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Correlating Automated and Human Evaluation of Code
Documentation GenerationQuality

XING HU, School of Software Technology, Zhejiang University, China
QIUYUAN CHEN and HAOYE WANG, College of Computer Science and Technology, Zhejiang
University, China
XIN XIA∗, Faculty of Information Technology, Monash University, Australia
DAVID LO, School of Information Systems, Singapore Management University, Singapore
THOMAS ZIMMERMANN,Microsoft Research, USA

Automatic code documentation generation has been a crucial task in the field of software engineering. It not
only relieves developers from writing code documentation but also helps them to understand programs better.
Specifically, deep-learning-based techniques that leverage large-scale source code corpora have been widely
used in code documentation generation. These works tend to use automatic metrics (such as BLEU, METEOR,
ROUGE, CIDEr, and SPICE) to evaluate different models. These metrics compare generated documentation
to reference texts by measuring the overlapping words. Unfortunately, there is no evidence demonstrating
the correlation between these metrics and human judgment. We conduct experiments on two popular code
documentation generation tasks, code comment generation and commit message generation, to investigate
presence or absence of correlations between these metrics and human judgements. For each task, we replicate
three state-of-the-art approaches and the generated documentation is evaluated automatically in terms of
BLEU, METEOR, ROUGE-L, CIDEr, and SPICE. We also ask 24 participants to rate the generated documentation
considering three aspects (i.e., language, content, and effectiveness). Each participant is given Java methods or
commit diffs along with the target documentation to be rated. The results show that the ranking of generated
documentation from automatic metrics is different from that evaluated by human annotators. Thus, these
automatic metrics are not reliable enough to replace human evaluation for code documentation generation
tasks. In addition, METEOR shows the strongest correlation (with moderate Pearson correlation r about 0.7)
to human evaluation metrics. However, it is still much lower than the correlation observed between different
annotators (with high Pearson correlation r about 0.8) and correlations that are reported in the literature
for other tasks (e.g., Neural Machine Translation [39]). Our study points to the need to develop specialized
automated evaluation metrics that can correlate more closely to human evaluation metrics for code generation
tasks.

CCS Concepts: • Software and its engineering → Software creation and management; Documenta-
tion;

Additional Key Words and Phrases: Code Documentation Generation, Evaluation Metrics, Empirical Study
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1 INTRODUCTION
During software maintenance and development, program comprehension is the main activity
for developers [51]. High-quality documentation such as code comments, commit messages, and
release notes can help developers better understand programs [13]. Unfortunately, due to tight
project schedules and other reasons, documentation is often missing, or incomplete. Therefore,
many techniques are proposed to generate documentation automatically. These techniques relieve
developers from writing documentation and help them understand existing software.
Earlier works usually exploit manually-crafted templates [36] and Information Retrieval tech-

niques [16, 17] to assemble key terms into the documentation. These techniques usually rely on
heuristics and stereotypes to select the information that should be included in the documentation.
Then, they evaluate the generated documentation through human evaluation in terms of expres-
siveness (readable and understandable), content adequacy (important information about the class
reflected in the documentation), and conciseness (extraneous information in documentation) [36].
However, the scale of these evaluations tends to be small – usually no more than a few hundred
sentences examined by a small number of raters. Thus, it can be difficult to draw firm conclusions
about the overall quality of the generated documentation.

In recent years, there is an emerging interest in building deep learning models to generate code
documentation. These techniques take advantage of neural networks and the large available open
source code repositories [20, 50] to capture lexical and syntactical features from source code. At the
same time, various automatic metrics such as BLEU [39], ROUGE [27], METEOR [4], CIDEr [48],
and SPICE [2] in the Natural Language Processing (NLP) domain are adopted to evaluate code
documentationmodels. Generally, thesemetricsmeasure differentmodels by comparing overlapping
text between the reference and the generated text. The model can achieve higher scores if there are
more overlapping words.

Some works evaluate the quality of models through automatic metrics accompanied by a human
study, in which programmers are asked to rate various aspects of the generated contents or
naturalness of the documentation. For example, Jiang et al. [23] and Hu et al. [20] asked developers
to give scores by comparing the semantic similarity between the generated documentation and
the reference text. Wei et al. [50] asked developers to score different documentation from three
aspects: the similarity of generated comments and references, naturalness (grammatical correctness
and fluency of the generated comments), and informativeness (the amount of content carried over
from the input code to the generated comments, ignoring fluency of the text). Because doing user
studies is time-consuming, costly, and relying on subjective judgments, some works only compare
different models through automatic metrics [19, 49] without human evaluation.

Since practical considerations have forced the field to rely on automated metrics, it is crucial to
determine how well these metrics compare to human judgments. A reliable automatic metric can
serve as a proxy to human evaluation which is considerably more expensive and time-consuming.
Judging whether, and to what extent, automatic metrics concur with the human evaluation has not
been sufficiently established in existing studies.
To figure out whether automated metrics are reliable and can indeed replace human judgment

in the domain of automatic code documentation generation, we explore the correlation between
five automatic metrics and six human evaluation metrics for code documentation generation tasks.
The automatic metrics used in this paper are BLEU, METEOR, ROUGE-L, CIDEr, and SPICE which
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are widely used in various documentation generation works [19, 20, 23, 32, 49]. We investigate the
human evaluation metrics used in previous studies and select six widely used metrics. These metrics
are used to evaluate models from three aspects, including Language-related (measures natural
language features and ignore the documentation’s contents), Content-related (measures the amount
of contents carried from the input code to the generated documentation), and Effectiveness-related
(evaluate whether generated documentation is useful or helps developers understand programs).
Each aspect contains two metrics: Naturalness and Expressiveness for the Language-related aspect;
Content Adequacy and Conciseness for the Content-related aspect; Usefulness (evaluate how
useful the documentation is) and Code Understandability (evaluate to what extent the generated
documentation can help developers understand programs) for the Effectiveness-related aspect.
In this paper, we conduct experiments on two documentation generation tasks, code comment
generation task and commit message generation task. For each task, we first replicate three state-of-
the-art approaches (i.e., Hybrid-DeepCom [20], Code2Seq [1], and Re2Com [50] for code comment
generation task; NMT [23], NNGen [32], and PtrGNCMsg [30] for commit message generation task).
Then, we evaluate them by using automatic metrics and human evaluation metrics. We recruit 24
evaluators to score 200 randomly sampled comments and commit messages, respectively. Then, we
analyze the correlation between different automatic and human evaluation metrics.

Our study aims to answer the following research questions:
RQ1: What are the results of state-of-the-art approaches on automatic metrics and hu-
man evaluation metrics?
We investigate this RQ to compare the generated documentation from automatic metrics and

human evaluation metrics. The automatic metrics mainly evaluate generated documentation by
counting the number of overlapping N-grams between it and human-written reference text. The
human evaluation metrics are computed based on user study participant feedback; each participant
is asked to give a score for each documentation with respect to a given source code/diff.
RQ2: What are the correlation inside human evaluation metrics and automatic evalua-
tion metrics, respectively?
From the experiments in RQ1, we present the overall scores of documentation generated by

different approaches. Another important question is whether automaticmetrics or human evaluation
metrics are consistent in evaluating the generated documentation. We measure the Kendall τ
correlation and Pearson r correlation to explore whether these metrics are concordant while
scoring different approaches.
RQ3: Do automatic metrics such as BLEU, METEOR, ROUGE-L, CIDEr, and SPICE corre-
late with human judgment on generated documentation?
In neural machine translation literature, automatic metrics have been shown to correlate well

with human judgment and can replace human raters [9]. In this RQ, we propose to establish the
correlation between automatic metrics and human evaluation metrics. According to the correlation,
we can quantify the extent of automatic metrics reflecting the human perspectives and find the most
relevant automatic metrics to human judgments. We follow Coughlin et al. [9] and compute the
Pearson’s correlation r and Kendall’s correlation τ between automatic and human evaluationmetrics
to explore whether automatic metrics can reflect human judgments on generated documentation.
Our interpretation of τ and r is based on Hinkle et al.’s scheme [18]: negligible correlation

(|τ/r | < 0.3), low correlation (0.3 ≤ |τ/r | < 0.5), moderate correlation (0.5 ≤ |τ/r | < 0.7), high
correlation (0.7 ≤ |τ/r | < 0.9), and very high correlation (0.9 ≤ |τ/r | ≤ 1).
The contributions of our work are shown as follows:

• We replicate and evaluate state-of-the-art approaches on two documentation generation
tasks, comment generation and commit message generation. To evaluate the generated
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documentation, we conduct a survey that asks 24 annotators to give Likert scores from six
aspects. In addition, we also calculate automatic metrics including BLEU, METEOR, ROUGE-L,
CIDEr and SPICE.

