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On the Influence of Biases in Bug Localization:
Evaluation and Benchmark

Ratnadira Widyasari, Stefanus Agus Haryono, Ferdian Thung, Jieke Shi, Constance Tan, Fiona Wee,
Jack Phan, and David Lo

School of Computing and Information Systems, Singapore Management University
{ratnadiraw.2020,stefanusah,ferdianthung,jiekeshi,hytan.2018,fiona.wee.2018,jack.phan.2018,davidlo}@smu.edu.sg

Abstract—Bug localization is the task of identifying parts of the
source code that needs to be changed to resolve a bug report.
As this task is difficult, automatic bug localization tools have
been proposed. The development and evaluation of these tools
rely on the availability of high-quality bug report datasets. In
2014, Kochhar et al. identified three biases in datasets used to
evaluate bug localization techniques: (1) misclassified bug report,
(2) already localized bug report, and (3) incorrect ground truth
file in a bug report. They reported that already localized bug
reports statistically significantly and substantially impact bug
localization results, and thus should be removed. However, their
evaluation is still limited, as they only investigated 3 projects
written in Java. In this study, we replicate the study of Kochhar
et al. on the effect of biases in bug report dataset for bug
localization. Further investigation on this topic is necessary as
new and larger bug report datasets have been proposed without
being checked for these biases.

We conduct our analysis on a collection of 2,913 bug reports
taken from the recently released Bugzbook dataset that fix Python
files. To investigate the prevalence of the biases, we check the
bias distributions. For each bias, we select and label a set of bug
reports that may contain the bias and compute the proportion
of bug reports in the set that exhibit the bias. We find that
5%, 23%, and 30% of the bug reports that we investigated are
affected by biases 1, 2, and 3 respectively. Then, we investigate
the effect of the three biases on bug localization by measuring
the performance of IncBL, a recent bug localization tool, and
the classical Vector Space Model (VSM) based bug localization
tool, which was used in the Kochhar et al. study. Our experi-
ment results highlight that bias 2 significantly impact the bug
localization results, while bias 1 and 3 do not have a significant
impact. We also find that the effect sizes of bias 2 to IncBL and
VSM are different, where IncBL has a higher effect size than
VSM. Our findings corroborate the result reported by Kochhar
et al. and demonstrate that bias 2 not only affects the 3 Java
projects investigated in their study, but also others in another
programming language (i.e., Python). This highlights the need to
eliminate bias 2 from the evaluation of future bug localization
tools. As a by-product of our replication study, we have released
a benchmark dataset, which we refer to as CAPTURED, that has
been cleaned from the three biases. CAPTURED contains Python
programs and therefore augments the cleaned dataset released
by Kochhar et al., which only contains Java programs.

Index Terms—Bug Report, Bug Localization, Bias, Python

I. INTRODUCTION

Bugs occur in a project due to errors or mistakes in writing
the source code or faults in its design. The presence of bugs
in a project may affect the functionalities of the software it
releases, causing unexpected behaviors. Bugs may also cause
vulnerabilities, rendering the software susceptible to security

attacks [1], [2]. Therefore, resolving bugs in a project is a high
priority task for developers. Yet, it is not a simple task.

One of the main difficulties in bug resolution is finding
the precise location of the bugs in the source code. Bug
localization is the task of finding a part of the source code that
needs to be modified to resolve a reported bug [3]. This task is
difficult, especially in a big project containing a large number
of files. To help software developers, automatic approaches
and tools for bug localization have been proposed [4]–[8].
Most bug localization tools rely on information retrieval (IR),
where given a bug report, the tool finds and ranks the source
code files that may contain bugs based on their relevancy [9].
The availability of high-quality bug reports is important in the
development and evaluation of these tools.

In 2014, Kochhar et al. [10] highlighted the problems
that exist in bug reports dataset that are used to evaluate
bug localization techniques. They analyzed three biases in
bug reports dataset: (1) wrongly classified issue reports, (2)
already localized bug report, and (3) existence of non-buggy
files in ground truth. They found that already localized bug
report statistically significantly and substantially impact bug
localization results. However, their investigation is limited
to three Java projects. Moreover, newer datasets and bug
localization techniques have been proposed [9], [11]–[13] and
utilized [14]–[16] without being checked against these three
biases. It is unknown whether the newer dataset and newer
bug localization technique is affected by the biases. Thus,
further investigation on the impact of biases in bug localization
is necessary. In this study, we propose to check the effect
of the three biases identified by Kochhar et al. on newer
datasets. We replicate the study of Kochhar et al. to analyze the
effect of biases in bug report dataset towards bug-localization
techniques.

At the time of writing this paper, Python is one of the most
popular programming languages based on recent surveys and
rankings [17], [18]. Contrary to its popularity, research and
study on localizing bugs in Python files are fairly limited.
Due to the unique features in Python programming language
(e.g., duck-typing, usage of heterogeneous collection, etc.), it
is likely that the patterns and characteristics of bugs in Python
are different than Java. Meanwhile, among the available bug
reports dataset, only a small number of bug reports are for
Python projects. More recently, Akbar and Kak [9] proposed
a bug report dataset named Bugzbook, which contains a
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collection of Java, C/C++, and Python code from GitHub.
However, the bug reports within Bugzbook have not been
checked against the three biases.

To address the above problems and analyze the effect of
the biases, we develop CAPTURED (CurAted PyThon bUg
REport Dataset), a bug report dataset for Python. CAPTURED
consists of 9 projects containing 1,809 bug reports that
have been cleaned from the three biases. We collect bug
reports that fix Python files from the Bugzbook dataset and
clean them from the three biases highlighted by Kochhar
et al. [10]. Specifically, we ensure that each bug report is
(1) correctly classified as such, (2) not already localized,
(3) has correct ground truth files. For each bug report in
CAPTURED, we provide its identifier, URL, and 3 labels
indicating whether the bug report exhibits one of the biases.
Our dataset is publicly available at https://github.com/soarsmu/
Python-Bug-Report-Dataset. Then, to check the effect of the
biases, we compare the performance of two bug localization
tools (the VSM tool used in the original study, and a recently
released bug localization tool named IncBL [14]) on the
CAPTURED dataset (which has been cleaned from biases)
against the original bug reports from the same Python projects
in Bugzbook (which are still affected by biases).

