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ABSTRACT 
With the wide usage of data visualizations, a huge number of Scal-
able Vector Graphic (SVG)-based visualizations have been created 
and shared online. Accordingly, there has been an increasing inter-
est in exploring how to retrieve perceptually similar visualizations 
from a large corpus, since it can beneft various downstream appli-
cations such as visualization recommendation. Existing methods 
mainly focus on the visual appearance of visualizations by regard-
ing them as bitmap images. However, the structural information 
intrinsically existing in SVG-based visualizations is ignored. Such 
structural information can delineate the spatial and hierarchical 
relationship among visual elements, and characterize visualizations 
thoroughly from a new perspective. This paper presents a structure-
aware method to advance the performance of visualization retrieval 
by collectively considering both the visual and structural informa-
tion. We extensively evaluated our approach through quantitative 
comparisons, a user study and case studies. The results demonstrate 
the efectiveness of our approach and its advantages over existing 
methods. 

CCS CONCEPTS 
• Human-centered computing → Visualization; • Informa-
tion systems → Information retrieval; • Computing methodolo-
gies → Machine learning. 

KEYWORDS 
Data Visualization, Visualization Retrieval, Visualization Similarity, 
Representation Learning, Visualization Embedding 
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1 INTRODUCTION 
Data visualization provides users with a powerful approach to an-
alyze enormous data, communicate insights and achieve efcient 
decision-making. Along with the popularity of visualizations, a 
huge number of visualizations based on Scalable Vector Graph-
ics (SVGs) have been created and shared online. Compared with 
bitmap-based visualizations, SVG-based visualizations have many 
advantages such as the support of interactions [1] and quality-
preserving resizing. Thus, SVGs have been adopted by various 
online platforms to store and present visualizations, for example, 
Plotly1 and Observable2. With such a large volume of visualizations 
online, how to retrieve similar visualizations has attracted growing 
research interest from both academia and industry [28, 29, 33] due 
to its signifcant importance for many downstream tasks. Specif-
cally, the retrieval of similar visualizations is fundamental to down-
stream tasks such as creating visualization collections [29] and 
recommending visualizations [28]. 

To achieve efective retrieval of similar visualizations, the core 
problem is to characterize the similarity between two visualizations. 
Existing studies mainly focus on estimating the similarity between 
visualizations according to the data or perceptual similarity. The 
existing methods based on data similarity [38, 39, 44] focus on the 
characteristics of data such as data distribution, while the visual 
appearance of visualizations is often ignored. Since the original 
data is not always available with the visualizations, the applica-
tion of visualization retrieval methods based on data similarity is 
quite limited. Perceptual similarity mainly refers to the similarity 
of visualizations perceived by users, which can also refect the data 
similarity. Compared with the direct computation of data similar-
ity, the computation of perceptual similarity does not rely on the 
original data. To compute the perceptual similarity, existing ap-
proaches [26, 33, 57] frst extract the visual feature vectors from 
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visualizations and further calculate the distance between feature 
vectors to measure their similarity. These methods mainly extract 
the visual features of visualizations at the level of pixels. For exam-
ple, Saleh et al. [33] measured the visualization similarity by using 
the color distribution of diferent pixels (i.e., color histograms). Re-
cently, deep learning-based methods [26, 57] have been proposed 
to extract visual features automatically by treating visualizations 
as bitmap images (e.g., the images in ImageNet [10]). However, few 
prior studies have considered the structural information of visu-
alizations that exists in SVGs by nature, when characterizing the 
perceptual similarity of visualizations. 

Structural information of visualizations mainly describes the spa-
tial and hierarchical relationship between elements, such as the 
position, grouping and hierarchy of the basic visual elements (e.g., 
<rect> and <path>). Compared with the commonly-used visual in-
formation (i.e., the visual features to describe the appearance of 
visualizations) of visualizations, structural information enables a 
unique perspective to characterize the appearance of visualizations 
at the level of visual elements instead of pixels. It provides an ac-
curate description of how diferent visual elements are organized 
in visualizations. For example, as shown in Figure 1, a grouped bar 
chart with two groups of bars (Figure 1(a)) and a bar chart with only 
one group of bars (Figure 1(b)) seem to show the same trend and are 
regarded as similar charts, if only the visual information is consid-
ered by using a computer-vision-based method (e.g., convolutional 
neural network (CNN) models). However, the grouped bar chart 
actually shows how two sets of data are compared and it should 
not be treated as a similar visualization as the bar chart with a sin-
gle group of bars. Instead, another grouped bar chart (Figure 1(c)) 
with both similar structure and appearance should be regarded sim-
ilar to the query bar chart (Figure 1(a)). From the example above, 
it is obvious that structural information plays an important role 
in characterizing the perceptual similarity between visualizations. 
However, it still remains unclear what kind of structure-based fea-
tures can be extracted and how these structure-based features can 
be leveraged to facilitate similar visualization retrieval. 

In this paper, we aim to fll the research gap by leveraging both 
structural and visual information to accurately evaluate the percep-
tual similarity between visualizations. We frst conducted a prelim-
inary study to better understand users’ criteria on assessing the 
perceptual similarity of visualizations and identifed the three most 
important criteria, i.e., the type of a visualization, the number of vi-
sual elements and the overall trend of visualized data. Building upon 
these results, we propose to transform SVG-based visualizations 
to graphs and bitmap images that refect the structure and the ap-
pearance of visualizations, respectively. Then we utilize contrastive 
representation learning to comprehensively delineate structural 
and visual information in a visualization with embedding vectors. 
Contrastive representation learning is a type of self-supervised 
learning method and can minimize the distance between similar 
samples and maximize the distances between diverse samples [19]. 
With contrastive learning, we avoid manually labeling the similar-
ity between diferent visualizations, enabling us to easily generalize 
our approach to various visualizations. Finally, we gain an embed-
ding vector for each visualization that characterizes its structural 
and visual information and is used for retrieving similar visual-
izations. Using the VizML corpus [18], we extensively evaluate 
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our approach through a crowdsourced user study, multiple case 
studies and quantitative comparisons. The results demonstrate the 
efectiveness of our approach. 

The major contributions of this paper are summarized as follows: 

• We present a novel structure-aware approach to characterize 
the perceptual similarity between visualizations through em-
bedding vectors, which enables efective similar visualization 
retrieval. 

• We conduct extensive evaluations including a crowdsourced 
user study with 50 participants, multiple case studies and 
quantitative comparisons with existing visualization retrieval 
methods. The results verify the efectiveness of our structure-
aware visualization retrieval approach. 

• We summarize the lessons we learned during exploring the 
usage of structural information in visualization retrieval. 

2 RELATED WORK 
The related work of this study can be categorized into three parts: 
retrieval of visualizations, visualization similarity estimation and 
visualization storage formats. 

2.1 Visualization Retrieval 
Visualization retrieval has attracted researchers’ interests in recent 
years along with the increasing number of visualizations. Based on 
the type of queries, the methods for retrieving visualizations can 
be mainly categorized into two classes [41], retrieval by defnition 
and retrieval by example. 

Retrieval by defnition refers to the methods where users can ex-
plicitly specify the criteria of retrieving visualizations using either 
programming language or natural language. For example, Hoque 
and Agrawala [17] enable users to create a JSON-like specifcation to 
indicate their target characteristics of visualizations such as encod-
ing types. Some other prior studies [7, 25, 40, 41] also provide users 
with tools to search for visualization using explicit queries. Com-
pared with retrieval by defnition, retrieval by example provides an 
intuitive way for users to defne the criteria of retrieving visualiza-
tions. Users can use existing visualizations or sketches to search for 
other visualizations. Several recent studies [26, 31, 33] take example 
visualizations as inputs and return similar ones for data exploration 
or visualization re-use. Zenvisage [38] and ShapeSearch [39] allow 
users to sketch their desired data pattern in visualizations. Then 
they retrieve the data which matches the pattern from the database 
and visualize them to users. In this line of research, one of the core 
problems is how to defne the similarity between visualizations, 
which will be further discussed in Section 2.2. 

Our structure-aware approach falls in the category of retrieval 
by example. Our approach takes SVG-based visualizations as the 
input and then represents the visual and structural information of 
them as embedding vectors for similar visualization retrieval. 

2.2 Visualization Similarity 
Computing the similarity of visualizations benefts various down-
stream tasks such as assisting users in exploratory data analysis [58], 
querying visualizations [26] and generating visualization collec-
tions [29]. Inspired by a previous study [26], prior methods on 
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(a) Query (b) Visual Information (CNN) (c) Structural and Visual Information 

Figure 1: This fgure shows (a) a sample query and the top-1 visualizations retrieved by (b) only considering visual information 
using CNN and (c) considering both structural and visual information. This example shows that structural information is 
essential in performing similar visualization retrieval. 

computing the similarity of visualizations can be roughly catego-
rized into two classes: data similarity and perceptual similarity. 

The frst class of methods solely focuses on the visualized data 
to delineate the similarity between visualizations. Some representa-
tive studies in this class include SeeDB [38], ShapeSearch [39] and 
VizCommender [28]. SeeDB [38] and ShapeSearch [39] defne the 
similarity between visualizations as the similarity of data distribu-
tion or trend. These methods require that the raw data is available, 
which limits their application scenarios. A possible way to mitigate 
the issue is to extract the raw data from visualizations and then 
calculate the data similarity. However, since the performance of 
existing data extraction methods (e.g., [36]) is not satisfactory [20], 
the inaccurately extracted data may further afect the results of 
retrieval. 