• We investigate the correlation inside automatic metrics and human evaluation metrics. We
find high correlation between Content-Related and Effectiveness-Related metrics.

• We present the Pearson correlation between automatic metrics and human evaluation metrics.
METEOR is more correlated (with moderate Pearson correlation r about 0.7 and Kendall
correlation τ about 0.5) to human evaluation metrics than other automatic metrics. Although
it achieves a relatively high correlation, it is weaker when compared to correlation between
different annotators (Pearson correlation r about 0.8 and Kendall correlation τ about 0.7).

The remainder of this paper is organized as follows. In Section 2, we provide background knowl-
edge of automatic documentation generation and evaluation metrics. In Section 3, we introduce the
methodology to conduct the experiments and survey. In Section 4 and 5, we introduce the details of
state-of-the-art models and evaluation metrics we used in this paper. Then, we present answers the
answers to the three research questions. We give the discussion and threats to validity in Section 6
and Section 7. Finally, we conclude the whole study and summarise future work in Section 8.

2 BACKGROUND
2.1 Automatic Documentation Generation
Code documentation is the essential information for developers during the program comprehension.
It exists in all phases of the software development cycle, e.g., comments, commit messages, and
release notes. For instance, code comments are used to describe the functionality of programs.
Commit messages are helpful for developers understand the software evolution. However, much
code documentation is incomplete [26], which costs time and efforts when understanding the
software. Therefore, automatic documentation generation is a crucial task to help developers
understand programs. This task aims to give natural language descriptions for the source code or
other software artifacts. Generally, these generated descriptions should reflect programs’ intent.
Recent studies [19, 22, 50] formulate this task as a translation process that translates programming
language into natural language. Hence, evaluation metrics used in NMT are exploited in docu-
mentation generation. In this paper, we mainly explore whether these metrics can reflect human
perspectives on code documentation.

2.2 Commit, diff, and Commit Messages
The commit message generation task aims to generate a commit message according to the diff
of a change. When developers submit a code change to the version control system like Git, they
can enclose a message to describe the change and/or the reason for the change. The changes
can be represented by diff which can be generated by the git diff command in Git. The commit
messages help understand the purpose of the code changes and even the evolution of software.
Unfortunately, developers often submit low quality or even empty commit messages [11]. Recently,
several methods have been proposed to generate commit messages for code changes automatically.

2.3 Evaluation Metrics
The evaluation metrics used in the documentation generation task mainly consists of two cate-
gories: automatic metrics and human evaluation metrics. Automatic metrics such as BLEU [39],
METEOR [4], and ROUGE-L [27] are widely used in many NLP tasks, e.g., machine translation [47]
and text summarization [40]. These metrics are directly used to measure code documentation
generation approaches when machine translation models are exploited to solve this task. They are
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Source Code:
boolean goFromRetiredToDead(){

return compareAndSet(Status.RETIRED,Status.DEAD);
}

Reference: attempts to transition the entry from retired to 
dead when releasing the handle.

Generated comments by 𝑹𝒆𝟐𝑪𝒐𝒎: attempts to transition the 
entry from idle to customise when evicting from the idle 
cache.

Fig. 1. An example of generated comment with high automatic scores. Reference is the human written
documentation andGenerated comments by Re2Com is the machine generated documentation by Re2Com [50]

designed to measure the semantic similarity between the generated documentation and references
considering the overlapping n-grams between them.
Human evaluation metrics generally ask human annotators to score generated documentation

from different aspects. Some works ask human participants to compare the semantic similarity
between the generated documentation and the reference (i.e., human written documentation) [20,
23]. If the two sequences are semantic similar, the generated documentation will achieve a high
score. In this case, the human annotators evaluate the generated documentation without the source
code. Hence, human annotators can not judge whether the generated documentation describes the
source code accurately and whether it helps understand the programs without the source code.
Other works ask human annotators to judge the documentation from various aspects such as

naturalness and content given the input source code. Moreno et al. [36] asked 22 programmers to
judge the content adequacy, conciseness, and expressiveness of automatically generated summaries
for 40 classes. Similarly, Mcburney et al. [35] asked participants to answer questions, including a
summary’s accuracy, content adequacy, and conciseness. Liu et al. [32] ask participants to score
the semantic similarities between generated commit messages and references given the commit
diffs. Wei et al. [50] evaluated different techniques from three metrics, naturalness, informative,
and similarity. These human evaluation results can illustrate developers’ perspectives about the
generated documentation. Recently, Stapleton et al. [45] asked human annotators to complete the
code comprehension task and code writing task given the comment generated by Leclair et al. [25].
Their results show that the BLEU and ROUGE are uncorrelated to code comprehension. However,
their work is only tied to a particular model for code comment generation task and can not judge
the models’ ranking. Besides, they do not give a correlation between these automatic metrics and
human evaluation metrics on models’ evaluation.

In this paper, we explore whether automatic metrics and human evaluation metrics are consistent
with ranking different approaches to documentation generation. In addition, we also give the
correlation between them that helps researchers to better understand and utilize them.

2.4 Motivating Examples
Figure 1 illustrates an example in which the generated comment (by Re2Com [50]) has high
automatic scores (ROUGE-L: 65.87%) because the overlapping N-gram “attempts to transition the
entry from” contributes positively to the automatic metric scores. However, we ask six developers
on how useful the reference text and the generated comment are with respect to the source code.
We find that all of them think the usefulness of the generated comment is minimal, whereas the
reference text is much more useful.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Generated commit message by NNGen: update antlr-maven-
plugin to release version 2.1

Reference: upgrade the antlr plugin version used 2.0-
SNAPSHOT->2.1-SNAPSHOT

Fig. 2. An example of generated commit message with low automatic scores.

Another example is shown in Figure 2 in which the generated commit message (by NNGen [32])
has low automatic scores (BLEU: 7%) since there are few overlapping words between it and the
reference text. However, human annotators think it is very helpful for the diff ’s understandability
because it succinctly explains the change of the import statement clearly.

We can observe that for this example there is a huge gap between automatic evaluation results and
human perspectives. Therefore, the correlation between automatic metrics and human evaluation
metrics for code documentation generation tasks require further exploration.

3 METHODOLOGY
In this section, we describe our methodology for evaluating the quality of the generated documenta-
tion. It mainly contains two phases, i.e., model replication and survey. In phase 1, we replicate three
state-of-the-art techniques for each task (comment generation and commit message generation)
and evaluate them using automatic metrics. After obtaining the generated documentation, we use
a survey that asks participants to score each generated documentation with respect to a piece of
code/diff. In this study, we conducted IRB-approved human study involving 24 evaluators that
have more than three years of studying/working experience in software development process to
complete human evaluation. Among the 24 evaluators, 15 evaluators are professional developers
and 9 evaluators are graduate students in computer science. Each participant is asked to complete
surveys for the two tasks. Each case is scored by six annotators and we use the average score of the
six annotators as the final score for each case. In the following subsections, we present the details
of our experiments and survey.

3.1 Experiments Details
In this section, we replicate state-of-the-art models by re-running the source code provided by the
authors of the code documentation generation tools. It mainly includes three steps, i.e., dataset
selection, model training, and automatic evaluation.

3.1.1 Dataset Selection. For code comment generation task, we use the cross-project dataset
provided by Hu et al. [20]. It consists of more than 8,000 projects in the training set and 971 projects
in the test set. After processing, it consists 455k and 5k <Java method, comment> pairs in training
and test sets, respectively.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Java Method
public FieldRef(String declClass, String fieldType,

String fieldName){
mDeclClass = declClass;
mFieldType = fieldType;
mFieldName = fieldName;

}

Documentation
Doc 1: initializes a new field reference.
Doc 2: creates a primitive type
Doc 3: perform a http delete request and returns the result
if it is already
Doc 4: constructs an analysiscontext with a given field name
field type and conversion.

