
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2022

Curiosity-driven and victim-aware adversarial policies Curiosity-driven and victim-aware adversarial policies

Chen GONG

Zhou YANG

Yunpeng BAI

Jieke SHI

Arunesh SINHA

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
GONG, Chen; YANG, Zhou; BAI, Yunpeng; SHI, Jieke; SINHA, Arunesh; XU, Bowen; LO, David; HOU, Xinwen;
and FAN, Guoliang. Curiosity-driven and victim-aware adversarial policies. (2022). Proceedings of the 38th
Annual Computer Security Applications Conference, Austin, TX, USA, 2022 December 5-9. 186-200.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7682

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Chen GONG, Zhou YANG, Yunpeng BAI, Jieke SHI, Arunesh SINHA, Bowen XU, David LO, Xinwen HOU, and
Guoliang FAN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7682

https://ink.library.smu.edu.sg/sis_research/7682

Curiosity-Driven and Victim-Aware
Adversarial Policies

Chen Gong∗
Institute of Automation, Chinese
Academy of Sciences, China
gongchen2020@ia.ac.cn

Zhou Yang†
Singapore Management University

Singapore
zyang@smu.edu.sg

Yunpeng Bai
Institute of Automation, Chinese
Academy of Sciences, China
baiyunpeng2020@ia.ac.cn

Jieke Shi
Singapore Management University

Singapore
jiekeshi@smu.edu.sg

Arunesh Sinha
Rutgers University, New Jersey, USA

arunesh.sinha@rutgers.edu

Bowen Xu
Singapore Management University

Singapore
bowenxu@smu.edu.sg

David Lo
Singapore Management University

Singapore
davidlosmu.edu.sg

Xinwen Hou
Institute of Automation, Chinese

Academy of Sciences, Beijing, China
xinwen.hou@ia.ac.cn

Guoliang Fan
Institute of Automation, Chinese

Academy of Sciences, Beijing, China
guoliang.fan@ia.ac.cn

ABSTRACT
Recent years have witnessed great potential in applying Deep Re-
inforcement Learning (DRL) in various challenging applications,
such as autonomous driving, nuclear fusion control, complex game
playing, etc. However, recently researchers have revealed that deep
reinforcement learning models are vulnerable to adversarial attacks:
malicious attackers can train adversarial policies to tamper with the
observations of a well-trained victim agent, the latter of which fails
dramatically when faced with such an attack. Understanding and
improving the adversarial robustness of deep reinforcement learn-
ing is of great importance in enhancing the quality and reliability
of a wide range of DRL-enabled systems.

In this paper, we develop curiosity-driven and victim-aware ad-
versarial policy training, a novel method that can more effectively
exploit the defects of victim agents. To be victim-aware, we build a
surrogate network that can approximate the state-value function
of a black-box victim to collect the victim’s information. Then we
propose a curiosity-driven approach, which encourages an adver-
sarial policy to utilize the information from the hidden layer of
the surrogate network to exploit the vulnerability of victims ef-
ficiently. Extensive experiments demonstrate that our proposed
method outperforms or achieves a similar level of performance as
the current state-of-the-art across multiple environments. We per-
form an ablation study to emphasize the benefits of utilizing the
approximated victim information. Further analysis suggests that

∗This paper was done when Chen Gong was a visiting student at SMU.
†The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3564636

our method is harder to defend against a commonly used defensive
strategy, which calls attention to more effective protection on the
systems using DRL.

CCS CONCEPTS
• Computing methodologies→ Planning and scheduling; •
Security and privacy→Domain-specific security and privacy
architectures.

KEYWORDS
Adversarial Attack, Reinforcement Learning, Curiosity Mechanism

ACM Reference Format:
Chen Gong, Zhou Yang, Yunpeng Bai, Jieke Shi, Arunesh Sinha, Bowen
Xu, David Lo, Xinwen Hou, and Guoliang Fan. 2022. Curiosity-Driven and
Victim-Aware Adversarial Policies. InAnnual Computer Security Applications
Conference (ACSAC ’22), December 5–9, 2022, Austin, TX, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3564625.3564636

1 INTRODUCTION
Deep Reinforcement Learning (DRL), which utilizes Deep Neu-
ral Networks (DNN) to learn optimal policies, has demonstrated
human-level performance in tackling many challenging tasks and
has been adopted in critical domains, including complex game play-
ing [32, 41, 53], autonomous driving [39, 60], security [12, 21, 22, 50],
robotics control [19, 23, 33], and even nuclear fusion [11].

Although the success of DRL is evident in many domains, DRL,
just like many other DNN models [31, 58], has recently been shown
to be vulnerable to adversarial attacks [25, 51, 57]. For example, by
adding carefully-chosen noises to the background image in a game,
an attacker can drive a well-trained agent to choose sub-optimal
actions with high confidence [25]. However, attacking by adding
adversarial perturbations to victim inputs is considered unrealistic
in practice as it requires an attacker to hack into the system (e.g.,
game engines). A more practical method is to attack via training
adversarial policies. It assumes that a malicious user can control
one player in a two-player game, and this player fools the deployed

186

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3564625.3564636
https://doi.org/10.1145/3564625.3564636

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

victim agent by taking legal actions allowed in the environment [15].
Such adversarial policies follow a purely black-box manner where
the victim agent’s parameters are unavailable. Prior studies [15,
20] assume that the victim agent takes a fixed policy, which is
reasonable in the scenario of deep learning model testings [63]. For
example, developers are not likely to allow an autonomous driving
car to update its policy when it is deployed on the road, as untested
changes to a safety-critical system may cause serious accidents.
Having such an assumption, researchers can convert the process
of training adversarial policies in a multi-agent environment into
a single-agent DRL problem and show that resultant adversarial
agents can achieve decent winning rates [15, 20].

The success of adversarial policies can be attributed to the insight
that an attacker can manipulate the victim agent’s observation by
taking uncommon actions to lead the game into unfamiliar states,
and as a result making the victim exhibit undesired sub-optimal
behaviours. This suggests that an attacker’s capability in exploring
such states may affect the effectiveness of the attack, motivating
us to encourage the training of adversarial policies that can bet-
ter explore the environment. In the conventional DRL research,
researchers have proposed the curiosity mechanism to encourage
exploration [8]: adding larger intrinsic rewards to the states that
agents are unfamiliar with. The combined (intrinsic and extrinsic)
reward provides agents with more incentives to explore unfamiliar
states during the training stage. It motivates us to present a novel
victim-aware and curiosity-driven approach to training adversarial
policies that can efficiently explore the vulnerability of victims.

Similar to practices adopted by Gleave et al. [15] and Guo et
al. [20], we fix the victim’s policy and convert the training prob-
lem of finding the adversarial policy in a two-player game into
a single-agent learning problem. Then, we incorporate Random
Network Distillation (RND), a popular framework to encourage
exploration [8] by assigning specially designed intrinsic rewards for
different states to encourage exploration. The RND approach intro-
duces two randomly initialized networks: one with fixed parameters
is called the target network, and the other one is the predictor net-
work which learns to predict outputs of the target network given
states as input. Intuitively, if a state is barely visited, the difference
between the two networks’ outputs is expected to be large. Those
“unfamiliar” states are given larger intrinsic rewards to encourage
the adversarial policy to explore such states.

Although standard RND can encourage an agent to explore the
environment, it is not designed for exploring the vulnerability of
victims under adversarial settings. A victim’s state-value function,
which describes the expected rewards an agent will receive if it
enters a state, contains rich information pertaining to the vulnera-
bility of the victim, e.g., the importance of states to the victim. An
attacker should explore unfamiliar states that are useful in lowering
the victim’s expected rewards. As we assume a black-box attack
scenario where the victim’s value network is unknown, we first
build a surrogate network to approximate the victim state-value
function (explained in Section 3.1). Then, we propose to feed the
outputs of a hidden layer in the victim value network to the target
and predictor networks in RND rather than directly input the raw
observation or some observation features obtained from a static
feature extractor without information about the victim. The advan-
tage of this victim-aware RND is that the hidden layer contains

information about the victim that can be utilized to guide the ex-
ploration of the victim’s vulnerabilities.

We perform detailed experiments to evaluate our curiosity-driven
and victim-aware adversarial policies. We choose the approach pro-
posed by Guo et al. [20], which is state-of-the-art, as the baseline.
The experiment results empirically show the advantages of using
the victim-aware curiosity mechanism. The evaluation is conducted
in both zero-sum (MuJoCo [5]) and non-zero-sum games (Starcraft
II [43]). The goal of the attacker is to win by defeating the opponent
(i.e., the victim agent). So we use the winning rate of the attacker
as the main metrics to evaluate the performance of an adversarial
policy training method. As demonstrated in Section 5.1, adversar-
ial policies trained with the proposed method can outperform (or
at least maintain a similar level of performance as) the baseline
method across all the games investigated, and the average win-
ning rates of adversarial policy trained using our method is 7.3%
higher than that of the baseline [20]. Although Gleave et al. [15]
point out the difficulty of training adversarial policies in games
where the dimension of the agent’s observation is low, our proposed
method is the first to train adversarial policies that can work in
low-dimensional environments like Run-To-Goal-Ant, where our
adversarial policy’s average winning rate improves by 24% than
the state-of-the-art method [20].

An ablation study (Section 6.1) shows that compared with di-
rectly using raw states as input to RND, using outputs of the hid-
den layer in the surrogate network that approximates the victim
state-value function leads to the more powerful adversarial policies,
which improves the attacker’s average winning rate by 5.8%. We
also evaluate a defensive strategy [15, 20] called the observation
masking strategy, i.e., the victim cannot see the adversary’s posi-
tion and behaviours. The results show that our proposed method is
harder to defend by the observation masking strategy.

We organize the rest of this paper as follows. Section 2 formal-
izes the task of training adversarial policies in a two-player game.
Section 3 elaborates on how to train the curiosity-driven and victim-
aware adversarial policy. We introduce the experiment settings in
Section 4, after which we present extensive experimental results
for evaluating our method in Section 5 and conduct additional ex-
periments to further analyze the contribution of the victim-aware
mechanism in Section 6. Section 7 presents works that are related
to this study. Finally, we conclude our paper in Section 8. The code
and documentation, along with the obtained models, are made
open-source.1

2 TASK FORMULATION
This section discusses deep reinforcement learning and formalizes
the training of adversarial policies in a two-player game.