Another class of methods focuses on the perceptual similarity of 
visualizations. They extract visual features from visualizations and 
further utilize the distance between hand-crafted or learned feature 
vectors to characterize the similarity of visualizations. Hand-crafted 
features mainly refer to those features which are selected by the 
authors and can refect certain characteristics of visualizations. For 
example, prior studies proposed to use color histograms [33] or 
histograms of gradients [29] to measure the perceptual similarity 
of infographics or visualization workbooks. Due to the inefciency 
and complexity of selecting hand-crafted features, representations 
automatically learned by machine learning models have been ap-
plied recently. For example, ChartSeer [58] proposed to use an 
autoencoder to extract the representations of visualizations from 
their specifcations. ScatterNet [26] and ChartNavigator [57] intro-
duced convolutional neural networks (CNNs) on visualizations to 
learn their representations. 

This paper aims to propose a structure-aware approach for re-
trieving perceptually similar visualizations. Compared with the re-
trieval methods based on data similarity (e.g., [38, 44]), our approach 
does not require the existence of original data and thus extends 
the scope of inputs. Difering from the existing approaches which 
compute the perceptual similarity3 of visualizations (e.g., [26, 28]), 
our approach considers both the pixel-level visual appearance and 
the structure of visual elements. Such a design allows our approach 
to better match the crowdsourced criteria of perceptual similarity, 
which will be introduced in Section 7.1. 

3In the remaining part of this paper, “similarity” refers to perceptual similarity. 

2.3 Visualization Format 
Depending on the ultimate purposes, visualizations can be stored 
in various formats including graphics, programs and hybrid ap-
proaches [51]. 

The graphics-based visualizations include two common formats: 
raster graphics and vector graphics. Raster graphics (i.e., bitmaps) 
are the most common approaches to store and share visualiza-
tions [34] due to their high compatibility. However, they are hardly 
editable and often lead to the loss of visualization-specifc informa-
tion such as the chart type and visual encodings [51]. Alternatively, 
vector graphics such as SVGs provide general users with the fex-
ibility of modifcation and annotation and can preserve partial 
visualization-related information [50, 51] such as the relationship 
between visual elements. Previously, some studies have explored 
utilizing vector graphics to achieve visualization query by specif-
cation [17] and visualization type classifcation [1]. 

Programs are also commonly used to store visualizations such 
as D3 [2], Vega-Lite [35] or Plotly. They preserve the visualization-
related information and raw data. However, when rendering them 
as visualizations, extra compilers are always required, which limits 
their compatibility and wide usage. Recently, to combine the advan-
tages of graphics and programs, several studies have also explored 
how to embed programs into graphics, such as [12, 32, 56]. 

Bitmaps and programs are commonly used in previous studies 
to compute the similarity of visualizations [26, 46, 58]. However, 
bitmaps sufer from the lack of visualization-specifc information 
while the usage of programs limits the generalizability of related 
methods. Thus, in our paper, we propose to utilize the structural in-
formation (see Section 3.1) in scalable vector graphics (SVGs), which 
is widely used in spreading visualizations on the Internet due to its 
interactivity [1]. We combine the structural information extracted 
from SVGs and the visual information extracted from bitmaps to 
achieve efective characterization of visualization similarity. 

3 BACKGROUND 
In this section, we introduce the background of our research, in-
cluding the structural information in SVGs (Section 3.1) and the 
overview of contrastive learning, which enables unsupervised rep-
resentation learning for both SVGs and bitmaps (Section 3.2). 
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3.1 Structural Information in SVGs 
Scalable vector graphics (SVGs) are fles used to describe vector-
based graphics using Extensible Markup Language (XML)4. They 
have been widely used in visualizations on the Internet [1]. Com-
pared with bitmaps, SVGs can preserve more visualization-specifc 
information such as the style of the visual elements [51]. The struc-
tural information in SVGs mainly includes the hierarchical and 
spatial relationship among elements and the properties of each 
element. The hierarchical information of visual elements can re-
fect how they are inherited and grouped, for example, in Figure 5, 
the <path>s of green bars are grouped under the same <g> while 
the <path>s of blue bars are grouped under another <g>. Such in-
formation of visual elements can further illustrate the usage of 
visual channels and reveal some information of the raw data like 
the number of data instances and the number of attributes. The 
spatial relationship, which is extracted based on the positions of 
visual elements, can describe how the elements are placed and a 
rough trend of data. The properties of each element in SVGs also 
encode rich information, for example, the type, style, and shape 
of the element. The types of elements refect the functionality of 
elements, for example, <g> is used to group other elements and 
<text> can be rendered as graphics containing text. The styles of 
an element indicate how the elements are rendered. Some common 
styles include the color and stroke of an element. Furthermore, the 
shape of some visual elements can also be obtained from the prop-
erties, for example, the attribute “d” in <path> defnes the shape of 
a path. SVGs also have some properties related to interactions (e.g., 
onclick and onmouseover). 

In this paper, we propose to utilize the structural information 
extracted from SVGs to enhance the retrieval of similar static visu-
alizations. To be more specifc, we mainly consider structural infor-
mation to refect the hierarchical and spatial relationship among 
elements. Some side information such as the types and styles of 
elements is also utilized to distinguish diferent elements. More 
details are further illustrated in Section 5.1. 

3.2 Contrastive Learning 
Supervised deep learning approaches always require a large number 
of samples with labels to train a model with satisfactory perfor-
mance [19]. However, corpora with high-quality labels are always 
hard to be obtained due to the high cost of human annotation. 
Thus, to reduce the efort of manually labeling, self-supervised 
representation learning approaches, which are sometimes consid-
ered as a subset of unsupervised learning methods, have attracted 
researchers in various felds, for example, computer vision [4, 5], 
user interface (UI) design [24] and visualization [43]. Contrastive 
learning is a representative approach of self-supervised learning. 
The basic idea behind it is to train a model which can discriminate 
similar and dissimilar samples [19]. As illustrated in Figure 2, a com-
mon pipeline in contrastive learning approaches contains 4 steps: 
data augmentation, representation extraction, representation projec-
tion and contrastive loss computation [4]. In the frst step, a data 
sample will be randomly transformed (e.g., distortion for images) 
and the transformed samples will be considered as similar (positive) 
samples. Then the transformed samples are encoded to embedding 

4https://developer.mozilla.org/en-US/docs/Web/SVG 
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vectors by an encoder in the second stage. The embedding vectors 
are further projected to a space where the loss is computed. After 
training using the pipeline above, the encoder is used solely to 
extract representations of data samples and diferent projectors can 
be trained for various downstream tasks such as classifcation. 

Original visualization

Stopgrad

Encoder

Projector

Encoder

Projector

Predictor Loss

Data 
augmentation

Representation 
extraction

Representation 
projection

Loss 
computation

Transformed visualization Transformed visualization

Figure 2: The basic structure of contrastive learning contains 
four major modules [4]: data augmentation, representation 
extraction, representation projection and loss computation. 
This fgure shows SimSiam [5] as an example. 

In our paper, we propose to use two CNN- and GNN-based con-
trastive learning models [5, 42] to generate the embedding vectors 
of visualizations’ visual and structural information, respectively. 
Then the embedding vectors are concatenated and used for visual-
ization retrieval. 

3.3 Graph Neural Networks 
Inspired by successful convolutional neural networks (CNNs), graph 
neural networks (GNNs) have been proposed to model the relation-
ship among nodes in graphs. The basic idea behind GNNs is to 
propagate the features of nodes through edges and then aggre-
gate the information on nodes to capture node features and graph 
structures [59]. The feature propagation and aggregation can be 
considered as a generalized convolutional flter on graphs. GNNs 
have shown outstanding performance on graph-related tasks (e.g., 
node classifcation [37] and graph classifcation [54]) in various 
application domains (e.g., UI design [30], online education [23] and 
visualization [48]). As introduced in Section 3.1, SVG elements are 
organized as trees that can also be regarded as graphs. Thus, it is 
intuitive to apply GNNs to learn and represent the structural infor-
mation in SVGs as embedding vectors. Considering the advantages 
of contrastive learning (see Section 3.2), GNN-based contrastive 
learning approaches are suitable for extracting the embedding vec-
tors of graphs of SVG elements in our structure-aware approach. 
Existing GNN-based contrastive learning approaches are mainly 
applied to three types of tasks [53], including node-level tasks 
such as node classifcation (e.g., DGI [45]), edge-level tasks such as 
link prediction (e.g., BiGi [3]) and graph-level tasks such as graph 

https://developer.mozilla.org/en-US/docs/Web/SVG
https://4https://developer.mozilla.org/en-US/docs/Web/SVG
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classifcation (e.g., InfoGraph [42]). Since we aim to represent the 
structural information in the graph of SVG elements with embed-
ding vectors, InfoGraph [42], one of the state-of-the-art methods 
for graph embedding, is applied in our approach. Section 5.1 will 
introduce more details of InfoGraph. 

4 PRELIMINARY STUDY 
Before designing our structure-aware visualization retrieval ap-
proach, we conducted a preliminary study in which we collected 
the opinion of 54 visualization users on the criteria of perceptual 
similarity between visualizations. In this section, we introduce the 
procedure5 of the study and summarize the important criteria. 

