
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2022

Joint pricing and matching for city-scale ride pooling Joint pricing and matching for city-scale ride pooling

Sanket SHAH

Meghna LOWALEKAR

Pradeep VARAKANTHAM
Singapore Management University, pradeepv@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
SHAH, Sanket; LOWALEKAR, Meghna; and VARAKANTHAM, Pradeep. Joint pricing and matching for city-
scale ride pooling. (2022). Proceedings of the 32nd International Conference on Automated Planning and
Scheduling, Singapore, Singapore, Virtually, 2022 June 13–24. 32, 499-507.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7656

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Joint Pricing and Matching for City-Scale Ride-Pooling

Sanket Shah1, Meghna Lowalekar2, Pradeep Varakantham2

1 Harvard University, Cambridge, MA
2 Singapore Management University, Singapore

sanketshah@g.harvard.edu, meghna.lowalekar@gmail.com, pradeepv@smu.edu.sg

Abstract
Central to efficient ride-pooling are two challenges: (1) how
to ‘price’ customers’ requests for rides, and (2) if the cus-
tomer agrees to that price, how to best ‘match’ these re-
quests to drivers. While both of them are interdependent, each
challenge’s individual complexity has meant that, historically,
they have been decoupled and studied individually.
This paper creates a framework for batched pricing and
matching in which pricing is seen as a meta-level optimiza-
tion over different possible matching decisions. Our key
contributions are in developing a variant of the revenue-
maximizing auction corresponding to the meta-level opti-
mization problem, and then providing a scalable mechanism
for computing posted prices. We test our algorithm on real-
world data at city-scale and show that our algorithm reliably
matches demand to supply across a range of parameters.

1 Introduction
On-demand Ride-pooling allows the ride-pool operator (e.g.
Uber) to serve more customers with the same number of ve-
hicles and, hence can increase the earnings for drivers while
decreasing the costs for riders. Because of these benefits,
ride-pooling services have become increasingly popular in
recent years, with more than 20% of all Uber trips coming
from their UberPool offering (Heath 2016).

Central to the efficiency of ride-pooling are two sets of
choices that an operator has to make – (1) Pricing: When a
customer requests a ride, what price should be quoted?, and
(2) Matching: If the customer accepts the quoted price, to
what vehicle should they be matched? These choices can be
thought of as ‘levers’ that the operator can use to maximise
their revenue (or some other metric) subject to constraints
on the quality of service (e.g. customer ‘wait time’ for) and
reliability of service (e.g., the ratio of the number of requests
for which customers have accepted the quoted price to the
number of customers that are actually served).

It is important to note here that these two problems are
interdependent – the price that is quoted influences who
accepts the quote and, as a result, which people can be
matched. Given this dependence, it is vital that these two
metaphorical levers be adjusted together to create the op-
timal outcome. However, the individual matching or pric-

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing problems are hard to solve even independently1, and the
need for joint optimization makes the problem more chal-
lenging. Therefore, even though the importance of doing
both pricing and matching together has been acknowledged
(Özkan 2020), most existing work focuses on optimizing
along only one dimension (Banerjee et al. (2015), Bimpikis
et al. (2019), Lowalekar et al. (2019), Shah et al. (2020)).

Existing research on jointly optimizing pricing and
matching decisions is either not scalable (Chen et al. 2019b)
or rely on an unrealistic assumption of knowing all the (cur-
rent and future) customer requests in advance (Ma, Fang,
and Parkes 2019) for taxi-on-demand (vehicles having unit-
capacity) problem. In this paper, we consider the challeng-
ing problem of jointly optimizing the pricing and matching
decisions for multi-capacity vehicles in a scalable manner
without making any unrealistic assumptions.
Contributions:
1. A novel framework for joint pricing and matching for

city-scale ride-pooling by considering pricing as a meta-
level optimization over matching decisions. (Sec 2).

2. A variant of the revenue maximizing auction (Myerson
1981) to represent the meta-level optimization problem
(Sec 4.1) for pricing.

3. A principled and scalable algorithm for computing posted
prices using the revenue maximizing auction (Sec 4.2).

4. An open-source simulator for joint pricing and matching
based on real-world data (Sec 5.1).

5. Demonstration of the algorithm efficacy on the above sim-
ulator using real-world data from New York Yellow Taxi
(Sec 5.3). Our proposed approach not only provides high
revenue for ride-pooling companies, it also increases cus-
tomer satisfaction by finding prices such that nearly all the
accepted requests can be matched to available vehicles.

6. An analysis to show that there is significant scope for ad-
ditional gains from algorithmic improvement (Sec 6).

2 Problem Description
We are given a set of vehicles V , each of which can poten-
tially serve multiple customers simultaneously (e.g., Uber-
Pool). In parallel, the operator receives a stream of requests

1Matching is challenging as vehicles have to be matched to
groups of requests. Pricing is challenging as revenue maximization
is constrained by requests and price consciousness of customers.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

499

(5) Revenue Maximizing Matching

Figure 1: Schematic with Example. We begin in (1) with two vehicles that comprise V (in orange), each of which has existing
customers that they must drop off at the positions marked by the orange dots. We also have four requests that comprise R (in
blue), each of which has an origin and a destination. Then, in (2), the operator has to quote prices µ for each of the requests.
Assume that Vehicle 1 has capacity of 2 and, as a result, cannot serve requests A, B, and D. Consequently, the operator raises the
prices such that only two out of the three accept, in expectation. In (3), the prices are shown to customers who decide whether
to proceed at these prices. Finally, in (4), the operator matches the requests Rµ of the customers who have accepted the prices
to vehicles such that the utility to the operator is maximised. The revenue maximizing matching is shown in (5).

from customers which are batched together over a fixed in-
terval (e.g., 60 seconds) and the resultant set of requests is
given by R. Given this set of vehicles and requests, the con-
sequent sequence of events is described in Figure 1. The
central challenge of pricing is to price such that an objec-
tive (e.g., revenue) is maximised (in expectation) in the con-
sequent matching. We first introduce relevant symbols and
then formally define the ‘matching’ and ‘pricing’ problems.