2.1 Deep Reinforcement Learning
Deep reinforcement learning trains an agent to solve a sequence
decision problem that can be formalized as a Markov Decision Pro-
cess (MDP). An MDP can be described using a 4-tuple: ⟨𝑆,𝐴, 𝑃, 𝑅⟩.
𝑆 is a set of states, and 𝐴 is a set of actions. 𝑃 : 𝑆 × 𝐴 → 𝑆 is a
transition function; 𝑃 (𝑠′ |𝑠, 𝑎) refers to the probability that the envi-
ronment transits from 𝑠 to 𝑠′ when an agent takes action 𝑎 ∈ 𝐴 in 𝑠 .

1https://github.com/soarsmu/Curiosity_in_Adversarial_Policy

187

https://github.com/soarsmu/Curiosity_in_Adversarial_Policy

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

𝑅: 𝑆 ×𝐴 → R specifies a reward function, and 𝑟 = 𝑅(𝑠, 𝑎) indicates
that the agent receives a reward 𝑟 after taking action 𝑎 in state 𝑠 .

An agent adopts a policy 𝜋 (·) specifying what actions to take
under a certain state. Specifically, given a state 𝑠𝑡 at the time step
𝑡 , the output of the policy 𝜋 (·|𝑠𝑡) is a probability distribution over
all actions. The agent samples an action 𝑎𝑡 according to the dis-
tribution, i.e., 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡). Then, the agent will receive a reward
𝑟𝑡 = 𝑅𝑡 (𝑠𝑡 , 𝑎𝑡) from the environment. Meanwhile, the environment
transits to a new state 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡). The agent starts at an ini-
tial state 𝑠0 and interacts with the environment until it encounters
a termination state 𝑠𝑇 . The interaction history is called a trajectory:

𝜏 : (⟨𝑠0, 𝑎0, 𝑟0⟩, ⟨𝑠1, 𝑎1, 𝑟1⟩, · · · , 𝑠𝑇) (1)

We formulate the cumulative discounted return, the sum of dis-
counted rewards over a trajectory, as 𝑅(𝜏) =

∑𝑇
𝑖=0 𝛾

𝑖𝑅𝑡 (𝑠𝑖 , 𝑎𝑖).
𝛾 ∈ (0, 1) is the discount factor, denoting to what extent an agent
cares about the rewards in the future. DRL aims to train an agent
to find the optimal policy 𝜋∗ that maximizes the expectation of the
cumulative discounted return over all trajectories. Assuming 𝜏𝜋

is a trajectory generated using a policy 𝜋 , the goal of DRL can be
formalized as follows:

𝜋∗ = argmax
𝜋
E𝜏∼𝜋

[
𝑅(𝜏𝜋)

]
(2)

Sutton et al. [44] prove that finding the optimal policy is equivalent
to maximize the state-value function 𝑉𝜋 (𝑠), which is defined as

𝑉𝜋 (𝑠) = E𝜏∼𝜋
[
𝑅(𝜏𝜋) |𝑠0 = 𝑠

]
(3)

Given a state 𝑠 ,𝑉𝜋 (𝑠) indicates the expected cumulative discounted
rewards over the trajectories that start from 𝑠 and are generated by
the policy 𝜋 . Intuitively speaking, it approximates the value of a
state, and the agent tends to enter the states with higher values.

2.2 Adversarial Policies in Two-Player Games
Unlike priorworks that fool victim agents into choosing sub-optimal
actions by perturbing the policy network input [25], we train adver-
sarial policies to attack victims in a two-player competitive game.
We formalize the problem of finding adversarial policies as follows.

In a two-player game where a well-trained victim agent 𝜈 adopts
a fixed policy, an attacker agent 𝛼 defeats the victim agent 𝜈 by
taking an adversarial policy 𝜋𝛼 (𝑎 |𝑠), which describes the proba-
bility of taking the action 𝑎 under the state 𝑠 . In zero-sum games
like MuJoCo [5], the attacker can maximize its winning rates by
learning policies to maximize its own expected rewards. To enhance
generalizability, this paper also investigates a non-zero-sum game
(StarCraft [43]). However, due to the nature of non-zero-sum games,
merely maximizing the rewards of attackers does not necessarily
result in a corresponding reduction of winning rates on the victim
side. Therefore, it is critical to train adversarial policies that can
maximize the attacker’s expected rewards 𝑉𝛼

𝜋 (𝑠) while exerting a
negative influence on the victim agent, i.e., minimizing the victim’s
expected rewards 𝑉 𝜈

𝜋 (𝑠).
As this paper makes a realistic black-box assumption, an attack

has no knowledge about the victim policy, making the joint policy
unavailable. However, following past practice [20], we keep the
victim’s policy fixed during the training of adversarial policies. It
is common sense that in a two-player Markov game, where the
one agent (i.e., the victim) takes a fixed policy, the state transition
function only depends on the policy of the other agent (i.e., the

Environment Attacker

Target Network

Predictor Network

RND frameworkApproximated Victim
Value Network

Figure 1: The architecture of curiosity-driven and victim-
aware adversarial policies. Given the state 𝑠𝑡 at time step 𝑡 , the
approximated victim value network provides an approximate
value. One hidden layer output of the approximated value
network is fed into the RND framework consisting of a target
and predictor network to calculate the intrinsic reward 𝑒𝛼𝑡 .
Attacker takes the external reward 𝑟𝑡 and 𝑒𝛼𝑡 to decide actions
and update the adversarial policy.

attacker). In such a setting, following the results in [20], we can
define the victim state-value function as explicitly dependent on the
state and attacker’s policy. In this way, we can obviate the require-
ment for explicit knowledge of the victim’s policy. After treating the
victim with a fixed policy as part of the environment, we convert
the two-player game into a single-agent DRL problem. Formally,
the objective function in this DRL problem can be formalized as:

argmax
𝜃

(
𝑉𝛼
𝜋𝛼
𝜃

(𝑠) −𝑉 𝜈
𝜋𝛼
𝜃

(𝑠)
)

(4)

where𝑉𝛼
𝜋𝛼
𝜃

(𝑠) and𝑉 𝜈
𝜋𝛼
𝜃

(𝑠) represent the state-value function belong-
ing to the attacker and victim respectively, and 𝜋𝛼

𝜃
refers to the

adversarial policy network with parameters 𝜃 . The detailed for-
mulation of the state-value function is elaborated in Eqn (5). This
objective function addresses the concerns of lack of knowledge
about the victim agent and turns the training of the adversarial
policy into a tractable problem. According to a recent empirical
study [1], the proximal policy optimization (PPO) [40] algorithm is
one of the most widely used algorithms in the DRL research, so we
use PPO to train the adversarial policies in this paper.

3 CURIOSITY-DRIVEN AND VICTIM-AWARE
ADVERSARIAL POLICIES

This section describes our curiosity-driven and victim-awaremethod
to train adversarial policies that can tackle the problem described
in Section 2.2. The curiosity-driven mechanism can encourage the
attacker to explore various states to uncover the vulnerabilities of
the victim. The victim-aware design allows the attacker to leverage
the victim information hidden in the victim’s state-value function.

Figure 1 depicts a high-level overview of our approach. In the
figure, we first build a surrogate network to approximate the victim
state-value function (Section 3.1) and then let the Random Network

188

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

Distillation (RND) framework (including a target and a predictor
network) utilize the surrogate network’s hidden layer output to
produce the intrinsic reward to encourage exploration (Section 3.2).
In Section 3.3, we explain the new objective function that considers
intrinsic rewards and the training of adversarial policies.

3.1 Approximating Victim Information
As mentioned in Section 1, this paper assumes that an attacker can-
not access any internal parameters or training details of a victim.
Some works [6, 65] therefore proposed to build an imitation learn-
ing model that leverages the previous actions and states to predict
future victim actions. However, such approaches only assist attack-
ers by exposing the action information of the victim agent, which
is not applicable in our setting as we need the victim’s state-value
function to solve Eqn (4). Section 2.2 points out that the output of
the victim state-value function only depends on the state and the
attacker policy, which brings about the possibility of approximating
the victim state-value function. We make an additional assumption
that the external rewards are known, which does not violate our
black-box attack assumption and is also practical considering that
the environment information is usually made publicly available.
Then, we build a surrogate network to approximate the state-value
function of the victim as follows.

At each time step 𝑡 , given the current state 𝑠𝑡 and the external
reward 𝑟 𝜈 to the victim, we can approximate the victim state-value
function 𝑉 𝜈 (·) by Temporal Difference (TD) learning [46]. More
specifically, we formally define the victim’s state-value function:

𝑉 𝜈
𝜋𝛼 (𝑠𝑡) = E 𝑎𝛼 ∼𝜋𝛼

𝑎𝜈∼𝜋𝜈

[
𝑅𝜈 (𝑠𝑡 , 𝑎) + 𝛾E𝑠𝑡+1∼𝑃 (· |𝑠𝑡 ,𝑎) [𝑉

𝜈
𝜋𝛼 (𝑠𝑡+1)]

]
(5)

where 𝜋𝛼 and 𝜋𝜈 represents the adversarial policy of the attacker
and the victim’s fixed policy, respectively. 𝑎𝛼 and 𝑎𝜈 are the actions
sampled from the adversarial policy and victim’s policy, denoted
by 𝑎𝛼 ∼ 𝜋𝛼 and 𝑎𝜈 ∼ 𝜋𝜈 . 𝑅𝜈 (𝑠𝑡 , 𝑎) is a reward function to get the
external reward 𝑟 𝜈 to the victim agent in state 𝑠𝑡 for the joint action
𝑎 = (𝑎𝛼 , 𝑎𝜈). 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎) denotes the probability of transiting to a
state 𝑠𝑡+1 given the current state 𝑠𝑡 and the joint action (𝑎𝛼𝑡 , 𝑎𝜈𝑡). 𝛾
is the discount factor. Using the TD-learning paradigm, we start by
initializing an arbitrary neural network parameterized with 𝜃 𝜈 to
model 𝑉 𝜈

𝜋𝛼 (𝑠), and then update the state-value function network
for next state repeatedly by minimizing the TD-error, namely:

argmin
𝜃𝜈

𝑉 𝜈
𝜋𝛼 (𝑠𝑡) −

(
𝑅𝜈 (𝑠𝑡 , 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑃 [𝑉

𝜈
𝜋𝛼 (𝑠𝑡+1)]

)

2 (6)

where the joint action 𝑎𝑡 = (𝑎𝛼𝑡 , 𝑎𝜈𝑡) is sampled from the attacker’s
and victim’s policy. By doing so, we can approximate the victim
state-value function during the training of adversarial policy.

