0.5, indicating that the Golden Features are better than
random and have some predictive power.

Answer to RQ1: After removing the data leakage and data dupli-
cation, our experimental results indicate that the Golden Features
SVM underperforms the strawman baseline, although its AUC (>
0.5) suggests that the Golden Features have some predictive power.

5 ANALYSIS OF THE CLOSED-WARNING
HEURISTIC

Next, given that the quality and realism of the dataset heavily in-
fluences the evaluation of the Golden Features SVM, we perform
a deeper analysis of the construction of the ground-truth dataset.
In previous studies [53, 56, 58], the warning oracle is the closed-
warning heuristic; a warning is heuristically determined to be ac-
tionable if it was closed (i.e., reported by Findbugs in a revision but
was not reported by Findbugs in the reference revision, and the file
was not deleted), and is a false alarm if it was open (i.e. reported by
Findbugs on both the training/test and reference revision).

In the first part of our analysis, we investigate the consistency in
the warning oracle given a change in the reference revision. Next,
we check if the warning oracle produces labels that human users
would agree with. To do so, we first determine if human annotators
consider closed warnings as actionable warnings. In addition, we
match open warnings against Findbugs filter files in projects where
developers have configured the filters for suppressing false alarms.
Finally, we observe if cleaner data increases the effectiveness of the
Golden Features SVM.

5.1 Choosing a different reference revision
We perform a series of experiments to determine how the time in-
terval between the test revision and the selected reference revision
influences the ground-truth label of the warnings. We hypothesize
that the longer the time interval between the test and reference
revision, the greater the proportion of closed warnings. Based on
the closed-warning heuristic, this would cause more warnings to
be labelled actionable. If so, the lack of consistency in labels should
call the robustness of the heuristic into question. If many bugs are
fixed only after many years, then an open warning at any given
time may, in fact, be actionable. Besides that, if changing the refer-
ence revision leads us to a different conclusion about the Golden
Features SVM, then it limits the level of confidence that researchers
can have in the experimental results.

In our experiments, we use three reference revisions set two,
three, and four years after the test revision. By switching the refer-
ence revision, we observe changes in the average actionability ratio.
While the actionability ratio remained consistent for the 4 out of 8
projects, the actionability ratio increased by over 10% for the other
4 projects, as seen in Table 5. Overall, the average actionability ratio
increased by 14% when varying the time interval between the test
and reference revision from 2 to 4 years. Considering all projects, we
performed a Wilcoxon signed-rank test and found that the change
in actionability ratio is statistically significant (p-value=0.03 < 0.05).

In terms of the effectiveness of the Golden Features SVM, its
average F1 increased from 0.39 to 0.57, as seen in Table 5. Con-
sidering all projects, the Golden Features SVM underperformed
the strawman baseline. Our experiments showed some variation
of the Golden Features SVM’s effectiveness given a change in the
reference revision. For instance, the Golden Features SVM achieved
a low F1 of 0.06 in Derby when the time interval between the test
and reference revision was 2 years, but had a high F1 of 0.72 with a
time interval of 4 years.

By changing reference revisions, the problem exhibits different
characteristics. Using a reference revision 4 years after the test re-
vision, actionable warnings would be the majority class, while they
were the minority class when using the other reference revisions. 4
of 8 projects have an AUC that flipped from one side of 0.5 to the
other (e.g. the Golden Features SVM’s AUC is under 0.5 on Derby
given a 2-years interval, but the AUC increases above 0.5 given a
4-years interval). In short, different conclusions about the task and
the effectiveness of the Golden Features may be reached.
Changing the reference revision may affect the distribution of the
actionable warnings, which may impact the conclusions reached
from experiments on the effectiveness of the Golden Features SVM.

5.2 Unconfirmed actionable warnings
Next, we investigate if closed warnings are truly actionable warn-
ings. A warning could be closed due to several reasons. Code con-
taining the warning could be deleted or modified while implement-
ing a new feature, and the warning may only be closed incidentally.

To further understand the characteristics of closed warnings, and
to determine how likely is a closed warning an actionable warning,
we sampled 1,357 warnings (which is more than the statistically
representative sample size of 384 warnings) that were closed. Two

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hong Jin Kang, Khai Loong Aw, and David Lo

Table 5: The number of training, testing instances, and the percentage of actionable warnings (Act. %) in the dataset when
varying the reference revision. The numbers in parentheses are the F1 obtained by the baseline classifier that predicts all
warnings are actionable. The testing revision is the last revision checked in to the main branch before 2014-01-01.

