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Abstract—We teach K-Means clustering in introductory data
analytics courses because it is one of the simplest and most
widely used unsupervised machine learning algorithms. However,
one drawback of this algorithm is that it does not offer a clear
method to determine the appropriate number of clusters; it does
not have a built-in mechanism for K selection. What is usually
taught as the solution for the K Selection problem is the so-called
elbow method, where we look at the incremental changes in some
quality metric (usually, the sum of squared errors, SSE), trying
to find a sudden change. In addition to SSE, we can find many
other metrics and methods in the literature. In this paper, we
survey several of them, and conclude that the Variance Ratio
Criterion (VRC) is an appropriate metric we should consider
teaching for K Selection. From a pedagogical perspective, VRC
has desirable mathematical properties, which help emphasize the
statistical underpinnings of the algorithm, thereby reinforcing the
students’ understanding through experiential learning. We also
list the key concepts targeted by the VRC approach and provide
ideas for assignments.

Keywords—K-Means Clustering, Quality Metrics, K Selection,
Variance Ratio Criterion

I. INTRODUCTION

K-Means clustering [1] is conceptually simple, and easily
explained and understood. For this reason, we teach it to
our undergraduate students in their introductory data analytics
courses. Practically, however, one of the difficulties that we
face in using the algorithm is in selecting the optimal number
of clusters to form, which is the so-called “)X Selection Prob-
lem.” We typically teach the elbow-method as the solution,
where we chart the variation of the sum of squared errors
(SSE) as we vary the number of clusters, and look for a change
in its behavior (an “elbow”) so as to select the right K. In some
instances, we also teach a number of other indexes, which may
solve the K selection problem, but with uncertain degrees of
success.

In this paper, we survey several of the quality metrics
commonly taught and recommended in our classrooms, and
systematically study their performance specifically in selecting
the right K. We use a wide range of synthetic data as
well as some real data sets for this purpose. The aim is to
choose the “best” metric based on its performance on real and
synthetic data, as well as from a teaching perspective. The right
metric should perform well; it should also reinforce statistical
concepts and get our students to construct new knowledge,
recognizing the connections between the concepts and good
practices in data analytics.

II. RELATED WORK

Many of the metrics studied in this paper are also described
in an extensive survey [2] of what the the authors called
“clustering validity indexes,” grouping them in categories.
Although it provides valuable information, this survey does
not provide a recommendation, especially from a pedagogical
perspective.

From a purely pedagogical perspective, it is important to
give our students easily interpretable examples to get them to
think beyond data [3]. The use of VRC as the right tool to
use for K Selection, as we recommend, is such an example.
This exploration into its theoretical backdrop brings into focus
a variety of concepts from statistics [4], perfectly illustrating
how they influence and shape our choice. Targeted at computer
science and information systems students, we believe this topic
will reinforce their understanding and kindle their interest
in connecting the concepts in applied statistics to practical
applications in real-world data analysis [5].

We will consider and study the performance of seven
indexes with a view to finding the best one in a general
sense that we can present as the solution to the K selection
problem to our students, while also providing a platform to
illustrate some of the mathematical ideas behind clustering. In
addition to these ‘“classic” quality indexes that we survey in
this article, we have several other candidates, some of which
are algorithms specifically designed to determine the right K
automatically. We have not included them in our study be-
cause these approaches are recent research developments, not
appropriate in the undergraduate classroom. However, for the
sake of completeness, we include their minimal descriptions
in this section, considering them related work.

A recent study [6] introduces the Projected Gaussian (PG-
Means) method, which performs a K-Means clustering for all
K in the range of interest and projects both the data and
model to a linear subspace. It then looks for a good fit between
the model and data using the Kolmogorov-Smirnov (KS) test.
PG-Means runs with ten sets of random starting seeds, which
our studies indicate may be too small to ensure convergence.
The study reports an excellent detection of the number of
clusters K = 20 on synthetic data with the number of variables
p € {2,4,8,16}. It also compares PG-Means to X-Means and
G-Means [7] and demonstrates its superiority over them.