Recommended Scores & Explanation for Doc 4:
Naturalness: 4 (Has a grammatical error, namely, “field name field type” (should be “field name, field type”).)
Expressiveness: 4 (Can understand the meaning of this sentence.)
Content Adequacy: 2 (Contains little important information, including “field name” and “field type”.)
Conciseness: 3 (Has much unnecessary information, for example “analysiscontext”.)
Usefulness: 2 (Is useless.)
Code Understandability: 2 (Is unhelpful to understand this method.)

Fig. 3. An Example with recommended scores we gave to the participants in the survey study.

For commit message generation task, we use the dataset provided by Liu et al. [32]. This dataset
is derived from Jiang et al. [23]. Liu et al. [32] removed trivial messages from the original dataset. It
consists 26K, 3k, and 3k commits in training, validation, and test sets, respectively.

3.1.2 Model Training. For the code comment generation task, we replicate three state-of-the-
art techniques, including Hybrid-DeepCom, Code2Seq, and Re2Com. We follow the source code
provided by the authors and use the same parameters. We retrain these three models and get the
generated documentation.
In particular, Code2Seq model is proposed to conduct “extreme code summarization” that gen-

erates a method name instead of a sentence of natural language (i.e., comment). Therefore, we
modify the corresponding part of the model (i.e., the generator module of method names) to enable
it to generate code comments instead of method names (Code2Seq is often used in generating code
comments in literature [7].

For the commit message generation task, we replicate another three models, i.e., NMT, NNGen,
and PtrGNCMsg. As Liu et al. [32] provide the generated commit messages of NMT and NNGen,
we reuse the given results. Then, we retrain the PtrGNCMsg model with the same dataset as the
other two models.
We conduct all experiments on a Linux server with the NVIDIA Tesla T4 GPU with 16 GB

memory. During the training, we keep the original hyperparameters provided by authors (e.g.,
model structures and training strategies) to reproduce their experiments.

3.1.3 Automatic Evaluation. After obtaining the generated documentation, we compute the overall
scores of BLEU, METEOR, ROUGE, CIDEr, and SPICE by the tool NLG [42]. To get the correlation
between the human evaluation and automatic evaluation, we need to compare scores for each
generated documentation. Thus, we compute BLEU, METEOR, ROUGE, CIDEr, and SPICE scores
for each documentation.

3.2 Survey
3.2.1 Survey Design. Our human evaluation survey aims to score each documentation. According to
the previous studies, we exploit human evaluation metrics from three aspects, including Language-
related, Content-related, and Effectiveness-related. The detailed descriptions of these metrics are
shown in Section 4.
Participants are shown a task description and the criteria details at the start of the survey.

Participants should give scores (on a scale between 1 and 5) for each documentation by reading the
given cases. The criteria details are described in Table 2.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Fig. 4. Length distribution of the selected samples. Blue lines represent the 90% of cases’ length. Figure (a)
and Figure (b) are distributions of code lengths and comment lengths for comment generation task; Figure (c)
and Figure (d) are distributions of diff lengths and commit message lengths for commit message generation
task;

Then, we present two examples with the recommended scores and show the explanation for
recommended scores. We present an example that consists the documentation given a specific Java
method in Figure 3. For each case, participants could view the Java method/diff, along with four
pieces of documentation. One piece of documentation is the ground truth reference and the other
three pieces of documentation are generated by different techniques. Then, participants are asked
to score the documentation by reading the given Java methods/diffs and their corresponding docu-
mentation. Note that the participants do not know who/what generated the documentation. They
give scores by reading and understanding Java methods or diffs, and compare their understanding
with the generated documentations.

Participants are allowed to search the Internet for related information and unfamiliar concepts.

3.2.2 Cases Selection. We randomly select 200 cases and four corresponding documentation for
each task, in which one documentation is the ground truth reference text and the other three are
generated by different approaches. The length distribution of selected cases is shown in Figure
4. The average lengths of code, comment, diff, and commit message are 54.41, 11.61, 65.81, and
6.84, respectively. For comment generation task, most cases (90%) have less than 120 tokens in Java
methods and 18 words in comments. For commit message task, most cases (90%) have less than 90
tokens in diffs and 12 words in commit messages.

3.2.3 Participant Selection. In this study, we invited 24 participants with combination of graduate
computer science students and professional industrial developers.

3.2.4 Survey Procedure. We invite 24 evaluators to participate in our user study; all of these
participants have more than three years of studying/working experience in software development
process and are familiar with Java programming language. Each annotator scores 50 cases for
the comment generation task and 50 cases for the commit message generation task. Each case is
rated by six annotators and participants are asked to complete the survey independently. Then,
we compute the average score for each case. We do not limit the amount of time for evaluators to
complete the user study.

We recommend that participants rest for at least half an hour for every half hour annotation. On
average, participants cost 1.35 minutes to give their rating for one case.

3.3 Replication Package
All the data and source code used in our study is publicly available 1

1https://github.com/xing-hu/DocEvaluation
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Table 1. A summary of the evaluation metrics considered in this study

Metric Proposed to evaluate Underlying idea

BLEU [39] Machine translation n-gram precision
METEOR [4] Machine translation n-gram with synonym matching
ROUGE-L [27] Document Summarization n-gram recall
CIDEr [48] Image description generation t f -id f weighted n-gram similarity
SPICE [2] Image description generation Scene-graph synonym matching

4 EVALUATION METRICS
In this section, we introduce the evaluation metrics used in this paper, including three automatic
metrics and six human evaluation metrics from three aspects.

4.1 Automatic Metrics
In this paper, we select five automatic metrics (i.e., BLEU, METEOR, ROUGE-L, CIDEr, and SPICE)
that are often used in automatic evaluation of software documentation generation tasks. A summary
of metrics investigated in our study is given in Table 1. The scores of BLEU, METEOR, ROUGE-L,
and SPICE are in the range of [0,1] and usually reported in percentages. The higher the score,
the closer the generated documentation is to the reference. If the generated documentation is
completely equal to the reference, these scores become 100%. But CIDER is not between 0 and 1,
and thus it is reported in real values. These scores range from 1 to 100 as a percentage value. All
automatic metrics are computed by scripts provided by pycocoevalcap.2

4.1.1 BLEU. BLEU [39] is one of the most common metrics used to evaluate machine translation
tasks. It is usually used to measure the textual similarity between candidate hypotheses and the
reference. Generally, it calculates the modified n-gram precisions of a generated sequence to the
reference. Then, it measures the average modified n-gram precision. Since there are different
implementations of BLEU scores, we select the most commonly used implementation proposed
by Papineni et al. [39] in software document generation. This implementation is widely used in
software documents generation evaluation [20, 23, 32].

4.1.2 METEOR. METEOR is proposed by Banerjee et al. [4] and is widely used to evaluate machine
translation techniques. It evaluates translation hypotheses by aligning them to reference translations
and calculating sentence-level similarity scores. Different from the BLEU score, it is a recall-oriented
method that reflects how much the translated results cover the entire contents of the references. In
this paper, we use the most recently released version, namely, METEOR 1.5 [10], to evaluate the
quality of the generated documents.

4.1.3 ROUGE-L. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is proposed by
Lin et al. [27] and used to evaluate the quality of generated summaries. It evaluates the content
adequacy by counting n-grams in the reference summaries that appear in generated summaries. It
is also widely used in evaluating the quality of the generated software documents. Among different
ROUGE scores, ROUGE-L is the most widely used metric in documentation generation tasks. It is
calculated by using the longest common subsequence and F-measure.