2.1 Relevant Symbols
R The set of customers’ requests for rides.
V The set of vehicles that can serve these requests.
µ The set of prices quoted by the operator for the requests

in R. The price for a request r ∈ R is denoted by µr.
p The price-sensitivity function maps the set of prices µ to

the probability of acceptance p(µ). It is assumed to be
known apriori. For a given request r ∈ R, pr(µr) is the
probability of acceptance of the customer at the price µr.

Rµ The set of requests for which the customers accepted the
prices quoted by the operator.

t A set of requests collectively known as a ‘trip’. This is
the fundamental unit of matching and is described in
more detail in Sec 2.2. The set of all possible trips is
denoted by T , the subset of trips that contain the request
r is given by Tr, the subset of requests that correspond
to a trip t is given by Rt, the set of vehicles that can
serve trip t is given by Vt and the subset of prices for the
requests in t is given by µt.

X A set of indicator variables that denotes a matching solu-
tion. xtv ∈ X denotes whether or not the trip t has been
assigned to the vehicle v.

C A function that maps the set of accepted requests Rµ
to the set of feasible matchings, determined by the con-
straints on the matching requests to vehicles.

O The objective to be maximised for the matching. It is
defined as the sum over the individual values of the ob-
jective otv for each trip t assigned to vehicle v in the final
matching (see Sec 2.2). Each otv value is, in turn, depen-
dent on the prices of each of the requests r ∈ t.

2.2 Matching
Input: The set of vehicles V , the set of requests for which
the customers accepted the prices Rµ, the set of prices µ,
the function C that generates feasible matchings based on
the constraints, and the objective function O.
Matching in a Tripartite Graph: The aim of matching is
to create a mapping from Rµ 7→ V such that the objective O
is maximised subject to some constraints on matchings. This
problem can be seen as a ‘maximum weight bipartite match-
ing’ in the unshared case but, bipartite matching doesn’t cap-
ture the structure of the matching problem when multiple re-
quests can be matched to a single vehicle. For example, con-
sider the two requests A and C in Figure 1. While Vehicle 1
can serve the two requests individually, it cannot serve them
together as it would lead to an unacceptable amount of de-
tour; these kinds of combinatorial constraints cannot be cap-
tured in a bipartite graph. The way to solve this problem is to
create an intermediate representation called a ‘trip’ which is
a combination of requests (Alonso-Mora et al. 2017). Then,
requests are mapped to vehicles via trips such that both vehi-
cles and requests can be assigned at most one trip. Each trip
and vehicle mapping has an associated weight of otv , and
the solution to the matching problem can be seen as a maxi-
mum weight matching in this resulting tripartite graph – (5)
in Figure 1. We write this optimization using the equation:

X∗ = argmax
X∈C(Rµ)

∑
xtv∈X

xtv · otv(µt) (1)

Solution Method: The matching is performed by solving an
Integer Linear Program given below. While there is a com-
binatorially large number of trips in the worst case, Alonso-
Mora et al. (2017) suggests an approximation method for
generating feasible trips that works well in practice.

max
∑
xtv

xtv ∗ otv

s.t.
∑
v∈V

xtv = 1 ::: ∀t ∈ T∑
t∈Tr

∑
v∈Vt

xtv ≤ 1 ::: ∀r ∈ R

500

Matching Pricing Future Demand and Capacity Request
Price-Sensitivity of Vehicles Processing

(Banerjee, Riquelme, and Johari 2015) Not optimized optimized Known Distribution Unit Capacity Region based
(Banerjee, Johari, and Riquelme 2016) Pricing
(Bimpikis, Candogan, and Saban 2019) Sequential (Matching)
(Ma, Zheng, and Wolfson 2013) optimized Not optimized No Information Multi-Capacity Batched (Matching)
(Zheng, Chen, and Ye 2018)
(Chen et al. 2019a) optimized optimized Known Distribution Unit Capacity Batched(Matching)

Sequential (Pricing)
(Ma, Fang, and Parkes 2019) optimized optimized Exact Information Unit Capacity Batched
Our Work optimized optimized Known Distribution Multi-Capacity Batched

Table 1: Summary of Differences Between Our Work and Related Work

Matching Objective: In our formulation, we abstract away
the objective in terms of otv , but concretely it represents the
system-level objective that the operator wants to maximise.
This could be an obvious goal like profit, revenue, or the
number of trips served, but may also be a way to incorpo-
rate future information (Shah, Lowalekar, and Varakantham
2020) or even fairness metrics (Lesmana, Zhang, and Bei
2019). All these objectives can be modelled as a linear func-
tion of the revenue of the trip2

• Profit: otv(µt) = [
∑
r∈Rt µr] − cost

t
v , where costtv is a

constant denotes the marginal increase in cost incurred
by serving a trip t with vehicle v.
• Number of requests: otv(µt) = 0 · [

∑
r∈Rt µr] + |Rt|,

where you ignore the revenue entirely.
• NeurADP (Shah, Lowalekar, and Varakantham 2020):
otv(µt) = [

∑
r∈Rt µr] + γ · Vtv , where the second term

γ ·Vtv is a learned constant. While we look at determining
the optimal pricing and matching for a given batching in-
terval in this paper, NeurADP attempts to match riders to
drivers such that it is optimal across multiple batching in-
tervals. Their solution takes the form of adding a ‘future
value’ γ ·Vtv to the matching objective in every batching
interval and fits neatly into our generalisation.
• Historical Earnings (Lesmana, Zhang, and Bei 2019):
otv(µt) = [

∑
r∈Rt µr] + histv , where the second term

is a constant that denotes the historical earnings for a
given driver. In the paper, they even out driver earnings
by adding the driver’s historical earnings to the objective.