Project # testing 2 years 3 years 4 years
instances Act. % F1 AUC Act. % F1 AUC Act. % F1 AUC

ant 21 24 0 (0.38) 0.43 43 0.13 (0.60) 0.48 43 0 (0.60) 0.32
cassandra 551 41 0.56 (0.59) 0.52 46 0.61 (0.63) 0.41 43 0.58 (0.60) 0.48
commons 4 50 0.66 (1.00) 1.00 50 1.00 (0.67) 1.00 50 1.00 (0.67) 1.00
derby 489 10 0.06 (0.18) 0.33 59 0.58 (0.74) 0.46 66 0.72 (0.80) 0.52
jmeter 57 17 0.13 (0.16) 0.58 26 0.12 (0.27) 0.4 91 0.71 (0.95) 0.52
lucene 993 44 0.56 (0.62) 0.58 49 0.58 (0.66) 0.57 67 0.63 (0.8) 0.53
maven 149 17 0.25 (0.29) 0.41 16 0.27 (0.28) 0.44 16 0.27 (0.28) 0.44
tomcat 226 42 0.53 (0.59) 0.51 61 0.51 (0.57) 0.48 52 0.64 (0.69) 0.54
Average 311 40 0.39 (0.43) 0.54 42 0.48 (0.55) 0.53 54 0.57 (0.67) 0.54

Figure 4: Example of code that Findbugs reports a warning
on. Findbugs warns against using new Long, recommending
the more efficient Long.valueOf to instantiate a Long object.

authors of this study independently analyzed each warning to de-
termine if they were removed for a bug fix. If the warning was
closed due to code changes unrelated to the warning, then we do
not consider the warning as actionable. If the code containing the
warning was modified such that it was not easily discernible if
the warning was closed with the intention of fixing the warning,
then we consider it “unknown”. If the original version of the code
had any comments indicating that Findbugs reported a false alarm
(e.g. explaining the reason that a seemingly buggy behavior was
expected behavior), then we consider the warning a false alarm.
When the labels differed between the annotators, they discussed
the disagreements to reach a consensus. We computed Cohen’s
Kappa to measure the inter-annotator agreement and obtained a
value of 0.83, which is considered as strong agreement [28].

Finally, after labelling, 176 (13%) of the heuristically-closed warn-
ings were considered as false alarms. Another 520 warnings (38%)
were categorized as “unknown”. Lastly, 660 (49%) warnings were
still considered actionable after labelling.

For an example of a warning labelled “unknown”, Figure 4 shows
a fragment of code where Findbugs complains about the use of the
Long constructor, indicating that Long.valueOf would be more
efficient. Even though the warning is removed in the reference
revision, the entire functionality of the code fragment was changed
as shown in Figure 5. In such cases, we label the warning as “un-
known” instead of “actionable” or a “false alarm”, as there is no
evidence that the warning was fixed or ignored. We consider that

Figure 5: The warning from Figure 4 is removed through a
change in functionality, unrelated to thewarning otherwise.

the warning was removed incidentally, and that the annotators are
unable to accurately label the warning.

While the closed-warning heuristic considered that a warning
could be removed through the deletion of a file, it does not consider
other cases where a warning could be incidentally removed through
codemodification that does not fix the bug indicated by thewarning,
Our results indicate that more information should be considered,
and that the heuristic may not be sufficiently robust.
Only 47% of closed warnings were labelled actionable by human
annotators, implying that many closed warnings are not actionable.
Many closed warnings were only closed incidentally.

5.3 Unconfirmed false alarms
Our findings from Section 5.1 indicate the possibility that some
actionable warnings would only be closed given a longer time inter-
val between the test revision and the reference revision. This may
reflect real-world conditions, where developers may not prioritize
reports from ASATs and may take a long time before inspecting
them. Thus, open warnings may be actionable warnings that the
developers would fix with enough time. We run an experiment
to understand this effect, focusing on projects that have shown
evidence of using Findbugs. In this experimental setup, we remove
open warnings that are not confirmed by the project developers to
be false alarms.

Detecting False Alarms from Automatic Static Analysis Tools: How Far are We? ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Number of open warnings in each project matched
by their Findbugs filter file. If a warning was filtered, it indi-
cates that the project’s developers consider it a false alarm.

Project # open warnings # filtered % filtered
jmeter 710 6 1%
tomcat 1624 9 1%
commons-lang 106 19 18%
flink 4934 4754 96%
hadoop 3053 269 9%
jenkins 1212 178 15%
kudu 1873 464 25%
kafka 4668 2993 64%
morphia 65 0 0%
undertow 347 113 33%
xmlgraphics-fop 949 909 96%
Average (Mean) 1666 818 31%
Average (Median) 1212 178 18%

Some projects, which use Findbugs in their development process,
configure a Findbugs filter file [2] for indicating false alarms. The
filter file allows developers to suppress warnings of specific bug
patterns on the indicated files. Developers may add warnings to
the Findbugs filter file after inspecting the warnings and identify-
ing false alarms. On projects that have created and maintained a
Findbugs filter file, we assume that a developer would either fix the
buggy code or update the filter file after inspecting a warning. If so,
then an open warning that is not matched by the Findbugs filter file
may not be a false alarm, but has not been inspected by a developer.
These open warnings could be false alarms, but they may also be
warnings that developers would act on after inspecting them. If an
open warning matches the filter, then it has been confirmed by the
developers to be a false alarm.