X-Means [8], originally developed to address the scalability
issue of K-Means, also helps determine the right K. An



extension [9] of X-Means is found in the literature, designed to
automatically determine K through progressive iterations and
merging of clusters based on a BIC stopping rule. G-Means [7]
is a method to repeatedly perform K-Means with increasing
K until statical tests show that the resulting clusters are
Gaussian within a specified confidence level. Other attempts
to determine K include a visual assessment of clustering
tendency [10].

A recent comparative study [11] argues that relying on
any single internal metric or index is unwise, while noting
that the WB index [12] (based on sum of squares similar
to VRC) seems to perform best. Another recent study that
defines quality metrics or indexes is a probabilistic approach
[13] on external validation of fuzzy clustering, where one
data point may belong to multiple clusters. Another one [14]
introduces a cluster-level similarity index called the centroid
index, focusing on the overall clustering output to quantify
the clustering quality. An external quality measure that can
apply to many different clustering algorithms, it is not directly
comparable to the internal indexes focusing on K-Means.
Lastly, in a paper proposal [15], a new separation measure,
(termed ““dual center”) is developed, based on which a validity
index is proposed for fuzzy clustering. It is not, however,
employed for K selection.

While a comparison to the recent research in the field may
be necessary, the focus of this article is on how to introduce
the K selection problem and its solution. From this viewpoint,
a “Statistical Reasoning Learning Environment,” based on the
constructivist theory of learning, was suggested [16] about a
decade ago to get our students to synthesize new concepts,
integrating it with their existing knowledge. The importance
of selecting an appropriate metric for K selection, more
based on its performance on data rather than simulations, is
emphasized in our approach. Such reliance on real-life data
is also recommended as having positive effect on student
engagement and learning [17] based on a student survey.

III. K-MEANS CLUSTERING
A. Notations

In order to describe the indexes with consistent notations,
we go into some details of the notations in the K-Means
algorithm. We start with n observations along p variables,
&; € RP. The K-Means algorithm will determine K centroids
and n cluster assignments such that each observation &;
belongs to one and only one cluster.

The cluster assignment is based on the minimum of the
Euclidean distances of each observation from all centroids. We
will denote the Euclidean distance between two data points
Z; and &; as d;;D(&;,Z;). The cluster assignment of the
i*h observation is gi = argmin,d;;, which returns the k
corresponding to the smallest d;j, the distance of the itP
observation to the k'" cluster centroid (fiy). dix = D(Z;, fiy,)-

The centroid fi; of a cluster is the average of the observa-
tions belonging to it. The j* component of the k" centroid is
the average of the j*" variable of all the data points that belong
to the k" cluster: pr, = average{w;; : g; = k}, where ny, is

the number of observations belonging to the cluster &, and is
also referred to as the membership or frequency of the cluster
in this paper.

B. Proxies for Clustering Quality

1) Sum of Squared Errors (SSE): Once converged, K-
Means algorithm reports the Sum of Squared Errors, SSE.
Indeed, most implementations use SSE as the quantity to
be minimized to arrive at the best clustering solution. The
errors are the distances between each data point and the
centroid of the cluster to which it belongs. The distances are
squared and summed over all data points to get SSE. Some
applications report it directly, or after normalizing it using
some combination of the number of data points (n) and the
number of variables (p). SSE is not a dimensionless quantity
and is therefore sensitive to the scales or units of the clustering
variables.

2) Coefficient of Determination: The Sum of Squared
Errors (SSE), as defined above, can be thought of as the
unexplained variation in the model. Using it in conjunction
with the total variation (SST) of the clustering variables
(obtained from the summary statistics of the data set), we
calculate the Coefficient of Determination of the K-Means

model as
SSE

~ SST

Since it is the fraction of the total variation that is explained
by the model, R? is a ratio and therefore normalizes away
some of the inconsistencies related to scale dependence.