3.2 Curiosity-Driven Victim-Aware Exploration
A successful attack can be attributed to the insight that the attacker
has triggered an uncommon state that the victim is unfamiliar with
(we elaborated on this viewpoint in Section 1). Such insight moti-
vates us to encourage an adversarial policy to explore environments
and encounter more states. We incorporate RND [36], a popular
framework in exploration research, into adversarial training.

We include two randomly initialized neural networks: a fixed
target network𝑔 and a predictor network𝑔 that tries to learn the out-
put of 𝑔. As the victim state-value function captures the importance

of a state 𝑠 to the victim, it can be valuable to the attacker. Thus, we
use the output of a hidden layer (specifically, the penultimate layer)
from the approximated victim value network, which is represented
as 𝜙 (𝑠), and feed it to both the target and predictor networks. We
view the state-value function network as feature extractor layers
followed by layers to process the output of the feature extractor; as
a consequence, the penultimate hidden layer contains the compact
and relevant information needed for estimating the state value.

Let the target network 𝑔 and predictor network 𝑔 be parameter-
ized by 𝜃𝑔 and 𝜃𝑔 , respectively. The goal is to train the predictor
network to minimize the expected mean square error between the
two networks. As illustrated in Figure 1, the expected mean square
error is also utilized as the intrinsic reward 𝑒𝛼 to drive the attacker’s
exploration, defined as:

𝑒𝛼 =

𝑔𝜃𝑔 (𝜙 (𝑠)) − 𝑔𝜃𝑔 (𝜙 (𝑠))

2 . (7)

The intrinsic reward for the “novel” inputs should be higher than
inputs that have been seen and used to train the predictor net-
work [8], which therefore drives the attacker to perform actions
leading to those novel states that the victim is not familiar with.

3.3 Adversarial Policies Training
Following the technique in [20] to train adversarial policy using
the PPO algorithm [40], we combine approximated victim state-
value function with the intrinsic rewards and then reformulate the
objective in Eq. (4) as follows:

argmax
𝜃
E(𝑎𝛼𝑡 ,𝑠𝑡)∼𝜋𝛼

old

[
min

(
clip(𝜌𝑡 , 1 − 𝜖, 1 + 𝜖)𝐴𝛼

𝑡 , 𝜌𝑡𝐴
𝛼
𝑡

)
−min

(
clip(𝜌𝑡 , 1 − 𝜖, 1 + 𝜖)𝐴𝜈

𝑡 , 𝜌𝑡𝐴
𝜈
𝑡

)]
,

𝜌𝑡 =
𝜋𝛼
𝜃
(𝑎𝛼𝑡 |𝑠𝑡)

𝜋𝛼old
(
𝑎𝛼𝑡 |𝑠𝑡

) , 𝐴𝜈
𝑡 = 𝐴𝜈

𝜋𝛼
old
(𝑎𝛼𝑡 , 𝑠𝑡),

𝐴𝛼
𝑡 = 𝐴𝛼

𝜋𝛼
old
(𝑎𝛼𝑡 , 𝑠𝑡) + 𝜆𝐴

𝛼,ins
𝜋𝛼
old

(𝑎𝛼𝑡 , 𝑠𝑡)

(8)

In the above formulas, 𝜋𝛼
𝜃
denotes the adversarial policy network

parameterized by 𝜃 . 𝜋𝛼old and 𝜋
𝛼
𝜃
refer to the old and new adversarial

policy, respectively. 𝐴𝜈
𝑡 and 𝐴𝛼

𝑡 represent the advantage functions
(a part of PPO) of the victim and the attacker. We have 𝐴𝑖

𝑡 = 𝑟 𝑖𝑡 +
𝛾𝑉 𝑖 (𝑠𝑡+1) −𝑉 𝑖 (𝑠𝑡), 𝑖 ∈ {𝛼, 𝜈}. Note that our victim-aware curiosity
mechanism introduces an additional advantage function: 𝐴𝛼,ins,
which is derived from the intrinsic rewards. 𝜆 is a hyper-parameter
representing the degree of exploration. 𝜖 constrains the interval of
the probability ratio in the PPO algorithm. The last row of the Eqn
(8) follows the advantage decomposition in Burda et al. [8], which
defines the advantage as the sum of the advantages of intrinsic and
extrinsic rewards. It should be noted that the intrinsic rewards do
not introduce any negative impact on our training process, as the
PPO algorithm guarantees a small policy update (within a trust
region) at each timestep.

We summarize the proposed adversarial policies training method
in Algorithm 1. There are six neural networks involved in our algo-
rithm: (1) the adversarial policy 𝜋𝛼

𝜃
; (2) the state-value function𝑉𝛼

𝜋𝛼

of the attacker 𝛼 ; (3) the approximated state-value function 𝑉 𝜈
𝜋𝛼 of

the victim 𝜈 ; (4) the attacker’s state-value function𝑉𝛼
𝜋𝛼 ,ins after con-

sidering intrinsic rewards; (5) the target network 𝑔𝜃𝑔 in RND, which
is randomly initialized and fixed; and (6) the predictor network 𝑔𝜃𝑔

189

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Algorithm 1: Curiosity-Driven and Victim-Aware Adver-
sarial Policy
1 Input: 𝜋𝛼

𝜃
: the adversarial policy parameterized by 𝜃 ; the

state-value functions 𝑉𝛼
𝜋𝛼 , 𝑉 𝜈

𝜋𝛼 and 𝑉𝛼
𝜋𝛼 ,ins, with

parameters 𝑣𝛼 , 𝑣𝜈 , 𝑣ins, respectively; 𝜙 : the penultimate
hidden layer of the network to approximate the victim’s
state-value function; 𝑔𝜃𝑔 : the target network; 𝑔𝜃𝑔 : the
predictor network; 𝛾 : the discount factor; 𝑇 : the total
number of iteration.

2 Initialization: initialize 𝜃0, 𝑣
(0)
𝜈 , 𝑣 (0)𝛼 , 𝑣 (0)ins , 𝜃𝑔, 𝜃

(0)
𝑔

, 𝑡 = 0.
3 for 𝑡 = 1, 2, 3, · · · ,𝑇 do
4 # 1. Let the adversarial policy 𝜋𝛼

𝜃𝑡
play with the victim,

and collect a set of trajectories D (𝑡) = {𝜏𝑖 }, where
𝑖 = 1, 2, · · · , |D (𝑡) |.

5 # 2. For each trajectory 𝜏𝑖 , compute the intrinsic rewards
𝑒𝛼
𝑖𝑘

at each time step 𝑘 using Eqn (7).
6 # 3. For each trajectory 𝜏𝑖 , compute the advantage at

each time step 𝑘 :
7 𝐴𝛼

𝑖𝑘
= 𝑟𝛼

𝑖𝑘
+ 𝛾𝑉𝛼 (𝑡)

𝜋𝛼

(
𝑠𝛼
𝑖𝑘+1

)
−𝑉

𝛼 (𝑡)
𝜋𝛼

(
𝑠𝛼
𝑖𝑘

)
,

8 𝐴𝜈
𝑖𝑘

= 𝑟 𝜈
𝑖𝑘

+ 𝛾𝑉 𝜈 (𝑡)
𝜋𝛼

(
𝑠𝛼
𝑖𝑘+1

)
−𝑉

𝜈 (𝑡)
𝜋𝛼

(
𝑠𝛼
𝑖𝑘

)
,

9 𝐴
𝛼,ins
𝑖𝑘

= 𝑒𝛼
𝑖𝑘

+ 𝛾𝑉𝛼 (𝑡)
𝜋𝛼 ,ins

(
𝑠𝛼
𝑖𝑘+1

)
−𝑉

𝛼 (𝑡)
𝜋𝛼 ,ins

(
𝑠𝛼
𝑖𝑘

)
.

10 # 4. Then we have 𝐴𝛼
𝑖0:|𝜏𝑖 |

, 𝐴𝜈
𝑖0:|𝜏𝑖 |

and 𝐴𝛼,ins
𝑖0:|𝜏𝑖 |

(𝑖 = 1, · · · , |D (𝑡) |) required in Eqn. (8) and then can
obtain a new policy by maximizing the objective
function in Eqn. (8).

11 # 5. Update 𝑣 (𝑡)𝜈 , 𝑣 (𝑡)𝛼 , 𝑣 (𝑡)ins by minimizing the TD error:
1

|D (𝑡) |× |𝜏𝑖 |
∑ |D (𝑡) |
𝑖=0

∑ |𝜏𝑖 |
𝑘=0

(
𝑉 (𝑠𝑖𝑘) − (𝑟𝑖𝑘 + 𝛾𝑉 (𝑠𝑖𝑘+1))

)2.
12 # 6. Update 𝜃 (𝑡)

𝑔
by minimizing the loss:

1
|D (𝑡) |× |𝜏𝑖 |

∑ |D (𝑡) |
𝑖=0

∑ |𝜏𝑖 |
𝑘=0

𝑔(𝜙 (𝑠𝑖𝑘)) − 𝑔(𝜙 (𝑠𝑖𝑘))

2.

13 end
14 Output: 𝜋𝛼

𝜃
: the well trained adversarial policy network.

in RND. As shown in Line 4, we first let the adversarial policy play
with the victim agent and collect a set of trajectories, denoted by
D (𝑡) = {𝜏𝑖 }, where 𝑖 = 1, 2, · · · , |D (𝑡) |. A trajectory is a sequence
of game states, actions, and rewards to players, represented as:

𝜏𝑖 =

(
𝑠𝛼𝑖0

, 𝑎𝛼𝑖0
,

〈
𝑟𝛼𝑖0

, 𝑟 𝜈𝑖0

〉
, · · · , 𝑠𝛼|𝜏𝑖 | , 𝑎

𝛼
|𝜏𝑖 | ,

〈
𝑟𝛼|𝜏𝑖 | , 𝑟

𝜈
|𝜏𝑖 |

〉)
. (9)

At Line 5, for each trajectory 𝜏𝑖 , we get the intrinsic rewards by
computing the expected mean square error between the two target
and predictor networks. Then (Line 6 to 9), we are able to com-
pute the advantage functions required in Eqn. (8). After having
the necessary advantage functions to compute the objective of the
adversarial policies, we can update 𝜋𝛼

𝜃
to maximize the objective

(Line 10). We update the parameters of state-value functions 𝑉𝛼
𝜋𝛼 ,

𝑉𝛼
𝜋𝛼 ,ins, 𝑉

𝜈
𝜋𝛼 , and predictor network 𝑔𝜃𝑔 accordingly (Line 11-12).