4.1.4 CIDEr. Consensus-based Image Description Evaluation (CIDEr) is a consensus based evalua-
tion protocol for image captioning [48]. It measures the similarity of a generated sentence against
2https://pypi.org/project/pycocoevalcap/
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Table 2. Criteria Details and Possible Answers used in the human evaluation study

Criteria Description Possible Answers (on a scale between 1 and 5)

Language-related Naturalness Ignoring the content, considering
the grammaticality and fluency of
the documentation

1. Is very unfluent or has many grammatical errors that can
hinder the reading of generated documentation
2. Is unfluent or has grammatical errors that can hinder the
reading of generated documentation
3. Is somewhat fluent and has some grammatical errors that
can not hinder the reading of generated documentation
4. Is fluent and has little grammatical errors that can not
hinder the reading of generated documentation
5. Has no grammatical error and very fluent

Expressiveness Ignoring the content, considering
the readability and understandabil-
ity of the documentation’s descrip-
tion

1. Is very hard to read and understand
2. Is hard to read and understand
3. Is somewhat readable and understandable
4. Is easy to read and understand
5. Is very easy to read and understand

Content-related Adequacy Considering the amount of contents
carried from the source code/diff to
documentation

1. Is missing a lot of very important information that can
hinder the understanding of the source code/diff
2. Is missing some very important information that can
hinder the understanding of the source code/diff
3. Is missing some information but the missing information
is not necessary to understand the source code/diff
4. Is missing little information but the missing information is
not necessary to understand the source code/diff
5. Is not missing any information

Conciseness Considering the amount of unneces-
sary information contained in doc-
umentation

1. Has a lot of unnecessary information
2. Has more unnecessary information
3. Has some unnecessary information
4. Has little unnecessary information
5. Has no unnecessary information

Effectiveness-related Usefulness Considering whether the documen-
tation is useful for developers

1. Is totally useless
2. Is useless
3. Is somewhat useful
4. Is useful
5. Is very useful

Understandability Considering whether the documen-
tation is helpful for developers to
understand the source code/diff

1. Is totally unhelpful to understand the source code/diff
2. Is unhelpful to understand the source code/diff
3. Is somewhat helpful to understand the source code/diff
4. Is helpful to understand the source code/diff
5. Is very helpful to understand the source code/diff

a set of ground truth sentences written by humans. It considers the frequency of n-grams in the
reference sentences by computing the TF-IDF weighting for each n-gram.CIDErn score for n-gram
is computed using the average cosine similarity between the candidate sentence and the reference
sentences. The final result is calculated by combining the scores for different n-grams (up to 4).

4.1.5 SPICE. Semantic Propositional Image Caption Evaluation (SPICE) [2] is a principled metric
for automatic image caption evaluation that compares semantic propositional content. Different
from other metrics that are sensitive to n-gram overlap, SPICE hypothesizes that semantic proposi-
tional content is an important component of human caption evaluation. SPICE measures how well
caption generators recover objects, attributes and the relations between them.

4.2 Human Evaluation Metrics
Generally, human evaluation metrics include three aspects, Language-related, Content-related, and
Effectiveness-related. The scores of them are on a scale from 1 to 5 in which 1 means the worst and
5 means the best.

4.2.1 Language-related. Language-related metrics measure the generated documents consider-
ing the natural language features and ignore the documentation’s contents. It usually evaluates
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the generate sentences according to grammaticality and fluency. We select two metrics, namely,
Naturalness and Expressiveness, to measure whether generated sentences are fluent and expressive.

• Naturalness [50]: measures the generated documentation considering fluency and grammati-
cality.

• Expressiveness [36, 37]: measures how readable and understandable the generated documen-
tation.

4.2.2 Content-related. Content-related metrics measure generated documentation by considering
the amount of contents carried from the input code to the generated documentation, ignoring the
fluency of the text. We follow Sridhara et al. [44] and Mcburney et al. [35] to evaluate generated
documentation by Content adequacy and Conciseness.

• Content adequacy [35, 44]: measures whether generated documentationmisses some essential
information that can hinder understanding the method.

• Conciseness [35, 44]: measures whether generated documentation contains unnecessary
information.

4.2.3 Effectiveness-related. Effectiveness-related metrics are used to evaluate whether generated
documentation is useful or helps developers understand programs.

• Usefulness [35]: is used to evaluate how useful the documentation is. For example, a comment
can be marked as useful if it provides any useful information (e.g., implementation details
and potential call risk) for developers.

• Code Understandability [43]: is used to evaluate to what extent the generated documentation
can help developers understand programs.

5 MODELS
This section presents details of different models used in the two tasks. For each task, we select
three state-of-the-art approaches and evaluate documentation generated by them.

5.1 Comment Generation Models
5.1.1 Hybrid-DeepCom [20]. Hybrid-DeepCom is an approach that learns lexical and syntactical
information at the same time while generating Java comments. It first converts the Abstract Syntax
Tree (AST) into a sequence by a special sequential method, Structure-based Traversal (SBT). To
address the vocabulary challenge, it splits identifiers into subtokens according to the camel naming
convention. Then, it exploits two Recurrent Neural Networks (RNN) to encode code tokens and
AST sequences and uses the attention mechanism to fuse the lexical and structural information.

5.1.2 Code2Seq [1]. Code2Seq is proposed to encode source code by leveraging the syntactic
structure of programming languages. The source code is represented as a set of compositional
paths over its Abstract Syntax Tree (AST). Each path is encoded into a vector by the Long Short
Term Memory (LSTM), and tokens (terminals’ values) are encoded into sub-tokens embeddings.
This work is applied to two tasks: code summarization (i.e., predict a Java method’s name given its
body) and code captioning (i.e., predict a natural language sentence that describes a C# snippet). In
this paper, we use it to generate code comments for Java methods.

5.1.3 Re2Com [50]. Re2Com is another state-of-the-art approach to generate code comments for
Java methods. Different from previous studies, it integrates IR techniques and neural networks.
Re2Com mainly consists of two modules: a Retrieve module and a Refine module. It first exploits
the Retrieve module to retrieve similar code snippets and their comments from the training set.
The model then takes code snippets, similar code snippets, and retrieved comments (i.e., exemplars)
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Table 3. Comparison results of different approaches on automatic metrics

Approaches BLEU(%) METEOR(%) ROUGE-L(%) CIDEr SPICE(%)
Comment Generation Task
Hybrid-DeepCom 21.01 15.87 33.10 (0.31) 1.85 (3.40) 21.41 (0.33)

Code2Seq 15.56 14.43 30.77 (0.26) 1.34 (2.57) 22.13 (0.28)
Re2Com 21.06 16.04 36.20 (0.30) 1.70 (3.34) 21.75 (0.35)

Commit Message Generation Task
NMT 14.19 12.99 23.66 (0.29) 1.06 (2.34) 18.07 (0.33))
NNGen 16.42 14.03 27.17 (0.33) 1.37 (2.74) 20.58 (0.34)

PtrGNCMsg 12.31 11.94 24.45 (0.28) 1.10 (2.29) 17.38 (0.30)

as input and then generates comments. Re2Com leverages advantages of IR-based techniques and
neural networks.

5.2 Commit Message Generation Models
5.2.1 NMT [23]. Neural Machine Translation (NMT) is neural networks that model the translation
process from a source language sequence to a target language sequence. Jiang et al. [23] adopt the
NMT algorithm to the commit message generation task. The model mainly consists of an Encoder
and a Decoder. To deal with long diff sequences, they integrate the attention mechanism [3] into
the NMT. They use the Theano-based framework Nematus to implement the NMT model. In this
paper, we reuse the results provided by Liu et al. [32].

5.2.2 NNGen [32]. NNGen leverages the nearest neighbor (NN) algorithm to produce commit
messages. Compared to the NMT model, the NNGen is more straightforward and faster. It first
selects top-k training diffs with the highest similarity scores by calculating the cosine similarity
between the new diff vector and each training diff vector. Then, it selects the nearest neighbor
with the highest BLEU-4 score from top-k training diffs. Finally, NNGen outputs the message of the
nearest neighbor as the final result.

5.2.3 PtrGNCMsg [30]. Because the software developers are free to create any identifiers they
like, the Out-of-Vocabulary (OoV) problem in modeling source code is more serious than that
in the NLP tasks. Liu et al. [30] propose a PtrGNCMsg approach that is based on the pointer-
generator network [41] to deal with the OoV issue while translating diffs into commit messages. It
is an adapted version of the attentional RNN Encoder-Decoder model. While generating commit
messages, PtrGNCMsg can either copy words from diffs or generate words from the vocabulary. In
this way, it can generate more accurate commit messages with OoV identifiers by copying them
from diffs.