As a result, we focus on maximising a set of general ob-
jectives that can be written as a linear function of a trip’s
revenue. This is concretely given by the following equation,
where αtv and βtv are constants:

otv(µt) = αtv
∑

r∈Rt
µr + βtv (2)

The overall objective is combinatorial in the requests r ∈
Rµ because each otv component depends on the source and
destination of all the requests in trip t ⊂ Rµ, as well as the
existing trajectory of vehicle v.

2.3 Pricing
Input: The set of vehicles V , the set of requestsR, the price-
sensitivity function p, a function that generates the set of fea-
sible matchings based on constraint in C, and the objective

2Details in appendix at https://tinyurl.com/52y8446c.

O. We assume that the price-sensitivity function p is known
apriori. This is a reasonable assumption given the amount of
data available with ride-pool operators (Korolko et al. 2018).
Objective: The aim of pricing is to ensure that the match-
ing it induces maximises the objective in expectation. In this
sense, pricing can be seen as a meta-level optimization over
matching. Concretely, it can be written as:

µ∗ = argmax
µ

E
Rµ∼ p(µ)

[
max

X∈C(Rµ)

∑
xtv∈X

xtv · otv(µt)
]

(3)

Challenges: This formulation adds an additional layer of
complexity over an already complex matching problem. In
fact, even calculating the expected value of a fixed set of
prices µ naively is exponential in the number of requests be-
cause it requires considering all the different possible com-
binations of people accepting or rejecting the prices. In Sec
4.2, we propose a nice way to (indirectly) solve this prob-
lem by showing a connection between this formulation of
pricing and the literature in mechanism design.

3 Related Work
The existing work for optimizing ridesharing systems can be
categorized based on different dimensions, as shown in Ta-
ble 1. These dimensions include how the pricing and match-
ing decisions are made, the capacity of the vehicles consid-
ered, sequential (one by one) or batched (considering all ac-
tive requests together) processing of requests and the amount
of future information available to the algorithm.

As seen in the table, most of the existing work for
ridesharing systems has studied the decision-making in iso-
lation, i.e., they either perform optimized matching by as-
suming a heuristic or fixed pricing (Ma, Zheng, and Wolfson
2013; Zheng, Chen, and Ye 2018), or focus on pricing de-
cisions and ignore the optimization for matching (Banerjee,
Riquelme, and Johari 2015; Bimpikis, Candogan, and Saban
2019). Most existing work also considers a sequential pro-
cessing of requests, for at least one of the decision-making
components. The sequential solution is faster to compute
but is typically of poorer quality than the batched solution,
given that it has less information with which to make a deci-
sion (Uber 2018).

Banerjee et al. (2015; 2016) provide a threshold-based
pricing mechanism where the platform raises the price
whenever the available vehicles in the region fall below a

501

threshold. Their focus is on studying the theoretical prop-
erties of such threshold-based policies. Bimpikis, Cando-
gan, and Saban (2019) provide a spatial pricing scheme for
ridesharing markets where they set a price for each region.
As opposed to our work, these works do not focus on opti-
mizing matching decisions, and heuristically match the cus-
tomer with unit-capacity vehicles available in the region.
While these region-based simplifications may work well in
the unit-capacity case, they cannot be approximated in the
same way in the multi-capacity case.

Özkan (2020) theoretically prove that optimizing only
along one dimension is not optimal in general and joint
pricing and matching optimization can significantly increase
performance. Unlike this paper, they do not provide an ex-
plicit algorithm, but rather focus on deriving conditions in
which individually optimizing pricing or matching can help.

There has been some research on providing algorithms for
jointly optimizing pricing and matching decisions for these
systems. Ma, Fang, and Parkes (2019) provide a spatio-
temporal pricing mechanism which provides competitive
equilibrium prices and can achieve a higher revenue than a
myopic pricing scheme. They make an unrealistic assump-
tion that all the information about future requests is exactly
known. On the other hand, the only assumption made about
requests in this paper is that we know the price-sensitivity of
the customers making the request.

Chen et al. (2019a) provide a learning framework for
jointly optimizing pricing and matching decisions. They use
a contextual bandit algorithm for pricing each request sep-
arately and use temporal difference learning to optimize
matching decisions for unit capacity vehicles. However, as
Figure 1 shows, pricing in the multi-capacity setting requires
considering not only how compatible different requests are
with each other, but also how compatible they are to the tra-
jectory of the vehicle they’re being assigned to. In contrast,
this paper prices all the requests in a batch jointly.

Chen et al. (2019b) model the problem as a Markov De-
cision Process (MDP) with the vehicle distributions on each
node as states, the price and dispatch along each edge as ac-
tions, and the revenue as the immediate reward. But the for-
mulation does not scale to a large number of locations and
time intervals, which makes it unsuitable for use in the real-
world ridesharing systems that are the focus of this paper.

4 Approach to Pricing
In this section, we detail our overall approach to pricing in
our proposed framework. In Sec 4.1, we relate Equation 3 to
auctionsand present an auction formulation for ride-pooling.
In Sec 4.2, we use the resulting auction to (indirectly) solve
the concrete pricing problem posed by Equation 3.

4.1 Ride-Pooling as an Auction
An auction typically consists of a seller, a set of buyers, a set
of items to be sold, and an objective that needs to be max-
imised. In ride-pooling, the buyers are the customers who
want rides, and the seller is the ride-pool operator. Moti-
vated by real-world ride-pool offerings, in which customers
have no control over the other customers or driver they’re

matched to, we consider that a single item is being sold –
the ‘service of being transported from source to destination’.
This assumption makes ours a ‘single-parameter’ auction,
in the language of mechanism design. Finally, the objective
that we want to maximise here is the seller’s ‘utility’ – a
combinatorial function of the revenue, as described in Equa-
tion 2. Given that we’re maximising the seller’s utility here,
we dub this the Utility-Maximising Auction.