3) Within Standard Deviations: Some statistical programs
report the so-called “Within” Standard Deviation, which is
the standard deviation of the data points belonging to each
cluster, computed separately by cluster. As we can see, this
entity is closely related to the Sum of Squared Errors (SSE)
discussed earlier, except that it is reported on a per-cluster
basis. Similarly, SSE and R? may be reported on a per-variable
basis as well.

RZ=1 )

C. Limitations of the Proxies

Both SSE and R? are susceptible to over-fitting. If we run
the K-Means algorithm with as many clusters as data points
(K = n), for instance, both these proxies will indicate perfect
clustering, with SSE = 0, and R2 = 1. In fact, SSE usually
decreases when we increase K (except for instances where
the algorithm finds a local minimum). In order to glean any
useful information from it, we use the elbow method, where
we try to determine the value of K at which the decrease in
SSE seems to flatten out. This method is obviously subjective,
and not easily automated.

IV. SURVEY OF INDEXES

A. Indexes Considered

As mentioned earlier, we have several quality indexes and
statistics in the literature, which are frequently used to auto-
matically determine the right number of clusters (/). We list
some of the commonly used metrics below along with a short



description of how to use them. Later on, we will benchmark
them on our synthetic and real datasets.

VRC The Variance Ratio Criterion (VRC) [18] is defined as
the ratio of the between and within sums of squares,
divided by the appropriate factors to account for the
degrees of freedom. The best value for K will correspond
to an absolute or local maximum of VRC as we vary the
number of clusters.

AIC The Akaike Information Criterion [19] is a metric driven
by maximum likelihood estimate, and tries to penalize
overfitting. The right model (or the right K) is the one
that minimizes AIC.

BIC The Bayesian Information Criterion [20], another infor-
mation metric based on maximum likelihood estimate,
penalizes complex models even more than AIC. Again,
the right K would be the one that minimizes BIC.

Sil. Wid. The Silhouette visualization [21], originally de-
veloped as a graphical display technique, also gives a
measure of the clustering quality as the average silhouette
width (Sil. Wid.), which is a maximum for the best K.

DB The Davies-Bouldin index [22], which computes the
dispersion of the output of the clustering algorithm, is
a good separation measure. When using this index, one
would choose the number of clusters that minimizes the
value of DB as the right K.

Gap The Gap Statistic [23] uses the output of the clustering
algorithm, and compares the within-cluster dispersion
against what is expected under an appropriate null ref-
erence distribution. The best K recommended by this
approach is the smallest number of clusters that shows
a decrease in the Gap statistic (corrected internally for
the simulation error).

f(K) An evaluation function based on the comparison with
a uniform reference [24] (similar to the Gap Statistic),
this index is expected to have a better success rate in
determining the right number of clusters than Gap. All
values of K such that f(K) < 0.85 are potential
candidates as the right K.

B. Quantifying Index Performance

Since we will be comparing multiple indexes, we may get
the same right K from several of them. It would then be fair to

100.0
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Fig. 1. Computed I" values (on log scale) for normal distributions of various
standard deviations (o).

ask how we quantify the performance of various indexes. For
the first five of the seven indexes listed earlier, the selection of
K is based on a maximum or a minimum. The last two, Gap
statistic and the f(K) index, do not determine X by looking
for a maximum or minimum in their variation.

For the indexes that determine the ideal K using a maximum
or minimum, the significance of K selection may be quantified
using the concept of curvature: the higher the curvature, the
more prominent the minimum or maximum signifying the right
K. Analogously to the three-point computation of the second
derivative of a continuous function, for a discrete function
h(K) (where K is an integer), we define a new quantity T,
proportional to the curvature as

WK +1) — 2h(K) + h(K — 1)
h(K +1) + h(K — 1)

The numerator of the expression for I' is the discrete equivalent
of the three-point computation of the second derivative of a
continuous function, while the denominator is proportional to
the average value of the metric around the K value where the
peak is located. Intuitively, it is the ratio of the peak value to
the local background average, without counting the peak. Since
I is dimensionless (with h(K + 1) in the denominator), we
can think of it as a non-negative quantifier of the quality or the
significance of the maximum or minimum. In particular, the
value of I' is unchanged if we scale the metric by a constant.