In order to assess the influence of the aforementioned biases,
we ask the following research questions:
• RQ-1: How prevalent are the three biases? We seek to

investigate whether newer bug report dataset is also affected
with biases highlighted by the study of Kochhar et al. [10].
By understanding the prevalence and distribution of the
biases within the dataset, we hope to bring more attention
to the problem of biases in bug reports dataset for bug
localization.

• RQ-2 : How do the three biases affect the performance
of bug localization? We compare the performance of bug
localization conducted on CAPTURED dataset which has
been cleaned from biases against all bug reports from the
corresponding projects in Bugzbook (which are not cleaned
from biases). Through this comparison, we aim to get better
understanding on how each bias affects bug localization
performance.

• RQ-3: How does the effect of the three biases in
CAPTURED compared to the effect of the three biases
in the previous study? We then compare the result of our
investigation with the result of Kochhar et al. study and
check whether their claims still hold on newer bug reports
dataset.
In summary, our contributions are as follows:

1) We replicate Kochhar et al.’s work by conducting an
analysis on the effect of biases in a newer bug report
dataset, focusing on projects written in a different (but yet
still popular) programming language than the one inves-
tigated by Kochhar et al. (Java). Specifically, we analyze
bug reports of projects containing Python buggy files in
Bugzbook [9].

2) We release CAPTURED, a bug report dataset for Python
that has been cleaned from biases.

TABLE I
UNCLEAN FIXED FILES IN BUG REPORTS (ZOOKEEPER-2777)

Summary There is a typo in zk.py which prevents from
using/compiling it.

Description While trying to create an RPM from zookeeper
3.4.10, I got an error when it tried to compile
the file :
zookeeper/contrib/zkpython/src/python/zk.py”,
line 55 “““Pretty print(a zookeeper tree, starting
at root”””)
SyntaxError: invalid syntax

Fixed Files N*** B*** <ni***@gmail.com>
src/contrib/zkpython/src/python/zk.py

Modified Fixed Files src/contrib/zkpython/src/python/zk.py

II. BACKGROUND

A. IR-based Bug Localization

IR-based bug localization techniques use a bug report (i.e.,
textual summary and description of the bug report, as shown
in Table I) as a query and the source code files as docu-
ments. From these inputs, it will produces a list of relevant
source code files that correspond to the bug report using an
information retrieval technique. The main idea of information
retrieval technique is based on the textual similarity between
bug reports and source code files, where it is expected that
the file that shares many common words with the bug report
is more likely to be buggy. Utilizing this idea, IR-based Bug
Localization computes the similarity between the bug report
and source code files. It will then sorts the relevant files from
the most to the least similar to the corresponding bug report.

Generally, the workflow of IR-based bug localization tech-
niques consists of these three steps:

1) Source Code Files Pre-Processing and Indexing: IR-
based bug localization techniques need to extract the textual
content of the source code files. Typically, there are three main
preprocessing steps that are performed:
• Normalization: In this step, we extract comments and iden-

tifier names from source code files. Several studies [10],
[19] on Java programming language utilize Eclipse JDT
tool [20] for this preprocessing. The tool is used to extract
the Abstract Syntax Trees (AST) that can be traversed to
extract the textual content.

• Stop word removal: After we receive the textual content
from the normalization step, we need to remove special
symbols, punctuation marks, number literals, and common
occurring English words such as “the”, “he”, “have”, etc.
On top of this, stop word removal for the source code files
is also used to remove programming keywords that often
appear such as if, while, for, etc.

• Stemming: Stemming is used to reduce words to their root
or base form. For example, words such as “developed”, “de-
velopment” are stemmed to the word “develop”. The Porter
Stemming Algorithm [21]is one of the stemming approaches
that have been widely used by previous works [10], [19].
2) Bug Report Pre-Processing: The preprocessing step for

the bug reports is similar to the preprocessing step for the
source code files. First, we need to extract the textual content
from bug report, which includes the summary and description
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fields of the bug report. An example of these textual content
is shown in Table I. We then break down the textual content
into tokens (i.e., bag of words). Finally, we run a stop-word
removal and stemming preprocessing steps on these tokens.

3) Retrieval and Ranking: Many techniques have been
proposed to measure the similarity between a query and a
set of documents, and then retrieve documents that are similar
to the query. One of the techniques that is commonly used
among many IR-based bug localization techniques is Vector
Space Model (VSM). In VSM, each query and document are
presented as a vector of weights. Each weight corresponds to
a word in a query or a document. The value of each weight
is often computed using term frequency–inverse document
frequency (TF-IDF). The number of times a word appears in
a document is referred to as term frequency (TF). Meanwhile,
the number of documents in the set of documents that contain
the corresponding word is referred to as inverse document
frequency (IDF). Higher value of TF-IDF for a given word
indicates that the word is more important. TF-IDF is then
computed using the following formula:

TF-IDF(w, d,D) = log(freq(w, d))× log
|D|

|di ∈ D : w ∈ di|
where w is a word, d is a document, D is a set of documents,
freq(w, d) is the number of times word w appear in document
d, and di ∈ D : w ∈ di refers to documents that include the
word w.

Using the vectors of weights from the query and document,
VSM calculates the similarity between the two vectors. The
similarity is calculated by using a standard metric such as
cosine similarity. The following is the equation to compute
the cosine similarity between query q and document d:

sim(q, d) =
vq · vd

∥vq∥ ∥vd∥
where vq and vd are vectors of term weights for query q
(i.e., bug report) and document d (i.e., source code file),
respectively.

Recently, Yang et al. [14] proposes the IncBL bug lo-
calization tool. In their study, IncBL has been shown to
achieve a comparable level of performance with BugLocator,
the previous state-of-the-art tool. Compared to other bug local-
ization tools, IncBL supports incrementally updating its model
parameters instead of re-computing the entire model, allowing
the bug localization process to be accelerated significantly
without sacrificing its accuracy.

B. Evaluation Metrics

The output of IR-based bug localization is a list of files
ranked from the most to the least suspicious. There are several
metrics that can be used to evaluate the effectiveness of the
bug localization techniques based on the rank of the buggy
files in the ranked list. In this study, we use the metrics
that are commonly used in the evaluation of bug localization
techniques in previous works [10], [19], [22]:
• MAP (Mean Average Precision): This metric is computed

by averaging the average precision (AP) of all bug reports.