An auction is then characterised by two rules: (1) Alloca-
tion Rule – given a set of sealed bids b from the customers,
who gets the item?, and (2) Payment Rule – how much do
the winners pay for the item. Then, to define the ride-pooling
auction, we must come up with both sets of rules. In this pa-
per, we limit our search for the ‘right’ auction to the space
of Dominant Strategy Incentive Compatible (DSIC) auctions
without any loss of generality (Gibbard 1973). DSIC auc-
tions are those in which the buyers are incentivised to bid
their true values, i.e., the set of bids b is equal to the set of
‘intrinsic values’ ν that we discuss a below.
p and Intrinsic Values: The insight that allows us to con-
nect ride-pooling to auctions is that price-sensitivity func-
tion pr is decreasing in the price µr and hence can be inter-
preted in terms of the ‘intrinsic value’ νr that a customer has
for a ride. In an auction, a buyer has a fixed intrinsic value
for a given item, and they buy the item if and only if the price
at which the item is being offered is lower than this value.
While this exact value is unknown to the seller, the seller
knows the distribution fr from which νr is drawn. As a re-
sult, the probability of a buyer accepting a request at some
price µr, is equal to the probability that the buyer’s intrinsic
value is higher than µr. This can be written down in terms
of the CDF Fr of the intrinsic value distribution as follows:

pr(µr) = 1− Fr(µr) (4)

Auction Objective: While there are similarities between an
auction and the pricing problem in Equation 3, there is one
big difference – the intrinsic values are provided as input to
the auction (in the form of sealed bids). In contrast, in our
pricing problem, it is assumed that this information is not
available. Because the auction has additional information in
terms of the ‘sealed bids’, the utility generated by the auction
is an upper-bound on the value of Equation 3. Given oracle
access to the intrinsic values, the joint pricing and matching
problem reduces to just the matching problem. Then, the aim
would be to maximise the matching objective for the case
in which the price for each customer is substituted by the
‘payment’ from the ‘payment rule’ (µr(ν)) of the auction.
Formally, we are trying to maximise:

E
ν∼ f

[
max
X∈C

∑
xtv∈X

xtv · (αtv
∑

r∈Rt
µr(ν) + βtv)

]
(5)

Allocation Rule: We want to come up with an allocation
rule that will maximise the expression in Equation 5. How-
ever, it’s not clear from this equation how to perform the
maximisation because the payment µr(ν) is a black box. To
solve this, we improve on the result from Myerson (1981)
that relates the allocation rule described in Equation 5 and
the payment rule that determines µr(ν) in single-parameter
auctions. The result is summarised below.

502

Proposition 1 (Utility Maximising Auction) We can max-
imise the expression in Eq 5 by allocating according to:

max
X∈C

∑
xtv∈X

xtv · (αtv
∑
r∈Rt

ϕr(νr) + βtv) (6)

where ϕr(νr) = νr − 1−Fr(νr)
fr(νr)

denotes the ‘virtual value’
for a request.
Proof Sketch. The eight step proof3 for utility maximization
builds on the proof for revenue maximization from Myer-
son (1981), which shows that that maximizing expected rev-
enue is equal to maximizing virtual welfare. The major dif-
ference is in the form of the final expression. While revenue
maximising auctions aim to maximise Eν [

∑
r∈R µr(ν)] that

only includes pricing variables, we have a complicated ex-
pression (Equation 5) that includes matching/allocation vari-
ables in addition to pricing variables. The main trick is in
simplifying the utility maximization expression (in step 3 of
the proof in supplementary) using the following property of
the matching algorithm:

For a fixed set of intrinsic values for the other buyers ν-r,
and all possible intrinsic values νr ∈ [0, νmax] of buyer
r, the buyer is assigned to a maximum of one trip-vehicle
combination (represented by the indicator variable xtv).

E
νr∼fr

[
∑
xtv

xtv(ν)[α
t
v · µr(ν)]]

=

∫ νmax

0

µr(ν)[
∑
xtv
xtv(ν)α

t
v]fr(νr)dνr

=

∫ νmax

0

[∫ νr

0

z ·
∑
xtv
xtv
′
(z,ν-r)dz

]
·

·
[∑

xtv
xtv(νr,ν-r)α

t
v

]
fr(νr)dνr (7)

=

∫ νmax

0

∫ νr

0

z · [
∑
xtv
xtv
′
(z,ν-r)α

t
v] dz · fr(νr) dνr �

We then use allocation rule from Eq 6 in the next section
to solve Eq 3. Note here that the resultant allocation rule is
identical to the matching problem from Equation 2 with the
prices µr swapped for the virtual values ϕr. As a result, to
determine the winners of the auction, we run our matching
algorithm with the prices substituted by the virtual values.

4.2 Generating Posted Prices for Ride-Pooling
While auctions do a better job of maximising the utility,
they also suffer from serious usability issues – eliciting ex-
act values from customers is often difficult, the description
of the auction can be complex, and the results of the auctions
are often not interpretable because items may sometimes be
awarded to buyers with lower bids than alternate candidates.
Additionally, none of the major ride-pool operators use this
mechanism. So , in this section, we describe an algorithm for
(indirectly) solving the pricing problem posed in Equation 3.

Specifically, we use Algorithm 1 that has been previously
described in Chawla et al. (2010). Given that the auction up-
per bounds the revenue of the posted price mechanism, this

3Detailed in appendix at https://tinyurl.com/52y8446c

Algorithm 1: Generate Posted Prices
1: Input: Number of samples s
2: Initialise a counter Nr for each request
3: for i ∈ [1, . . . , s] do
4: Sample a set of intrinsic values ν ∼ F
5: Run the optimal auction from Sec 4.1 with the

sampled intrinsic values ν
6: for all r ∈ R do
7: Increment Nr if r is assigned a vehicle in the

auction.
8: for all r ∈ R do
9: Get the probability probr = Nr

s of r being served
10: Smooth out this probability by clipping it to the

range [MIN PROB, MAX PROB]
11: Generate the price: µr = F−1r (1− probr)

algorithm attempts to match the behaviour of the auction. It
does this in 2 steps – first, it estimates the probability with
which a request r is assigned a vehicle in the auction. Next, it
charges a price such that the request in the posted price case
will be accepted with the same probability as in the auction.