6 RESULTS
6.1 RQ1: Comparison of results of the automatic evaluation and human evaluation
We first compare the results from the automatic evaluation and human evaluation. Table 3 and
Table 5 summarize the overall performance of different approaches in terms of automatic and
human scores.

6.1.1 Results on automatic metrics. The experimental results of the two documentation generation
tasks are shown in Table 3. We follow previous studies [1, 20, 23, 30, 32, 50] to calculate the gap
between the documentation generated by different methods and the ground truth. The gap is
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Fig. 5. The bias analysis of human evaluation.

measured by BLEU, METEOR, ROUGE-L, CIDEr, and SPICE. According to papers [2, 10, 27, 39, 48]
that propose these metrics, BLEU and METEOR return scores at corpus level, whereas ROUGE-L,
CIDEr, and SPICE return average scores from each case. Thus, we give the standard deviation
(shown in the brackets) for ROUGE-L, CIDEr, and SPICE. We can observe that these metrics are
different in reflecting the ability of different models. For the code comment generation task, Re2Com
outperforms the other two approaches considering BLEU, METEOR, and ROUGE-L. However,
Hybrid-DeepCom performs best in terms of CIDEr and Code2Seq performs best in terms of SPICE.
For commit message generation task, NNGen performs the best among all approaches.

6.1.2 Results on human evaluation metrics. In this paper, we ask participants to score each docu-
mentation on a 5-point Likert scale. We analyze the results from human annotators.

1) Bias detection
Human evaluation is typically treated as the gold standard for assessing the performance of

automatic evaluation metrics. However, quality assessment is known to be a complex tasks with
low levels of agreement between annotators [14]. Thus, we analyze the bias and consistency among
different annotators.

We first analyze the agreement levels among annotators by using Cohen’s Kappa (κ). Figure 5(a)
illustrates the the average Cohen’s Kappa scores of each participants with others. According to
Fleiss et al. [12], kappas over 0.75 are excellent, 0.40 to 0.75 are fair to good, and below 0.40 are
poor. For comment generation task, annotators P1 and P16 have poor agreement (κ < 0.4) with
others. For commit message generation task, annotators P2, P13, and P16 have poor agreement
(κ < 0.4) with others. We follow Liu et al. [29], we exclude their responses from the analysis below.

Then, we analyze the bias introduced by reference text. While comparing the generated docu-
mentation and reference text, the quality of reference text should be guaranteed to have a good
quality. In this paper, comments and commit messages written by developers are taken as reference
text. To ensure the correlation more reliable, we exclude reference text that achieves low scores
from annotators from the analysis below. We compute the average human evaluation scores (after
normalizing personal bias) of the reference text that is shown in Figure 5(b). Two reference com-
ments achieve low scores from annotators. For reference commit messages, 18 references have low
scores. These low-quality reference texts may introduce bias while computing the correlation. For
example, an uninformative reference text could result in a high BLEU score if an approach does
generate similar, uninformative, documentation. This, in turn, would result in a low score for the
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Table 4. The average Kendall Correlation (τ ) and Pearson Correlation (r ) among Human Evaluators

Metrics Naturalness Expressiveness Adequacy Conciseness Usefulness Understandability

τ r τ r τ r τ r τ r τ r
Comment Generation 0.47 0.51 0.44 0.49 0.72 0.81 0.66 0.74 0.71 0.79 0.71 0.78

Commit Message Generation 0.58 0.74 0.57 0.71 0.66 0.76 0.66 0.75 0.66 0.74 0.65 0.74

Table 5. Comparison results of different approaches on human evaluation. Reference means the human
written documentation. Scores in brackets mean the results removing bias.

Approaches Language-related Content-related Effectiveness-related

Naturalness Expressiveness Adequacy Conciseness Usefulness Understandability
Comment Generation Task
Hybrid-DeepCom 4.60 (4.65) 4.21 (4.28) 2.57 (2.54) 2.51 (2.47) 2.26 (2.22) 2.12 (2.12)

Code2Seq 4.42 (4.46) 4.01 (4.04) 1.48 (1.41) 1.53 (1.48) 1.32 (1.24) 1.28 (1.19)
Re2Com 4.52 (4.57) 3.41 (4.26) 3.21 (3.26) 3.07 (3.11) 2.80 (2.90) 2.71 (2.78)
Reference 4.73 (4.80) 4.19 (4.63) 4.45 (4.56) 4.31 (4.41) 4.28 (4.40) 4.22 (4.33)

Commit Message Generation Task
NMT 4.41 (4.49) 4.21 (4.3) 2.44 (2.46) 2.45 (2.5) 2.14 (2.15) 2.11 (2.12)
NNGen 4.46 (4.51) 4.27 (4.32) 2.57 (2.61) 2.56 (2.60) 2.28 (2.30) 2.23 (2.26)

PtrGNCMsg 3.53 (3.61) 3.41 (3.48) 2.66 (2.71) 2.68 (2.71) 2.42 (2.46) 2.39 (2.42)
Reference 4.68 (4.77) 4.61 (4.72) 4.02 (4.25) 4.00 (4.21) 3.85 (4.05) 3.76 (3.98)

generated documentation given by the human evaluators. The low score from evaluators together
with the high BLEU score, will lower the correlation. Thus, we exclude cases whose reference text
has low quality.

2) Annotators Correlation
To compare the human evaluation consistency, we compute the Kendall Correlation and Pearson

correlation among annotators after removing bias. Table 4 shows the correlation among annotators.
For comment generation task, annotators have low correlation (in terms of Kendall and Pearson
correlations) on Naturalness and Expressiveness. Annotators have high Kendall and Pearson correla-
tions on evaluating the Adequacy, Conciseness, Usefulness, Understandability of generated comments
except the Kendall correlation on the Conciseness. For commit message generation task, annotators
have moderate Kendall correlations (0.5 ≤ τ < 0.7) but high Pearson correlation (0.7 ≤ |r | < 0.9)
on evaluating all human evaluation metrics.

3) Human Evaluation Results
The human evaluation results of these approaches are shown in Table 5. The scores in brackets

are results without bias analyzed above and scores outside brackets are raw results with bias. After
removing bias, the Language-Related results of all code comment generation approaches improve
compared to results with bias. For Content-Related and Effectiveness-Related metrics, the results of
Re2Com and Reference improve whereas Hybrid-DeepCom and Code2Seq decrease after removing
bias. In addition, all results of commit message generation task improve after removing bias.
For the comment generation task shown in Table 5, Hybrid-DeepCom performs the best while

considering the Language-related metrics. It means the text generated by Hybrid-DeepCom is much
more fluent and has fewer grammar errors. The three models’ Naturalness is more than 4, indicating
that all models can generate fluent and grammatical comments. Considering Content-related and
Effectiveness-related metrics, Re2Com achieves the best performance and significantly outperforms
Hybrid-DeepCom and Code2Seq. The text generated by the Re2Com model expresses more content
information (e.g., keywords and code structure) of Java methods. Besides, comments generated by
Re2Com are more useful and helpful in code understanding than those generated by others.
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Fig. 6. Distribution of different metrics. Figure (a) and Figure (b) are distributions of automatic metrics and
human evaluation metrics for comment generation task respectively; Figure (c) and Figure (d) are distributions
of automatic metrics and human evaluation metrics for commit message generation task

For the commit message generation tasks, NNGen performs the best on Language-related metrics,
whereas PtrGNCMsg performs the best on Content-related and Effectiveness-related metrics. Per-
formance of PtrGNCMsg is much worse than the NMT model and the NNGen model considering
the Language-related metrics. But in terms of Content-related and Effectiveness-related metrics, it
slightly outperforms other models. The messages generated by PtrGNCMsg contain more Out of
Vocabulary (OoV) words, although this paper exploits the pointer mechanism to alleviate this issue.
OoV words have negative impacts on the naturalness and the expressiveness. However, the pointer
mechanism helps on the content information selection that contributes to code understandability.