After the above iterative process is finished, the algorithm returns
𝜋𝛼
𝜃
as the adversarial policy network.

(a) Kick-And-Defend (b) You-Shall-Not-Pass (c) Sumo-Ants

(d) Sumo-Humans (e) Run-To-Goal-Ants (f) StarCraft II

Figure 2: The snapshots of six games investigated in our
experiments. The first five games are from MuJoCo and the
last game is StarCraft II.

4 EXPERIMENT SETUP
This section discusses experiment settings to evaluate our proposed
adversarial policy training method, including the evaluation envi-
ronments and the evaluation metrics.

4.1 Experiment games
Our experiments are conducted in six games: five zero-sum games
from MuJoCo [5] (Kick-And-Defend, Sumo-Ants, Sumo-Humans,
You-Shall-Not-Pass, and Run-To-Up-Ants) and a non-zero-sum
game from Starcraft II [43]. All selected games are commonly
adopted to evaluate DRL algorithms in two-player games. Figure 2
depicts the snapshots of six games. The MuJoCo contains a series
of robotic control games, which are used as the representatives of
zero-sum games. The agents in the selected MuJuCo games can
be divided into two types: (1) Humanoid, a bipedal robot with 17
joints; and (2) Ant, the quadrupedal robot with 8 joints. StarCraft II
is a real-time strategy game, which stands for non-zero-sum games.
We briefly describe the investigated two-player games as follows:
• Kick-And-Defend: The kicker (the blue robot in Figure 2 (a))
aims to shoot a ball into the target region. The defender (the red
robot) prevents the kicker from shooting successfully. Adopting
the same setting as the baseline [20], we select the kicker as the
victim agent.

• You-Shall-Not-Pass: As illustrated in Figure 2 (b), the runner
(the blue robot) intends to run and cross the finish line (the
red line). The blocker (the red robot) prevents the runner from
crossing the finish line. Following the setting in [15, 20], we select
the runner as the victim agent.

• Sumo-Ants and Sumo-Humans: Two humanoid and ant robots in
a circular arena space (see in Figure 2 (c)/(d)) aim to knock down
or push their opponent out of the arena.

• Run-To-Goal-Ants: Two ant robots are placed face to face in a
flat space. The agent that reaches the finish line (the red line in
Figure 2 (e)) first is the winner.

• StarCraft II: As presented in Figure 2 (f), the two agents ma-
nipulate the soldiers to take actions to defeat their opponent
within a limited time. In the games shown in Figure 2 (c) to (f),

190

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

the goal of each player is the same. We randomly select one
player as the attacker, and the other as the victim.

According to the size of observation of agents, the MuJoCo
environments can be categorized into low-dimensional and high-
dimensional ones. The observations in three humanoid environ-
ments are vectors of size 384, 395, and 380, respectively. The ob-
servations of the two ant environments are of lower dimensionality:
Sumo-Ants has 137-dimensional observations and Run-To-Go-Ants
has 122-dimensional observations. Following the setup in [15], we
explicitly define the former three environments as high-dimensional
and the latter two ant environments as low-dimensional. Besides,
in StarCraft II, the size of observation for the agent is 857. We put
more details of the selected environments in Supplementary A.1.

4.2 Evaluation Metrics
We define two the metrics to evaluate the performance of adver-
sarial policies: the winning rate and the non-loss rate. The winning
rate is formulated as: the number of winning rounds

the number of total rounds × 100%. A higher
winning rate indicates that an adversarial agent is more powerful
in exploring the weakness of the victim agent. Similarly, we define
the non-loss rate as: the number of non-loss rounds

the number of total rounds × 100%. Following
the setting in the baseline [20], we let each game run for 100 rounds
and compute the two evaluation metrics.

5 EXPERIMENTAL RESULTS AND ANALYSIS
This section evaluates our adversarial attack method in the MuJoCo
and StarCraft II environments. We compare the proposed method
with the state-of-the-art baseline [20] from multiple perspectives.

5.1 Winning Rates of Adversarial Policies
5.1.1 Experiment Design. We first evaluate the winning rates of
adversarial policies trained using the proposed curiosity-driven
approach. We select the most relevant work [20] as the baseline,
which is also the current state-of-the-art approach. Guo et al. se-
lected 4 environments from MuJoCo [5] to evaluate the perfor-
mance in zero-sum games. We choose an additional environment
(Run-To-Goal-Ants) to further evaluate adversarial policies in low-
dimensional environments. For StarCraft II, we select the default
environment as displayed in the open-source repository of the
baseline approach. We use the same victim agents to ensure a fair
comparison. We use the PPO algorithm to train adversarial policies
for both our method and the baseline. Some hyper-parameters are
shared across our method and the baseline [20], e.g., discount factor,
learning rate, and the number of training steps. Besides, as the net-
work architectures may affect the ability to learn effective policies
and value functions, we also adopt the same network architectures
from the released repository of the baseline [20]. Details of imple-
mentation (e.g., the network structure of policies, hyper-parameter
settings, etc.) are provided in Supplementary A.

5.1.2 Result Analysis. We record the winning rates of adversarial
policies during the training process and plot the results in Figure 3.
In this figure, the curves marked using “×” and “•” illustrate the win-
ning rate trends of our curiosity-driven approach and the baseline,
respectively. The figure shows that among all the six investigated

Table 1: The non-loss rates of victim agents against three
types of agents: (1) our adversarial policies (2) baseline ad-
versarial policies and (3) regular agents. “Before" and “After"
indicate the results for victims before and after adversarially
training using the proposedmethod. Environment names are
aggregated to save space. For example, S-A and K-A-D refer to
Sumo-Ants and Kick-And-Defend, respectively.

Games Ours (%) Baseline (%) Regular (%)
Before After Before After Before After

K-A-D 16.0 51.0 23.0 41.0 48.0 30.0
Y-S-N-P 18.0 76.0 28.0 49.0 55.0 37.0

S-A 89.0 89.0 94.0 96.0 55.0 50.0
S-H 58.0 75.0 57.0 56.0 67.0 41.0

R-T-G-A 70.0 72.0 97.0 96.0 58.0 59.0
SC II 3.0 76.0 2.0 79.0 68.0 94.0

environments, our curiosity-driven and victim-aware method out-
performs the state-of-the-art baseline on three of them in terms of
winning rates. Our method achieves a similar level of performance
in the remaining environments.

More specifically, in MuJoCo, the following high-dimensional
environments where the trained agents are humanoid robots (i.e.,
Kick-and-Defend, You-Shall-not-Pass, and Sumo-Humans), are
considered easier to attack, as the dimension of observation space
that an adversary canmanipulate is high [15]. The baseline achieved
decent performance in the three environments, and results show
that using our method can improve the performance of adversarial
policies. In Kick-and-Defend, our method produces adversarial
policies with an 8% higher winning rate than the baseline approach.
In You-Shall-not-Pass, we observe an improvement of 10%. In
Sumo-Humans, our method maintains a similar level of performance.
Overall, the results demonstrate the benefits of better exploring
vulnerabilities using the victim-aware curiosity mechanism.

As reported by [15] and [20], it is challenging to affect the vic-
tim’s observation in low-dimensional environments, so prior adver-
sarial attacks barely work in Sumo-Ants and Run-To-Goal-Ants
environments. In Sumo-Ants, the winning rates of the two methods
are very close. This is because in Sumo-Ants an agent can choose
to leave the arena to achieve a draw. So adversarial policies learn to
achieve a draw rather than risk the high probability of loss in play-
ing with the victim. But in Run-To-Goal-Ants, where the above
strategy does not work, our results show that the victim-aware
curiosity mechanism finds stronger adversarial policies. The state-
of-the-art method only achieves an average winning rate of 3%,
while our adversarial policy boosts the average winning rate to
27%. The performance in StarCraft II is already very high for the
baseline (a winning rate of 96%). Our method achieves the same
winning rate as the baseline. More importantly, as indicated by the
curves in Figure 3, the winning rates of adversarial policies trained
using our method increase faster than that trained by the baseline,
indicating that our method can better attack the victim.

5.2 Adversarial Training
5.2.1 Experiment Design. Adversarial training is an effective way
to protect DNN against adversarial attacks [18]. In this experiment,

191

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Baseline Our attack

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.0

0.3

0.7

1.0

W
in

ni
ng

 R
at

e
(%

)

0.76
0.84

Kick And Defend

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.66
0.76

You Shall Not Pass

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.00.0

0.10.1

0.05
0.04

Sumo Ants

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.0

0.2

0.4

0.6

W
in

ni
ng

 R
at

e
(%

)

0.43
0.46

Sumo Humans

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.0

0.1

0.2

0.4

0.03

0.27

Run To Goal Ants

0 0.5 1.0 1.5
Timesteps (1e6)

0.1

0.4

0.7

1.0 0.960.96 StarCraft II

Figure 3: The winning rates of adversarial policies in six environments. Orange curves marked using “×” and blue curves
marked with “•” illustrate winning rate trends of our approach and the baseline approach. The exponential moving average of
each curve is set to 20 steps. Besides, we run five random seeds for both methods. The highlighted numbers on y-axis are the
average winning rates of the best-performing adversarial policy. See Figure 7 in Supplementary B.1 for results of non-loss rates.

we retrain a victim against a fixed adversarial policy (best one
in Section 5.1), which is called adversarial training of DRL [15,
20]. We analyze the effectiveness of adversarial training from the
following three perspectives. First, we let the victim, before and
after adversarial training, play against the same adversarial policy
it is retrained on (in adversarial training) and collect the changes
in the non-loss rate. It helps us understand whether victims can
gain robustness from adversarial training. Second, we evaluate the
adversarially trained victim against the adversarial policies from the
baseline approach [20] to analyze whether the gained robustness
can generalize to defend against other adversarial policies. Third,
prior research works show that adversarial training can harmmodel
performance on benign datasets [18], so we test how the retrained
victim performs against a regular opponent agent. It is noticed that
the hyper-parameter setting of adversarial retraining is the same
as that we use in the adversarial policy training experiments.