The intuition here is that, given that the probability of be-
ing allocated a ride is correlated with the customer’s intrin-
sic value, the auction helps determine the threshold value
above which it makes sense to assign a vehicle to them. Sup-
pose an item is assigned to a given request r with probabil-
ity probr, then we can determine that their intrinsic valua-
tion νr ≥ F−1r (1 − probr) in a probr fraction of the cases
(where F−1r is the inverse-CDF of the intrinsic values asso-
ciated with request r). The algorithm then charges them a
price equal to that threshold valuation.
Theoretical Guarantees: This algorithm is motivated
strongly by the fact that it lends itself well to theoretical
analysis. Chawla et al. (2010) show that for a revenue-
maximising objective, in the unshared case (UberX-type
rides), the algorithm achieves at least a third of the revenue
of the auction in the worst-case. However, while the algo-
rithm has desirable worst-case guarantees, it is sub-optimal
even in simple settings as we show in Sec 6. This suggests
that there is great scope for improvement in this area.
Additional Heuristic: In Line 10 of Algorithm 1, we
‘smooth’ the probability by clipping it to range between
MIN PROB and MAX PROB. Given a direct relationship
between probability and price, this is equivalent to setting a
minimum and maximum price for every request. We do this
for 2 reasons – (1) to mitigate the error from sampling, and
(2) to ensure that the price is in an acceptable range.

5 Experiments
In this section, we empirically quantify the effectiveness of
our approach.

5.1 Simulator
We build on the basic matching simulator provided in Shah,
Lowalekar, and Varakantham (2020), which is based on the
New York Yellow Taxi dataset (NYYellowTaxi 2016) with

503

18:00 18:10 18:20 18:30 18:40 18:50 19:00
Time

0.96

0.98

1.00

1.02

1.04

1.06

No
rm

ali
ze

d R
ev

en
ue

Normalized Revenue 1500 vehicles Capacity 2

No Surge
Fixed Surge
Dynamic Surge
Myerson

18:00 18:10 18:20 18:30 18:40 18:50 19:00
Time

0.96

0.98

1.00

1.02

1.04

1.06

No
rm

ali
ze

d R
ev

en
ue

Normalized Revenue 1500 vehicles Capacity 2

No Surge
Fixed Surge
Dynamic Surge
Myerson

Figure 2: Time vs Revenue for different price sensitivities (Uber and Price Conscious)

over 300,000 requests on a week day. We then use a model
of price sensitivity learned on Uber data that can be found in
Korolko et al. (2018). Here, the probability of acceptance is
a function of a multiplicative surge on top of the base price.

pr(µr) =
1

1 + e
0.67µr
BPr

−1.69
(8)

Here BPr corresponds to the base price for a given request
r. We then combine this with the cost structure of UberX in
Manhattan to obtain the final price-sensitivity function.

5.2 Experiment Set-Up
Matching Algorithm: In the experiments, we maximise the
revenue subject to constraints: (a) Maximum Delay – the
time taken by a pooled ride should not exceed the time taken
by an unshared ride by more than 10 minute; (b) Maximum
Wait Time – it should not take more than 5 minutes for a ve-
hicle to reach a customer; and (c) Capacity – A vehicle can’t
have more customers in it than its maximum occupancy.
Baselines: We compare against 3 pricing baselines: (1)
No Surge: We employ ‘monopoly price’ for a given price-
sensitivity function p. For a single seller, it never makes
sense to offer an item at a price lower than this; (2) Fixed
Surge: We run the ‘No Surge’ baseline for the given run
and find the ratio of incoming requests to served requests.
Given this, and the price-sensitivity function, we find the
price at which the number of accepted requests would equal
the number of served requests and charge this surge for the
entire run; and (3) Dynamic Surge: We update the surge at
a given timestep based on the ratio of the number of served
to accepted requests. If this number is lower than a fixed
threshold (0.9), we increase the surge by a constant value
(0.01), otherwise we decrease it by that value.

Our approach (Algorithm 1) is referred to as Myerson.
The matching algorithm is the same for all approaches.
Controlling Variance: The main source of variance in our
experiments is whether or not customers accept the requests.
To address this, we set the random seed value such that the
intrinsic values of customers is the same across different
pricing strategies. To make sure that this didn’t induce a bias
in the results, we repeated the experiments for different sets
of seed values and found a standard deviation of less than
0.5% in the total revenue.

Price-Sensitivity Function: We find that the surge values
produced while using the price-sensitivity function from Sec
5.1 (referred to as ‘Uber’) are quite high. To make customers
more sensitive to changes in the price, we propose two vari-
ants of this function by scaling the coefficient of µr and the
constant term in Equation 8 both by a factor of 10 (‘Price
Conscious’) and 100 (‘Very Price Conscious’) which makes
the transition from ‘accept’ to ‘not accept’ more steep.
Computation: We run the experiments on a ‘g4dn.2xlarge’
AWS instance that has a 2nd Generation Intel Xeon Scal-
able (Cascade Lake) processor, 64GB memory and 256GB
SSD drive. To simulate real settings, all experiments take
less than 60 seconds for a 60-second decision interval.