To investigate the proportion of open warnings that are con-
firmed to be false alarms by project developers, we identified 3
projects (JMeter, Tomcat, Commons-Lang) that have already con-
figured the Findbugs filter file from Wang et al.’s dataset [53], used
in the preceding experiments. Next, we searched GitHub for ma-
ture projects that showed evidence of using Findbugs and have
configured a Findbugs filter file. Using the GitHub Search API, we
looked for XML files containing the term FindbugsFilter, which
is a keyword used in Findbugs filter files, in projects that were not
forks, filtering out projects with less than 100 stars or had less than
10 lines in the Findbugs filter file. We obtained 8 projects.

The statistics of the warnings reported by Findbugs on the
projects are displayed in Table 6. On average, 31% of the open
warnings (a median of 18%) are matched by the Findbugs filter con-
figured by the developers, although the proportion varies for each
project. Our results suggest that the majority of open warnings
remain uninspected by developers.

On average, only 31% of open warnings have been explicitly in-
dicated by developers to be false alarms, suggesting that only a
minority of open warnings are false alarms. While the rest of the
open warnings could be false alarms, they could also be actionable
warnings that have not been inspected yet.

Table 7: Effectiveness of the Golden Features SVM after re-
moving unconfirmed actionable warnings and false alarms.
Act. % refers to the proportion of actionable warnings. The
numbers in parentheses are the F1 of the dummy baseline,
which predicts that all warnings are actionable.

Dataset Act. % F1 AUC
Original dataset [56, 58] 39.9 0.39 (0.43) 0.54
− unconfirmed actionable warnings 40.0 0.61 (0.57) 0.66
Projects using Findbugs 38.0 0.43 (0.44) 0.62
− unconfirmed false alarms 40.0 0.41 (0.46) 0.60

Next, we investigate the impact of the unconfirmed actionable
warnings and false alarms on the Golden Features SVM. We hy-
pothesize that cleaning up the data will improve its effectiveness.

To study the impact of unconfirmed actionable warnings, we
used the dataset of warnings from the projects by Wang et al. [53]
and Yang et al. [56, 58]. These projects were the same projects
studied earlier in Section 5.2. We construct a dataset of warnings
with only the warnings confirmed by the human annotators to
be actionable warnings. We randomly sampled a subset of open
warnings to retain a similar actionability ratio.

For evaluating the effect of unconfirmed false alarms, we used the
warnings from the projects that used Findbugs (from Section 5.3).
However, we omit 4 projects (JMeter, Tomcat, Hadoop, Morphia)
where less than 10% of open warnings matched the filter file, as
the low percentage may indicate that the Findbugs filter files are
not kept up to date in these projects. From the other projects, only
open warnings that match the filter file are included. We sampled a
subset of closed warnings to retain a similar actionability ratio.

The outcome of our experiment is shown in Table 7. Removing
unconfirmed actionable warnings led to an increased AUC from
0.54 to 0.68, and an increased F1 from 0.39 to 0.64. This outperforms
the strawman baseline which has an F1 of 0.57, suggesting that
cleaner data may increase the effectiveness of the Golden Features
SVM. However, removing unconfirmed false alarms did not help.
The results may indicate that cleaner data may help and removing
unconfirmed actionable warnings, which is the minority class, may
have a positive effect on the effectiveness of a classifier.

Answer to RQ2: The closed-warning heuristic may not be an ap-
propriate warning oracle. It lacks consistency with respect to the
choice of reference revision, which may affect the findings reached
from the experimental results. Moreover, the heuristic conflates
closed warnings for actionable warnings and open warnings for
false alarms. We find having cleaner data by removing unconfirmed
actionable warnings can boost the performance of the Golden Fea-
tures SVM.

6 DISCUSSION
6.1 Lessons Learned
Todetect actionablewarnings, theGolden Features alone are
not a silver bullet. Our results indicate that the performance of
the Golden Features SVM is not almost perfect, with only marginal
improvements over a strawman baseline that always predicts that

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hong Jin Kang, Khai Loong Aw, and David Lo

a warning is actionable. Our study motivates the need for more
work. Future work should explore more features and techniques,
including pre-processing methods (e.g. SMOTE) and other machine
learning methods (e.g. semi-supervised learning).

All that glitters is not gold; it is essential to qualitatively
analyze and understand the reasons for seemingly strong
performance.Despite achieving excellent performance, the Golden
Features have subtle bugs related to data leakage and data dupli-
cation. This emphasizes the importance of a deeper analysis of
experimental results, and both quantitative and qualitative analysis
are essential. We call for the need for more replication studies, as
such works can highlight opportunities and challenges for future
work. Our work reemphasizes the need to compare both existing
and newly proposed techniques to simple baselines [9].