Higher value of MAP indicates better effectiveness of the
bug localization technique. The following formula is used
to compute the average precision of a single bug:

AP =

M∑
i=1

P (i) · rel(i)
#buggy files

where M is the number of source code files and rel(i) is a
binary value that indicates whether the ith file is the buggy
file. P (i) is the precision at Top-i ranked files, which can
be calculated using the following formula:

P (i) =
#buggy files in top i

i

• HIT@N: It is the percentage of bug reports whose buggy
files can be found in the Top-N of the ranked list. Following
the previous study [10], we use 1 as the value of N .

• MRR (Mean Reciprocal Rank): This metric is calculated
based on the reciprocal ranking (i.e., the inverse of the
rank) of the first buggy file in the ranked list. The MRR
is computed by averaging the reciprocal rank of all bug
reports. The formula of MRR is defined as a follow:

MRR =
1

|B|

B∑
i=1

1

ranki

where B is a set of bug reports and ranki is the rank of
the first buggy file from the ranked list.

III. THE THREE BIASES AND THEIR PREVALENCE

In this section, we investigate our first research question
RQ1: How prevalent are the three biases? At the time
of writing this paper, several new bug report datasets have
been proposed. BuGL [11] is a dataset for bug localization
consisting of projects written in C, C++, Java, and Python. The
main focus of BuGL dataset is to investigate similarities and
differences between bugs in different programming languages.
Bugzbook [9] is a diverse bug report dataset for IR-based bug
localization containing a collection of Java, C/C++, and Python
code from GitHub. These newer datasets are not curated by
removing the three biases that may skew the bug localization
result [10]. Only limited manual checks were conducted on the
bug reports: BuGL dataset was only checked by exploring the
connections between GitHub issues and pull requests based
on descriptions and keywords. Authors of Bugzbook only
manually checked two random bug reports from each of the
projects by comparing their collected bug reports with the
online entry in GitHub or Jira. None of the currently available
bug report datasets have been checked thoroughly to ensure
that they are free from biases that have been pointed out by
Kochhar et al [10]. Thus, in this RQ, we aim to check whether
the bug reports in newer dataset contain these biases. We
intend to draw greater attention to the bias problem in the bug
reports dataset by examining the prevalence and distribution
of the three biases within a newer dataset.

We focus our study on the Python programming language,
as it is currently one of the most popular programming
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language but only has limited number of bug report dataset.
We choose to utilize the Bugzbook dataset that is built by
Akbar and Kak [9], as it contains bug reports for Python
code and has a bigger number of bug reports (i.e., 21,253
bug reports) compared to the BuGL dataset (i.e., 10,000 bug
reports). Bugzbook links the bug reports to the corresponding
source code files that are fixed or modified to address the
bug reports. We filter the bug reports by only taking the bug
reports that fix Python files collected from JIRA issue tracker.
Through this filtering process, we obtain a total of 2,913 bug
reports from 12 projects. However, we find that there are some
bug reports where the fixed files entry contains a link to the
developer’s email, as shown in Table I. As this entry is not a
buggy file, we conduct an additional step to manually check
the pushed commit that fix the bug, and remove any unrelated
entry in the fixed files, such as the email in the shown example.

Following Kochhar et al.’s work on bias in bug localization
[10], we proceed to clean the filtered bug report dataset from
three biases: (1) misclassified report; (2) already localized bug
reports; (3) incorrect ground truth.

A. Bias 1 - Misclassified Reports

An issue report may describe a bug, improvement request,
documentation change, etc. Herzig and Zeller [23] highlighted
that there are many issue reports that are misclassified as
a bug. In their study, they showed that the misclassification
greatly impacts the experiments that determine whether a file
is possibly buggy or not based on the history of past bugs. The
misclassification may also affect the result of bug localization
as there may be different characteristics between different type
of issue reports (e.g., bug report, documentation, enhancement
request, etc.). In this step, we label whether an issue report is
indeed a bug report. We follow the work of Herzig et al. [24]
which considers an issue report as a bug report if it complies
with the following points:
1) It reports a Null Pointer Exception (NPE).
2) It fixes runtime or memory issues caused by defects (e.g

endless loops).
3) The discussion concludes that the code had to be changed

semantically to perform a corrective maintenance task.
We manually analyze the bug reports obtained from Akbar

and Kak’s work [9], which comprise of 2,913 bug reports from
12 projects. We establish the guidelines prior to the labeling
process based on the work by Herzig et al. [24]. We read
the summary and description of each bug report to determine
whether the report is indeed a bug report. An example of a
misclassified bug report is shown in Table II. In this example,
the bug report should be classified as an RFE (Request For
Enhancement). This bug report contains a request to give an
additional option to separate the DBA mode. It is clear that
this is a feature request and not a bug report.

To prevent bias and ensure the labeling quality, at least two
authors independently label each bug report. We determine a
bug report as misclassified if and only if all the authors who
label the report reach a consensus that the report is not actually
a bug report. For bug report which both authors label as not

TABLE II
MISCLASSIFIED ISSUE REPORTS (AMBARI-11237)

Summary Provide option on Ranger UI for separate DBA mode
Description On Ranger Admin UI, provide a checkbox “Do DB

Setup?”. If this option is set, BE will setup the DB User
and the DB. If not set, it will be assumed that DBA
has already done it and those properties will be used to
connect to it.

Fixed Files params.py

misclassified, we include them as the not misclassified bug
report, amounting to 2,367 bug reports. Meanwhile, for bug
reports which both authors label as misclassified, we include
them as the misclassified bug reports, amounting to 121 bug
reports. We do not include bug reports where both authors
do not reach the same label, as we want to have a high
confidence and accuracy in our dataset. From the first bias
labeling, 2,367 bug reports are not misclassified and 121 bug
reports are misclassified.