5.2.2 Result Analysis. We present the performance of victims be-
fore and after adversarial training in Table 1. We first observe
that adversarial training increases the victim robustness in high-
dimensional environments (the “Ours” column in the table) like
You-Shall-Not-Pass; the non-loss rate increases from 18% to 76%.
Similarly, in Kick-And-Defend, the non-loss rate increases from
16% to 51%. However, adversarial training barely works in low-
dimensional environments of MuJoCo like Sumo-Ants, where the
change in the already high non-loss rates is negligible. We observe
that the improvement in robustness from adversarial training us-
ing our adversarial policies generalizes to the robustness against
the baseline method (“Baseline” column). We find that adversarial
training hurts model performance on regular agents, especially
in high-dimensional environments (“Regular” column). However,

Table 2: The winning rates of adversarial policies are trained
using (1) the baselinemethod, (2) the victim-unawaremethod
and (3) the victim-aware method. The numbers inside the
parentheses are the absolute improvement to the non-loss
rates of the baseline method.

Games Baseline (%) Victim-
unaware (%)

Victim-
aware (%)

Kick-And-Defend 76.0 79.0 (+ 3.0) 84.0 (+ 8.0)
You-Shall-Not-Pass 66.0 71.0 (+ 5.0) 76.0 (+ 10.0)

Sumo-Ants 5.0 4.0 (- 1.0) 4.0 (- 1.0)
Sumo-Humans 43.0 44.0 (+ 1.0) 46.0 (+ 3.0)

Run-To-Goal-Ants 3.0 10.0 (+ 7.0) 27.0 (+ 24.0)
StarCraft II 96.0 96.0 (+ 0.0) 96.0 (+ 0.0)

we note one exception that adversarial training improves the vic-
tim’s performance against the regular agent in StarCraft II. Figure 4
presents the winning rates of the victim during the retraining pro-
cess, indicating that adversarial training helps defend adversarial
policies. Figure 8 in Supplementary B.2 shows how victims’ non-loss
rates change during the adversarial training process.

6 ADDITIONAL ANALYSIS
We conduct additional experiments to further shed light on the
strength of our proposed method. We perform an ablation study
to analyze the benefits of the victim-aware exploration. We also
investigate a simple defensive strategy called observation masking,
as well as how the victims’ policy networks are activated when
playing with different types of attackers.

192

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

W
in

ni
ng

 R
at

e
(%

)

0.41

Kick And Defend

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.76

You Shall Not Pass

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.23

Sumo Ants

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

W
in

ni
ng

 R
at

e
(%

)

0.46

Sumo Humans

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.63

Run To Goal Ants

0 0.5 1.0 1.5
Timesteps (1e6)

0.0

0.3

0.7

1.0

0.74

StarCraft II

Figure 4: The winning rates of the victim agents after being retrained using our attack method play against the adversarial
policies trained by our method in six games. See Figure 8 in Supplementary B.2 for results of non-loss rates.

6.1 Ablation Study
We perform this ablation study to examine whether utilizing ap-
proximated victim information helps in training better adversar-
ial policies. We experiment with an adjusted approach in which
the input to RND is changed to the raw observation rather than
the output of the hidden layer of the approximated victim value
network as in our main approach. In other words, the adjusted
approach is no longer “victim-aware.” We train adversarial poli-
cies using the adjusted approach (keep other settings the same as
our main experiment in Section 5). The results are illustrated in
Table 2. We observe that the victim-aware exploration leads to
stronger adversarial policies. For instance, using the adjusted
approach, the average winning rate decreases by 5% and 17% in
You-Shall-Not-Pass and Run-To-Goal-Ants environment, and
by 5% in Kick-And-Defend. But the adjusted approach still out-
performs the baseline. The victim-aware exploration improves the
averaged performance by 5.8% compared to the victim-unaware
method. These results demonstrate that our proposed method does
not improve the state-of-the-art approach solely using the curiosity
mechanism; the targeted exploration of the victim’s vulnerability
using the output of hidden layers also contributes.

6.2 Observation Masking
Both [15] and [20] notice that the victim can achieve a higher
winning rate by simply masking the victim’s partial observation
of the adversary’s action. Specifically, the victim’s observation of
the adversarial policy’s actions is set as static values during the
interactions. To further validate their findings, we select the best-
performing adversaries from both our method and the baseline.
Then we let these adversarial policies play with corresponding
victims for 100 rounds. We compute the average non-loss rates
of victims under two different settings, one where the observa-
tion is masked and the other where it is not. Table 3 shows the

Table 3: The non-loss rates of the original victim agents
against (1) our adversarial policies and (2) baseline adversar-
ial policies. “Before" and “After" indicates the results before
and after masking victims’ observation, respectively.

Games Ours (%) Baseline (%)
Before After Before After

Kick-And-Defend 16.0 90.0 23.0 94.0
You-Shall-Not-Pass 18.0 40.0 28.0 99.0

Sumo-Ants 89.0 91.0 94.0 93.0
Sumo-Humans 58.0 70.0 57.0 76.0

Run-To-Goal-Ants 70.0 73.0 97.0 99.0
StarCraft II 3.0 14.0 2.0 18.0

results. We confirm the finding that masking observation can de-
fend against adversarial policies, suggesting that the adversarial
policy succeeds by manipulating the victim’s observations. One
exception is Sumo-Ants, where the non-loss rates even before the
masking are rather high. This indicates that our adversarial policies
do not win by taking generally good actions (e.g., win by pushing
the opponent in a sumo game); they take actions that the victim
is not familiar with (e.g., lie down in a strange manner) to fool
victims. But from Table 3 we find that even when observation is
masked, the adversarial policies trained by our proposed approach
still outperform the baseline.

6.3 Video Analysis
To more intuitively compare the difference between adversarial
and regular policies, we let the victims interact with adversarial
policies and regular agents and record videos demonstrating the
interactions. Figure 5 illustrates some snapshots of the videos in
Kick-and-Defend and You-Shall-Not-Pass games. We find that
the behaviours of adversarial policies and regular agents are rather
different. Specifically, we can observe that the regular agents learn

193

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Adversarial
policy

Victim

Regular policy

Victim

Victim Victim

Victim Victim

Regular policy Regular policy

Adversarial
policy

Adversarial
policy

(a) Kick-And-Defend, the victim agent against a regular policy.

Victim

Victim

Victim

Victim

Victim Victim

Regular policy Regular policy

Regular policy

Adversarial
policy

Adversarial
policy

Adversarial
policy

(b) You-Shall-Not-Pass, the victim agent against a regular policy.

Adversarial
policy

Victim

Regular policy

Victim

Victim Victim

Victim Victim

Regular policy Regular policy

Adversarial
policy

Adversarial
policy

(c) Kick-And-Defend, the victim agent against our adversarial policy.

Victim

Victim

Victim

Victim

Victim Victim

Regular policy Regular policy

Regular policy

Adversarial
policy

Adversarial
policy

Adversarial
policy

(d) You-Shall-Not-Pass, the victim agent against our adversarial policy.

Figure 5: Illustrative snapshots of a victim against regular agents and our adversarial agents in Kick-And-Defend and
You-Shall-Not-Pass. The victim wins if it shoots the ball to the grey region and crosses the finish line; otherwise, the at-
tack wins. Compared with the behaviours of regular agents learning to run, kick or block, the adversarial agents never stand
up and lie under the ground in some strange posts, but still win the games.

to take actions like run, push or block (as presented in Figure (a)
and (b)), which are desired to win the game. However, we observe
that the agents that adopt adversarial policies exhibit strange be-
haviours. For example, in Figure 5 (c) and (d), the attackers lie on
the ground in a weird manner. Surprisingly, such actions, which
create opportunities for the opponent to win, can make the victim
perform poorly (e.g., fail to kick the ball or fail to cross the line).
More demo videos are released in the “./MuJoCo/video” folder of
our open-source repository.1

6.4 Policy Network Activation Analysis
We let the victims play against different types of opponents: ad-
versarial policies trained by our method and the baseline, as well
as regular agents. We record how the victims’ policy networks are
activated, e.g., what actions are taken. To ensure a fair comparison
with the previous work [20], we let a victim play with an opponent
for the same number of episodes (i.e., 250), each yielding a trajec-
tory of 5,000 time steps. All the actions in a trajectory is viewed
as an action vector, and then we use t-SNE [47] to visualize them
in a two-dimension space. We leverage t-SNE to visualize action
vectors generated by interacting with different opponents in the
same figure. Due to the limited space, Figure 6 only plots the results
in Run-To-Goal-Ants. We refer interested readers to Section B.3 of
Supplementary for the full results. We can observe that the victim’s
network activation distributes differently when the victim faces
different types of opponents. The adversarial policies can make the
victim exhibit actions (i.e., red and blue dots) that distribute differ-
ently from the actions when playing with regular agents (yellow
dots). Besides, the distribution of activation is also different when
the victim plays with the baseline and our method: our method
makes the victim’s network activation (red dots in Figure 6) cover

more space, suggesting that our method finds additional vulnera-
bilities on top of the baseline. Visualizations of other environments
are presented in Figure 9 in the supplementary materials.

7 RELATEDWORK
There is a series of work on testing and improving the quality of
various DNN-based systems, including speech recognition [2, 3],
sentiment analysis [4, 54, 56], and so on. We refer interested readers
to a comprehensive survey on AI testing [63]. This section briefly
discusses works related to (1) adversarial attack for deep reinforce-
ment learning and (2) curiosity mechanisms that encourage agents
to perform exploration.

7.1 Attack for DRL
Although DRL has demonstrated excellent performance in many
tasks such as autonomous driving [13, 27, 59] and video game
playing [16, 17, 24], it faces a series of attacks, including back-
doors [26, 48, 49, 55], privacy-stealing attacks [10, 34], adversarial
attack [25, 28, 38, 62], and so on.

This paper explores adversarial policy training, which falls into
the category of adversarial attack. Inspired by adversarial attacks on
neural networks [9, 18, 35], researchers have elicited sub-optimal
actions from well-trained agents’ by adding perturbations to agent
observations while such perturbations do not affect decisions from
the human perspective. According to the information available for
searching such perturbations, adversarial attacks can be divided into
two types: white-box and black-box. The white-box attack typically
leverages the gradient information of DRL agents [25, 28, 29, 38, 62],
while the black-box attack only has limited access to the victim
models, e.g., only outputs of an agent given certain inputs [52]. The
gradient information of victim models is not available in adversarial

194

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

Regular Ours Baseline

Figure 6: The t-SNE visualizations of the distribution of the
victim’s network activation in the Run-To-Goal-Ant environ-
ment. The victim plays against different opponents: (1) our
adversarial policies, (2) baseline adversarial policies, and (3)
regular agents. The activation triggered by our adversarial
policies distributes differently from the other two, indicating
that our method uncovers different vulnerabilities.

settings. For example, it is reasonable to assume that an attack does
not know the policy network parameters of a remotely deployed
agent; thus, we perform adversarial attacks in a black-box manner.