The closed-warning heuristic for generating labels allows
a large dataset to be built but is not enough for building a
benchmark. Our work sheds light on the limitations of the closed-
warning heuristic, suggesting that it may not be sufficiently accu-
rate; warnings may be closed incidentally, and actionable warnings
may stay open for years before they are closed.

As a benchmark is essential for charting research direction [47],
the construction of a representative dataset is important. Several
studies have proposed similar processes relying on the closed-
warning heuristic to build a ground-truth dataset [12, 16, 23, 53],
while others have relied on manual labelling [13, 14, 25, 42, 45, 59].
Heuristics enables automation, allowing for a dataset of a greater
scale. However, heuristics may not be robust enough. On the other
hand, solely labelling warnings through manual analysis is not
scalable and may be subject to an annotator’s bias. We suggest that
datasets proposed in the future should rely on both heuristics and
manual labelling; apart from its greater scale, the closed-warning
heuristic enables rich information to be gathered from the activities
of the developers to help the manual labelling process. For exam-
ple, code commits provide richer information, such as the commit
message, simplifying the task for human annotators. In contrast,
prior studies [13, 14, 25, 42, 45, 59] have relied on annotators who
inspected only the source code that warnings are reported on. Our
experiments suggest using the closed-warning heuristic, followed
by manual labelling is promising – the annotators had a strong
agreement (Cohen’s Kappa > 0.8), while no strong agreement in
manual labelling has been demonstrated in prior work.

A good benchmark requires scale and should be labelled by many
annotators. Fields such as code clone detection have created large
benchmarks through community effort [40]. This motivates the
need for community effort to build a benchmark for actionable
warning detection too. As a derivative of this empirical study, we
have labelled 1,300 closed warnings, usable as a starting point.

6.2 Threats to Validity
A possible threat to internal validity is the incorrect implementa-
tion of our code. To mitigate this, we reused existing data and code
whenever possible, including the dataset by Wang et al. [53] and
Yang et al. [56, 58], and the feature extractor by Wang et al. [53].
Our code and data are available [1].

Threats to construct validity are related to the appropriateness
of the evaluation metrics. We considered the evaluation metrics

used in prior studies [53, 56, 58], and also computed F1, which have
been used in many classification tasks [24, 38, 62]. F1 captures the
tradeoff between Precision and Recall, and is a more appropriate
measure on an imbalanced dataset.

Threats to external validity concern the generalizability of our
findings. There are several threats to external validity, including
the choice of projects and techniques used in our experiments.

One threat to external validity is the choice of projects studied in
this paper. We studied nine projects used in previous studies, and
we considered another set of projects that actively use Findbugs.
All considered projects were large, mature projects.

Another threat to external validity is the choice of the approach
used as an actionable warning detector. Our analysis focuses on
the use of the Golden Features SVM, which had the best median
performance in experiments in prior studies and was the suggested
model [56]. Other approaches using different features may achieve
stronger performance.

Our analysis regarding unconfirmed actionable warnings and
false alarms also relies on human oracles (configuration/filter files
written by developers, manual labelling by human annotators) that
may not be perfectly accurate. Moreover, these oracles will pro-
duce more accurate labels for warnings that are easier to label (e.g.
shorter and well-documented code, warning types that are easier to
reason about). This may skew the distribution of labels and warn-
ings in the datasets. To mitigate some of the above threats, multiple
annotators labeled the warnings independently, and we report the
inter-rater reliability. We achieved a strong agreement (Cohen’s
Kappa > 0.8). To mitigate the threat of unmaintained Findbugs filter
files, we selected only popular projects that have filter files with at
least 10 lines.

Another threat is the focus on Findbugs and Java projects. Our
analysis may not generalize to warnings of other ASATs, such as
Infer [8]. This threat is mitigated as Findbugs detects a wide range
of bug patterns, including bugs patterns shared by other ASATs,
and the features are not language-specific. Moreover, we used the
same dataset as prior studies [53, 56, 58]. Findbugs is among the
most commonly used ASATs [60], having been downloaded over a
million times.

7 RELATEDWORK
In Section 2, we discussed the studies related to ASATs as well
as the approaches that use machine learning to detect actionable
warnings. We discuss other related studies in this section.

Many studies have performed retrospectives of the state-of-the-
art for various Software Engineering tasks. Some papers [10, 17, 30,
34, 61] study the limitations of existing tools, and others [21, 31, 37]
assess the applicability of the tools when applied to situations with
a setting different from the original experiments. Our study not
only uncovers limitations of the Golden Features, but investigates
the performance of the Golden Features under different settings (a
different warning oracle in our study).