B. Bias 2 - Already Localized Bug Reports

An already localized bug report is a bug report where
the locations of the files that need to be fixed are already
mentioned in the bug report itself. As the bug report already
contains the location of the bug fix, it means that the bug is
already localized and does not require bug localization. Pre-
vious research on the evaluation of IR-based bug localization
does not filter out these already localized bug reports. This
occurrence may skew the result of bug localization technique.
In this subsection, we describe how we filter out the already
localized bug reports and show the distribution of the bug
reports that are affected by this bias.

In determining the already localized bug reports, we follow
the categorization proposed by Kochhar et al. [10]:
• Fully Localized: all buggy files are mentioned in the

summary and description of the bug report.
• Partially Localized: some of the buggy files are mentioned

in the summary and description of the bug report.
• Not Localized: no buggy files are explicitly mentioned in

the summary and description of the bug report.
For the purpose of determining bug reports that are already
localized from the dataset, we conduct two steps:

1) Manually Label Bug Reports: From 2,367 bug reports
that are not misclassified, we randomly selected 400 bug
reports to label. This number is larger than 331, which is the
number of statistically representative samples with 5% margin
of error and 95% confidence level. We look at the summaries
and descriptions of the 400 bug reports, and determine whether
the files to fix are already mentioned. When labeling the data,
the authors are assisted by guidelines proposed by Kochhar et
al. [10] to categorize localized bug reports. To prevent bias and
ensure the labeling quality, two authors independently label
these bug reports. We then use only bug reports that receive the
same labels from the two authors, amounting to 334 labeled
bug reports. The purpose of this manual labeling process is to
evaluate the performance of the automatic labeling approach
that we will explain in the second step.
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Examples of bug reports that have been labeled based on
their localized properties are shown in Table III, which include
not localized, fully localized, and partially localized bug
reports, respectively. In the not localized bug report example,
it is shown that the buggy file, params.py, is not mentioned
in the summary and description of the bug report. Therefore,
we determine that this bug report is not localized. In the fully
localized example, the names of the buggy files are found in
the summary of the bug report. As all the buggy files are
mentioned in the bug report, we label the bug report as fully
localized. In the partially localized example, we see that one of
the buggy files, params.py, is written in the description of the
bug report. However, the other buggy file, conf select.py, does
not appear in the summary and description of the bug report.
Since not all of the buggy files appear in the bug report, we
label the corresponding bug report as partially localized.

2) Automatically Label Bug Reports: We also utilize an
automated approach to label the localized bug report by
building a Python program to automate the process. The
program processes the summary and description from the bug
report by tokenizing the text into word tokens. We use space,
tab, newline, backslash, and several commonly used symbols
(e.g., “:”, “;”, “/”, etc.) as the tokenization separators. Then,
we check whether the fixed file names (without their location)
exist in the word tokens. We keep the file extension since some
file names (without its extension) are often named using words
that frequently appear in bug reports, such as “util” and “test”.
If all of the file names exist in the words tokens, we label the
bug report as fully localized. If only some of the file names
exist in the word tokens, we label the bug report as partially
localized. Finally, if the file names do not exist at all in the
word token, the bug report is categorized as not localized.

To check the quality of the automatically assigned labels,
we run the automatic process on the 334 bug reports with
has been manually labeled, as described in Section III-B1.
By treating the manual labels as the ground truth, we find
that the accuracy of the automatic labeling is 99.40%. The
0.6% differences between the manual and automatic labeling
processes are due to the bug reports that have the fixed file
name written in the summary or description without the file
extension (e.g., utils instead of utils.py). For such case, the
output from the manual label is partially localized whereas
the output from our automatic label is not localized. Since
the difference is negligible, we apply this automatic labelling
program to the 2,367 bug reports that are not misclassified.
From the automatic labeling, 521 bug reports are labeled as
fully localized, 15 as partially localized, and 1,831 as not
localized. Throughout the dataset, around 22% of the bug
reports are already localized. This demonstrates that a large
number of bug reports are already localized and would not
benefit from bug localization.

C. Bias 3 - Incorrect Ground Truth

Within the Bugzbook dataset [9], all of the files that are
changed in the commit as a response to a bug report (i.e.,
changed files) are considered as the ground truth to evaluate

diff --git a/ambari-server/src/main/.../hdfs_namenode.py
b/ambari-server/src/main/.../hdfs_namenode.py
--- a/ambari-server/src/main/.../hdfs_namenode.py
+++ b/ambari-server/src/main/.../hdfs_namenode.py
@@ -385,5 +385,5 @@ def is_namenode_formatted(params):

marked = True
-
+

if marked:
return True

Fig. 1. Example of file changes. In this changes the newline with trail space
is replace with a newline without trailing space.

the accuracy of bug localization techniques. However, these
changed files might not contain the reported bug. We call these
files which do not contain bug-fix as non-buggy files. These
non-buggy files need to be excluded from the study as they
may skew the bug localization result.

In this step, we determine whether there are wrongly iden-
tified buggy files. If a file change only involves non-essential
changes such as refactoring and cosmetic changes, the changed
file is regarded as a non-buggy file. We check bug reports that
are not already localized and make modifications in more than
one file, amounting to 68 bug reports with 137 files. We only
check bug reports which contain more than one changed file
since if a bug report only involves changes to one file, then
the changed file must be the correct ground truth (i.e., the
buggy file). Meanwhile, if a bug report involves more than
one changed file, it is possible that not all of the changed files
are relevant to the bug fix. The total of bug reports that only
have one changed file is 1,763 bug reports.

We analyze the changes done in the changed files and also
look at the summary and description of the bug report to
help in identifying whether the files are indeed relevant to
the bug fix. For this purpose, we conduct manual analysis as
the automatic identification of real ground truth files that is
proposed by a previous study [25] only has a relatively low
accuracy (i.e., 71.8% recall and 76.4% precision). Similar to
the previous manual analysis process, to make the labelling
consistent between authors, we used guidelines in the labelling
process. All the guidelines that used on the analysis process
also accessible trough the GitHub page.

An example of a non-buggy file is shown in Figure 1,
which highlights a file that is changed to resolve bug report
AMBARI-19402. From the code change diff, we can see that
there are only cosmetic changes that did not include bug fixes,
as the changes only replace the existing newline with a trailing
space with a newline without trailing space. These changes
have no effect on the program output or execution. From
the labeling process, we find 95 files that contain bug fixes
from 64 bug reports and 22 files that do not contain bug-
fixes from 20 bug reports. There are 16% of the files that
are wrongly classified as a ground truth as these files do not
include changes that are relevant to the bug fixes.