5.3 Results
In this section, we compare the performance of our approach
with the baseline algorithms along different dimensions. All
the experiments are run on multiple time slots: morning peak
hour from 8:00 AM - 9:00 AM, low demand in afternoon
from 2:00 PM - 3:00 PM, before peak hour from 4:00 PM -
5:00 PM and evening peak hour from 6:00 PM - 7:00 PM.
The results are averaged over 5 runs and were repeated over
multiple weekdays. The results are similar and we show re-
sults from evening peak hours here and the rest 3 time slots
are provided in the appendix. Unless otherwise mentioned,
we consider the ‘default’ setting of 1500 vehicles with ca-
pacity 2 and the ‘Price Conscious’ price-sensitivity function.
Impact on Revenue: We first compare the revenue obtained
in each timestep. We normalize the revenue with respect to
the revenue obtained by the ‘No Surge’ baseline at each
timestep. From Figure 2, we see that ‘Myerson’ obtains
a better revenue than the ‘No Surge’ baseline in most of
the timesteps. In addition, ‘Dynamic Surge’, which modi-
fies the price charged based on past request patterns, has the
largest fluctuations. Overall, ‘Myerson’ obtains a 2.28% im-
provement in revenue over the ‘No Surge’ baseline, while
the other baseline has a lower revenue than ‘No Surge’. This
may not seem significant at first glance but we’d like to high-
light here that a 2% increase in revenue with no associated
increase in cost is huge for a multi-billion dollar industry.
Impact on Reliability: While it is important to optimize
the revenue, it is also important to provide a reliability to
customers. We define reliability as the probability of be-
ing assigned a ride conditioned on the customer accepting

504

18:00 18:10 18:20 18:30 18:40 18:50 19:00
Time

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Se
rve

d/A
cc

ep
tan

ce
 Ra

tio

Ratio of Served to Accepted Requests 1500 Vehicles Capacity 2

No Surge
Fixed Surge
Dynamic Surge
Myerson

18:00 18:10 18:20 18:30 18:40 18:50 19:00
Time

0.5

0.6

0.7

0.8

0.9

1.0

Se
rve

d/A
cc

ep
tan

ce
 Ra

tio

Ratio of Served to Accepted Requests 1500 Vehicles Capacity 2

No Surge
Fixed Surge
Dynamic Surge
Myerson

Figure 3: Time vs Served/Accepted Ratio for different price sensitivities (Uber and Price Conscious)

Variants No Surge Fixed Surge Dynamic Surge Myerson

Vehicles
2000 1.0000± 0.0000 1.0059± 0.0032 0.9936± 0.0044 1.0140± 0.0022
1500 1.0000± 0.0000 0.9894± 0.0044 0.9752± 0.0025 1.0223± 0.0029
1000 1.0000± 0.0000 0.9829± 0.0035 0.9480± 0.0064 1.0306± 0.0023

Capacity
4 1.0000± 0.0000 0.9853± 0.0031 0.9461± 0.0102 1.0090± 0.0018
2 1.0000± 0.0000 0.9894± 0.0044 0.9752± 0.0025 1.0223± 0.0029
1 1.0000± 0.0000 1.0295± 0.0061 1.0349± 0.0124 1.0499± 0.0024

Price-Sensitivity
Uber 1.0000± 0.0000 1.0138± 0.0025 1.0001± 0.0007 1.0118± 0.0033

Price Conscious 1.0000± 0.0000 0.9894± 0.0044 0.9752± 0.0025 1.0223± 0.0029
Very Price Conscious 1.0000± 0.0000 0.8634± 0.0037 0.8559± 0.0126 1.0025± 0.0033

Table 2: Results of the Ablation Studies: We present the normalised revenue for different hyper-parameter values.

the quote provided by the ride sharing operator. Therefore,
to measure the reliability, we compare the ratio of num-
ber of served requests to number of accepted requests. Fig-
ure 3 highlights the high reliability that ‘Myerson’ provides
to customers, with the ratio remaining close to 1 for all
timesteps. On the other hand, No Surge over-promises and
is not able to serve most of the accepted requests, resulting
in customer dissatisfaction. Even though the surge baselines,
especially ‘Dynamic Surge’, attempt to address this imbal-
ance through pricing, they suffer from fluctuations.

The ineffectiveness of surge baselines here highlight that
there is more to effective pricing in ride-pooling than just ac-
counting for temporal variation in demand. Considering the
matching component allows ‘Myerson’ to set a price such
that most of the accepted customers can be matched. These
results highlight the importance of jointly optimizing pricing
and matching in ride-pooling.
Ablation Studies: Finally, we check the robustness of our
results by varying different parameters. We vary each pa-
rameter while keeping the others same as in our ‘default’
setting. As shown in Table 2, ‘Myerson’ earns similar or bet-
ter revenue than baselines. For a higher capacity (4) and a
higher number of vehicles (2000), the gain obtained by our
algorithm reduces. When there are enough vehicles avail-
able, there is no advantage to increasing the price and reduc-
ing the chances of a customer accepting the requests. There-
fore, the prices obtained will be close to the no surge case.

6 Analysis of Our Posted-Pricing Approach
While we show that our approach performs well empirically,
in this section we analyse its performance from a theoretical

perspective. For this, we compare the performance of our
approach to strong baselines in a simple setting.
Setting: We look at the case where n identical customers are
available to be matched with a single unit-capacity vehicle.
We additionally assume that the customers intrinsic values
are drawn independently from the uniform distribution be-
tween [0,1]. As in the Experiments, we consider a revenue-
maximising objective and compare the revenue that different
methods have in this simple setting4.
Optimal Posted Price (Sandholm and Gilpin 2003): The
recurrence relation for revenue, ρi (when all customers,
1 ≤ k ≤ i− 1 declined quoted price, µk) is:

ρi = (1− µi) · µi + µi · ρi+1 (9)

where the overall revenue ρ = ρ1, and the base case is
ρn = (1 − µn) · µn. To find the optimal posted prices, we
can differentiate ρi w.r.t. µi and equate to 0 at every point of
the recurrence, working backwards from the ρn to ρ1.
Optimal (Non-Discriminatory) Posted Price: The method
above assigns different prices to identical customers – for
e.g., to customers with the same origin and destination loca-
tions. We provide a method that sets same price µ for all n
customers and the resultant revenue ρ for this algorithm is:

ρ = (1− µn) · µ (10)

Differentiating and equating to 0 yields µ∗ and ρ∗:

µ∗ = (n+ 1)−
1
n , ρ∗ =

n

(n+ 1)
n+1
n

4Details are present in appendix.