4.1 Procedure 
Our preliminary study was conducted on Prolifc6, a widely used 
platform for recruiting research participants. There are totally three 
parts in the study. In the frst part, the overall process was intro-
duced to our participants prior to obtaining their consents to join 
the study. Then, to verify that the participant has basic knowledge 
of visualizations, each participant was required to answer three sim-
ple visualization-related questions, for example, “what is the chart 
type of the given visualization?”. Only participants who correctly 
answered the three verifcation questions were allowed to join the 
study. No other criteria were used in the participant recruitment. In 
the second part of the study, to encourage the participants to refect 
on how they judge the similarity of visualizations, each participant 
was presented with fve query visualizations and their retrieved 
top-5 similar visualizations by using visual information only. The 
participants were asked to give each retrieved visualization a score 
ranging from 1 (the least similar) to 5 (the most similar). After fnish-
ing the scoring, in the last part of the study, we asked participants 
to write down their criteria of scoring the retrieved visualizations 
in a text box. 

After the study, we summarized the responses from participants. 
Since there may be ambiguity in understanding the criteria men-
tioned by participants, we frst classifed the major criteria into 
six major categories and two co-authors of this paper labeled all 
responses individually. If the annotations were inconsistent on 
any response, we examined and discussed together to reach an 
agreement on these cases. 

4.2 Results 
The six major criteria and their frequency are shown in decreasing 
order in Figure 3. In the results, we can notice that there are three 
important criteria (i.e., visualization type, the trend of data and 
the number of visual elements) with much higher frequency than 
other criteria. The results of our preliminary study also align with a 
previous study [21] well. Specifcally, the number of visual elements 
and the trend of data are also considered when measuring the 
diference between two visualizations in the previous research [21]. 
Thus, the type of visualization, the trend of data and the number 
of visual elements are necessary to be considered explicitly in our 
approach when characterizing similarity of visualizations. 

5The protocol of the preliminary study and the user study has been approved by the 
Institutional Review Board of our institution. 
6https://www.prolifc.co/ 
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Figure 3: We categorized diferent criteria mentioned by par-
ticipants into six classes and identifed the three most im-
portant criteria based on their frequency. Other styles refer 
to the styles of visual elements other than colors, for exam-
ple, the space between bars and the width of bars. Metadata 
refers to the meta-information of data in the visualizations, 
for example, the range and the type of data. 

5 METHOD 
In this section, the method of our structure-aware visualization 
retrieval is introduced. An overview is shown in Figure 4. To ex-
tract and represent the structural information in a visualization, we 
frst construct a graph of visual elements with features and then 
apply a GNN encoder to generate the embedding vector of it (Sec-
tion 5.1). Then we also render the visualization to a bitmap and use 
a CNN model to encode the visual information as an embedding 
vector as well (Section 5.2). Here we applied contrastive represen-
tation learning to train both CNN and GNN encoders since it can 
eliminate human eforts on data annotation. Finally, we normalize 
and concatenate the embedding vectors of structural and visual 
information for similar visualization retrieval (Section 5.3). 
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Figure 4: Our approach extracts both structural and visual 
information from visualizations frst. Then the two types of 
information are encoded to embedding vectors separately. 
Finally, two embedding vectors are normalized and concate-
nated as the fnal representation of the visualization. 

https://www.prolific.co/
https://6https://www.prolifc.co


                     

                        
                     

                     
                 

     
 

          
       

          
         

         
         

           
          
            

          
           

           
          

            
          

            
           
          

         
          
         
          

          
            

            
            

           
          

            
            

               
            
            

            

           
            

           
            

         
           

           
          

           
          

            
          

         
       

         
           

           
       

             
           

          
     

            
        

           
            

             
            

           
             
             

           
            
         
          

        
         

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Haotian Li, Yong Wang, Aoyu Wu, Huan Wei, and Huamin Q 

Convert to a graph 
& Remove nodes

<svg width="1390" height="642">

    <g>
        <path d="M59,462V272H217V462Z" style="fill: #1f77b4" />
        <path d="M651,462V228H809V462Z" style="fill: #1f77b4" />
    </g>
    <g>
        <path d="M217,462V286H375V462Z" style="fill: #ff7f0e" />
        <path d="M809,462V257H967V462Z" style="fill: #ff7f0e" />
    </g>
    <g>
        <path d="M375,462V96H533V462Z" style="fill: #2ca02c" />
        <path d="M967,462V23H1125V462Z" style="fill: #2ca02c" />
    </g>
</svg>

svg

g g g

path path path path path path

svg

g g g

path path path path path path

(a) Rendered visualization and SVG  (b) Initial graph of visual elements (c) Final graph of visual elements

Add edges

Figure 5: This fgure illustrates how we transform an SVG to a graph of visual elements. In the SVG, each bar can be either 
represented by a <path> or <rect>. Due to the limited space, we only show partial SVG and the corresponding subgraph. Each 
node represents an element in the SVG. The colors of nodes in the graph indicate the corresponding bars in the visualization. 
In (c), all leaf nodes are with self-loop edges, which are not all shown in this fgure. 

5.1 Representation Learning of Structural 
Information 

As introduced before, structural information in SVGs can refect the 
hierarchical and spatial relationship between visual elements ex-
plicitly. To utilize the structural information, we frst extract visual 
element-level features and construct a graph of visual elements. 
Then, we apply a GNN-based graph contrastive learning method 
to generate the embedding vector of the structural information. 

Feature Extraction. In the frst step, we aim to extract features 
to describe the characteristics of elements in SVGs. These features 
are designed to refect the types, styles and shapes and positions of 
elements. To make our approach simple and generalizable, we only 
extract basic features inspired by Beagle [1]. The types of elements 
can refect their functionality in an SVG. We represent the types 
of elements with one-hot encoding. The style features of elements 
mainly include the color, the stroke width and the opacity of the 
element, which are the most common styles of elements. According 
to the results of our preliminary study, we also consider the styles 
of SVG elements. Though the styles of visualizations such as colors 
are not the most frequent criteria when deciding the similarity 
between visualizations, it is still considered by some participants. 
Thus, we take the commonly used styles into consideration and 
ignore those infrequent ones such as the stroke style. 

How to defne shape features for diferent types of visual ele-
ments is challenging due to their characteristics. For some visible 
visual elements like bars in bar charts and scatters in scatter plots, 
we are able to describe each visual element with the area, center, 
height and width of its bounding box. However, it is not enough 
to describe lines in line charts with these simple features. Two 
lines with the same bounding box can represent totally diferent 
trends of data. To deal with this issue, we further introduce two 
features to describe the shape of lines in line charts: the number 
of vertices in the line [1] and the trend of the line. Inspired by a 
prior study [21], LOESS regression [8] is applied to model the rough 
trend of a line based on vertices. Since LOESS is a non-parametric 
regression approach, we are not able to extract a fxed number of 

features to describe the trend. Thus, we use the predicted values 
of LOESS on fve evenly sampled vertices as features of the trend. 
Since <text> can hardly be described by the features above, we 
further add the length of the text as a feature. Furthermore, the 
relationship between positions of elements within the same group 
is also necessary to refect the overall trend in the visualizations. 
Thus, we sort the visual elements according to their positions on 
the horizontal and vertical axes and introduce the diferences in 
positions as features of each element as well. Finally, for elements 
without certain features (e.g., <g> does not have specifed width 
and height), we fll zeros as the placeholders. All features are also 
scaled according to their ranges. For example, positions are scaled 
using the height and width of the entire SVG. 

Graph Construction. After extracting the features for indi-
vidual elements in visualizations, we construct graphs of visual 
elements based on the tree structure of elements in SVGs. Such 
graphs of visual elements are used to represent the hierarchical and 
spatial relationships between diferent visual elements in visualiza-
tions. Since the graph is the input to a graph neural network (GNN) 
in the latter stage, we further process them to facilitate the propaga-
tion of features between nodes. An overview of graph construction 
is shown in Figure 5. 

First, the tree of elements in an SVG is transformed to a bidi-
rectional graph where elements and hierarchical relationships are 
treated as nodes and edges, respectively. Then, we remove the visual 
elements which serve as references such as the legend and grid lines. 
This step is conducted to reduce the noise in the graph of visual 
elements. In the next step, we remove the <g> elements that connect 
with one or two other elements. The rationale behind this operation 
is that <g> is used to group other elements and thus not meaningful 
if it has zero or one child. Removing these <g> elements can reduce 
unnecessary nodes and edges in the graph. Finally, we add two 
types of edges to augment the graph: the self-loop edges and the 
edges between neighbor elements (see Figure 5(c)). The self-loop 
edges are added to preserve each element’s own features during 
the feature propagation. The edges between neighbor elements 
are designed to refect the spatial relationship between elements 
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by propagating their spatial features. Here neighbor elements are 
defned as the elements which are next to each other after sorting 
according to their positions as described previously. 

Contrastive Learning Structure. To represent the structural 
information as an embedding vector, we utilize InfoGraph [42], a 
state-of-the-art graph contrastive representation learning model. 
The core idea of InfoGraph is to maximize the mutual information 
between the embedding vector of the whole graph and the embed-
ding vectors of substructures (e.g., individual or a group of nodes) 
in the same graph. To be more specifc, it takes pairs of graphs 
as the input of a GNN encoder. Then it optimizes the encoder by 
maximizing the mutual information between the embedding vec-
tor of one graph and the embedding vector of a subgraph inside, 
and minimizing the mutual information between the embedding 
vectors of a graph and the subgraph in another one. Finally, it uses 
the encoder to generate the embedding vectors of all nodes and 
aggregates them as the representation of the graph. 

In our method, we train InfoGraph to generate the embedding 
vectors of graphs of visual elements, which encode the structural 
information in SVGs. 