D. Overview Distribution

We investigate the prevalence of biases highlighted by
Kochhar et al. [10] from the 2,913 bug reports that fix Python
files obtained from the Bugzbook [9] dataset. The three biases
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TABLE III
NOT LOCALIZED BUG REPORTS (AMBARI-10001), FULLY LOCALIZED BUG REPORTS (AMBARI-10258), AND PARTIALLY LOCALIZED BUG

REPORTS (AMBARI-11594)

AMBARI-10001 AMBARI-10258 AMBARI-10548
Summary Missing property “Common Name for Cer-

tificate” in Advanced ranger-hbase-plugin-
properties

after-INSTALL hook
shared initialization.py should
call compare versions not
params.stack version unformatted

Hadoop Home Directory Should Be Chosen
Correctly During An Upgrade

Description Under HBase config, in Advanced ranger-
hbase-plugin-properties section, property
“Common Name for Certificate” is missing
and needs to be added. This is an optional
parameter, but needs to be added for SSL.

Install error compare versions return in-
valid type error int(). after-INSTALL hook
shared initialization.py should call com-
pare versions(params.hdp stack version,
‘2.2’) not params.stack version unformatted

We currently have a pattern that we use for
lib/libexec/bin/sbin ... we should extend this
to “home” as well to make our params.py
consistent.

Fixed Files params.py shared initialization.py conf select.py, params.py

TABLE IV
BIASES DISTRIBUTION OVERVIEW FROM 12 PROJECTS IN BUGZBOOK

Bias 1: Misclassified Issue Reports
Not Misclassified Misclassified

#Bug Reports 2,367 121
Bias 2: Already Localized Bug Report

Not Localized Partially Localized Fully Localized
#Bug Reports 1831 15 521

Bias 3: Incorrect Ground Truth
Correct Ground Truth Incorrect Ground Truth

#Bug Reports 1809 20

are (1) misclassified report, (2) already localized bug reports,
and (3) incorrect ground truth. The summarized results of
our investigations can be seen in Table IV, which shows the
number and distribution of each bias.

Initially, we have 2,913 bug reports, from which we have
121 misclassified bug reports and 425 bug reports that receive
different labels from the manual labeling process in our
investigation of the first bias (i.e., misclassified bug report).
Next, from the remaining 2,367 bug reports that are not mis-
classified, we identify the second bias (i.e., already localized
bug reports), where we find 15 bug reports that are partially
localized, and 521 bug reports are fully localized. To check the
third bias, we remove these partially and fully localized bug
reports, and proceed with the remaining 1,831 bug reports. For
the third bias (i.e., incorrect ground truth), we manually check
68 bug reports with 137 files. We do not need to check the
remaining 1,763 bug reports as these bug reports only have
one fixed file, which make them unaffected by the third bias.
From the manual analysis, we find that 20 bug reports are
affected by incorrect ground truth bias, where we find a total
of 22 incorrect ground truth files. There are also 20 files from
8 bug reports where we do not have a consensus in the manual
labeling process. The remaining 95 files from 64 bug reports
have a correct ground truth or contain bug fixes in them.

After these cleaning processes, we retain 1,809 bug reports
that do not exhibit any of the 3 biases. These 1,809 clean bug
reports are collected from 9 different projects. The details of
this clean dataset, which we refer to as CAPTURED, is shown
in Table V. We can see that the biggest percentage of bias is
found in the second bias, which is bug reports that are already
localized. As the number of bug reports that are affected by

TABLE V
CAPTURED CLEAN DATASET FROM THREE BIASES

Project #Issue Reports
Ambari 1571
Spark 204
Hive 12
Cassandra 10
Bigtop 4
HBase 3
Solr 3
Sqoop 1
Tez 1

the three biases are not small, we encourage researchers to
pay more attention to these biases when using or collecting
bug reports data for bug localization. In particular, the second
bias is the most common but can be filtered automatically.

RQ1 Findings: We find that 121 out of 2,488 (5%)
bug reports are affected by bias 1,536 out of 2,367
(23%) bug reports are affected by bias 2, and 20 out
of 68 (30%) bug reports are affected by bias 3. This
distribution shows that newer dataset is also affected
by the three biases.

IV. EFFECTS OF BIASES ON
BUG LOCALIZATION

Following the identification of the biases described in Sec-
tion III, in this section, we investigate our second research
question (RQ2): How do the three biases affect the perfor-
mance of bug localization? To better understand the effect
of each bias, we conduct several investigations: (1) the effect
of misclassified bug reports; (2) the effect of already localized
bug reports; and (3) the effect of incorrect ground truth in
bug reports. For each bias investigation, we first prepare the
evaluation datasets, which consist of the cleaned dataset that
has been cleaned of the bias and the dirty dataset that still
contains the bias. Using these datasets, we run the VSM-based
(Vector Space Model) bug localization technique that was used
in evaluating bias in the previous study [10], and IncBL [14],
a recent tool for incremental bug localization.

For evaluating the bug localization results, we compute
MAP, HIT@N and MRR, as described in Section II. Following
the previous work [10], we use Mann-Whitney-Wilcoxon [26]
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TABLE VI
MAP SCORES OF REPORTED AND ACTUAL DATASETS FOR BIAS 1.

REPORTED CONTAINS THE BIAS, WHILE ACTUAL DOES NOT.

Technique Reported Actual Difference p-value d
VSM-based 0.195 0.194 -0.31% 0.461 0.002
IncBL 0.265 0.266 0.55% 0.432 0.004

test (at 5% significance level) and compute Cohen’s d effect
size [27] to compare the bug localization results when evalu-
ated using the dataset with and without bias. Mann-Whitney-
wilcoxon test is used to check how significant the differences
between two groups are. Meanwhile, effect size is a metric
that shows the magnitude of the experimental effect. Effect
size shows how substantial the difference between the bug
localization tool results with and without bias are. For the
interpretation of the effect size, we follow the suggestion from
Cohen [27] where d < 0.2 is a ‘negligible’ effect size, 0.2 ≤
d < 0.5 is a ‘small’ effect size, 0.5 ≤ d < 0.8 is a ‘medium’
effect size and 0.8 ≤ d < 1.3 represents a ‘large’ effect size.