The lowest value of T" is 0 when A(K) is flat. In order
to get a feel for its meaning, we can compute I'" for normal
distributions with several different variances, as shown in
Fig 1. For a unit normal distribuiton (N (u,0?) = N(0,1)),
I' =0.58. For c = 0.5, I' = 3.34 and for ¢ = 0.25, I = 41.
As expected, sharper peaks give larger I's. We will use I when
comparing various indices for K selection.

I'=

2

V. PERFORMANCE ON SYNTHETIC DATA
A. Data Generation

Now that we have specified a method to quantify the
performance of various quality indexes, we proceed to see
how it performs on synthetic data, before moving on to real
data. We use the R package clusterGeneration [25], which
can generate clusters of specified sizes in spaces of prescribed
number of variables. In clusterGeneration, we can also
specify the separation among the clusters, using a separation
index [26]. We will use various values for these three and
other parameters as described below.

Number of Clusters (G): We generate synthetic data sets
with different numbers of clusters: G € {5, 10, 15,20}
Number of Variables (p): For this parameter, we use the
values p € {2,4,8,16,32}.
Separation Index (J*): This parameter controls how well
separated the clusters are, and has range —1 < J* < 1.
We use three values for the separation index:
J* = 0.34, which gives cleanly separated clusters,
J* = 0.21, which gives relatively clean clusters, and
J* = 0.01, which gives realistic clusters.
The effect of changing J* is shown in Fig 2.
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Fig. 2. Sample of clusters (K = 5, p = 2) generated in the synthetic data for various values of the separation index J*.

With these settings, we have 60 sets of synthetic data, 20
of which have a separation index J* = 0.34. Since we are
studying the metric for a data set perfectly suited for K-Means
clustering, we focus on these 20 data sets for detailed analysis,
while providing summary comparisons on all 60. Keeping
the same rationale of balanced and distinct clusters in mind,
we use the following values for the other parameters in the
generation of the synthetic data.

o Number of noisy variables = 0

o Number of outliers = 0

« Equal cluster membership (of 10p) for all clusters

o Cluster uniformity (= Range for variances of the co-

variance matrix) = [1, 10], which generates a reasonable
variability.

B. Analysis of Synthetic Data

With the synthetic data generated, we can study the perfor-
mance of the seven indexes (VRC, AIC, BIC, Sil. Wid., DB,
Gap and f(K)) discussed earlier.

For each run of the K-Means clustering algorithm, we use
100 random sets of initial seeds from which the best run (based
on the sum of squared errors) is chosen. It is important to have
large number of starting seeds because of the sensitivity of K-
Means to initial conditions, especially when we have large
number of clusters and relatively small number of variables
[27]. For smaller number of starting seeds, we do see a large
fraction of K-Means attempts failing to converge. We also set a
generous limit on the maximum number of iterations of 1000.
Still concerned about the robustness of the analysis, we repeat
the whole analysis multiple times and ensure that the results
reported are stable.

C. Results and Discussion

After we run the analysis on all our 60 synthetic data sets
(20 for each J* value), we report the average accuracy for
the indexes in Table 1. Also reported are the average I' values
when the right K is detected. Since we are looking for a metric
that will work best for data sets that are particularly suited
for K-Means clustering, the column to consider in Table I is
for well-separated clusters (J* = 0.34). The Variance Ratio

Criterion (VRC) and the Davies-Bouldin index (DB) detect
the right K. The significance of the peak VRC for and of the
minimum for DB is at similar levels (I' =~ 0.1 — 0.2).

It is noteworthy that VRC, DB and Gap perform well when
the clusters are generated with overlaps, with J* = 0.01, when
the clusters are expected to be realistic. Although these indexes
have high accuracy in the synthetic data, their performance in
the real data is not impressive.