5.2 Representation Learning of Visual 
Information 

In the previous section, we introduce how we extract the representa-
tion of structural information hidden in SVGs with a state-of-the-art 
graph contrastive learning method. Though the structural infor-
mation can partially refect the appearance of a visualization, for 
example, the size and position of a visual element, it still lacks 
the ability to comprehensively describe the appearance of visual-
izations. Thus, inspired by previous studies [26, 57] which utilize 
convolutional neural networks (CNNs) to extract the visual fea-
tures of visualizations, our approach utilizes contrastive learning 
to generate the representation of visualizations using bitmaps as 
input. In the rest of this section, we briefy introduce the structure 
of the contrastive learning structure we used and then illustrate 
how we adapt it to extract visual information from visualizations. 

Contrastive Learning Structure. In our method, SimSiam [5] 
is applied to generate the representation of visual information. Com-
pared with other state-of-the-art contrastive learning approaches 
such as SimCLR [4] and BYOL [14], SimSiam has a similar perfor-
mance with less demand for computational resources. It utilizes 
a structure based on Siamese networks (see Figure 2). Two ran-
domly transformed samples (denoted as s1 and s2) of the original 
sample are fed into the same encoder which is followed by a pro-
jection head. After projection, both samples are transformed to 
embedding vectors (denoted as v1 and v2, respectively), which 
are further fed into a prediction head with a bottleneck struc-
ture. The outputs of the prediction head are denoted as p1 and 
p2 correspondingly. Then the loss is calculated based on the neg-
ative cosine similarity with a stop-gradient operation as Loss = 
−1/2∗(cos(v1, stopдrad(p2))+cos(v2, stopдrad(p1))). Here the stop-
gradient operation controls how the model is optimized with gradi-
ents and proved to be benefcial [5]. 

Pre-processing and Data Augmentation. The original Sim-
Siam is designed for general images. To adapt it for visualizations, 
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we modify the pre-processing of input bitmaps and data augmenta-
tion. First, since the input of the encoder has to be a square bitmap, 
we need to resize or pad visualizations to be square. Resizing input 
images is used in SimSiam [5]. However, resizing is not appropriate 
for visualizations since a resized visualization can alter the trend 
of the original one [21], which may afect the judgment on the 
similarity of visualizations. Thus, we pad the original bitmap to 
be a squared one, which can better preserve the original trend of 
data. The next step is to apply data augmentation techniques to 
generate transformed data instances as mentioned in Section 3.2. 
Chen et al. [4] have summarized eight common approaches used for 
image augmentation, including cropping and resizing, cutting out, 
fipping, rotating, blurring, applying noise or flter and distorting 
the colors. However, not all of them are suitable for visualizations. 
For example, fipping the visualization can generate a visualization 
with a diferent trend of data as shown in Figure 6. Thus, in the 
training of our CNN model for visualizations, we select some of the 
data augmentation techniques based on those used in SimSiam [5]. 
First, cropping and resizing, and partially cutting out are applied 
inspired by the closure principle in Gestalt principles of perception, 
which states that people have the ability to fll in the blanks and 
make the object in the image complete. Also, the color distortion is 
randomly applied to some visualizations by adding color jitter or 
transforming the bitmap to a greyscale one. The rationale behind 
this is that color is not always used to encode information in visual-
izations and is considered not the most important criteria according 
to our preliminary study (see Figure 3). In Figure 2, we present two 
transformed visualizations in which the left one is cropped and 
converted to a greyscale one while the right one is cut out and 
added color jitter (padding is not shown in the fgure). 

After generating the transformed samples, we use the original 
settings of SimSiam to train the encoder. At the end of the training, 
other parts of the model are disposed and the encoder is kept to 
generate the embedding vector of visual information. 

(a) Original (b) Flipped 

Figure 6: The fipped visualization is dissimilar to the origi-
nal one due to the change of overall trend. Thus, fipping is 
invalid for generating similar samples. 

5.3 Visualization Retrieval 
In Sections 5.1 and 5.2, we introduce how to represent both struc-
tural and visual information using low-dimensional embedding 
vectors. Then, with the two embedding vectors of a visualization, 
we perform similar visualization retrieval. 

In our approach, we normalize and concatenate both the em-
bedding vectors into one vector, which is the fnal representation 
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of a visualization. Initially, we tried to apply multi-modal autoen-
coders [11, 27] to learn the joint embedding vector of both structural 
and visual information. However, the performance of the learned 
embedding vector using quantitative metrics in Section 6.3 is not 
better than simply concatenation. We suspect the reason is that 
encoding two vectors into a single vector is a lossy compression, 
which introduces extra noise. Thus, to avoid extra training and 
additional noise, we use concatenation as our approach to generate 
the fnal embedding vector of a visualization. After obtaining the 
embedding vectors of visualizations, the cosine similarity between 
the embedding vectors of two visualizations is used to measure 
the distance between them. When a visualization is selected for 
query, we calculate its similarity to other visualizations and rank 
the similarity scores to retrieve the most similar ones. 

6 EVALUATION 
By using the large-scale SVG-bitmap visualization corpus (Sec-
tion 6.1), we conducted extensive evaluations to assess our structure-
aware visualization retrieval approach including quantitative com-
parisons (Section 6.3), a user study (Section 6.4) and case stud-
ies (Section 6.5). We also introduce the model settings used in 
evaluations (Section 6.2). The results verify the efectiveness of our 
structure-aware visualization retrieval approach. 

6.1 Corpus 
Since our approach is a deep learning-based method (Sections 5.1 
and 5.2), we need a relatively large-scale corpus to train and test it. 
Thus, by using the links to visualizations provided in VizML [18], 
we built a crawler to collect the SVG-bitmap visualization pairs 
from Plotly Chart Studio7. Following previous practices using the 
VizML corpus [18, 22], we also kept one visualization per user. 
Also, we removed those pairs with invalid bitmaps or SVGs, for 
example, empty visualizations or incomplete SVGs. Finally, 51,037 
SVG-bitmap visualization pairs were collected. The corpus con-
tains fve types of visualizations: bar charts, box plots, histograms, 
line charts and scatter plots. Since the diference of histograms 
between bar charts mainly lies in the data transformation, which is 
beyond our scope, they are categorized into the same class in the 
following evaluations. A detailed distribution of visualization types 
is shown in Table 1. In our evaluations, we followed the practice 
in Screen2Vec [24] and randomly sampled 90% of pairs of each 
visualization type as the training set and the rest was used for 
testing. 

Table 1: Statistics of the SVG-bitmap visualization corpus. 

Number of SVG-bitmap pairs 51,037 

Number of each visualization type 

Bar/Histogram 12,608 
Box 3,269 
Line 15,488 
Scatter 19,672 

7https://chart-studio.plotly.com/ 

6.2 Model Settings 
We compared the retrieved visualizations using four methods to 
demonstrate the efectiveness of our structure-aware approach: 

• Visual Information by Histogram of Oriented Gradi-
ents (HOG). HOG [9] is one of the most widely used feature 
descriptors of images and has been applied to compute the 
similarity between visualizations in a recent study [29]. 

• Visual Information by CNN. CNNs have been widely ap-
plied to extracting the visual information of visualizations 
and computing the similarity [26, 29, 57]. Following the 
method described in Section 5.2, we extract the visual in-
formation using SimSiam [5] with ResNet-50 [16] as the 
encoder. Empirically, we set the training epochs as 200, the 
batch size as 128 and the learning rate as 0.025. The embed-
ding dimension is set as 512. We did not use any pre-trained 
model as suggested by Haehn et al. [15]. 

• Structural Information by GNN. As mentioned in Sec-
tion 5.1, we use InfoGraph [42] with Graph Isomorphism 
Network (GIN) [54] as the encoder to generate the embed-
ding vectors of structural information. Based on the original 
experiment settings, we set the training epoch as 40, the 
batch size as 128 and the learning rate as 0.001. Since the 
radii of graphs in our corpus are mostly lower than or equal 
to 2, we set the layers of the encoder as 2. The embedding 
dimension is 512 as well. 

• Structural and Visual Information Fusion. This is our 
structure-aware approach which jointly considers structural 
and visual information by normalizing and concatenating 
the embedding vectors generated by CNN and GNN as men-
tioned in Section 5.3. 

After extracting the embedding vectors of visualizations using 
the four approaches above, we calculate the similarity score be-
tween visualizations as mentioned in Section 5.3. In the following 
sections, we use V-HOG, V-CNN , S-GNN and S&V-Fusion to sim-
plify the names of the four approaches above. 

6.3 Quantitative Evaluation 
We frst conducted a series of quantitative evaluations to assess the 
efectiveness of our approach in comparison with baselines. 

Metrics. As described in Section 6.1, there are several types of 
visualizations in our corpus. Thus, we need to use some metrics 
which are unifed across diferent types of visualizations. Two sim-
ple metrics are utilized to approximately probe the performance 
of diferent approaches based on the criteria identifed in our pre-
liminary study. The frst metric is to measure the visualization type 
consistency between a query visualization and the retrieved visu-
alizations. To be more specifc, we count the number of retrieved 
visualizations that are of the same type as the original visualization 
in a top-k query. Then the number of such visualizations is divided 
by k to obtain the type-consistent rate of each query visualization. 
Finally, the average and the standard deviation of Type-Consistent 
Rates of all visualizations in the test set are computed and denoted 
as average type-consistent rate (TCRave ) and standard deviation of 
type-consistent rates (TCRstd ). 