Other studies have shown the need to carefully consider data
used in experiments [3, 20, 26, 51, 63]. Similar to Allamanis et al. [3],
we show that data duplication may cause overly optimistic exper-
imental results. Similar to Kalliamvakou et al. [20], we suggest
that researchers should be careful about interpreting automati-
cally mined data. Kochhar et al. [26] investigated multiple types

Detecting False Alarms from Automatic Static Analysis Tools: How Far are We? ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

of bias that affect datasets used to evaluate bug localization tech-
niques [54, 64], and, similar to our work, find that prior experi-
mental results were impacted by bias in the datasets. Our work is
similar to the work of Tu et al. [51] in highlighting the problem of
data leakage, where information from the future is used by a classi-
fier and lead to overoptimistic experimental results. Our analysis
indicates that there may be delays before developers inspect static
analysis warnings. Related to this, Zheng et al. [63] found that the
status of many issues in Bugzilla may only be changed after large
delays. These delays have implications for heuristics that are used
to automatically infer labels from historical data (in our case: if a
warning is actionable).

Sheppard et al. [46] had previously discussed data quality in a
commonly used dataset for defect prediction. While both our study
as well as Sheppard et al. raise the problem of data duplication, the
duplicated instances in the dataset analyzed in this paper refer to
the same warnings and labels occurring in both training and testing
dataset. In contrast, Sheppard et al. refers to duplicated cases that
occur naturally (similar features belonging to different instances,
e.g. software modules).

8 CONCLUSION AND FUTUREWORK
In this study, we show that the problem of detecting actionable
warnings fromAutomatic Static Analysis Tools is far from solved. In
prior work, the strong performance of the “Golden Features” were
contributed by data leakage and data duplication issues, which were
subtle and difficult to detect.

Our study highlights the need for deeper study of the warning
oracle to determine ground-truth labels. By changing the reference
revision, different conclusions about performance of the Golden
Features can be reached. Furthermore, the oracle produce labels that
human annotators and developers of projects using static analysis
tools may not agree with. Our experiments show that the Golden
Features SVM had improved performance on cleaner data.

Our study indicates opportunities and challenges for future work.
It highlights the need for community effort to build a large and
reliable benchmark and to compare newly proposed approaches
with strawman baselines. A replication package is provided at

https://github.com/soarsmu/SA_retrospective

ACKNOWLEDGMENTS
This research/project is supported by the National Research Founda-
tion, Singapore, under its IndustryAlignment Fund - Pre-positioning
(IAF-PP) Funding Initiative. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore.

REFERENCES
[1] [n.d.]. Replication Package. https://github.com/soarsmu/SA_retrospective.
[2] 2021. Findbugs Filter file. http://findbugs.sourceforge.net/manual/filter.html.
[3] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine

learning models of code. In ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2019).
143–153. https://doi.org/10.1145/3359591.3359735

[4] Nathaniel Ayewah and William Pugh. 2010. The Google Findbugs Fixit. In 19th
International Symposium on Software Testing and Analysis (ISSTA 2010). 241–252.
https://doi.org/10.1145/1831708.1831738

[5] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and
John Penix. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5 (2008),
22–29. https://doi.org/10.1109/MS.2008.130

[6] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
35th International Conference on Software Engineering (ICSE 2013). IEEE, 931–940.
https://doi.org/10.1109/ICSE.2013.6606642

[7] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2016). IEEE Computer Society, 470–481. https://doi.
org/10.1109/SANER.2016.105

[8] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W O’Hearn.
2019. Scaling static analyses at Facebook. Commun. ACM 62, 8 (2019), 62–70.
https://doi.org/10.1145/3338112

[9] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning.
In 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017).
49–60. https://doi.org/10.1145/3106237.3106256

[10] David Gros, Hariharan Sezhiyan, PremDevanbu, and Zhou Yu. 2020. Code to Com-
ment “Translation”: Data, Metrics, Baselining & Evaluation. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2020). IEEE,
746–757. https://doi.org/10.1145/3324884.3416546

[11] Andrew Habib and Michael Pradel. 2018. How many of all bugs do we find?
a study of static bug detectors. In 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2018). IEEE, 317–328. https://doi.org/10.
1145/3238147.3238213

[12] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. 2014. Finding patterns
in static analysis alerts: improving actionable alert ranking. In 11th Working
Conference on mining software repositories (MSR 2014). 152–161. https://doi.org/
10.1145/2597073.2597100

[13] Sarah Heckman and Laurie Williams. 2008. On establishing a benchmark for
evaluating static analysis alert prioritization and classification techniques. In
2nd ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM 2008). 41–50. https://doi.org/10.1145/1414004.1414013

[14] Sarah Heckman and Laurie Williams. 2009. A Model Building Process for
Identifying Actionable Static Analysis Alerts. In International Conference on
Software Testing Verification and Validation (ICST 2009). IEEE, 161–170. https:
//doi.org/10.1109/ICST.2009.45

[15] Sarah Heckman and Laurie Williams. 2011. A systematic literature review of
actionable alert identification techniques for automated static code analysis.
Information and Software Technology (IST) 53, 4 (2011), 363–387. https://doi.org/
10.1016/j.infsof.2010.12.007