A. Effect of Misclassified Bug Reports

From our investigation of RQ-1 for the first bias, we
construct two categories of bug reports, which are the bug
reports that have been manually checked and labeled as actual
bugs (i.e., the actual dataset) and bug reports that are classified
as bugs in the tracking system (i.e., the reported dataset). To
investigate the effect of misclassified bug reports, we run the
IncBL and VSM-based bug localization tools on both bug
reports. The MAP scores for both tools on these two categories
are shown on Table VI.

We compare the performance of bug localization techniques
on the reported and actual datasets. The results show that
the differences between MAP scores on the reported and
actual datasets are small, with -0.52% and 0.77% differences
for the VSM-based and IncBL bug localization techniques,
respectively. VSM-based technique achieves a higher score
on the reported dataset, while IncBL achieves a higher score
on the actual dataset. Furthermore, the result of Wilcoxon
statistical test shows that the difference is not statistically
significant. The Cohen’s d effect size also shows a negligible
effect size, meaning that the difference between the reported
and actual datasets is not substantial.

Beside MAP scores, we also analyze MRR and HIT@1
scores. Figure 2 shows the effect of bias 1 towards the MRR
and HIT@1 scores. We observe that the score differences
between the reported and actual datasets for both tools are
minimal. Similar to MAP, the MRR score for VSM-based tech-
nique is higher on the reported dataset, while the MRR score
for the IncBL is higher on the actual dataset. Meanwhile, for
the HIT@1 scores, the results for both VSM-based technique
and IncBL on the actual dataset achieve have lower scores
compared to the scores on the reported dataset. Following the
previous study [10], we also run a statistical test and the effect
size test for MRR. The comparison of the statistical test result
and effect size is shown in Table VII. We observe that the
impact of this bias is not statistically significant as shown by
the p-value column results that are higher than 0.05.

Fig. 2. MRR and HIT@1 scores before and after removing bias 1 for VSM-
based and IncBL localization tools

TABLE VII
MANN-WHITNEY-WILCOXON TEST AND COHEN’D VALUES FOR MRR

BETWEEN CLEAN AND DIRTY DATASET.

Bias Type Technique p-value d

Bias 1 VSM-based 0.454 0.002
IncBL 0.442 0.003

Bias 2 VSM-based 9.56e−18 0.326
IncBL 5.39e−15 0.292

Bias 3 VSM-based 0.419 0.017
IncBL 0.453 0.024

B. Effect of Already Localized Bug Reports

In RQ-1, we have categorized bug reports to already lo-
calized, partially localized, and not localized. We run both
IR-based bug localization tools (i.e., VSM-based and IncBL)
on these bug reports. Then, we evaluate the effectiveness of
the bug localization tools for each bug report category.

Table VIII shows the MAP scores of both tools for each set
of bug reports, which are fully localized, partially localized,
and not localized. The score differences between fully local-
ized and not localized bug reports are 35.82% and 47.29% for
the IncBL and VSM-based bug localization tools, respectively.
Surprisingly, the MAP results for partially localized are worse
than the results for the not localized bug reports, where the
score differences between the partially and not localized are
52.79% and 35.69% for IncBL and VSM-based bug localiza-
tion tools, respectively. The differences between fully localized
and partially localized bug reports are the highest, where the
differences are 84.61% and 77.88% for IncBL and VSM-based
bug localization tools, respectively.

The differences between (1) fully vs. partially localized, (2)
partially vs. not localized, and (3) fully vs. not localized bug
reports are shown in Table IX. Based on these results, we
observe that the differences are statistically significant at 5%
significance level, except for the partially localized vs. not
localized bug reports. Meanwhile, the effect size results show

TABLE VIII
MAP SCORES FOR BIAS 2 BETWEEN FULLY LOCALIZED VS PARTIALLY

LOCALIZED VS NOT LOCALIZED

Technique Fully-localized Partially-localized Not-localized
VSM-based 0.277 0.122 0.171
IncBL 0.350 0.142 0.243
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TABLE IX
MANN-WHITNEY-WILCOXON STATISTICAL TEST AND COHEN’S D EFFECT SIZE FROM THE MAP SCORES FOR FULLY VS. PARTIALLY VS. NOT LOCALIZED

Technique Fully-Partially Partially-Not Fully-Not
p-value d Effect Size p-value d Effect Size p-value d Effect Size

VSM-based 0.030 0.437 small 0.428 0.167 negligible 2.0e−18 0.344 small
IncBL 0.014 0.568 medium 0.282 0.303 small 1.211e−15 0.309 small

Fig. 3. MRR and HIT@1 scores before and after removing bias 2 for VSM-
based and IncBL localization tools

that it spans from negligible (e.g., partially vs not localized
with VSM-based) to medium (e.g., fully vs partially localized
with IncBL). We also compare the results between fully and
partially localized vs. not localized. The results show that the
difference is significant with p-value 9.54e−18 and 7.21e−15

for VSM-based and IncBL, respectively. This finding shows
that, for both VSM-based and IncBL approaches, there are
statistically significant differences between already localized
and not localized bug reports, as indicated by the p-value that
is less than 0.05. For the effect sizes, VSM-based approach
have negligible to small effect size, while IncBL have small
to medium effect size. This suggests that bias 2 affects IncBL
approach more than it affects VSM-based approach.

Fig. 4. MRR and HIT@1 scores before and after removing bias 3 for VSM-
based and IncBL localization tools

Results for HIT@1 and MRR metrics are shown in Figure 3.
From the results, we see that the effect of bias 2 is substantial.
The HIT@1 and MRR scores for both IncBL and VSM are
lower for the dataset with bias 2 removed compared to the one
containing bias 2. Contrary to the MAP results, the MRR and
HIT@1 results show that partially localized has higher score
than not localized. This is due to MAP accounts for the ranking
of all buggy files, while MRR and HIT@1 only account for

the best localized buggy file. Our finding highlights that the
presence of bias 2 in the dataset increases the effectiveness of
bug localization approaches. Results of the statistical test and
effect size for the MRR are shown at Table VII. The results
show that bias 2 affects the bug localization results statistically
significantly (p-value column) with a small effect size (d effect
size column).