The second metric is to measure the diference of the numbers of 
visible visual elements between query and retrieved visualizations. 

https://chart-studio.plotly.com/
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Here  the  visible  visual  elements  refer  to  the  elements  that  are  the  
leaf  nodes  in  our  graph.  Since  the  non-leaf  elements  (i.e.,  <g>  and  
<svg>)  are  mainly  used  to  group  or  contain  other  elements  and  are  
not  directly  visible,  they  cannot  be  observed  by  visual  information-
based  models  (i.e.,  V-CNN  and  V-HOG).  To  make  the  metric  fair  to  
all  methods,  we  only  count  the  visible  visual  elements.  Examples  
of  visible  visual  elements  are  shown  as  colored  nodes  in  Figure  5.  
First,  we  calculate  the  normalized  diference  of  the  numbers  of  
visible  visual  elements  between  query  and  retrieved  visualizations.  
Then,  similar  to  TCR,  we  also  compute  the  average  Diferences  of  
the  numbers  of  Visual  Elements  (DV  Eave  )  and  standard  deviation  of  
diferences  of  the  numbers  of  visual  elements  (DV  Estd  ).  

Among  all  metrics,  a  smaller  value  ofTCRstd  ,  DV  Eave  or  DV  Estd  
is  better,  since  a  smaller  value  of  these  metrics  shows  that  the  
method  can  achieve  a  more  stable  performance  or  smaller  diference  
between  the  query  visualization  and  the  retrieved  visualizations.  
On  the  other  hand,  a  larger  value  of  TCRave  is  appreciated,  since  
it  demonstrates  that  the  model  can  retrieve  more  visualizations  of  
the  same  type.  

Results.  Table  2  shows  the  overall  results  of  the  four  meth-
ods.  The  results  are  the  average  values  from  fve  runs  of  each  
method.  Our  structure-aware  approach  consistently  outperforms  
other  approaches  using  TCRave  and  TCRstd  and  is  better  than  
visual  information-based  methods  in  DV  Eave  and  DV  Estd  .  The  
results  of  DV  Eave  s  align  with  the  results  by  Haehn  et  al.  [15].  They  
conducted  point-cloud  experiments  and  demonstrated  that  CNNs  
do  not  perform  well  in  estimating  the  diference  of  numbers  of  
visual  elements.  In  our  experiments,  V-CNN  also  performed  worse  
when  using  DV  Eave  as  the  metric.  Compared  with  V-CNN,  both  
S-GNN  and  S&V-Fusion  can  distinguish  the  number  of  visual  ele-
ments  well,  which  shows  the  necessity  of  considering  structural  
information  in  characterizing  the  similarity  of  visualizations.  

To  further  understand  the  pros  and  cons  of  diferent  approaches,  
we  investigated  the  TCRave  values  of  each  visualization  type  and  
show  the  average  confusion  matrix  in  fve  runs  among  all  types  in  
Figure  7.  From  the  heatmaps,  we  can  frst  notice  that  V-HOG  is  ob-
viously  worse  than  other  approaches,  probably  due  to  its  simplicity  
by  nature.  Thus,  in  the  rest  of  our  paper,  we  will  mainly  focus  on  
the  comparison  among  the  other  three  approaches.  S&V-Fusion  is  
consistently  better  than  other  approaches,  which  demonstrates  
the  advantages  of  our  structure-aware  approach.  An  interesting  
observation  is  that,  though  S-GNN  and  V-CNN  have  close  perfor-
mance  in  terms  of  the  overall  TCRave  ,  they  have  clear  diferences  
in  TCRave  of  single  visualization  types.  V-CNN  has  an  advantage  
on  bar  charts  and  box  plots  while  S-GNN  performs  better  on  line  
charts  and  scatter  plots.  We  checked  the  detailed  results  and  specu-
late  that  the  possible  reasons  are  as  below.  First,  visual  elements  
in  bar  charts  and  box  plots  often  occupy  a  large  space  in  the  visu-
alization  and  their  shapes  are  easy  to  be  distinguished  by  V-CNN.  
However,  lines  and  scatters  are  less  obvious  in  visualizations  and  
sometimes  can  be  confused  with  each  other,  which  may  lead  to  the  
inaccurate  perception  by  CNNs  (see  Figure  9(a)).  Compared  with  
V-CNN,  S-GNN  explicitly  considers  all  the  visual  elements  as  nodes  
in  the  graph  of  visual  elements.  Thus,  it  performs  better  on  line  
charts  and  scatter  plots.  The  disadvantages  of  S-GNN  are  mainly  
shown  by  the  results  of  box  plots  and  bar  charts.  A  possible  reason  
is  that  S-GNN  only  describes  visual  elements  roughly  using  their  
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Table  2:  Results  of  our  quantitative  evaluation.  TCR  denotes  
type-consistent  rate  and  DV  E  denotes  diferences  in  num-
bers  of  visual  elements.  ave  and  std  denote  average  and  stan-
dard  deviation  values,  respectively.  The  best  results  when  
performing  each  top-k  retrieval  are  in  bold.  The  results  
show  our  structure-aware  approach  achieves  the  best  perfor-
mances  among  the  four  methods.  

 Top-k  Method    TCRave    TCRstd  DV   Eave  DV    Estd 

 V-HOG  0.6597  0.4738  45.1266  555.2019 

 1 
 V-CNN 
 S-GNN 

 0.7231 
 0.7372 

 0.4474 
 0.4401 

 17.1826 
 0.1555 

 268.8787 
 0.4888 

 S&V-Fusion  0.7601  0.4270  0.3674  1.6752 
 V-HOG  0.6074  0.3249  42.9230  253.5407 

 5 
 V-CNN 
 S-GNN 

 0.6992 
 0.7058 

 0.3150 
 0.3175 

 24.4112 
 0.2215 

 183.4934 
 0.8603 

 S&V-Fusion  0.7383  0.3096  0.6145  3.3837 
 V-HOG  0.5877  0.2948  46.3089  195.6248 

 10 
 V-CNN 
 S-GNN 

 0.6884 
 0.6893 

 0.2921 
 0.2983 

 26.3127 
 0.2628 

 149.2130 
 1.0391 

 S&V-Fusion  0.7246  0.2900  0.7909  4.2785 
 V-HOG  0.5614  0.2674  49.7751  163.7496 

 20 
 V-CNN 
 S-GNN 

 0.6764 
 0.6713 

 0.2785 
 0.2855 

 25.1575 
 0.3073 

 108.1764 
 0.9769 

 S&V-Fusion  0.7076  0.2809  1.0432  5.1894 

bounding  boxes.  Boxes,  bars  and  scatters  can  be  confused  when  
their  bounding  boxes  are  similar.  

In  summary,  the  results  show  that  both  V-CNN  and  S-GNN  have  
their  advantages  when  dealing  with  certain  types  of  visualizations.  
Thus,  the  structural  information  in  SVG-based  visualizations  is  
essential  to  be  jointly  considered  with  visual  information  to  im-
prove  the  performance  of  visualization  retrieval.  The  results  of  
S&V-Fusion  in  Figure  7(d)  confrms  its  efectiveness  compared  with  
other  approaches.  

6.4  User  Study  
The  efectiveness  of  our  approach  was  further  evaluated  in  a  user  
study  with  50  participants  recruited  from  Prolifc.  We  asked  the  
participants  to  score  the  similarity  between  the  query  visualization  
and  retrieved  ones.  In  this  section,  we  introduce  the  protocol  and  
results  of  the  user  study.  

Dataset.  In  the  user  study,  we  frst  randomly  sampled  40  visual-
izations  in  the  test  set.  For  each  sampled  visualization,  we  retrieved  
the  top-5  similar  visualizations  using  the  four  approaches  described  
in  Section  6.2.  Then  each  participant  is  presented  with  5  query  
visualizations  and  the  corresponding  retrieved  visualizations  for  
scoring.  We  further  added  an  attention  check  question  to  ask  the  
participant  to  label  the  similarity  between  the  same  visualizations.  
The  visualizations  used  in  the  user  study  are  available  through  
https://structure-vis-retrieval.github.io/.  

Procedure.  The  user  study  contains  two  parts.  Similar  to  the  
preliminary  study,  the  frst  part  was  to  introduce  the  procedure,  
collect  consent  from  participants  and  test  the  visualization  knowl-
edge  of  the  participants.  After  they  passed  the  test,  we  moved  to  the  
second  part.  Specifcally,  we  introduced  the  criteria  for  visualization  

https://structure-vis-retrieval.github.io/
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Bar Box Line Scatter

Bar

Box

Line

Scatter

0.788 0.066 0.059 0.086

0.243 0.459 0.117 0.18

0.097 0.041 0.393 0.469

0.052 0.041 0.221 0.686

Bar Box Line Scatter

Bar

Box

Line

Scatter

0.907 0.013 0.041 0.039

0.028 0.825 0.054 0.092

0.04 0.015 0.544 0.401

0.025 0.012 0.296 0.667

Bar Box Line Scatter

Bar

Box

Line

Scatter

0.855 0.015 0.056 0.074

0.055 0.781 0.078 0.086

0.051 0.014 0.581 0.354

0.041 0.011 0.252 0.696

Bar Box Line Scatter

Bar

Box

Line

Scatter

0.924 0.008 0.033 0.035

0.017 0.861 0.048 0.074

0.031 0.009 0.578 0.381

0.02 0.006 0.25 0.725

(a) V-HOG (b) V-CNN (c) S-GNN (d) S&V-Fusion 

Figure 7: The heatmaps show the TCRave values of diferent chart types of four approaches when performing top-5 queries. 
The horizontal axis denotes the query visualization type and the vertical axis denotes the retrieved visualization type. A block 
with a darker color indicates a higher TCRave . 

similarity collected in our preliminary study and emphasized that 
the visualization type, trend of data and number of visual elements are 
of high priority based on the results of the preliminary study. We 
also showed several examples to illustrate these criteria for scoring 
the similarity between visualizations. The purpose of introducing 
these criteria and the corresponding examples is to calibrate the 
participants’ judgment and eliminate the efect of extreme scores 
given by some participants. Then the participants were asked to ap-
ply these criteria to score the retrieved top-5 similar visualizations 
for each query visualization using a 5-point Likert scale where 1 
means the least similar and 5 means the most similar. 