[16] Sarah Heckman and Laurie Williams. 2013. A comparative evaluation of static
analysis actionable alert identification techniques. In 9th International Conference
on Predictive Models in Software Engineering (PROMISE 2013). 1–10. https://doi.
org/10.1145/2499393.2499399

[17] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). 763–773. https://doi.org/10.1145/3106237.
3106290

[18] David Hovemeyer and William Pugh. 2004. Finding bugs is easy. ACM SIGPLAN
notices 39, 12 (2004), 92–106. https://doi.org/10.1145/1052883.1052895

[19] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. 2013. Why don’t software developers use static analysis tools to find
bugs?. In 35th International Conference on Software Engineering, (ICSE 2013). IEEE
Computer Society, 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[20] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining Github.
In 11th working conference on Mining Software Repositories (MSR 2014). 92–101.
https://doi.org/10.1145/2597073.2597074

[21] Hong Jin Kang, Tegawendé F Bissyandé, and David Lo. 2019. Assessing the
Generalizability of code2vec Token Embeddings. In 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2019). IEEE, 1–12. https:
//doi.org/10.1109/ASE.2019.00011

[22] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.
Leakage in data mining: Formulation, detection, and avoidance. ACMTransactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1–21. https://doi.org/10.
1145/2382577.2382579

[23] Sunghun Kim and Michael D Ernst. 2007. Prioritizing warning categories by
analyzing software history. In 4th International Workshop on Mining Software
Repositories (MSR 07: ICSE Workshops 2007). IEEE, 27–27. https://doi.org/10.1109/
MSR.2007.26

[24] Sunghun Kim, E James Whitehead, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering (TSE) 34, 2
(2008), 181–196. https://doi.org/10.1109/TSE.2007.70773

[25] Ugur Koc, Shiyi Wei, Jeffrey S Foster, Marine Carpuat, and Adam A Porter. 2019.
An Empirical Assessment of Machine Learning Approaches for Triaging Reports
of a Java Static Analysis Tool. In 12th IEEE conference on software testing, validation

https://github.com/soarsmu/SA_retrospective
http://findbugs.sourceforge.net/manual/filter.html
https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3106237.3106256
https://doi.org/10.1145/3324884.3416546
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/2597073.2597100
https://doi.org/10.1145/2597073.2597100
https://doi.org/10.1145/1414004.1414013
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1145/2499393.2499399
https://doi.org/10.1145/2499393.2499399
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ASE.2019.00011
https://doi.org/10.1109/ASE.2019.00011
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1109/MSR.2007.26
https://doi.org/10.1109/MSR.2007.26
https://doi.org/10.1109/TSE.2007.70773

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hong Jin Kang, Khai Loong Aw, and David Lo

and verification (ICST 2019). IEEE, 288–299. https://doi.org/10.1109/ICST.2019.
00036

[26] Pavneet Singh Kochhar, Yuan Tian, and David Lo. 2014. Potential biases in bug
localization: Do they matter?. In Proceedings of the 29th ACM/IEEE international
conference on Automated Software Engineering (ASE 2014). 803–814.

[27] Ted Kremenek, KenAshcraft, Junfeng Yang, andDawson Engler. 2004. Correlation
exploitation in error ranking. ACM SIGSOFT Software Engineering Notes 29, 6
(2004), 83–93. https://doi.org/10.1145/1029894.1029909

[28] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[29] Guangtai Liang, Ling Wu, Qian Wu, Qianxiang Wang, Tao Xie, and Hong Mei.
2010. Automatic construction of an effective training set for prioritizing static
analysis warnings. In IEEE/ACM international conference on Automated Software
Engineering (ASE 2010). 93–102. https://doi.org/10.1145/1858996.1859013

[30] Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F Bissyandé.
2021. Automated Comment Update: How Far are We?. In IEEE/ACM 29th In-
ternational Conference on Program Comprehension (ICPC 2021). IEEE, 36–46.
https://doi.org/10.1109/ICPC52881.2021.00013

[31] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. 2018. Sentiment analysis for software engineering:
How far can we go?. In 40th International Conference on Software Engineering
(ICSE 2018). 94–104. https://doi.org/10.1145/3180155.3180195

[32] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon.
2018. Mining Fix Patterns for Findbugs Violations. IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2018.2884955

[33] Kui Liu, Anil Koyuncu, DongsunKim, and Tegawendé F Bissyandé. 2019. AVATAR:
Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations. In 26th
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER 2019). IEEE, 1–12. https://doi.org/10.1109/SANER.2019.8667970

[34] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation: how
far are we?. In 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). 373–384. https://doi.org/10.1145/3238147.3238190