Some adversarial attack methods, even the black-box ones, are
not considered feasible in practice. The reason is that adding noise
to the background image typically requires an attacker to hack into
the game engine first, which itself is rather difficult and even infea-
sible. For more practically executable attacks, researchers propose
to attack victim agents by taking legal actions in the game environ-
ment. Gleave et al. [15] explore scenarios where two players (adver-
sary and victim) compete with each other. The adversarial agent is
trained to take actions allowed in the environment that can fool the
victim agent into sub-optimal responses. To train such adversarial
agents, a two-player game is first converted into a single-agent
learning problem by fixing the victim’s policy, and then PPO [40]
(one of the most popular DRL algorithms) is used to train attackers
to learn policies that can maximize their expected rewards. Guo et
al. [20] further relax the requirement that the game should be zero-
sum and design a new objective for the attacker to also minimize
the victim’s expected rewards. Wu et al. [51] use an explainable
artificial intelligence technique to guide an attacker to take the
action that the victim agent pays attention to and enhance the ef-
fectiveness of attacks. Experiments show that adversarial agents
trained using the new objective [20] is the current state-of-the-art
method, which is selected as the baseline in our experiment.

7.2 Curiosity Mechanism in DRL
Researchers have proposed the curiosity mechanism to encourage
agents to explore the environment. Generally speaking, it constructs
an intrinsic reward to quantify the “novelty” of a new experience [7,

8, 36, 42, 61, 66]. We summarize recent related works about the
curiosity mechanism in reinforcement learning.

Count-based exploration methods record howmany times a state
is visited during the training process, which is a straightforward
and effective way to model the distribution of visited and un-visited
states [14, 30, 45]. However, count-based methods have been shown
to be ineffective in environments where the state space is high-
dimensional or continuous (e.g., Starcraft II) [36]. Another class of
exploration methods relies on the errors in predicting dynamics,
which address the difficulty in complex environments [8, 36, 37].
Pathak et al. propose the Intrinsic Curiosity Module (ICM), a model
predicting the next state given the current state and action. The er-
ror between the predicted and true next state is used as an intrinsic
reward [36]. Based on the observation that neural networks tend to
have lower prediction errors on examples similar to training exam-
ples, [8] proposes Random Network Distillation (RND) that utilizes
the prediction errors of networks trained on historical trajectories
to quantify the novelty of states, which is effective and easy to
implement in reality, e.g., generating test cases for Cyber-Physical
Systems [64]. The results inspire us to use RND to encourage ad-
versarial policies to find more vulnerabilities of victims. We leave
the utilization of other exploration methods to future work.

8 CONCLUSION AND FUTUREWORK
This paper presents a novel curiosity-driven and victim-aware ap-
proach to attack victim agents in two-player games; the obtained
adversarial policies outperform the current state-of-the-art results.
To be victim-aware, the proposed approach approximates the state-
value function of the victim in a purely black-box manner and
extracts the victim information by utilizing outputs of a hidden
layer in the approximated network. To be curiosity-driven, the ap-
proach applies RND to explore the hidden layer outputs to find
adversarial policies more efficiently. The experiment results show
that the average winning rate of adversarial policies trained us-
ing our method is higher than that of the baseline. Our method is
also the first to work effectively in low-dimensional environments
in MuJoCo’s two-player games. An ablation study demonstrates
that being aware of the approximated victim information helps in
improving the performance of adversarial policies on top of the
benefits of curiosity-driven exploration. These discoveries show
that our attack can learn the curiosity-driven and victim-aware
policies effective in defeating victims.

In the future, we plan to explore adversarial policies in multi-
agent environments, the complexity of which exponentially in-
creases with the number of players. Training adversarial policies
in such complex environments is not currently supported in the
current state-of-the-art. We also plan to develop more effective
techniques to defend against adversarial policies.

ACKNOWLEDGMENTS
This research/project is supported by the National Research Foun-
dation, Singapore and DSO National Laboratories under the AI
Singapore Programme (AISG Award No: AISG2-RP-2020-017), the
National Key Research and Development Program of China (No.
2021YFC2800501), and the National Foundation Fund of China
(Y2009-1B-02-353).

195

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

REFERENCES
[1] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan

Girgin, Raphaël Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin,
Marcin Michalski, Sylvain Gelly, and Olivier Bachem. 2021. What Matters for
On-Policy Deep Actor-Critic Methods? A Large-Scale Study. In ICLR.

[2] Muhammad Hilmi Asyrofi, Zhou Yang, and David Lo. 2021. CrossASR++: A
Modular Differential Testing Framework for Automatic Speech Recognition. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1575–1579. https://doi.org/10.1145/3468264.3473124

[3] Muhammad Hilmi Asyrofi, Zhou Yang, Jieke Shi, Chu Wei Quan, and David Lo.
2021. Can Differential Testing Improve Automatic Speech Recognition Systems?.
In 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 674–678. https://doi.org/10.1109/ICSME52107.2021.00079

[4] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang,
Ferdian Thung, and David Lo. 2021. BiasFinder: Metamorphic Test Generation
to Uncover Bias for Sentiment Analysis Systems. IEEE Transactions on Software
Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3136169

[5] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent Complexity via Multi-Agent Competition. In ICLR.

[6] Vahid Behzadan and Arslan Munir. 2017. Vulnerability of deep reinforcement
learning to policy induction attacks. In International Conference on Machine
Learning and Data Mining in Pattern Recognition. 262–275.

[7] Yuri Burda, Harri Edwards, Deepak Pathak, et al. 2018. Large-scale study of
curiosity-driven learning. arXiv preprint arXiv:1808.04355 (2018).

[8] Yuri Burda, Harrison Edwards, Amos Storkey, et al. 2018. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894 (2018).

[9] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In 2017 IEEE Symposium on Security and Privacy (SP). 39–57.

[10] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. 2021.
Stealing Deep Reinforcement Learning Models for Fun and Profit. In Proceedings
of the 2021 ACMAsia Conference on Computer and Communications Security (ASIA
CCS ’21). Association for Computing Machinery, New York, NY, USA, 307–319.

[11] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de Las Casas, et al. 2022. Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature 602, 7897 (2022), 414–419.

[12] Richard Elderman., Leon J. J. Pater., Albert S. Thie., Madalina M. Drugan., and
Marco M.Wiering. 2017. Adversarial Reinforcement Learning in a Cyber Security
Simulation. In Proceedings of the 9th International Conference on Agents and Artifi-
cial Intelligence. SciTePress, 559–566. https://doi.org/10.5220/0006197105590566

[13] Abdur R. Fayjie, Sabir Hossain, Doukhi Oualid, and Deok-Jin Lee. 2018. Driverless
Car: Autonomous Driving Using Deep Reinforcement Learning in Urban Envi-
ronment. In 15th International Conference on Ubiquitous Robots (UR). 896–901.

[14] Lior Fox, Leshem Choshen, and Yonatan Loewenstein. 2018. DORA The Explorer:
Directed Outreaching Reinforcement Action-Selection. In ICLR.

[15] Adam Gleave, Michael Dennis, Cody Wild, et al. 2020. Adversarial Policies:
Attacking Deep Reinforcement Learning. In ICLR.

[16] Chen Gong, Yunpeng Bai, Xinwen Hou, et al. 2020. Stable Training of Bellman
Error in Reinforcement Learning. In Neural Information Processing. 439–448.

[17] Chen Gong, Qiang He, Yunpeng Bai, et al. 2021. Wide-Sense Stationary Policy
Optimization with Bellman Residual on Video Games. In 2021 IEEE International
Conference on Multimedia and Expo (ICME). 1–6.

[18] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR. http://arxiv.org/abs/1412.6572

[19] Shixiang Gu, Ethan Holly, Timothy Lillicrap, et al. 2017. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In ICRA.
IEEE, 3389–3396.

[20] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. 2021. Adversarial Policy
Learning in Two-player Competitive Games. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, Vol. 139. PMLR, 3910–3919.

[21] KimHammar and Rolf Stadler. 2020. Finding Effective Security Strategies through
Reinforcement Learning and Self-Play. In 2020 16th International Conference on
Network and Service Management (CNSM). 1–9.

[22] Kim Hammar and Rolf Stadler. 2022. Learning Security Strategies through Game
Play and Optimal Stopping. CoRR abs/2205.14694 (2022). arXiv:2205.14694

[23] Qiang He, Chen Gong, Yuxun Qu, Xiaoyu Chen, Xinwen Hou, and Yu Liu. 2021.
Mepg: A minimalist ensemble policy gradient framework for deep reinforcement
learning. arXiv preprint arXiv:2109.10552 (2021).

[24] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, et al. 2018. Rainbow: Combining Improvements in Deep
Reinforcement Learning. In AAAI. 3215–3222.

[25] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter
Abbeel. 2017. Adversarial Attacks on Neural Network Policies. In 5th International
Conference on Learning Representations, ICLR 2017, Workshop Track Proceedings.

[26] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. 2020. TrojDRL:
evaluation of backdoor attacks on deep reinforcement learning. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[27] Bangalore Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad
A. Al Sallab, Senthil Kumar Yogamani, and Patrick Pérez. 2020. Deep Reinforce-
ment Learning for Autonomous Driving: A Survey. abs/2002.00444 (2020).

[28] Jernej Kos and Dawn Song. 2017. Delving into adversarial attacks on deep policies.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings.

[29] Yenchen Lin, Zhangwei Hong, Yuanhong Liao, et al. 2017. Tactics of Adversarial
Attack on Deep Reinforcement Learning Agents. In IJCAI. 3756–3762.

[30] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. 2020. Count-
Based Exploration with the Successor Representation. Proceedings of the AAAI
Conference on Artificial Intelligence 34, 04 (2020), 5125–5133.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, et al. 2018. Towards
Deep Learning Models Resistant to Adversarial Attacks. In ICLR.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. 2015. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[33] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, et al. 2019. Solving
Rubik’s Cube with a Robot Hand. CoRR abs/1910.07113 (2019). arXiv:1910.07113

[34] Xinlei Pan, Weiyao Wang, Xiaoshuai Zhang, et al. 2019. How You Act Tells a Lot:
Privacy-Leaking Attack on Deep Reinforcement Learning. In the International
Conference on Autonomous Agents and MultiAgent Systems. 368–376.

[35] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, et al. 2017.
Practical Black-Box Attacks against Machine Learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. 506–519.

[36] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.
Curiosity-driven Exploration by Self-supervised Prediction. In Proceedings of
the 34th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 70). PMLR, 2778–2787.