TABLE X
OVERALL RESULTS OF BIAS 3 (MAP)

Technique Dirty Clean Difference p-value d
VSM-based 0.122 0.129 -6.35% 0.499 0.032
IncBL 0.183 0.179 2.67% 0.493 0.001

C. Effect of Incorrect Ground Truth in Bug Reports

In the manually identified ground truth files for bias 3, we
find that there are 68 bug reports that are not misclassified,
not already localized, and have more than one ground truth
files. We manually identify whether the files are changed to
fix the bug. Based on these identified incorrect ground truth
files, we build the dirty and clean ground truth datasets, where
the dirty ground truth contains all the changed files (i.e., 117
files), while the clean ground truth only contains the files that
are related to bug fixes (i.e., 95 files). We then run VSM-based
bug localization and IncBL on these two datasets.

The MAP scores of the VSM-based and IncBL tools for
both the dirty and clean datasets are shown in Table X. Based
on these results, we observe that the differences in the MAP
score between the dirty and cleaned dataset for the VSM-
based bug localization tool are higher compared to IncBL,
where the differences are 6.35% for VSM and 2.67% for
IncBL. However, the statistical test indicates that there are no
significant differences between the results on dirty and cleaned
dataset for both tools, as indicated by the p-values that are
higher than 0.05. Regarding the effect size between the two
datasets, both tools have a negligible effect size (d < 0.2).

We further investigate the detailed results of each project
to better understand the effect of the incorrect ground truth.
The 68 bug-reports that are checked for this bias are taken
from Ambari and Spark projects. The detailed results for each
project are shown on Table XI. Based on the IncBL results,
we observe that there are no significant differences between
the results on the dirty and clean ground truth dataset, as the
differences are only 2.91% to 2.94% with a negligible effect
size (0.019 and 0.088) for Spark and Ambari, respectively.
Different from the IncBL results, the VSM-based results show
that the Spark project have a higher differences (39.31%) with
a medium effect size. We conclude that the project-level results
are consistent with the overall results, where the VSM-based
approach results have higher differences between the dirty and
clean ground truth dataset compared to the IncBL tool.
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TABLE XI
MAP RESULTS FOR BIAS 3 BETWEEN EACH PROJECT IN DIRTY VERSUS

CLEAN GROUND TRUTH

IncBL
Project Dirty Clean Difference p-value d
Ambari 0.168 0.173 2.91% 0.5 0.019
Spark 0.515 0.5 -2.94% 0.341 0.088

VSM-based
Project Dirty Clean Difference p-value d
Ambari 0.121 0.127 4.96% 0.486 0.024
Spark 0.145 0.202 39.60% 0.349 0.596

MRR and HIT@1 scores for the dirty and clean datasets are
shown in Figure 4. Compared to the MRR and HIT@1 results
for bias 1, it is apparent that bias 3 has more effect. However,
the score differences for bias 3 are not as substantial as bias 2.
VSM-based results for both MRR and HIT@1 show a higher
score when the bias 3 removed compared to when there are
instances of bias 3 in the dataset. However, for IncBL, the
results when bias 3 is present are higher. This is inline with
the overall MAP results. The statistical test and effect size
results on MRR between the dataset with and without bias 3
is shown in Table VII. It shows that the effect is not significant
(p-value column).

RQ2 Findings: Bias 1 and bias 3 do not signifi-
cantly and substantially affect bug localization results.
Meanwhile, bias 2 statistically significantly affect bug
localization results, with negligible to small effect size
for VSM, and small to medium effect size for IncBL.

V. COMPARISON WITH PREVIOUS STUDY

In this section, we investigate our third research question
(RQ3): How does the effect of the three biases in CAP-
TURED compared to the effect of the three biases in
the previous study? We want to compare our evaluation
results with the evaluation results of bug localization tool
that have been done by Kochhar et al. study [10]. To be fair,
we only compare results of the VSM-based bug localization
technique that was also used in Kochhar et al. study [10].
As we utilize a different dataset, we cannot directly compare
the MAP results between the two studies. Thus, we conduct a
qualitative analysis on the evaluation results between our study
and Kochhar et al. study, by checking whether the claim in
Kochhar et al.’s study regarding effect the of the biases on bug
localization are inline with the findings in our study.
• For bias 1, our evaluation shows that the VSM-based bug

localization tool is not affected by misclassified bug reports.
Compared to the claim from the previous study, which states
that bias 1 does not significantly impact the bug localization
results (i.e., except for one project), our finding is generally
inline with the claim. Our evaluation also highlights that the
effect size of bias 1 is negligible, which is also inline with
the finding in the previous study.

• For bias 2, previous study claims that already localized
bug reports statistically significantly (p-value < 0.05) and
substantially (effect size > 0.8) impact bug localization

results. Indeed, in our study, bias 2 has a statistically
significant impact. However, our evaluation shows that the
effect size of bias 2 is not as high as the effect size in the
previous study. In our study, the effect size for VSM-based
technique spans from negligible to small, whereas in the
previous study, the effect sizes span from small to large,
with most categories having a large or medium effect size.
This finding suggests that bias 2 does affect the result of
bug localization. However, the effect size may vary.

• For bias 3, the previous study claims that the incorrect
ground truth (i.e., ground truth that contains non-buggy files)
does not statistically significantly or substantially impact the
bug localization results. Our finding corroborates this claim,
as our evaluation shows that the p-value when testing the
score differences between dirty and clean ground truth is
higher than 0.05 with the effect size less than 0.2. However,
when evaluating a project separately (i.e., Spark), we find
that the effect size is medium, which differs from the result
of the previous study that highlights that all projects have
a negligible effect size. Thus, while the overall effect of
bias 3 is not significant, researchers should still consider
the presence of this bias in their dataset as it may have
more impact on some projects.

RQ3 Findings: Based on our evaluation results on the
effect of the three biases in bug localization task, we
generally agree with the findings of the previous study,
where only bias 2 has significant effect. However, the
effect size of bias 2 in our dataset is smaller than the
previous study.