[35] Diego Marcilio, Rodrigo Bonifácio, Eduardo Monteiro, Edna Canedo, Welder Luz,
and Gustavo Pinto. 2019. Are static analysis violations really fixed? a closer look
at realistic usage of SonarQube. In IEEE/ACM 27th International Conference on
Program Comprehension (ICPC 2019). IEEE, 209–219. https://doi.org/10.1109/
ICPC.2019.00040

[36] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano
Antoniol. 2015. Would static analysis tools help developers with code reviews?. In
22nd IEEE International Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER 2015). IEEE, 161–170. https://doi.org/10.1109/SANER.2015.7081826

[37] Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and
Mohammad Amin Alipour. 2021. On the generalizability of Neural Program Mod-
els with respect to semantic-preserving program transformations. Information
and Software Technology (IST) 135 (2021), 106552. https://doi.org/10.1016/j.infsof.
2021.106552

[38] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. 2012. Recalling the
"imprecision" of cross-project defect prediction. In ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering (FSE 2012). 1–11.
https://doi.org/10.1145/2393596.2393669

[39] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should I
trust you?" Explaining the predictions of any classifier. In 22nd ACM SIGKDD
international conference on Knowledge Discovery and Data mining. 1135–1144.
https://doi.org/10.1145/2939672.2939778

[40] Chanchal K Roy and James R Cordy. 2018. Benchmarks for software clone
detection: A ten-year retrospective. In 25th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER 2018). IEEE, 26–37. https:
//doi.org/10.1109/SANER.2018.8330194

[41] Nick Rutar, Christian B Almazan, and Jeffrey S Foster. 2004. A Comparison of Bug
Finding Tools for Java. In 15th International Symposium on Software Reliability
Engineering (ISSRE 2004). IEEE, 245–256. https://doi.org/10.1109/ISSRE.2004.1

[42] Joseph Ruthruff, John Penix, J Morgenthaler, Sebastian Elbaum, and Gregg Rother-
mel. 2008. Predicting accurate and actionable static analysis warnings. In 30th
ACM/IEEE International Conference on Software Engineering (ICSE 2008). IEEE,
341–350. https://doi.org/10.1145/1368088.1368135

[43] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at Google. Commun.
ACM 61, 4 (2018), 58–66. https://doi.org/10.1145/3188720

[44] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In IEEE/ACM
37th IEEE International Conference on Software Engineering (ICSE 2015), Vol. 1.
IEEE, 598–608. https://doi.org/10.1109/ICSE.2015.76

[45] Haihao Shen, Jianhong Fang, and Jianjun Zhao. 2011. Efindbugs: Effective Error
Ranking for Findbugs. In 4th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2011). IEEE, 299–308. https://doi.org/10.1109/
ICST.2011.51

[46] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. 2013. Data
quality: Some comments on the NASA software defect datasets. IEEE Transactions
on Software Engineering (TSE) 39, 9 (2013), 1208–1215.

[47] Susan Elliott Sim, Steve Easterbrook, and Richard C Holt. 2003. Using Bench-
marking to Advance Research: A Challenge to Software Engineering. In 25th
International Conference on Software Engineering (ICSE 2003). IEEE, 74–83. https:
//doi.org/10.1109/ICSE.2003.1201189

[48] Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K Wolters.
2021. Security Notifications in Static Analysis Tools: Developers’ Attitudes,
Comprehension, and Ability to Act on Them. In 2021 CHI Conference on Human
Factors in Computing Systems. 1–17. https://doi.org/10.1145/3411764.3445616

[49] Ferdian Thung, David Lo, Lingxiao Jiang, Foyzur Rahman, Premkumar TDevanbu,
et al. 2012. To what extent could we detect field defects? an empirical study
of false negatives in static bug finding tools. In 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2012). IEEE, 50–59. https:
//doi.org/10.1007/s10515-014-0169-8

[50] Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie van Deursen. 2017. Why and
how JavaScript developers use linters. In 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2017). IEEE, 578–589. https://doi.org/
10.1109/ASE.2017.8115668

[51] Feifei Tu, Jiaxin Zhu, Qimu Zheng, and Minghui Zhou. 2018. Be careful of
when: an empirical study on time-related misuse of issue tracking data. In 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2018). 307–318. https:
//doi.org/10.1145/3236024.3236054

[52] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald C Gall, and Andy Zaidman. 2020. How developers engage with static analysis
tools in different contexts. Empirical Software Engineering (EMSE) 25, 2 (2020),
1419–1457. https://doi.org/10.1007/s10664-019-09750-5

[53] Junjie Wang, Song Wang, and Qing Wang. 2018. Is there a "golden" feature set
for static warning identification?: an experimental evaluation. In 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
(ESEM 2018). ACM, 17:1–17:10. https://doi.org/10.1145/3239235.3239523

[54] Shaowei Wang and David Lo. 2014. Version history, similar report, and structure:
Putting them together for improved bug localization. In Proceedings of the 22nd
International Conference on Program Comprehension (ICPC 2014). 53–63.