Results. The results of our user study are shown in Figure 8. We 
calculated the average similarity scores of retrieved visualizations 
by each method (S&V-Fusion: 2.8607, V-CNN : 2.7707, S-GNN : 2.4833 
and V-HOG: 2.002). A higher score indicates that the retrieved 
visualizations are more similar to the query one. According to the 
results, S&V-Fusion outperforms all other models with statistical 
signifcance (p < 0.001) tested with Wilcoxon Signed-rank tests. 

V-HOG V-CNN S-GNN S&V-Fusion
1.0

1.5

2.0

2.5

3.0

Figure 8: The average similarity scores of retrieved visu-
alizations are shown with 95% confdence intervals. S&V-
Fusion outperforms others with statistical signifcance (p < 
0.001). 

6.5 Case Study 
In this section, we present some examples shown in the user study 
based on the three most important criteria for visualization similar-
ity. These cases further illustrate the pros and cons of our structure-
aware approach compared with others. Since V-HOG consistently 
performs worse than others, in this section, we mainly compare 
S&V-Fusion, S-GNN, and V-CNN. 

Type of Visualizations. As Table 2 and Figure 7 show, S&V-
Fusion and S-GNN have advantages in distinguishing the type of 
charts, especially between line charts and scatter plots. A case 
regarding this phenomenon is identifed in our user study, as shown 
in Figure 9(a). The query visualization in this case is a line chart with 
an increasing trend. However, with the representation generated by 
V-CNN, a scatter plot with a similar trend is considered as a similar 
visualization (bounded with a red box in Figure 9(a)). Though they 
share some common features such as the trend of data, they should 
not be considered as similar visualizations according to the criteria 
of visualization types, which is identifed in our preliminary study 
(see Section 3). Both S&V-Fusion and S-GNN do not have such kinds 
of mistakenly retrieved visualizations, which indicates that they can 
better maintain the visualization type consistency. Another case in 
Figure 9(b) also refects a similar issue of V-CNN. V-CNN retrieved 
multiple stacked bar charts for a plain bar chart while the other 
two methods only returned similar plain bar charts. 

Number of Visual Elements. The query visualization in Fig-
ure 9(a) is a line chart with three lines. S-GNN achieves the best 
results using this criterion since most of the retrieved visualizations 
have three lines. Most of the retrieved visualizations by V-CNN are 
with a single line, which fails to meet the criterion on the numbers 
of visual elements. 

Trend of Data. Though S-GNN shows its advantages in distin-
guishing chart types and identifying the diference between num-
bers of visual elements, its capability of considering the trend of 
data is not as good as V-CNN. As both cases show, almost all the re-
trieved visualizations by S-GNN have trends that are diferent from 
the query visualization, which refects its drawback in efectively 
representing the trend of data in visualizations. Thus, we consid-
ered both the visual and structural information in S&V-Fusion to 
mitigate such an issue. As both cases show, S&V-Fusion achieves a 
better performance in retrieving visualizations with similar trends 
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V-CNN

Query

Query

S&V-Fusion

S-GNN

a

b

S&V-Fusion

V-CNN

S-GNN

Figure 9: This fgure shows examples of query and top-5 retrieved similar visualizations by V-CNN, V-HOG and S&V-Fusion. 

while preserving the advantages in the type of visualizations and 
the number of visual elements. 

7 DISCUSSION 
In this section, we discuss the lessons learned in developing our 
structure-aware visualization retrieval methods, the generalizabil-
ity of our approach, some potential application scenarios and the 
limitations of our approach. 

7.1 Lessons 
In our approach, we explicitly consider the structural information 
through deep learning techniques, which enables a new perspective 
of characterizing the similarity of visualizations. To facilitate future 
studies along this direction, we conclude two important lessons, the 
necessity of structural information in characterizing visualization 
similarity and deep learning model customization for visualizations. 

Necessity of Structural Information. The similarity between 
visualizations can be measured through various aspects such as 
visualization types, colors and trends of data. Thus, to identify key 
criteria when determining similarity between visualizations, we 
conducted a preliminary study with general visualization users and 
summarized three most important criteria, the visualization type, 
the trend of data and the number of visual elements. These three 
criteria indicate the necessity of considering structural information 
in visualizations since they consider the similarity more at the level 
of visual elements instead of the level of pixels. Most of the prior 
studies merely treat visualizations as bitmap images and extract 
features based on pixels, which ignores the important structural 
information of visual elements. Compared with these approaches, 

our method shows a promising direction of explicitly considering 
the structural information in SVGs to characterize visualization sim-
ilarity. We treat each visual element in the visualization as a node 
with basic features in the graph and use edges to represent their 
spatial and hierarchical relationships, which can efectively refect 
the numbers and groups of visual elements. Since the structural 
information is mainly at the level of visual elements, we further 
leverage the pixel-level visual information to make the character-
ization of visualization more fne-grained. As our case studies in 
Section 6.5 show, S&V-Fusion achieves better performance in ful-
flling the requirements of retrieving similar visualizations such as 
the numbers of visual elements and visualization types. 

Deep Learning Model Customization. Deep learning mod-
els have been proved to be efective in many applications such 
as image processing and natural language understanding. There 
is also increasing interest in applying deep learning approaches 
in visualization-related tasks such as automatic visualization gen-
eration [18] and visualization similarity characterization [57]. In 
our approach, we also apply state-of-the-art contrastive learning 
models to generate embedding vectors of visualizations. However, 
we noticed that these general deep learning models may not be 
directly applied to visualizations. For example, as we mentioned 
in Section 5.2, fipping is a commonly used operation for data aug-
mentation in general image processing. However, it is not suitable 
for visualizations since the trend of data is entirely altered. Thus, 
when applying these models, certain customizations should be care-
fully conducted. Furthermore, visualization-tailored deep learning 
models are also desired. For example, compared with shape fea-
tures, the bias of CNN models towards texture features has been 
observed [13]. However, in visualizations, we focus more on the 
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shapes of visual elements instead of the texture. Thus, a tailored 
CNN model which emphasizes shape features might be more suit-
able for visualization-related tasks and can replace the ResNet-50 
in our approach. 

7.2 Generalizability and Application Scenarios 
This section discusses the generalizability of our approach and some 
potential application scenarios of our method. The generalizability 
is from two perspectives: generalizability to visualizations created 
using other packages (e.g., D3) and generalizability to multi-view 
visualizations (e.g., dashboards or visual analytic systems). 

Visualizations Created by Other Packages. In our evalua-
tion, we used a visualization corpus crawled from Plotly. However, 
our approach is not restricted to visualizations created using Plotly 
and can be extended to visualizations created using other visual-
ization packages. The requirements of leveraging our approach to 
retrieve visualizations include a unifed structure of visualizations 
and the consistent usage of SVG elements in the visualizations. Here 
a unifed structure of visualizations requires a consistent way of 
grouping visual elements. Our approach does not require a specifc 
criterion of grouping visual elements as long as a unifed way of 
grouping visual elements is applied, for example, grouping <path>s 
by data columns in Plotly. The consistent usage of SVG elements 
requires that the same type of SVG elements is employed to render 
the same type of visualizations. For example, all the bars in bar 
charts are plotted with <path>s. 

Visualizations created using specifcation-based packages such 
as Vega-Lite [35] and Plotly usually fulfll the requirements of our 
approach. However, when dealing with the visualizations created 
with tools with more fexibility, such as Adobe Illustrator8 and 
D3 [2], our approach may meet difculties due to the inconsistent 
usage of SVG elements. For example, when creating visualizations 
with D3, bars can be created using <path>, <rect> or <polygon> in 
diferent visualizations. A potential future direction is to improve 
the generalizability of our structure-aware approach to handle 
visualizations created with various tools. 

Visualizations with Multiple Views. Multi-view visualiza-
tions have been widely used to accommodate data with a huge 
number of attributes [6]. Along with its popularity, characterizing 
multi-view visualizations also attracts researchers’ interest [6, 52]. 
Our approach also has the potential to capture the structural infor-
mation of multi-view visualizations by considering more factors, 
such as the hierarchical and spatial relationship among views. 

Application Scenarios. With the popularity of data visualiza-
tions, an emerging research direction is to treat them as a data 
format and to propose visualization-specifc methods for storing, 
querying and analyzing enormous visualizations [51]. Our approach 
has the potential to enable various downstream applications to-
wards this direction. First, our approach can provide a new way to 
perform the nearest neighbor query on stored visualizations based 
on their structural information. This can also boost the re-use of 
visualization codes since structural information is highly related to 
the implementation of a visualization. Second, a more efective vi-
sualization retrieval approach can enhance the large-scale analysis 
of visualizations. It allows users to group similar visualizations and 

8https://www.adobe.com/products/illustrator.html 
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conduct further analysis such as understanding general users’ pref-
erences on visual designs. Third, it can facilitate the construction of 
large-scale visualization corpora. Most of the existing visualization 
corpora only provide high-level labels of visualizations such as the 
visualization type [18] and color usage [55]. With our approach, 
fne-grained labels (e.g., the trend of data) of visualizations can be 
easily labeled based on similar visualization retrieval. 

7.3 Limitations 
The evaluations above have demonstrated the efectiveness of our 
approach, but it is not without limitations. 