Another important point to note is that both AIC and
BIC perform very poorly in both the synthetic data and the
real data, as described in the following section. One of the
recommendations of this paper is to avoid teaching these
information criteria as a K selection method.

VI. PERFORMANCE ON REAL DATA

We also perform our comparison in four different real data
sets. We detect the optimal number of clusters automatically
using the indexes, and compare it to what is known about the
data sets independently. We first outline the variable selection
applied to all four data sets. We then proceed to describe the
data sets and present the results of our studies. In these studies,
we assume that the classes in the data sets form spherical
clusters, easily separated by the K-Means algorithm, and, as a

TABLE I
ACCURACY AND I" OF VARIOUS METRICS

Well-separated Medium Realistic
Metric (J* =0.34) (J*=021) (J*=0.01)
VRC 100.0% (0.2) 100.0% (0.2)  60.0% (0.1)
AIC 0.0% (—) 0.0% (—) 0.0% (—)
BIC 0.0% (—) 0.0% (—) 0.0% (—)
Sil. Wid. 95.0% (0.1) 75.0% (0.1) 65.0% (0.1)
DB 100.0% (0.2) 85.0% (0.2) 85.0% (0.1)
Gap 55.0% 70.0% 70.0%
F(K) 20.0% 25.0% 30.0%

Accuracy of K selection: the fraction of the times when the reconstructed
number of clusters is the same as the generated number (K = G). The
numbers between parentheses are the mean I' (averaged when K = G).
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Fig. 3. Examples of the Elbow method using SSE in the top row, the Variance Ratio Criterion (VRC) in the second row and the Davies-Bouldin index DB
in the bottom row for different number of clusters generated G with the specified number of variables (p). The first and last columns are with the separation

value J* = 0.01 while the middle column is with J* = 0.21.

consequence, that the ideal number of clusters is the number
of classes.

A. Variable Selection

Since we are testing the indexes on labeled data sets, we
can directly compute the purity of the clusters by counting the
number of correctly assigned observations. We assume that the
ideal number of clusters (ideal K) is the number of distinct
values of the label. After a clustering run with the ideal K,
we select the variables that give the highest purity. For the
set of clusters @ = {wi,wa, - ,wi} and the set of classes

C ={ec1,¢9, -+ ,c}, purity is defined as

K
1
Purity(©2,C) = N Z max(w; N ¢;) 3)
-1 7

For each cluster w;, we find the most frequent class label
c;j, and compute the purity as the fraction of the sum of the
number of most frequent labels. Purity can be easily calculated
from the confusion matrix, as illustrated in Table II for the Iris
data set. We can see that the species Sefosa has been clustered
perfectly into Cluster 2, while Versicolor is mostly in 1 and
Virgnica mostly in 3. Purity is the sum of the largest values
in each row (50 + 48 + 36 = 134) divided by the total number
of observations (n = 150) = 89.3%.



We then repeat the computation of purity for all possible
combinations of variables. In the Iris data set, we have 11
such combinations. If there are multiple rows with the same
highest purity, we select the combination with the highest x%,
which gives us the best variables to use in clustering the data
set. As we can see, the best variable combination to use for the
Iris data set would be Petal Length and Petal Width. Note that
we will use the same “best” variables for all other indexes.

B. Data Sets

1) Iris Data Set: The classic Iris data set [28] contains 150
flower measurements along four variables (Sepal Length, Sepal
Width, Petal Length and Petal Width) from three different iris
species (Setosa, Versicolor and Virgnica). Each species has 50
data points in the data set. Since there are three species, we
know, beforehand, that the ideal number of clusters should
be three. As described earlier, we select the variables Petal
Length and Petal Width as the variables to use when looking
for the best K.

2) Young Adults Data Set: We collected anonymous data
from our students. The data set has 127 observations of four
numeric variables (Height, Weight, Age and HairLength) and
a label (M or F for male or female). Note that in Singapore,
male university students are expected to be about 2 to 3 years
older than their female classmates because of their military
service obligation. Therefore, we may expect the Age variable
to have some differentiating power while clustering the data.
Following the same procedure as in the iris data set, we select
Weight and HairLength as the best variables to use, for the
best possible purity of 98.4%. From our purity studies, the
Age variable does not seem to contribute in segregating the
classes.