[37] Roberta Raileanu and Tim Rocktäschel. 2020. RIDE: Rewarding Impact-Driven
Exploration for Procedurally-Generated Environments. In ICLR.

[38] Alessio Russo and Alexandre Proutière. 2019. Optimal Attacks on Reinforcement
Learning Policies. CoRR abs/1907.13548 (2019). http://arxiv.org/abs/1907.13548

[39] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, et al. 2017. Deep reinforce-
ment learning framework for autonomous driving. Electronic Imaging 2017, 19
(2017), 70–76.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, et al. 2017. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

[41] David Silver, Thomas Hubert, Julian Schrittwieser, et al. 2018. A general rein-
forcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 362, 6419 (2018), 1140–1144.

[42] Chenyu Sun, Hangwei Qian, and Chunyan Miao. 2022. CCLF: A Contrastive-
Curiosity-Driven Learning Framework for Sample-Efficient Reinforcement Learn-
ing. arXiv preprint arXiv:2205.00943 (2022).

[43] Peng Sun, Xinghai Sun, Lei Han, Jiechao Xiong, Qing Wang, Bo Li, Yang Zheng,
Ji Liu, Yongsheng Liu, Han Liu, and Tong Zhang. 2018. TStarBots: Defeating the
Cheating Level Builtin AI in StarCraft II in the Full Game. arXiv:1809.07193 [cs.AI]

[44] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[45] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan
Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. 2017. #Exploration: A
Study of Count-Based Exploration for Deep Reinforcement Learning. In Advances
in Neural Information Processing Systems, Vol. 30.

[46] Gerald Tesauro. 1995. Temporal difference learning and TD-Gammon. Commun.
ACM 38, 3 (1995), 58–68.

[47] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[48] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song.
2021. BACKDOORL: Backdoor Attack against Competitive Reinforcement Learn-
ing. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. 3699–3705.

[49] Yue Wang, Esha Sarkar, Wenqing Li, Michail Maniatakos, and Saif Eddin Jabari.
2021. Stop-and-go: Exploring backdoor attacks on deep reinforcement learning-
based traffic congestion control systems. IEEE Transactions on Information Foren-
sics and Security 16 (2021), 4772–4787.

[50] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, et al. 2019. Deep reinforcement
learning for green security games with real-time information. In the Association
for the Advancement of Artificial Intelligence, AAAI, Vol. 33. 1401–1408.

[51] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. 2021. Adversarial Policy Train-
ing against Deep Reinforcement Learning. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 1883–1900.

[52] Chaowei Xiao, Xinlei Pan, Warren He, et al. 2019. Characterizing attacks on deep
reinforcement learning. arXiv preprint arXiv:1907.09470 (2019).

[53] Zhiwei Xu, Bin Zhang, Yunpeng Bai, et al. 2021. Learning to Coordinate via
Multiple Graph Neural Networks. In Neural Information Processing. 52–63.

[54] Zhou Yang, Muhammad Hilmi Asyrofi, and David Lo. 2021. BiasRV: Un-
covering Biased Sentiment Predictions at Runtime. In Proceedings of the 29th

196

https://doi.org/10.1145/3468264.3473124
https://doi.org/10.1109/ICSME52107.2021.00079
https://doi.org/10.1109/TSE.2021.3136169
https://doi.org/10.5220/0006197105590566
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2205.14694
https://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1907.13548
https://arxiv.org/abs/1809.07193

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 1540–1544.
https://doi.org/10.1145/3468264.3473117

[55] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. 2019. Design of
intentional backdoors in sequential models. arXiv:1902.09972 (2019).

[56] Zhou Yang, Harshit Jain, Jieke Shi, Muhammad Hilmi Asyrofi, and David Lo. 2021.
BiasHeal: On-the-Fly Black-Box Healing of Bias in Sentiment Analysis Systems.
In 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 644–648. https://doi.org/10.1109/ICSME52107.2021.00073

[57] Zhou Yang, Jieke Shi, Muhammad Hilmi Asyrofi, and David Lo. 2022. Revisit-
ing Neuron Coverage Metrics and Quality of Deep Neural Networks. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE Computer Society.

[58] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-
Trained Models of Code. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Com-
puting Machinery, New York, NY, USA, 1482–1493.

[59] Changkun Ye, Huimin Ma, Xiaoqin Zhang, Kai Zhang, and Shaodi You. 2017.
Survival-Oriented Reinforcement Learning Model: An Effcient and Robust Deep
Reinforcement Learning Algorithm for Autonomous Driving Problem, Yao Zhao,
Xiangwei Kong, and David Taubman (Eds.). 417–429.

[60] Yingjun Ye, Xiaohui Zhang, and Jian Sun. 2019. Automated vehicle’s behavior
decision making using deep reinforcement learning and high-fidelity simulation
environment. Transportation Research Part C: Emerging Technologies 107 (2019),
155–170.

[61] Chuheng Zhang, Yuanying Cai, Longbo Huang, and Jian Li. 2021. Exploration by
Maximizing Renyi Entropy for Reward-Free RL Framework. Proceedings of the
AAAI Conference on Artificial Intelligence 35, 12 (2021), 10859–10867.

[62] Huan Zhang, Hongge Chen, Duane Boning, et al. 2021. Robust Reinforcement
Learning on State Observations with Learned Optimal Adversary.

[63] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Test-
ing: Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering
48, 1 (2022), 1–36. https://doi.org/10.1109/TSE.2019.2962027

[64] Shaohua Zhang, Shuang Liu, Jun Sun, et al. 2021. FIGCPS: Effective Failure-
inducing Input Generation for Cyber-Physical Systems with Deep Reinforcement
Learning. In 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 555–567.

[65] Yiren Zhao, Ilia Shumailov, and Han Cui. 2020. Blackbox Attacks on Reinforce-
ment Learning Agents Using Approximated Temporal Information. In Interna-
tional Conference on Dependable Systems and Networks Workshops. 16–24.

[66] Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen,
Changjie Fan, Yang Gao, and Chongjie Zhang. 2021. Episodic Multi-agent Rein-
forcement Learning with Curiosity-driven Exploration. In Advances in Neural
Information Processing Systems, Vol. 34. 3757–3769.

Supplementary Materials
A EXPERIMENTAL DETAILS
A.1 Implementation and Hyper-parameters
The implementation of both our method and the baseline are based
on TensorFlow2 framework and Stable-Baselines3 libraries. We
retrieve the implementation for the baseline attack [20] from its
official Github repository released by the authors4. Besides, the
game environment wrappers are implemented based on the OpenAI
Gym5, and the PySC2 extension packages6.

Some hyper-parameters are shared across our method and the
baseline [20], e.g., discount factor 𝛾 , learning rate 𝜖 , and the num-
ber of steps 𝑛. To ensure a fair comparison, we set these hyper-
parameters as the same for both methods by using the hyper-
parameters as shown in the baseline repository4. Besides, as the net-
work architectures may affect the ability to learn effective policies
and value functions, we also adopt the same network architectures
from the repository.
2https://github.com/tensorflow/tensorflow
3https://github.com/Stable-Baselines-Team/stable-baselines
4https://github.com/psuwuxian/rl_adv_valuediff
5https://gym.openai.com
6https://github.com/Tencent/PySC2TencentExtension

Both the networks of the adversarial policy and the state-value
function take the raw observation as input. The network of adver-
sarial policy produces the probability distribution of actions. The
network of state-value function produces a single value indicating
the state value. We take the penultimate hidden layer of the approx-
imated victim state-value function network and feed the outputs of
this hidden layer into the RND networks. Intuitively speaking, a
state-value function network can be viewed as feature extractor lay-
ers followed by layers to process the output of the feature extractor;
as a consequence the penultimate hidden layer contains the most
compact and relevant information needed for producing the value
output. It might help to additionally use other low-level hidden
layers’ output, however, our experiments reveal that our approach
using only the penultimate layer is sufficient to beat the state of the
art [20]. The size of the inputs to RND is the same as the output size
of the hidden layer: 256 in all environments. The predictor network
and the target network share the same network architecture, both
of which have 2 layers. The parameters of the two networks are
randomly initialized, but we fix the target network and only allow
the predictor network to learn the output of target network.

In the experiments of adversarial training, we retrain the policy
network of the original victim agents. The architecture of the pol-
icy network as well as the state-value function, and the training
hyper-parameters (e.g., number of training epochs, learning rate,
the discount factor, etc.) are the same as that in adversarial pol-
icy training experiments. When training the adversarial policies,
it is noted that compared to the baseline, we introduce an impor-
tant hyper-parameter to our curiosity-driven and victim-aware
approach: the exploration coefficient 𝜆, i.e., the weight to balance
the advantage functions of original reward and intrinsic reward in
Eqn. (8). A higher 𝜆 indicates that an agent pays more attention
to exploring the environments. We choose different values of 𝜆 in
different environments, which are presented in Table 4.

For the StarCraft II games, althoughwe keep the hyper-parameter
settings the same for both methods, the repository of the baseline
method [20] does not indicate the specific version of StarCraft
II they performed the experiments on. To ensure a fair compari-
son as much as we can, we select version 4.6.2 (B69232) and the
Melee/Flat64.SC2 map, in which we can replicate their results. The
details of network architectures can be found here.7

A.2 Experiment Setups
To evaluate the effectiveness of our proposed method, we con-
duct experiments on zero-sum games (MuJoCo8) and one non-
zero-sum game (StarCraft II from PySC2), both of which are com-
monly adopted to evaluate reinforcement learning algorithms in
two-player game contexts. For demonstrating the performance of
adversarial policies, we first need to select appropriate victim agents
under attack. Similar to the practice in [20], the selection is operated
as follows:

(1) We obtained the pre-trained agents from the Agent Zoo pack-
age [5] and evaluate the performance of these agents against
the adversarial policies in [15].

7https://github.com/Tencent/TStarBot1
8https://github.com/deepmind/mujoco

197

https://doi.org/10.1145/3468264.3473117
https://doi.org/10.1109/ICSME52107.2021.00073
https://doi.org/10.1109/TSE.2019.2962027

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Table 4: The value of exploration coefficient 𝜆 in different games.

Games Kick-And-Defend You-Shall-Not-Pass Sumo-Humans Sumo-Ants Run-To-Goal-Ants StarCraft II

𝜆 0.5 1.0 0.5 0.5 1.0 0.5

Table 5: The IDs of selected victim agents and regular agents
in Agent Zoo package.