Evaluation. To extensively evaluate our approach, we have 
conducted a user study, quantitative comparisons and case studies. 
However, there are also limitations in our evaluation. Among the 
three most important criteria in evaluating the perceptual similarity 
of visualizations, We have designed two quantitative metrics to 
measure the performance of various visualization retrieval methods 
from the perspective of visualization type consistency and the 
diference of numbers of visual elements. However, we did not apply 
a quantitative metric to evaluate the consistency between trends of 
data in visualizations. The major reason is that the trends of data in 
visualizations are complex and difcult to be accurately quantifed 
in a universal way. For example, in box plots, the trend of data can 
refer to either the distribution of data in each box or the diference 
of data between multiple boxes. Existing studies also failed to defne 
a universal metric to quantitatively evaluate the trend of data of 
diferent types of visualizations (e.g., [21, 47, 49]). To mitigate the 
issue that the similarity between data trends in visualizations cannot 
be quantitatively evaluated, we further conducted the user study to 
verify our efectiveness by asking participants to explicitly consider 
trends of data when scoring the similarity between visualizations. 
Furthermore, as shown in our user study, though our methods 
outperform other approaches in terms of the 5-point Likert scale, 
the score (i.e., 2.8607) is still not perfect. Also, the confusion between 
line charts and scatter plots can be further reduced. We suspect the 
reason is that some line charts are with circles on the data points 
(see Figure 9), which may afect the measurement of similarity. In 
the future, more research is expected to improve our structure-
aware approach for visualization retrieval, for example, developing 
visualization-tailored models as mentioned in Section 7.1. 

Feature Fusion. In our structure-aware approach for visualiza-
tion retrieval, we represent the structural and visual information as 
two embedding vectors. According to our preliminary comparison 
with other approaches, we simply concatenate them as the fnal 
embedding vector of the visualization (see Section 5.3). However, 
this step is not without limitations. First, the concatenated embed-
ding vector of a visualization will take additional space to store, 
which can lead to inefciency. Second, the performance of simple 
concatenation may be limited due to some redundant information 
inside two embedding vectors, for example, colors. The redundant 
information can result in bias when calculating the similarity. To 
address the potential drawbacks, it is possible to fuse the visual and 
structural information based on additional information such as the 
interaction records used in Screen2Vec [24]. However, due to the 
lack of such visualization corpus, we have left it as our future work. 

https://www.adobe.com/products/illustrator.html
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8 CONCLUSION 
Scalable Vector Graphic (SVG)-based visualizations have been widely 
used and shared online. Along with their popularity, retrieving simi-
lar SVG-based visualizations has become a critical task. In this paper, 
we propose a structure-aware visualization retrieval approach based 
on the most common perceptual visualization similarity criteria 
surveyed in our pilot study. In addition to the widely used visual 
information in prior studies, our approach further considers the 
often ignored but essential structural information to advance the 
performance. To consider both types of information, we convert 
SVGs to bitmaps for visual information extraction and graphs for 
structural information extraction. Then contrastive representation 
learning technique is employed to generate the low-dimensional 
embedding vectors of visual and structural information, respec-
tively. The corresponding visualization is then represented by the 
concatenation of embedding vectors for visualization retrieval. We 
conducted extensive evaluations, including quantitative compar-
isons with prior approaches, a user study and multiple case studies, 
to demonstrate the efectiveness of our approach. 

In future, we would like to extend our structure-aware visualiza-
tion retrieval approach to more visualization types, e.g., multi-view 
visualizations. Another interesting direction is to explore the pos-
sibility of directly extracting structural information from bitmap-
based visualizations and investigate how our approach can work 
for the retrieval of bitmap-based visualizations. 

ACKNOWLEDGMENTS 
This research was supported by the Singapore Ministry of Education 
(MOE) Academic Research Fund (AcRF) Tier 1 grant (Grant number: 
20-C220-SMU-011). Yong Wang is the corresponding author. We 
would like to thank Mr. Tianyuan Yao for constructive suggestions, 
Mr. Jiakai Wang for proofreading and anonymous reviewers for 
their feedback. 

REFERENCES 
[1] Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang, 

and Michael Stonebraker. 2018. Beagle: Automated Extraction and Interpretation 
of Visualizations from the Web. In Proceedings of the 2018 CHI Conference on 
Human Factors in Computing Systems. 1–8. 

[2] Michael Bostock, Vadim Ogievetsky, and Jefrey Heer. 2011. D3 Data-Driven 
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 
(2011), 2301–2309. 

[3] Jiangxia Cao, Xixun Lin, Shu Guo, Luchen Liu, Tingwen Liu, and Bin Wang. 
2021. Bipartite Graph Embedding via Mutual Information Maximization. In 
Proceedings of the 14th ACM International Conference on Web Search and Data 
Mining. 635–643. 

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geofrey Hinton. 2020. 
A Simple Framework for Contrastive Learning of Visual Representations. In 
Proceedings of the 37th International Conference on Machine Learning. 1597–1607. 

[5] Xinlei Chen and Kaiming He. 2021. Exploring Simple Siamese Representation 
Learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. 15750–15758. 

[6] Xi Chen, Wei Zeng, Yanna Lin, Hayder Mahdi AI-maneea, Jonathan Roberts, and 
Remco Chang. 2021. Composition and Confguration Patterns in Multiple-View 
Visualizations. IEEE Transactions on Visualization and Computer Graphics 27, 2 
(2021), 1514–1524. 

[7] Zhe Chen, Michael Cafarella, and Eytan Adar. 2015. DiagramFlyer: A Search En-
gine for Data-Driven Diagrams. In Proceedings of the 24th International Conference 
on World Wide Web. 183–186. 

[8] William S. Cleveland. 1979. Robust Locally Weighted Regression and Smoothing 
Scatterplots. Journal of the American Statistical Association 74, 368 (1979), 829– 
836. 

[9] Navneet Dalal and Bill Triggs. 2005. Histograms of Oriented Gradients for 
Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference 

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

on Computer Vision and Pattern Recognition, Vol. 1. 886–893. 
[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

ageNet: A Large-scale Hierarchical Image Database. In Proceedings of the 2009 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 248–255. 

[11] Fangxiang Feng, Xiaojie Wang, and Ruifan Li. 2014. Cross-modal Retrieval 
with Correspondence Autoencoder. In Proceedings of the 22nd ACM International 
Conference on Multimedia. 7–16. 

[12] Jiayun Fu, Bin Zhu, Weiwei Cui, Song Ge, Yun Wang, Haidong Zhang, He Huang, 
Yuanyuan Tang, Dongmei Zhang, and Xiaojing Ma. 2021. Chartem: Reviving 
Chart Images with Data Embedding. IEEE Transactions on Visualization and 
Computer Graphics 27, 2 (2021), 337–346. 

[13] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A 
Wichmann, and Wieland Brendel. 2018. ImageNet-trained CNNs are Biased 
towards Texture; Increasing Shape Bias Improves Accuracy and Robustness. 
CoRR abs/1811.12231 (2018). 

[14] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H 
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap Your Own 
Latent: A New Approach to Self-Supervised Learning. CoRR abs/2006.07733 
(2020). 

[15] Daniel Haehn, James Tompkin, and Hanspeter Pfster. 2019. Evaluating ‘Graphical 
Perception’ with CNNs. IEEE Transactions on Visualization and Computer Graphics 
25, 1 (2019), 641–650. 

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual 
Learning for Image Recognition. CoRR abs/1512.03385 (2015). 

[17] Enamul Hoque and Maneesh Agrawala. 2020. Searching the Visual Style and 
Structure of D3 Visualizations. IEEE Transactions on Visualization and Computer 
Graphics 26, 1 (2020), 1236–1245. 

[18] Kevin Zeng Hu, Michiel A. Bakker, Stephen Li, Tim Kraska, and César A. Hidalgo. 
2019. VizML: A Machine Learning Approach to Visualization Recommendation. 
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 
1–12. 

[19] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
jee, and Fillia Makedon. 2020. A Survey on Contrastive Self-supervised Learning. 
CoRR abs/2011.00362 (2020). 

[20] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeong-in Hwang, Bongshin Lee, 
Bohyoung Kim, and Jinwook Seo. 2017. ChartSense: Interactive Data Extraction 
from Chart Images. In Proceedings of the 2017 CHI Conference on Human Factors 
in Computing Systems. 6706–6717. 

[21] Hyeok Kim, Ryan Rossi, Abhraneel Sarma, Dominik Moritz, and Jessica Hullman. 
2021. An Automated Approach to Reasoning About Task-Oriented Insights in 
Responsive Visualization. CoRR abs/2107.08141 (2021). 

[22] Haotian Li, Yong Wang, Songheng Zhang, Yangqiu Song, and Huamin Qu. 2021. 
KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation. 
CoRR abs/2107.12548 (2021). 

[23] Haotian Li, Huan Wei, Yong Wang, Yangqiu Song, and Huamin Qu. 2020. Peer-
inspired Student Performance Prediction in Interactive Online Question Pools 
with Graph Neural Network. In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management. 2589–2596. 

[24] Toby Jia-Jun Li, Lindsay Popowski, Tom M. Mitchell, and Brad A. Myers. 2021. 
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 
1–15. 

[25] Zhuo Li, Sandra Carberry, Hui Fang, Kathleen F McCoy, Kelly Peterson, and 
Matthew Stagitis. 2015. A Novel Methodology for Retrieving Infographics Utiliz-
ing Structure and Message Content. Data & Knowledge Engineering 100 (2015), 
191–210. 

[26] Yuxin Ma, Anthony K. H. Tung, Wei Wang, Xiang Gao, Zhigeng Pan, and Wei 
Chen. 2020. ScatterNet: A Deep Subjective Similarity Model for Visual Analysis 
of Scatterplots. IEEE Transactions on Visualization and Computer Graphics 26, 3 
(2020), 1562–1576. 