VI. RELATED WORK

Bug Report Datasets. Several bug report datasets have
been released [9], [11]–[13], [28]–[30]. Most of these datasets
consist of bug reports for Java and C programming languages.
Buglinks [12] is a dataset containing 4,650 Java and 396
C/C++ bug reports from Bugzilla that have been marked as
“FIXED”. Bench4BL [13] is a collection of 10,017 bug reports
from 46 open-source Java projects. Bugs.jar [29] is a dataset
of 1,158 reproducible bugs and patches for Java programs with
accompanying bug reports. moreBugs [30] is a dataset of more
than 500 bug reports derived from 10 years of commits and
development of AspectJ and JodaTime repositories.

More recently, several bug report datasets containing Python
code have also been released. BuGL [11] is a dataset of
10,187 bug reports from C, C++, Java, and Python code,
which is aimed to find similarities between bugs in different
programming languages. Bugzbook [9] is a bug report dataset
from a collection of C, C++, Java, and Python code, containing
more than 20,000 bug reports for IR-based bug localization.
Compared to the above bug report datasets, our work is
focused on bug reports for Python files. We also focus our
study in the investigation of biases that has been highlighted by
Kocchar et al. [10], which have not been thoroughly examined
in the bug report datasets from previous studies.
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Bias in Software Engineering. Availability of quality
dataset is important for software engineering studies. However,
the dataset may be affected by bias, which affect the result
of studies utilizing such dataset. Several research investigate
biases in software engineering dataset [10], [31]–[35]. Herzig
et al. [31] examine more than 7,000 issue reports from bug
databases and find that 33.8% of the bug reports are misclassi-
fied and not actually contain a bug. Bird et al. [32] investigate
historical bug dataset and find evidence of systematic bias on
these datasets that threatens the effectiveness of processes that
rely on these biased datasets. Herzig and Zeller [34] investigate
the effect of tangled code change, which is a code change
that contains unrelated or loosely related changes. They find
that up to 15% of all bug fixes that they investigate consist
of multiple tangled changes. Kawrykow and Robillard [35]
observe that important changes to software are sometime ac-
companied by non-essential modifications. They find that up to
15.5% of system’s method updates are related to non-essential
modifications. Tantithamthavorn et al. [33] study the effect
of data mislabelling in the performance of defect prediction
models. They find that the mislabelling is not random and the
models that are trained using these noisy data have a lower
recall. Kochhar et al. [10] investigate the effect of three biases
towards bug localization technique. The three biases that they
consider are misclassified bug report, already localized bug
report, and incorrect ground truth for bug report.

In this study, we replicate the work of Kochhar et al. on the
biases for bug localization. We check the effect of biases on
bug localization techniques using a newer dataset to reevaluate
the previous findings of Kochhar et al.

VII. THREATS TO VALIDITY

Internal Validity. Threats to internal validity relate to the
tools and approaches that we use for bug localization. As the
previous study by Kochhar et al. [10] does not publicly share
the IR-based bug localization tools that they use, we replicate
their tools for Python language based on the descriptions that
are provided in their paper. To mitigate this risk, we publicly
share our code and implementation of the tool that we replicate
so that other researchers can validate our implementation. The
code and the dataset that we use are available at: https://github.
com/jiekeshi/Bias-in-BL.

Another concern related to internal validity is in the analysis
of the biases. We utilize manual labeling to identify whether
the bug reports contain biases. It is possible that, due to human
mistake, there are errors in the labelling process. To reduce
the likelihood of incorrect labeling, we require two authors to
independently label each of the bug reports. Then, we only
include bug report where both author give the same label,
while we exclude bug report that do not receive the same
label. Using this approach, we can have a higher confidence
in the quality of the bias labeling and the produced cleaned
dataset. We also made our dataset public for others to validate
our findings. Thus, we believe that this threat is minimal.

Construct Validity. Threats to construct validity relate
to the suitability of evaluation metrics that we use in our

evaluation. To evaluate the bug localization result, we utilize
MAP, HIT@N and MRR. For the comparison of the metric
scores between the datasets, we use Mann-Whitney-Wilcoxon
and Cohen’s d effect size statistical tests. As these metrics and
statistical tests are the same as the one used in the prior study
of Kochhar et al. [10], we believe that this threat is minimal.

External validity. Threats to external validity relate to the
dataset that we use in our study. We conduct our analysis on
a dataset of 2,913 bug reports that fix Python files. These bug
reports are collected from Apache’s JIRA issue tracker [36].
It is possible that the bug reports that we collected are not
complete and limited to those that are obtainable from the
JIRA issue tracker. However, as a previous study [37] has
shown that the bug reports in JIRA are well linked with the
commits in the version control system of the projects, we
believe that using the JIRA issue tracker is sufficient for our
data collection.

VIII. CONCLUSION AND FUTURE WORK

In this work, we replicate the study of Kochhar et al. [10] on
the effect of three biases in the evaluation of bug localization
techniques. We utilize a recent Python bug report dataset for
our evaluation. We analyze the bug reports in this dataset to
check the prevalence of the three biases and find that 121 bug
reports are affected by bias 1,536 bug reports are affected
by bias 2, and 20 bug reports are affected by bias 3. We
clean the dataset from these biases and construct CAPTURED
(CurAted PyThon bUg REport Dataset), a Python bug report
dataset that is cleaned from the three biases. To check the
effect of the biases in our dataset, we utilize IncBL, a recent
bug localization tool, and the VSM-based technique which
was used in Kochhar et al. study. For each bias category, we
separate the bug reports into cleaned (i.e., already cleaned from
the bias), and dirty (i.e., still contains the bias) and measure
the performance of both tools on both datasets using MAP.

Our investigation highlights that bias 1 and bias 3 do not
have a significant impact, while bias 2 significantly impact the
results of bug localization. We also find that our findings are
inline with Kochhar et al. study, where they also find that bias
2 significantly affect the results while bias 1 and 3 do not.
However, we observe a lower effect size on our dataset than
the dataset analyzed by Kochhar et al.

For future work, we plan to expand our investigation for
more bug reports and more fault localization tools. Our study
is currently limited to bug reports of buggy files written
in Python, and two bug localization techniques (VSM and
IncBL). We plan to investigate other popular programming
languages (e.g., Javascript) and bug localization techniques
(e.g., deep learning based techniques) in the future.
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