From Table 5, we can find that documentation generated by different approaches achieve almost
equivalent results to human-written documentation (i.e., Reference) in Language-Related aspects.
In other words, generated documentation is easy to read and understand, and human annotators
are hard to distinguish generated documentation from reference text considering the naturalness
and expressiveness. This is a “milestone” for automated approaches as they can generate fluent,
grammatical, and expressive documentation which is important in text generation tasks [46]. The
next milestone is the achievements on the Content-Related and Effectiveness-Related aspects. To
achieve this “milestone”, the generated documentation should semantic correct and consistent with
the source code or commits.

6.1.3 Distribution of different metric scores. We represent the distribution of different metric scores
using the Kernel Density Estimate (KDE) plot. Shown as Figure 6(a), BLEU and METEOR scores
have similar distribution except for the second peak (BLEU is around 0.8 and METEOR is around
0.5). Compared to BLEU, METEOR, and SPICE the distribution of ROUGE-L has less variance, and
its peaks are around 0.2 and 0.9. The commit message generation task is shown in Figure 6(c); BLEU,
METEOR, ROUGE-L, and SPICE share similar peak positions at around 0.1 and 1.0, respectively.
We can observe that automatic metrics tend to give a relatively low or a relatively high score,
causing two peaks in Figure 6(a) and Figure 6(c). Different from automatic metrics, the distribution
shown in Figure 6(b) and Figure 6(d) of human evaluation metrics is quite different. Content-related
and Effectiveness-related metrics have a similar distribution. Peaks of Content-related metrics and
Effectiveness-related metrics are around 1.5 and 2 respectively for both tasks. However, the peaks of
Language-related metrics are much higher than other metrics.

Summary of RQ1: We replicate the state-of-the-art approaches for documentation gen-
eration and evaluate them in terms of automatic and human evaluation metrics. We also
analyze the bias in the annotated data and the correlation between annotators can reach
0.81 in Pearson Correlation and 0.72 in Kendall Correlation.
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Fig. 7. Kendall and Pearson correlation results for comment generation task and commit message generation
task. Bordered area shows correlations between human ratings and automatic metrics, the rest shows
correlations among the metrics. Blue colour of circles indicates positive correlation, while red indicates
negative correlation. The size of circles denotes the correlation strength.

6.2 RQ2: Correlation inside of Human evaluation or automatic evaluation metrics.
In this RQ, we explore the metric correlation inside of human evaluation or automatic evaluation.
The part outside the box of Figure 7 shows the Kendall and Pearson correlation results among
evaluation metrics for comment generation task and commit message generation task.

6.2.1 Human evaluation metrics consistency. For comment generation task, Naturalness and Ex-
pressiveness have moderate Kendall correlation and high Pearson correlation between them. In
addition, Language-related metrics (i.e., Naturalness and Expressiveness) negligibly correlate to other
metrics (τ |r < 0.3). Considering the high scores of the naturalness and expressiveness in Table 5,
we find that most comment generation models can generate fluent and grammatical comments.
In other words, we can not measure the quality of different models only considering whether the
generated comments are fluent and grammatical or not. For Content-Related metrics (i.e., Adequacy
and Conciseness) and Effectiveness-Related metrics (i.e., Usefulness and Understandability), the have
high or very high correlation between each other.
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For commitmessage generation task,Naturalness and Expressiveness have high Kendall correlation
(τ : 0.76) and very high Pearson correlation (r : 0.95) between them. Naturalness and Expressiveness
have low Kendall correlations (with 0.34 ≤ τ < 0.44) with other metrics. In addition, Naturalness
has low Pearson correlation and Expressiveness has moderate Pearson correlation with other
metrics. The correlation between Content-related metrics and others are similar to the comment
generation task. We can find that generated documentation with exhaustive content and less useless
information is much more useful for developers. In other words, the more information is carried
from the input source code/commit diff, the more useful and helpful the generated documentation
is.

6.2.2 Automatic metrics consistency. Among these five automatic metrics (i.e., BLEU, METEOR,
ROUGE-L, CIDEr, and SPICE), SPICE has the lowest correlation with others. SPICE has moderate
Kendall correlation and high Pearson correlation with other automatic metrics on the two tasks.
Other automatic metrics have high correlation (with τ |r > 0.7) from each other. SPICE evaluates
the similarity of candidate and reference text by comparing the semantic relations in scene graphs
instead of N-gram overlappings. It causes the lower correlation between SPICE and other automatic
metrics. Automatic metrics (except SPICE) are generally based on n-gram overlaps between the
two sentences, thus, they achieve a high correlation. Particularly, CIDEr almost perfect Pearson
correlates to BLEU (with r : 0.98 and r : 0.99) for comment generation task and commit message
generation task, respectively.

Summary of RQ2: For human evaluation metrics, we find that Content-Related metrics
(i.e., Adequacy and Conciseness) and Effectiveness-Related metrics (i.e., Usefulness and
Understandability), the have high or very high correlation between each other. It means
that the more information is carried from the input source code/commit diff, the more
useful and helpful the generated documentation is. For automatic metrics, they have high
correlation from each other.

6.3 RQ3: Do automatic metrics such as BLEU, METEOR, ROUGE-L, CIDEr, and SPICE
correlate with human judgment on generated documentation?

In RQ2, we mainly explore correlations in human evaluation metrics and automatic metrics,
respectively. In this RQ, we further analyze the correlation between automatic metrics and human
evaluation metrics. This correlation reveals how much automatic metrics can reflect the human
perspective.

6.3.1 Correlation between automatic metrics and human evaluation metrics. Figure 8 illustrates the
relationship between automatic metrics and human evaluation metrics in comment generation
tasks via a Scatter plot. The data points of Language-Related scores are scattered close to 4-5 and
we can not find an obvious relationship between it and automatic metrics. When it comes to
Content-Related and Effectiveness-Related metrics, these points are scattered more regularly. We can
observe fairly even linear band of data points in the relationship between METEOR/ROUGE-L and
Content-Related/Effectiveness-Related metrics. The larger band widths of ROUGE-L and Content-
Related/Effectiveness-Related metrics indicate that ROUGE-L is less correlated to them. The scatter
plot of commit message generation task shown in Figure 9 is similar to the Figure 8.
To further explore the detailed correlation between automatic metrics and human evaluation

metrics, we follow Coughlin et al. [9] and measure Kendall Correlation τ and Pearson Correlation
r [5]. The results are illustrated in the bordered area of Figure 7. Automatic metrics are weakly
correlated to Language-related metrics (both Naturalness and Expressiveness). Specifically, they
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Fig. 8. Scatter plots of automatic metrics scores against the human evaluationmetrics scores on code comment
generation task.

have no correlation with the Naturalness for comment generation task (Pearson’s r < 0.1 and
Kendall τ < 0.1 , p < 10−3). For Language-related metrics and Effectiveness-related metrics, the
Kendall correlations between automatic metrics and them (varies from 0.43 to 0.54 ) are much
lower than those of human evaluators (varies from 0.66 to 0.71). Although the Pearson correlations
between automatic metrics and Language-related metrics and Effectiveness-related metrics are
moderate, they are also much lower than those of human evaluators (varies from 0.74 to 0.81). In
addition, we find that the METEOR achieves the strongest correlation to human evaluation metrics,
whereas BLEU has the weakest correlation with them. However, METEOR is often omitted by
many code documentation works [1, 32, 50]. According to Figure 7 shows above, METEOR (with
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Fig. 9. Scatter plots of automatic metrics scores against the human evaluation metrics scores on commit
message generation task.

Pearson’s r about 0.7 and Kendall’s τ about 0.5,p < 10−3) should be included among the current
widely used metrics to measure the documentation generation task.

6.3.2 Correlations in different quality levels. As suggested by Novikova et al. [38], we “bin” our
annotated data into three groups: bad, which comprises low ratings (≤ 2); good, comprising high
ratings (≥ 4); and finally a group comprising neutral ratings. Then, we conduct correlation analysis
between automatic metrics and human metrics in these three groups, respectively.