505

n = 1 n = 2 n = 3 n = 4 n = 5 n = 10 n = 100
Optimal Posted Price 0.25 0.391 0.483 0.550 0.601 0.741 0.963

Revenue Optimal ND Posted Price 0.25 0.385 0.473 0.535 0.583 0.715 0.945
Optimal Auction 0.25 0.417 [0.25, 0.6] [0.6, 0.667] [0.667, 0.714] [0.818, 0.833] [0.980,0.981]
Our Algorithm 0.25 0.381 0.457 0.503 0.532 0.586 0.628

Pricing Optimal ND Posted Price 0.5 0.577 0.630 0.669 0.699 0.787 0.955
Our Algorithm 0.5 0.625 0.708 0.766 0.806 0.900 0.990

Table 3: Revenue and difference in pricing for different methods

Optimal Auction: The optimal revenue-maximising auction
is Myerson’s Auction (Myerson 1981). While it is possible
to calculate the expected revenue of this auction in closed
form for small n, calculating it in the general case is chal-
lenging. Instead, we calculate bounds on the value of the
expected revenue – (a) It is lower-bounded by the revenue
of a second-price auction with no reserve price, and (b) It
is upper-bounded by the revenue of a second-price auction
with n + 1 bidders and no reserve price (Bulow and Klem-
perer 1994). Here, the expected revenue of a second-price
auction with k bidders is the second-order statistic of the k
intrinsic values. In our setting:

ρ =
k − 1

k + 1

Our Algorithm: To calculate the posted price generated by
our algorithm, we first calculate the fraction of samples in
which none of the customers are assigned a vehicle.

For a reserve price of 1
2 and n customers, this corresponds

to a probability of 1
2n . In all other cases, one of the customers

is assigned a vehicle. As all the customers are identical, by
symmetry, they have an equal chance of being assigned the
vehicle. Then, the price µ for a customer is given by:

µ = F−1(1−
1− 1

2n

n
) =

n− 1

n
+

1

n · 2n
(11)

We can plug µ into Equation 10:

ρ = (1− (
n− 1

n
+

1

n · 2n
)n) · (n− 1

n
+

1

n · 2n
) (12)

Compute the expected revenue as n→∞

lim
n→∞

ρ = lim
n→∞

(
n− 1

n︸ ︷︷ ︸
1

+
1

n · 2n︸ ︷︷ ︸
0

)− (
n− 1

n
+

1

n · 2n
)n+1︸ ︷︷ ︸

1∞ form

= 1− elimn→∞(n−1
n + 1

n·2n−1)(n+1)

= 1− e−1 ≈ 0.632

So, even if there are an infinite number of customers, our
algorithm doesn’t converge to an expected revenue of 1.
Results: We collate the revenue results for different meth-
ods in the ‘Revenue’ rows in Table 3. The analysis clearly
shows that, even in this simple setting, our algorithm does
not provide the same revenue as the optimal posted price. In
addition, the gap between our algorithm grows with n and
even converges to a sub-optimal solution as n → ∞. The
reason for this seems to be that our algorithm prices too ag-
gressively (‘Pricing’ rows in Table 3). Note that this analysis

generalises easily to the multi-capacity case, but we describe
the simplest setting here to highlight the significant scope for
improvement in this problem.

From a practical point of view, this setting can be thought
of as a surge scenario in which there’s n times as many
customers as drivers. In this context, n = 5 is a realistic
possibility, and the nearly 10% difference between the rev-
enue obtained by our algorithm and the optimal posted price
promises significant impact if algorithm is improved.

7 Future Work
Incorporation of Future Information: Pricing has minimal
impact on revenue if customers are sensitive to price fluctua-
tions because there isn’t much leeway to increase the prices.
When the price-sensitivity is low, we find that one can signif-
icantly improve the revenue by pricing aggressively. In those
cases, however, considering the pricing problem across mul-
tiple timesteps becomes essential and has been the focus of
significant past work (Banerjee, Riquelme, and Johari 2015;
Bimpikis, Candogan, and Saban 2019). In our framework,
one way to mitigate the myopic decision-making is by in-
corporating the future value, as in Shah et al. (2020).
Algorithms for Posted Pricing: As we highlight in Sec 6,
there is an opportunity for algorithmic improvement in solv-
ing the matching-aware pricing problem. Empirically, it may
be fruitful to begin at Eq 3, and make relaxations that per-
form well in practice. Theoretically, there hasn’t been any
study of ‘posted pricing’ in the context of the tripartite-
graph matching problem present in ride-pooling. Also, most
‘posted pricing’ work in the literature considers a sequential
model of pricing and matching customers. In our framework,
however, the prices have to all be provided together, and the
matching is done in a batch. While this means that prices
cannot be adapted based on observations, it also means that
it is possible to do better matching because of batching.
Given that the techniques don’t transfer from the sequential
to the batched case, this is a promising future direction.

8 Conclusion
In this paper, we have provided a novel auction based ap-
proach to jointly handle pricing (of customer requests) and
matching (of vehicles to customer requests) in the extremely
challenging on-demand ride-pooling problem. We demon-
strate that our approach is not only scalable, but is also able
to outperform existing approaches with respect to revenue
and reliability. In addition, we provide a theoretical basis for
the method employed and also an analysis on potential im-
provement feasible beyond our approach.