3) The Wine Data Set: The publicly available Wine data
set [29], from the UCI Machine Learning Repository [30], has
12 attributes, making the combinatorial problem of selecting
the best variables for K-Means clustering challenging with
over 8000 possible combinations. From among the multiple
variable combinations that give the highest purity of 90.5%,
we select the combination of Alcohol, Ash, Flavanoids and
OD280_0OD315 based on the highest purity. The Wine data
set also has three classes.

4) The Seeds Data Set: The publicly available Seeds data
set [31] (again from the UCI Machine Learning Repository)
contains three classes of wheat seeds with 70 observations

TABLE I
COMPUTING PURITY FROM THE CONFUSION MATRIX

Species Cluster 1  Cluster 2 Cluster 3
Setosa 0 50 0
Versicolor 48 0 2
Virgnica 14 0 36

Number of observations with different labels and in various clusters for
the Iris data set. We can see that the species Sefosa has been clustered
into Cluster 2, Versicolor in 1 and Virgnica in 3.

TABLE III
COMPARISON OF INDEXES

Data Set

Index Iris YA Wine Seeds
G 3 2 3 3
VRC 10(0.03) 2(0.08) 3(0.25) 3(0.11)
AIC 5(0.04) 12 (-) 6(0.01) 12(—)
BIC 4(0.05) 12 (-) 3(0.17) 9(0.01)
Sil. Wid. 2(0.16) 2(0.12) 3(0.16) 2(0.09)
DB 2(0.41) 2(0.20) 3(0.22) 2(0.10)
Gap 5 3 3 3
F(K) 2 2 2 2

Comparison of the performance of various commonly used quality indexes.
The top row is G, the number of classes in our data sets. When an index
predicts the right K, it is highlighted in bold. (I", defined in Eq. (2), the
significance of the peak, and is reported between parentheses. I" cannot be
calculated when K = 12 because it is the end of the K range.)

each. It has seven attributes, giving us 120 different combi-
nations of variables to choose from. The highest purity that
we can get as we use different combinations of variables is
90.0%. From these combinations, we select Area, Perimeter,
Compactness and Asymmetry based on the highest purity.

We can see from Table III that of the seven other indexes
considered, the VRC index seems to perform best with three
right predictions.

VII. RECOMMENDATIONS, CONCEPTS AND ASSIGNMENTS
A. What Index to Teach

From our studies, it seems clear that VRC is the right index
to use to solve the K selection problem. The popular “elbow”
method, which looks for a kink in the variation of the sum of
squared errors, and is subjective and impossible to automate.

B. How to Teach VRC

The Variance Ratio Criterion (VRC) is the ratio of the
inter-cluster variance to intra-cluster variance (hence the name
“Variance Ratio”). The variances are computed from the sum
of squared errors, with the appropriate statistical normal-
ization factors. VRC, therefore, has a remarkably intuitive
description. In the original paper [18], they used the variables
between-sum-of-squared-errors (BGSS) and within-sum-of-
squared-errors (WGSS). Using our notations, we can rewrite
BGSS and WGSS as:

n P
SST = > (wi; — )’

i=1 j=1
n P
WGSS =SSE = > N (wi; — i)’ @
i:gi=k j=1
BGSS = SST — SSE
BGSS / WGSS
VRE=%—1/ 0w K

Note that we used SST and SSE in the definition of R? in
Eq. (1). As we can see, VRC is closely related to R? and the
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Fig. 4. Using VRC (solid line with purple points, with scale on the left) and DB (dashed line with red points, with scale on the right) to select the optimal
number of clusters in various data set. Also shown is the shape elbow-plot of SSE (blue dotted line, without a scale). As summarized in Table III, VRC

succeeds in getting the right K in three out of the four data sets.