The top part of Table 6 shows the correlations of automatic metrics and human ratings of code
comment generation task in different bins. We find that there is no generated comments with low
human ratings of Naturalness. The generated comments with high human rating scores and low
human rating scores of Effectiveness-Related metrics correlate significantly better with automatic
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Table 6. Pearson correlation between metrics and human ratings for results from different bins.
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sk

Bad Avg Good
Nat Exp Ade Con Use Und Nat Exp Ade Con Use Und Nat Exp Ade Con Use Und

BLEU - 0.05 0.13 0.12 0.16 0.18 0.20 -0.03 0.26 0.20 0.05 0.19 0.02 0.04 0.32 0.23 0.32 0.30
METEOR - -0.95 0.26 0.24 0.35 0.37 0.22 -0.03 0.37 0.30 0.07 0.18 0.06 0.11 0.43 0.31 0.35 0.32
ROUGE-L - -0.39 0.24 0.23 0.33 0.36 0.32 -0.04 0.33 0.24 0.01 0.13 0.07 0.11 0.38 0.28 0.29 0.25
CIDEr - -1.0 0.15 0.11 0.21 0.22 0.17 -0.07 0.30 0.19 0.07 0.17 0.04 0.07 0.36 0.29 0.30 0.28
SPICE - - 0.13 0.13 0.27 0.30 0.08 0.06 0.28 0.26 0.13 0.19 0.07 0.10 0.35 0.30 0.30 0.28
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om
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at
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n
Ta

sk Bad Avg Good
Nat Exp Ade Con Use Und Nat Exp Ade Con Use Und Nat Exp Ade Con Use Und

BLEU 0.01 0.03 0.04 0.06 0.20 0.23 -0.19 -0.24 0.11 0.20 0.04 -0.02 0.24 0.34 0.47 0.42 0.35 0.39
METEOR 0.13 0.22 0.20 0.18 0.32 0.35 -0.02 0.07 0.15 0.27 0.13 0.05 0.26 0.38 0.60 0.60 0.49 0.48
ROUGE-L 0.11 0.04 0.13 0.11 0.28 0.32 -0.02 0.00 0.16 0.18 0.13 0.03 0.25 0.40 0.52 0.49 0.45 0.39
CIDEr -0.03 0.08 0.10 0.14 0.22 0.26 -0.22 -0.19 0.10 0.23 0.09 -0.02 0.25 0.35 0.52 0.48 0.40 0.44
SPICE 0.04 0.05 0.06 0.13 0.13 0.17 0.05 0.12 0.14 0.26 0.13 0.02 0.29 0.41 0.50 0.52 0.47 0.40

metrics than those with average human ratings. It shows that metrics are good in distinguishing
extreme cases, i.e. cases rated as clearly good or bad by the human judges, but do not perform
well for cases rated in the middle of the Likert scale. However, the Content-Related correlations in
the average bin are better than the bad bin. The highest correlation in the bad bin barely reaches
r ≤ 0.26 (very weak correlation). For the commit message generation task, the same pattern can be
observed for correlations.

Summary of RQ3: Among all automatic metrics, METEOR has the highest correlation
with human evaluation metrics (Pearson: 0.7 and Kendall: 0.5). Although this correlation is
good, it still has a great gap when compared to correlation between different annotators
(Pearson: 0.81 and Kendall: 0.72).

7 DISCUSSION
7.1 How do developers evaluate the usefulness of the code documentation?
Although reference documentation achieves high usefulness scores (shown in Table 5), we find
that some cases have low-scored reference text. According to Novikova et al. [38], ratings less
than 2 (≤ 2) are regarded as low score ratings. As Figure 10 shows, 89 and 216 cases in the 1,200
labeled reference documentation (200 reference documentation labeled by six annotators) with
the usefulness score lower than 3 (i.e., 1-2) for comment generation task and commit message
generation task, respectively. It indicates that about 7.4% to 18% human-written reference texts are
not deemed to be highly useful by other developers. To investigate the developers’ perspectives on
the usefulness of code documentation, we conduct an interview 24 annotators again and ask them
how to evaluate the usefulness and why they give low scores for the documentation usefulness.
According to annotators’ responses, we summarize 3 reasons that they score low usefulness of

code documentation:
Reason 1. Code Understandability. The usefulness of code comment is depending on the

understandability of the source code. If the source code is hard to understand, the comment is
useful to help developers understand the source code. On the contrary, the comment is useless and
unnecessary if the source code is very easy.

Reason 2. Program Comprehension Improvement. According to annotators, a useful com-
ment should help improve code comprehensibility. In particular, it can tell developers the function-
ality and how to use a code snippet. If the comment miss such information, it would be useless for
developers.
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private static Map<INaviViewNode,INaviViewNode> createNodes(final INaviView target,
final Collection<INaviViewNode>nodes){

final HashMap<INaviViewNode,INaviViewNode>map=
new HashMap<INaviViewNode,INaviViewNode>();

for(final INaviViewNode blockNode:nodes){
createNodes(target,blockNode,map);

}
return map;

}

Reference: clones a list of source nodes and inserts them into the target view.
One of the usefulness score: 3

Java method:

Fig. 11. A case with reference text receiving a low usefulness score in the survey.

Reason 3. Lack of Keywords. For some annotators, keywords are one of the most important
factors for them to rate the Usefulness. Comments are useful if all important keywords in the source
code are listed in them. In other words, lack of keywords to illustrate what the programs do in the
code comments leads to low score.
In addition, the developers’ perspective on commit message is different. According to their

responses, the reasons they give low scores for commit message usefulness are as follows:
Reason 1. Trivial Commit Messages. A useful commit message should include code change

details that explain what changed. Trivial commit messages such as “Create README.md” and “Fix
typo” are limited for developers to know the main content of commits. Therefore, trivial commit
messages obtain low usefulness scores.

Reason 2. Wrong Keywords. For annotators, keywords are essential for developers to read
commit messages. Only one wrong keyword may cause low usefulness scores. For example, Figure
12 shows one case that contains the wrong keyword. The details included in the generated message
“add cache to Travis build” is wrong; the correct one is “disable travis cache”. The wrong detail
leads to a low usefulness score.
According to the annotators’ responses, key pieces of information are essential for the code

documentation’s usefulness. Thus, the current automatic metrics should be improved by considering
the number of key words that explain the source code or diff.

7.2 Code Documentation Generation vs. Neural Machine Translation (NMT)
Deep-learning-based documentation generation techniques are typically regarded as a kind of
translation task, translating from one (programming) language to another (natural) language [15].
Papineni et al. [39] reported that for the task of translation from Chinese to English, BLEU score
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Generated commit message by PtrGNCMsg: add cache to Travis build

Reference: Disable travis cache

Fig. 12. An example of generated commit message in which key information is wrong

and the human judgment is about 0.96 (the bilingual group). The correlation is much higher than
what our study finds for code documentation generation task.

We analyze the code documentation generation and NMT task (e.g., translating English to French),
and find that:

• Developers have different perspectives on code documentation. For example, they may judge
a commit message by considering “what” (what content is modified), “How” (how to modify),
“Why” (why to modify). The human evaluation judgment has significant subjective differences.
However, current automatic metrics can not reflect these subjective differences.

• The corpus of code documentation generation is not aligned (i.e., each word in generated
sentence has corresponding word in source sentence [3]). The generated documentation is
abstracted from the input software artifacts. In addition, the generated documentation can
describe the functionality of the source code or how to use the source code.

• There is only one reference when evaluating the generated documentation, whereas there
are multiple references in the NMT task. In the documentation, different words may describe
the same contents. Therefore, multiple references can be included while evaluating generated
documentation.

7.3 Gap between machine-generated documentation and human-written
documentation

In addition, we find that the results of generated documentation on Content-related and Effectiveness-
related metrics are significantly worse than the results for the reference text (with p-value < 10−3).
We further analyze the distribution of scores in the two aspects. The distribution is shown in Figure
13 and Figure 14. The scores of most human-written references vary from 3.5 to 4.5 that indicate
that references are more helpful for developers to understand the source code/diffs. As expected,
the generated documentation shows fairly low scores (most scores are less than 3). In particular,
most scores of comments generated by Code2Seq are lower than 2. It demonstrates that many
generated comments miss the most important information to describe the source code.