506

Ethics Statement
We highlight possible ethical implications of our algorithm:
Discriminatory Pricing: Our framework determines the op-
timal surge price such that supply is matched to demand. It
is possible to use personalised models of price-sensitivity to
price customers differently. This concern is especially rel-
evant as it is something that ride-pool operators have been
accused of in the past (Mahdawi 2020).

In response, we want to reiterate that we do not do this.
We have a fixed price-sensitivity function for all customers.
As similar users have similar chances of winning the utility-
maximising auction, they will be priced similarly in our pro-
posed algorithm. This is important because it is possible to
increase the revenue by pricing similar customers differently
(Blumrosen and Holenstein 2008).
Incorporating Fair Matching Algorithms: On a more pos-
itive note, the same generality of our framework provides
allows us to incorporate previous work on fair matching
(Nanda et al. 2020; Lesmana, Zhang, and Bei 2019) that
uses a combination of constraints and surrogate objectives
to create more equitable outcomes.

Acknowledgements
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG2-RP-2020-016). Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore.

References
Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.;
and Rus, D. 2017. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the Na-
tional Academy of Sciences, 201611675.
Banerjee, S.; Johari, R.; and Riquelme, C. 2016. Dynamic
pricing in ridesharing platforms. ACM SIGecom Exchanges,
15(1): 65–70.
Banerjee, S.; Riquelme, C.; and Johari, R. 2015. Pricing in
ride-share platforms: A queueing-theoretic approach. Avail-
able at SSRN 2568258.
Bimpikis, K.; Candogan, O.; and Saban, D. 2019. Spa-
tial pricing in ride-sharing networks. Operations Research,
67(3): 744–769.
Blumrosen, L.; and Holenstein, T. 2008. Posted prices vs.
negotiations: an asymptotic analysis. EC, 10: 1386790–
1386801.
Bulow, J.; and Klemperer, P. 1994. Auctions vs. negotia-
tions. Technical report, National Bureau of Economic Re-
search.
Chawla, S.; Hartline, J. D.; Malec, D. L.; and Sivan, B. 2010.
Multi-parameter mechanism design and sequential posted
pricing. In Proceedings of the forty-second ACM symposium
on Theory of computing, 311–320.
Chen, H.; Jiao, Y.; Qin, Z.; Tang, X.; Li, H.; An, B.; Zhu, H.;
and Ye, J. 2019a. InBEDE: Integrating Contextual Bandit

with TD Learning for Joint Pricing and Dispatch of Ride-
Hailing Platforms. In 2019 IEEE International Conference
on Data Mining (ICDM), 61–70. IEEE.
Chen, M.; Shen, W.; Tang, P.; and Zuo, S. 2019b. Dispatch-
ing through pricing: modeling ride-sharing and designing
dynamic prices. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, 165–171.
Gibbard, A. 1973. Manipulation of voting schemes: a gen-
eral result. Econometrica: journal of the Econometric Soci-
ety, 587–601.
Heath, A. 2016. Inside Uber’s quest to get more people in
fewer cars. https://www.businessinsider.com/uberpool-ride-
sharing-could-be-the-future-of-uber-2016-6/. Accessed:
2022-04-04.
Korolko, N.; Woodard, D.; Yan, C.; and Zhu, H. 2018. Dy-
namic pricing and matching in ride-hailing platforms. Avail-
able at SSRN.
Lesmana, N. S.; Zhang, X.; and Bei, X. 2019. Balancing effi-
ciency and fairness in on-demand ridesourcing. In Advances
in Neural Information Processing Systems, 5309–5319.
Lowalekar, M.; Varakantham, P.; and Jaillet, P. 2019. ZAC:
A Zone Path Construction Approach for Effective Real-
Time Ridesharing. In Proceedings of the ICAPS, 528–538.
Ma, H.; Fang, F.; and Parkes, D. C. 2019. Spatio-temporal
pricing for ridesharing platforms. In Proceedings of the 2019
ACM Conference on Economics and Computation, 583–583.
Ma, S.; Zheng, Y.; and Wolfson, O. 2013. T-share: A large-
scale dynamic taxi ridesharing service. In IEEE 29th Inter-
national Conference on Data Engineering, 410–421.
Mahdawi, A. 2020. Is your friend getting a cheaper
Uber fare than you are? https://www.theguardian.com/
commentisfree/2018/apr/13/uber-lyft-prices-personalized-
data. Accessed: 2022-04-04.
Myerson, R. B. 1981. Optimal auction design. Mathematics
of operations research, 6(1): 58–73.
Nanda, V.; Xu, P.; Sankararaman, K. A.; Dickerson, J.; and
Srinivasan, A. 2020. Balancing the Tradeoff between Profit
and Fairness in Rideshare Platforms during High-Demand
Hours. Proceedings of the AAAI, 34(02): 22102217.
NYYellowTaxi. 2016. New York Yellow Taxi DataSet. http:
//www.nyc.gov/html/tlc/html/about/trip record data.shtml.
Accessed: 2022-04-04.
Özkan, E. 2020. Joint pricing and matching in ride-sharing
systems. European Journal of Operational Research.
Sandholm, T.; and Gilpin, A. 2003. Sequences of take-it-or-
leave-it offers: Near-optimal auctions without full valuation
revelation. In International Workshop on Agent-Mediated
Electronic Commerce, 73–91. Springer.
Shah, S.; Lowalekar, M.; and Varakantham, P. 2020. Neural
Approximate Dynamic Programming for On-Demand Ride-
Pooling. In Proceedings of the AAAI, volume 34, 507–515.
Uber. 2018. Uber Matching Solution. https://www.uber.
com/us/en/marketplace/matching/. Accessed: 2022-04-04.
Zheng, L.; Chen, L.; and Ye, J. 2018. Order dispatch in
price-aware ridesharing. Proceedings of the VLDB Endow-
ment, 11(8): 853–865.

507

	Joint pricing and matching for city-scale ride pooling
	Citation

	Joint Pricing and Matching for City-Scale Ride-Pooling