Games Victim ID Regular ID
Kick-And-Defend 1 3
You Shall Not Pass 1 1

Sumo-Ants 1 2
Sumo-Humans 3 2

Run-To-Goal-Ants 1 1

(2) For each environment, we select the best-performing (in terms
of winning rates) agent as the victim agent under attack. By
doing so, we can obtain the same group of victims used in [20].
For Run-To-Goal-Ant, which is additionally included in our
experiments, there is only one agent available and we use it as
the victim.

(3) For each environment, we select the second best-performing (in
terms of winning rates) agent as the regular agent used in the
adversarial training experiment (Section 5.2) and the activation
analysis (Section B.3).

Each agent in the Agent Zoo is labelled with an ID to be uniquely
identified. We present the id of selected victim agents and regular
agents we selected in Table 5. There are two roles in the asymmetric
games like Kick-And-Defend. For example, Kick-And-Defend has
the kicker and defender; You-Shall-Not-Pass has the runner and
blocker. We select the defender and blocker as the attackers. The
rest roles (i.e., the kicker and the runner) are regular agents. For
the real-time strategy game StarCraft II, we directly use the victim
agent and regular agent from the official Github repository released
by the authors of [20]. They use the PPO algorithm to let players
in a game learn by self-playing until both agents present decisive
winning rates (94% in their settings) against a rule-based agent. In
our experiments, we select the same victim agent and regular agent
as the experiments in [20].

We describe the setup for training adversarial policies and per-
forming adversarial training on victim agents. It is well-known
that the performance of deep reinforcement learning algorithms
usually suffers from problematic unstable due to the complex and
uncertain nature of environments, e.g., initial states, the probabilis-
tic state transitions, and noise in environments [36]. To alleviate
the threat of instability caused by the factors stated above, we run
experiments in each environment using five different random seeds
and record the average results as the final results. Besides, to illus-
trate the variance of the algorithm performance, we also plot the
performance range. For all MuJoCo environments, although [20]
trains adversarial policies for 35 million steps, we train adversarial
policies for 20 million steps as the winning rates trend has already
plateaued at around 15 million steps. The adversarial policies are
trained for 1.5 million steps for the StarCraft II environments.

Similar to the setups for training adversarial policies, when adver-
sarially retraining the victim agents, we also restart the experiments
with 5 different random seeds and record the average performance
accordingly. For MuJoCo and StarCraft II games, we take 10 million
and 1.5 million steps to train the victim agents, respectively, which
is the same parameter settings as [20].

B EXPERIMENTS
B.1 The Performance of Adversarial Policies
In Section 5.1, we mainly explain the performance of our proposed
method in terms of winning rates. Here we explain an additional
metric, i.e., the non-loss rate, and further compare our method
and the baseline method. The winning rates and non-loss rates of
adversarial policies during the training process are presented in
Figure 7. In this figure, the curves marked using ‘×’ and ‘•’ illustrate
the winning rate and non-loss trend of our curiosity-driven method
and the baseline, respectively. The figure shows that among all six
investigated environments, the proposed approach outperforms the
state-of-the-art baseline in three of them (in terms of both winning
rates and non-loss rates) and achieves a similar level of performance
in the rest environments.

In MuJoCo’s high-dimensional tasks (e.g., Kick-and-Defend
and You-Shall-not-Pass), the results show that our proposed
adversarial policies not only improve the performance, but also
accelerate the process of convergence in training phases (trends of
the winning and non-loss rates plateau earlier than the baseline).
In Kick-and-Defend, our method can train adversarial policies
that have an 8% higher non-loss rate than the baseline method. In
You-Shall-not-Pass, we observe an improvement of 10% for the
non-loss rate. Note that no ties are possible in You-Shall-not-Pass,
so the trend of winning rate and non-loss rate are completely the
same in this game. In Sumo-Humans, our method maintains a similar
level of performance.

The prior adversarial attacks barely work in low-dimensional en-
vironments (i.e., Sumo-Ants and Run-To-Goal-Ants). In Sumo-Ants,
the non-loss rates of the two methods are very close. As we men-
tioned in Section 5.1, this is because in Sumo-Ants an agent can
choose to leave the arena to achieve a draw. Therefore, adversarial
policies learn to achieve a draw rather than risk the high probability
of loss in playing with the victim. Although the winning rates of ad-
versarial policies trained by previousmethods in Sumo-Ants are low,
it achieves a high non-loss rate (i.e., 83%). In Run-To-Goal-Ants,
both the winning and non-loss rates of prior adversarial policies
are rather low. Our results show that our proposed method finds
more effective adversarial policies. The state-of-the-art method
only achieves an average winning rate of 3%, while our adversarial
policy boosts the average winning rate to 27%. The baseline can
achieve a non-loss rate of 22%, but our method can boost the value
to 38%. The baseline method has already performed very well in
StarCraft II (with a non-loss rate of 98%). Figure 7 illustrates that

198

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Chen Gong and Zhou Yang, et al.

Baseline Our attack

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.1

0.4

0.7

1.0

N
on

-lo
ss

 R
at

e
(%

)

0.77
0.85

Kick And Defend

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.66
0.76

You Shall Not Pass

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.1

0.4

0.7

1.0
0.830.83

Sumo Ants

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.1

0.4

0.7

1.0

N
on

-lo
ss

 R
at

e
(%

) 0.88
0.87

Sumo Humans

0.0 1.0 1.5 2.0
Timesteps (1e7)

0.0

0.1

0.3

0.4

0.22

0.38
Run To Goal Ants

0 0.5 1.0 1.5
Timesteps (1e6)

0.3

0.5

0.8

1.0 0.980.98 StarCraft II

Figure 7: The non-loss rates (i.e., winning rates plus tie rates) of adversarial agents in six environments. We train the adversarial
policies using two methods: (1) our proposed method and (2) the baseline proposed in [20]. The exponential moving average of
each curve is set to 20 steps. Besides, we run five random seeds for both methods and uses average value as the final results. The
solid line denotes the mean performance (i.e., the wining rate and non-loss rates), and shadow denotes the standard deviation.
The highlighted y-axis labels are the highest average non-loss rates over the total amount of iterations.

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

N
on

-lo
ss

 R
at

e
(%

)

0.45

Kick And Defend

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.76

You Shall Not Pass

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0 0.89
Sumo Ants

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

N
on

-lo
ss

 R
at

e
(%

)

0.76

Sumo Humans

0 0.5 0.75 1
Timesteps (1e7)

0.0

0.3

0.7

1.0

0.72

Run To Goal Ants

0 0.5 1.0 1.5
Timesteps (1e6)

0.0

0.3

0.7

1.0

0.76

StarCraft II

Figure 8: The non-loss rates of the retrained victim agent against with the the adversarial policy trained by our method.

our method achieves the same non-loss rate, so we only use one
number (i.e., 0.98) to label the non-loss rate, but the performance
of our method increases faster than the baseline.

B.2 Performances of Adversarial Training
Due to the limited space, Section 5.2 in the main paper only presents
the results before and after the victims are adversarially trained, ig-
noring the trends of metrics during the adversarial training process.

Figure 8 illustrates the trends of victims’ winning rates and non-
loss rates in the process of retraining, indicating that adversarial
training helps enhance the victim’s robustness and defend adver-
sarial policies. This figure shows that the victims’ performance
improves in 4 out of 6 environments. We can also observe that the
performance improvement is more significant for victims in high-
dimensional environments like You-Shall-Not-Pass; the non-loss
rate increases from 18% to 76%. Besides, in non-zero-sum environ-
ment, i.e., StarCraft II, the non-loss rate increases from 2% to

199

Curiosity-Driven and Victim-Aware Adversarial Policies ACSAC ’22, December 5–9, 2022, Austin, TX, USA

(a) Kick and Defend (b) You Shall Not Pass (c) Sumo Ants

(d) Sumo Humans (e) Run to Goal Ants (f) StarCraft II

Figure 9: t-SNE visualizations of the victim policy network activation pattern when playing with different opponents in MuJoCo
games and StarCraft II game. The yellow dots are the victim activation when setting a regular agent as the opponent. Model
fitted with a perplexity of 250 to activation from 5000 time steps against each opponent. The blue indicates the victim activation
when playing against the opponents trained by the baseline method. The red dots are the activation when playing against our
adversarial agent.

76%. However, adversarial training barely works in ant-against en-
vironments like Sumo-Ants, where the non-loss rates are already
high before the retraining.

B.3 Activation Analysis
To more intuitively compare the difference between adversarial
agents and regular agents, we let the original victim agents interact
with different types of opponents: adversarial policies trained by
ourmethod and the baselinemethod, as well as regular agents. From
our released demo videos in link1, we can also observe that the
adversarial policy defeats the victim by taking uncommon actions

(e.g., laying down strangely) to manipulate the victim’s observa-
tion rather than normal actions (e.g., pushing). Then, we record
the activation of the victims’ policy networks and then use t-SNE
to visualize the distribution of network activation in Figure 9. It
can be clearly observed that adversarial policies trained by both
methods have different activation distributions from the regular
agent. We also find that our method triggers the victim agent to
perform actions different from activated actions when playing with
a baseline method. It suggests that our method finds additional
vulnerabilities on top of the baseline. These results reveal that our
attack trains an adversarial policy that exploits various weaknesses
than the baseline.

200

	Curiosity-driven and victim-aware adversarial policies
	Citation
	Author

	Abstract
	1 Introduction
	2 Task Formulation
	2.1 Deep Reinforcement Learning
	2.2 Adversarial Policies in Two-Player Games
	3 Curiosity-Driven and Victim-Aware Adversarial Policies
	3.1 Approximating Victim Information
	3.2 Curiosity-Driven Victim-Aware Exploration
	3.3 Adversarial Policies Training

	4 Experiment Setup
	4.1 Experiment games
	4.2 Evaluation Metrics

	5 Experimental Results and Analysis
	5.1 Winning Rates of Adversarial Policies
	5.2 Adversarial Training

	6 Additional Analysis
	6.1 Ablation Study
	6.2 Observation Masking
	6.3 Video Analysis
	6.4 Policy Network Activation Analysis

	7 Related Work
	7.1 Attack for DRL
	7.2 Curiosity Mechanism in DRL

	8 Conclusion and Future Work
	Acknowledgments
	References
	A Experimental Details
	A.1 Implementation and Hyper-parameters
	A.2 Experiment Setups

	B Experiments
	B.1 The Performance of Adversarial Policies
	B.2 Performances of Adversarial Training
	B.3 Activation Analysis