[27] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drew Y. Ng. 2011. Multimodal Deep Learning. In Proceedings of the 28th Interna-
tional Conference on International Conference on Machine Learning. 689–696. 

[28] Michael Oppermann, Robert Kincaid, and Tamara Munzner. 2021. VizCommender: 
Computing Text-Based Similarity in Visualization Repositories for Content-Based 
Recommendations. IEEE Transactions on Visualization and Computer Graphics 27, 
2 (2021), 495–505. 

[29] Michael Oppermann and Tamara Munzner. 2021. VizSnippets: Compressing 
Visualization Bundles Into Representative Previews for Browsing Visualization 
Collections. IEEE Transactions on Visualization and Computer Graphics (2021). 

[30] Akshay Gadi Patil, Manyi Li, Matthew Fisher, Manolis Savva, and Hao Zhang. 
2021. LayoutGMN: Neural Graph Matching for Structural Layout Similarity. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
11048–11057. 

[31] Chunyao Qian, Shizhao Sun, Weiwei Cui, Jian-Guang Lou, Haidong Zhang, and 
Dongmei Zhang. 2020. Retrieve-Then-Adapt: Example-based Automatic Genera-
tion for Proportion-related Infographics. IEEE Transactions on Visualization and 



          

      
           

          
      

           
            

   
            

          
         

      
          

          
        

            
         

             
    

             
          
           

 
           

         
           

  
           

         
           

       
             

           
      

            
      

          
            

       
          

   
            

         
  

          
       
            

           

  
            

           
             

          
       

             
           

           
    

             
           

          
          

          
  

              
        

         
        

            
           

       
             

         
       

              
         

       
             

       
             

          
  

           
        
          

            
           

         
      

            
         
     

             
           

           

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

Computer Graphics 27, 2 (2020), 443–452. 
[32] Mohammad Raji, Jeremiah Duncan, Tanner Hobson, and Jian Huang. 2021. Data-

less Sharing of Interactive Visualization. IEEE Transactions on Visualization and 
Computer Graphics 27, 9 (2021), 3656–3669. 

[33] Babak Saleh, Mira Dontcheva, Aaron Hertzmann, and Zhicheng Liu. 2015. Learn-
ing Style Similarity for Searching Infographics. In Proceedings of the 41st Graphics 
Interface Conference. 59–64. 

[34] Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jefrey Heer, John T. Stasko, 
John Thompson, Matthew Brehmer, and Zhicheng Liu. 2020. Critical Refections 
on Visualization Authoring Systems. IEEE Transactions on Visualization and 
Computer Graphics 26, 1 (2020), 461–471. 

[35] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer. 
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on 
Visualization and Computer Graphics 23, 1 (2017), 341–350. 

[36] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and 
Jefrey Heer. 2011. ReVision: Automated Classifcation, Analysis and Redesign 
of Chart Images. In Proceedings of the 24th ACM Symposium on User Interface 
Software and Technology. 393–402. 

[37] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan 
Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convolu-
tional Networks. In Proceedings of the 2018 European Semantic Web Conference. 
593–607. 

[38] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya 
Parameswaran. 2016. Efortless Data Exploration with zenvisage: An Expressive 
and Interactive Visual Analytics System. Proceedings of the VLDB Endowment 10, 
4 (2016). 

[39] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya 
Parameswaran. 2020. ShapeSearch: A Flexible and Efcient System for Shape-
based Exploration of Trendlines. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. 51–65. 

[40] Noah Siegel, Zachary Horvitz, Roie Levin, Santosh Divvala, and Ali Farhadi. 2016. 
FigureSeer: Parsing Result-Figures in Research Papers. In Proceedings of the 14th 
European Conference on Computer Vision. 664–680. 

[41] Holger Stitz, Samuel Gratzl, Harald Piringer, Thomas Zichner, and Marc Streit. 
2018. KnowledgePearls: Provenance-Based Visualization Retrieval. IEEE Trans-
actions on Visualization and Computer Graphics 25, 1 (2018), 120–130. 

[42] Fan-Yun Sun, Jordan Hofman, Vikas Verma, and Jian Tang. 2019. InfoGraph: 
Unsupervised and Semi-supervised Graph-Level Representation Learning via Mu-
tual Information Maximization. In Proceedings of the 10th International Conference 
on Learning Representations. 

[43] Gleb Tkachev, Stefen Frey, and Thomas Ertl. 2021. S4: Self-Supervised learning 
of Spatiotemporal Similarity. IEEE Transactions on Visualization and Computer 
Graphics (2021). 

[44] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and 
Neoklis Polyzotis. 2015. SeeDB: Efcient Data-Driven Visualization Recommen-
dations to Support Visual Analytics. Proceedings of the VLDB Endowment 8, 13 

Haotian Li, Yong Wang, Aoyu Wu, Huan Wei, and Huamin Q 

(2015), 2182–2193. 
[45] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, 

and R. Devon Hjelm. 2018. Deep Graph Infomax. CoRR abs/1809.10341 (2018). 
[46] Qianwen Wang, Zhutian Chen, Yong Wang, and Huamin Qu. 2021. A Survey 

on ML4VIS: Applying Machine Learning Advances to Data Visualization. IEEE 
Transactions on Visualization and Computer Graphics (2021). 

[47] Yunhai Wang, Fubo Han, Lifeng Zhu, Oliver Deussen, and Baoquan Chen. 2017. 
Line Graph or Scatter Plot? Automatic Selection of Methods for Visualizing 
Trends in Time Series. IEEE Transactions on Visualization and Computer graphics 
24, 2 (2017), 1141–1154. 

[48] Yong Wang, Zhihua Jin, Qianwen Wang, Weiwei Cui, Tengfei Ma, and Huamin 
Qu. 2019. DeepDrawing: A Deep Learning Approach to Graph Drawing. IEEE 
Transactions on Visualization and Computer Graphics 26, 1 (2019), 676–686. 

[49] Leland Wilkinson, Anushka Anand, and Robert Grossman. 2005. Graph-theoretic 
Scagnostics. In Proceedings of the 2005 IEEE Symposium on Information Visualiza-
tion. 21–21. 

[50] Aoyu Wu, Wai Tong, Tim Dwyer, Bongshin Lee, Petra Isenberg, and Huamin Qu. 
2020. MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leverag-
ing an Explainable Reinforcement Learning Framework. IEEE Transactions on 
Visualization and Computer Graphics 27, 2 (2020), 464–474. 

[51] Aoyu Wu, Yun Wang, Xinhuan Shu, Dominik Moritz, Weiwei Cui, Haidong 
Zhang, Dongmei Zhang, and Huamin Qu. 2021. Survey on Artifcial Intelligence 
Approaches for Visualization Data. CoRR abs/2102.01330 (2021). 

[52] Aoyu Wu, Yun Wang, Mengyu Zhou, Xinyi He, Haidong Zhang, Huamin Qu, 
and Dongmei Zhang. 2021. MultiVision: Designing Analytical Dashboards with 
Deep Learning Based Recommendation. CoRR abs/2107.07823 (2021). 

[53] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. 2021. Self-
supervised Learning on Graphs: Contrastive, Generative, or Predictive. IEEE 
Transactions on Knowledge and Data Engineering (2021). 

[54] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful 
are Graph Neural Networks? CoRR abs/1810.00826 (2018). 

[55] Linping Yuan, Wei Zeng, Siwei Fu, Zhiliang Zeng, Haotian Li, Chi-Wing Fu, 
and Huamin Qu. 2021. Deep Colormap Extraction from Visualizations. CoRR 
abs/2103.00741 (2021). 

[56] Peiying Zhang, Chenhui Li, and Changbo Wang. 2021. VisCode: Embedding 
Information in Visualization Images using Encoder-Decoder Network. IEEE 
Transactions on Visualization and Computer Graphics 27, 2 (2021), 326–336. 

[57] Tianye Zhang, Haozhe Feng, Wei Chen, Zexian Chen, Wenting Zheng, Xiao-Nan 
Luo, Wenqi Huang, and Anthony KH Tung. 2021. ChartNavigator: An Interactive 
Pattern Identifcation and Annotation Framework for Charts. IEEE Transactions 
on Knowledge and Data Engineering (2021). 

[58] Jian Zhao, Mingming Fan, and Mi Feng. 2020. ChartSeer: Interactive Steering 
Exploratory Visual Analysis with Machine Intelligence. IEEE Transactions on 
Visualization and Computer Graphics (2020). 

[59] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, 
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph Neural Networks: 
A Review of Methods and Applications. AI Open 1 (2020), 57–81. 


	Structure-aware visualization retrieval
	Citation

	Abstract
	1 Introduction
	2 Related Work
	2.1 Visualization Retrieval
	2.2 Visualization Similarity
	2.3 Visualization Format

	3 Background
	3.1 Structural Information in SVGs
	3.2 Contrastive Learning
	3.3 Graph Neural Networks

	4 Preliminary Study
	4.1 Procedure
	4.2 Results

	5 Method
	5.1 Representation Learning of Structural Information
	5.2 Representation Learning of Visual Information
	5.3 Visualization Retrieval

	6 Evaluation
	6.1 Corpus
	6.2 Model Settings
	6.3 Quantitative Evaluation
	6.4 User Study
	6.5 Case Study

	7 Discussion
	7.1 Lessons
	7.2 Generalizability and Application Scenarios
	7.3 Limitations

	8 Conclusion
	Acknowledgments
	References