[55] Chadd C Williams and Jeffrey K Hollingsworth. 2005. Automatic Mining of
Source Code Repositories to Improve Bug Finding Techniques. IEEE Transactions
on Software Engineering (TSE) 31, 6 (2005), 466–480. https://doi.org/10.1109/TSE.
2005.63

[56] Xueqi Yang, Jianfeng Chen, Rahul Yedida, Zhe Yu, and Tim Menzies. 2021. Learn-
ing to recognize actionable static code warnings (is intrinsically easy). Empirical
Software Engineering (EMSE) 26, 3 (2021), 56. https://doi.org/10.1007/s10664-021-
09948-6

[57] Xueqi Yang and Tim Menzies. 2021. Documenting evidence of a reproduction
of ‘is there a “golden” feature set for static warning identification?—an experi-
mental evaluation’. In 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). 1603–1603.

[58] Xueqi Yang, Zhe Yu, Junjie Wang, and Tim Menzies. 2021. Understanding static
code warnings: An incremental AI approach. Expert Syst. Appl. 167 (2021), 114134.
https://doi.org/10.1016/j.eswa.2020.114134

[59] Ulas Yüksel and Hasan Sözer. 2013. Automated Classification of Static Code
Analysis Alerts: A Case Study. In IEEE International Conference on Software
Maintenance (ICSM 2013). IEEE, 532–535. https://doi.org/10.1109/ICSM.2013.89

[60] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analy-
sis tools in continuous integration pipelines. In IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR 2017). IEEE, 334–344. https:
//doi.org/10.1109/MSR.2017.2

[61] Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang. 2021. Deep
just-in-time defect prediction: how far arewe?. In 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2021). 427–438. https://doi.
org/10.1145/3460319.3464819

[62] Ting Zhang, Bowen Xu, Ferdian Thung, Stefanus Agus Haryono, David Lo, and
Lingxiao Jiang. 2020. Sentiment Analysis for Software Engineering: How Far
Can Pre-trained Transformer Models Go?. In IEEE International Conference on
Software Maintenance and Evolution (ICSME 2020). IEEE, 70–80. https://doi.org/
10.1109/ICSME46990.2020.00017

[63] Qimu Zheng, Audris Mockus, and Minghui Zhou. 2015. A method to identify and
correct problematic software activity data: Exploiting capacity constraints and
data redundancies. In 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). 637–648. https://doi.org/10.1145/2786805.2786866

[64] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In 2012 34th International Conference on Software Engineering (ICSE 2012). IEEE,
14–24.

https://doi.org/10.1109/ICST.2019.00036
https://doi.org/10.1109/ICST.2019.00036
https://doi.org/10.1145/1029894.1029909
https://doi.org/10.1145/1858996.1859013
https://doi.org/10.1109/ICPC52881.2021.00013
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1016/j.infsof.2021.106552
https://doi.org/10.1016/j.infsof.2021.106552
https://doi.org/10.1145/2393596.2393669
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/SANER.2018.8330194
https://doi.org/10.1109/SANER.2018.8330194
https://doi.org/10.1109/ISSRE.2004.1
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.1109/ICST.2011.51
https://doi.org/10.1109/ICST.2011.51
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1109/ICSE.2003.1201189
https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1007/s10515-014-0169-8
https://doi.org/10.1007/s10515-014-0169-8
https://doi.org/10.1109/ASE.2017.8115668
https://doi.org/10.1109/ASE.2017.8115668
https://doi.org/10.1145/3236024.3236054
https://doi.org/10.1145/3236024.3236054
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1145/3239235.3239523
https://doi.org/10.1109/TSE.2005.63
https://doi.org/10.1109/TSE.2005.63
https://doi.org/10.1007/s10664-021-09948-6
https://doi.org/10.1007/s10664-021-09948-6
https://doi.org/10.1016/j.eswa.2020.114134
https://doi.org/10.1109/ICSM.2013.89
https://doi.org/10.1109/MSR.2017.2
https://doi.org/10.1109/MSR.2017.2
https://doi.org/10.1145/3460319.3464819
https://doi.org/10.1145/3460319.3464819
https://doi.org/10.1109/ICSME46990.2020.00017
https://doi.org/10.1109/ICSME46990.2020.00017
https://doi.org/10.1145/2786805.2786866

	Detecting false alarms from automatic static analysis tools: how far are we?
	Citation

	Abstract
	1 Introduction
	2 Background
	2.1 Automatic Static Analysis Tools
	2.2 Distinguishing between Actionable Warnings and False Alarms

	3 Study Design
	3.1 Research Questions
	3.2 Evaluation Setting

	4 Analysis of the Golden Features
	5 Analysis of the Closed-Warning Heuristic
	5.1 Choosing a different reference revision
	5.2 Unconfirmed actionable warnings
	5.3 Unconfirmed false alarms

	6 Discussion
	6.1 Lessons Learned
	6.2 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