The results demonstrate a big gap between the machine-generated documentation and human-
written documentation considering the Content-related and Effectiveness-related aspects.
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Fig. 13. Distribution of the Content related and Effectiveness related results of comments generated by
different approaches.
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Fig. 14. Distribution of the Content related and Effectiveness related results of commit messages generated
by different approaches.

7.4 Usefulness vs Understandability
According to the high correlation between Usefulness and Understandability shown in Figure 7
and the discussion of the Usefulness criteria in Section 7.1, many developers think Usefulness and
Understandability are equivalent. However, from the interview of annotators, we find that they are
not always equivalent.

• Implementation details are not always useful. Implementation details describe the algorithms
of code snippets and can improve the understandability of source code. However, some
developers think them useless as they want more information on the “how to use” information.
If the documentation is just a “translation” of the source code, it is not useful

• Source code is self-documenting. Sometimes, developers have no problem reading code espe-
cially for senior developers, and in fact preferred it for finding more accurate information.
Thus, documentation (even understandable) is useless for them.

7.5 Implications
According to Figure 7, we can observe that the Usefulness and Understandability are most relevant
to Adequacy. In other words, the Usefulness and Understandability of the generated documentation
depend on whether it contains enough useful information carried from the input. Therefore, we
can improve existing automatic metrics by considering the input source code. First, we should
identify tokens that are related to documentation in the input, such as identifiers and APIs in the
source code. Next, we compute the overlapping rate between generated documentation and the
identified tokens. Finally, we get the final score by integrating existing automatic metrics and the
overlapping rate. In this way, the improved automatic scores can illustrate the Adequacy metric,
thus improving the correlations.
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8 THREATS TO VALIDITY
One threat to validity is that both the two code documentation tasks are based on Java datasets.
Although Java may not be representative of all programming languages, models we used in this
paper can be easily applied to other programming languages.
The second threat to validity is our human evaluation. We cannot guarantee that each score

assigned to each case is fair. Besides, participants’ programming experiences may introduce bias
into the evaluation. To mitigate this threat, we evaluate each case by six human annotators, and we
use the average score of the six annotators as the final score for each case.
The third threat to validity is the amount of cases that practitioners evaluate. In this paper,

each annotator evaluates 50 cases for each of the two tasks. Thus, each annotator evaluates 100
cases and each case contains four items. We follow Liu et al. [29] that give each annotator 100
questions per dataset and each question contains 5 different responses. Long-time labeling task
may lead to exhaustion of the annotators and then result in a decrease in the labeled data quality.
To alleviate this threat, we recommend that participants rest for at least half an hour for every half
hour annotation. In addition, we do not limit the amount of time for annotators to complete this
user study. Most practitioners complete the evaluation process in one week.

Another threat to validity is the replication of each model. To ensure that the experimental results
are consistent with their papers, we reuse the generated documentation if it is provided [32]. If we
cannot get the generated documentation, we retrain the models using the source code provided
by the authors. In addition, we reuse the parameters provided by the authors and do not conduct
parameter tuning. The performance of deep learning models can be affected by tuning parameters.
Thus, the quality of generated documentation by deep learning models may vary along with
parameters. We compare the results generated by models with parameters provided by original
papers. According to previous studies [1, 50], parameters used in their works are tuned and best
parameters are selected according to the performance. Therefore, reusing the provided parameters
can ensure the quality of the generated documentation.

9 RELATEDWORK
9.1 Code Comment Generation
Code comment is one of the most common code documentation and can help developers understand
what a program does. However, few software projects adequately comment on the code [44].
Therefore, recent research has made great efforts on the automatic generation of comments from
source code.

Traditional techniques mainly generate code comments by defining heuristic rules and templates.
Sridhara et al. [44] propose Software Word Usage Model (SWUM) to capture key terms in source
code and then define different templates for different semantic segments in source code to generate
readable comments. Similarly, Mcburney et al. [35] use SWUM to capture keywords in the source
code and utilize PageRank to select important Moreno et al. [36] pre-define heuristic rules to select
information and generate comments for Java classes by combining the information. Haiduc et
al. [17] exploit IR techniques, Vector Space Model and Latent Semantic Indexing to select relevant
terms from source code and assemble them into comments. These studies usually evaluate their
approaches through human evaluation, for example, Moreno et al. [36] ask 22 graduate students to
judge the content adequacy, conciseness, and expressiveness of automatically generated summaries
for 40 Java classes.
Recently, deep learning techniques are widely used to generate comments from source code.

Generally, they exploit neural networks with Encoder-Decoder architecture in which the Encoder
learns the representation of source code and the Decoder generates natural language descriptions
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from the representation. Compare to the traditional techniques, these techniques do not need
manually selecting keywords and defining heuristic rules. Iyer et al. [22] propose to generate
comments for C# and SQL code snippets by an RNN equipped with an attention mechanism. Hu et
al. [19, 20] integrate the AST sequences into the Seq2Seq model to generate code comments for Java
methods and achieve better results. Leclair et al. [25] then propose to use multi-encoders to deal
with the AST sequences and the source code. Alon et al. [1] propose a novel technique Code2Seq
that encodes AST paths and generates more accurate comments. Recently, researchers have taken
advantage of both the retrieval technique and the neural network [50, 53]. Wei et al. [50] propose
Re2Com that generates comments with the assistance of similar code snippets and their comments.
Zhang et al. [53] propose Rencos to combine the retrieval-based and NMT-based methods. Liu et
al. [31] propose a retrieval-augmented mechanism to generate comments for C projects. They
propose a framework named HGNN to fuse the static graph and dynamic graph to capture graph
information. LeClair et al. [24] propose a graph-based neural architecture that better matches the
default structure of the AST to generate comments. In addition, reinforcement learning is also
exploited to improve the comment generation [49] by solving the exposure bias problem during
generating comments.
Although human evaluation is accurate and convincing, it is time-consuming and high costs.

Therefore, these studies usually use automatic metrics (e.g., BLEU and ROUGE) to evaluate on a
large-scale dataset.

9.2 Commit Message Generation
Rule-based approaches use pre-defined rules and templates to generate commit messages. Delta-
Doc [6] analyze the program’s control flow between different code versions and then use the
template "do Y Instead of Z" to generate the commit messages. ChangeScribe [28][8] also fill a
pre-defined commit message template with extracted information from corresponding source code
changes and the abstract syntax trees.
Several retrieval base approaches were proposed for the effectiveness of information retrieval

techniques. Huang et al. [21] reuse the commit messages by measuring the syntactic similarity
and semantic similarity between changed code fragments. Different from Huang et al. [21], Liu et
al. [32] not only focus on code changes and generate commit messages directly from git diffs based
on the nearest neighbor algorithm.
Deep learning models have been used to generate commit messages for git diffs in recent

years. Jiang et al. [23] and Loyola et al. [34][33] generate commit messages based on the attentional
encoder-decoder model, which is a classic method in Natural Language Processing. PtrGNCMsg [30]
use a pointer-generator network to address the Out-of-Vocabulary (OoV) problem. In addition to
solving the OoV problem, CODISUM [52] combine the structure and semantics of code to generate
commit messages.

10 CONCLUSION
Developers spend a great deal of time on program comprehension during software maintenance and
development. To help developers better understand programs, researchers have proposed various
methods to automatically generate documentation. Specifically, many deep learning approaches
have been proposed to learn the representation of source code and then generate code documenta-
tion. They usually evaluate models’ performance by automatic metrics that are widely used in the
NLP domain. However, there is no study to explore whether these metrics are correlated to human
evaluation metrics.

In this paper, we replicate and evaluate the state-of-the-art documentation generation approaches.
Then, we analyze the correlation between the automatic results and human evaluation results (based

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:26 Xing Hu, et al.

on ratings given by 24 user study participants). We find that documentation with higher content
adequacy and conciseness scores is much more useful and helpful for code understandability. Also,
our study finds that among the automated metrics, METEOR is the most correlated to human
evaluation metrics. In future work, we will improve automatic metrics and make them more
correlated to human perspectives on code documentation generation.
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