F-statistic, which makes it easier to teach it in introductory
data science courses to undergraduate students as a way to
reinforce their statistical thinking. For instance, we can rewrite
VRC in terms of R? using Eq. (1) as:

2
__E n-K (5)

1-R2 K-1
VRC is easily computed using the quantities reported by
most K-Means clustering implementations. In R, for instance,
the kmeans function (from the basic stats package) reports
BGSS as betweenss and WGSS as tot.withinss.

SAS reports R? and also the square roots of BGSS and
WGSS (after scaling them by the appropriate statistical fac-
tors) as Cluster Standard Deviations and Statistics
of Variables.

VRC

C. Key Concepts

In addition to the formal descriptions of the K-Means and
k-NN, the inclusion of VRC in the discourse brings a host of
concepts and practices that can be taught in classrooms in an
experiential learning framework.

Statistical Results: The statistical entities reported by K-
Means applications, namely R?, SST and SSE, are used
in the computation of VRC (Equations (4) and (5)),
which gives us a good opportunity to highlight their
relevance.

Degrees of Freedom: The VRC computation in Equa-
tions (4) and (5) also illustrates the difficult concept of

degrees of freedom and the need to carefully normalize
statistical entities for comparison purposes.

Limitations of Algorithms: The implicit assumptions in K-
Means (Fig 2), not often highlighted in the classroom,
can be used to demonstrate the need to diligently explore
the usability conditions of algorithms in general.

Feature Selection: The variable selection using purity de-
scribed in the article can be used as a tool to teach feature
selection techniques in labeled data.

Curvature for Index Selection: The key concept of calculus
(often not relevant in data analytics) can be used to
quantify the significance of the peak in a quantity of
interest, as in Eq. (2).

Monte Carlo Simulation: In Section §V-A, we provide step-
by-step instructions on how to generate and use synthetic
data from a multivariate normal distribution with a spec-
ified covariance matrix and means.

Automated Insight Generation: An advantage of VRC as
the solution to the K Selection problem is that its use
can be automated (because it is a straightforward search
for a maximum), thereby bringing the K-Means algorithm
more in line with other tools in data analytics, capable of
automatic generation of insights.

D. Assignment Ideas

Here are some ideas for formative assessments when the
NC algorithm is used as a topic in a course. The solutions



and discussions of these ideas are available from the authors
upon request.
e« Do a Monte Carlo simulation to generate synthetic data
and reproduce the plots given in Fig 3.
o Establish the validity of the I' method, described in
Eq. (2), for index comparison using simulation.
o Compare the performance of various indexes in detecting
the right number of clusters to form.
« Explore ways in which the elbow method can be auto-
mated.

VIII. CONCLUSION

We studied various indexes in their accuracy in detecting
the right number of clusters to form in K-Means clustering,
with a view to recommending the right method to teach in
introductory data analytics courses. In addition to the accuracy,
we also considered the relevance of the key learning points
and other pedagogical advantages such as the connection to
statistical concepts.

From our comparative studies on synthetic data, we see that
the Variance Ratio Criterion (VRC) and the Davies-Bouldin
index (DB) work remarkably well in the synthetic data sets.
In real data, however, VRC outperforms DB. Moreover, the
significance of the peak indicating the right K seems larger
for VRC compared to DB. All other indexes performed poorly
both on both synthetic as well as real data. In particular, we
conclude that both the Akaike and the Bayesian Information
Criteria (AIC and BIC) are ineffectual in selecting the right
K in K-Means clustering. The Gap Statistic performs slightly
better than the information criteria, but it is prohibitively
expensive, computationally.

From the perspectives of automation, simplicity and com-
prehensibility, the Variance Ratio Criterion is perhaps the
best index to teach our undergraduate students embarking on
their data science curriculum. With its connection to familiar
concepts in statistics (such as sum of squared errors, coefficient
of determination etc.), VRC can be taught as an extension of
existing knowledge and beliefs that the students already have,
thus facilitating the creation, integration and assimilation of
new ideas.
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