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Orchestration or Automation: Authentication
Flaw Detection in Android Apps

Siqi Ma , Juanru Li, Surya Nepal , Diethelm Ostry,Member, IEEE, David Lo ,

Sanjay Kumar Jha ,Member, IEEE, Robert H. Deng , Fellow, IEEE, and Elisa Bertino , Fellow, IEEE

Abstract—Passwords are pervasively used to authenticate users’ identities in mobile apps. To secure passwords against attacks,

protection is applied to the password authentication protocol (PAP). The implementation of the protection scheme becomes an

important factor in protecting PAP against attacks. We focus on two basic protection in Android, i.e., SSL/TLS-based PAP and

timestamp-based PAP. Previously, we proposed an automated tool, GLACIATE, to detect authentication flaws. We were curious

whether orchestration (i.e., involving manual-effort) works better than automation. To answer this question, we propose an

orchestrated approach, AUTHEXPLOIT and compare its effectiveness GLACIATE. We study requirements for correct implementation

of PAP and then apply GLACIATE to identify protection enhancements automatically. Through dependency analysis, GLACIATE

matches the implementations against the abstracted flaws to recognise defective apps. To evaluate AUTHEXPLOIT, we collected 1,200

Android apps from Google Play. We compared AUTHEXPLOIT with the automation tool, GLACIATE, and two other orchestration tools,

MalloDroid and SMV-Hunter. The results demonstrated that orchestration tools detect flaws more precisely although the F1 score of

GLACIATE is higher than AUTHEXPLOIT. Further analysis of the results reveals that highly popular apps

and e-commerce apps are not more secure than other apps.

Index Terms—Vulnerability detection, password authentication, mobile security

Ç

1 INTRODUCTION

MOBILE devices have become ubiquitous in our lives, and
a large number of apps have been developed for

mobile devices to support a wide range of domains such
as banking, social networking and transportation. We have
grown so accustomed to using apps that it is hard to
imagine daily life without them. Hence, for our security it
is essential to assess the implementation of these apps.

In this paper, we analyze the implementations of password
authentication protocols in mobile apps for the following spe-
cific reasons. First, most mobile apps use online services
(e.g., Facebook and twitter) which employ user authentication
as the first line of defense in protecting users’ private data
(e.g., account details, interaction history, private messages).
Second, user authentication has been regarded as one of the
weakest links in security. Vulnerabilities have been identified
in authentication schemes used in non-mobile online apps,
and we believe that similar vulnerabilities exist in mobile
apps. Our analysis focuses on Android apps as Android is the

most widely used mobile app platform, running on more
than 80 percent ofmobile phones and tablets [1].

Passwords have been themain user authenticationmethod
since the advent of computers. Due to the advantages of using
a password, such as it being simple and inexpensive to create,
use and revoke, most developers typically use a password
authentication protocol [2] in mobile apps. In the basic pass-
word authentication protocol (BPAP), a user sends a combina-
tion of username and password in plaintext to a server
through a client app. The server replies with an authentica-
tion-acknowledgement if the received password is valid.
However, BPAP is vulnerable to eavesdropping and replay
attacks. To protect against such attacks, developers commonly
use two countermeasures: 1) Secure Socket Layer (SSL) /
Transport Layer Security (TLS)-based password authentica-
tion [3]; and 2) nonce-based password authentication proto-
cols [4]. In SSL/TLS-based password authentication, SSL first
authenticates the server and sets up a secure connection
between the client and the server [5]. Then the client sends the
username and password over the secure connection in order
to authenticate the user to the server. For nonce-based pass-
word authentication, a client uses the user’s password as a
secret key to compute a cryptographic function on a nonce
value. It is crucial that the nonce value is not predictable.
Nonce-based password authentication protocols are of two
types: challenge-response password authentication protocol,
in which the nonce value is a random number generated by a
server, and timestamp-based password authentication proto-
col, inwhich the nonce value is the current time at a client.

Although various protection schemes have been proposed
to secure these password-based authentication protocols, a
variety of attacks have been devised to intercept/modify pass-
words ([3], [6], [7], [8]). The password interception attack [3]
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targets the cryptographic algorithm implemented in the SSL/
TLS protocol. Attackers attempt to break block ciphers in the
Cipher Block Chaining (CBC) mode implemented in the
SSL/TLS protocol. Passwords of Internet Message Access
Protocol (IMAP) accounts are then intercepted. Password
stealing and reuse attacks [7] are crafted to attack two-factor
and three-factor authentications. Since users often use simple
passwords and reuse the same passwords for different
accounts, attackers perform phishing attacks or install key-
loggers to steal the passwords. Various techniques have
been proposed to counter these attacks, such as deploying
more sophisticated protocols [9], using an additional soft-
ware or hardware infrastructure [10], and designing stronger
cryptographic algorithms [11].

Existing tools that have been developed for similar goals in
other ways, such as detecting vulnerabilities in SSL/TLS
implementations, suffer from several drawbacks: (a) lack of
accuracy due to the analysis of limited features (e.g., only net-
work APIs), and inability to extract inter-components meth-
ods [12]; (b) inability to identify the portion of the app code
where the password authentication protocol is implemented,
and how to locate all password authentication protocols that
are implemented in an app (for apps that use multiple proto-
cols) [13]; (c) inability to recognize new implementation
defects because only known attacks are used to identify a
vulnerability [14].

In this paper, we are not concerned with designing secure
protocols or cryptographic algorithms for password-based
authentication. Rather, our goal is to carry out an analysis of
existing Android apps to identify implementation defects in
their password authentication protocols and we assume that
the design of the protocols is secure.

By extracting the requirements for implementing each pass-
word authentication protocol securely fromofficial documents
[15] and websites,1 we summarize three common types of
implementation flaws: Flaw 1 - plain password transmission;
Flaw 2 - insufficient SSL/TLS validation; Flaw 3 - incomplete
timestamp format. Flaw 1 makes the authentication protocol
vulnerable to password eavesdropping and replay attacks.
Flaw 2 makes the authentication protocol vulnerable to server
impersonation and man-in-the-middle (MITM) attacks. In
SSL/TLS-based password authentication protocol, the client
app is required to verify the validation of the server’s certifi-
cate and check its hostname to ensure that the client is commu-
nicating with the correct server. Finally, Flaw 3 makes the
authentication protocol vulnerable to replay attacks.

To identify these flaws, we have designed and imple-
mented a fully-automated , GLACIATE [16], to assess the
implementation of password authentication protocols.

In automation approach GLACIATE, the templates used to
detect authentication flaws are learnt by a machine learning
algorithm. Such a detection scheme reduces the manual effort
of summarizing general patterns.However, an interesting issue
is whether machine learning techniques are “smarter” than
humans in generating such patterns. Therefore, we designed
an orchestration tool, AUTHEXPLOIT, to identify authentication
flaws from app implementations. In AUTHEXPLOIT, the authenti-
cation flaw patterns are first identified manually, and then

apply the automated analysis to detect the flow. The automa-
tion part inAUTHEXPLOIT has two components:AppPreprocessing
and Flaw Detection. As first step, AUTHEXPLOIT converts each
Android app into an intermediate representation (i.e., Jimple
code in our paper) and creates its super call graph by applying
intra- and inter-procedural analysis. It then performs flaw
detection by using the super call graph to further statically ana-
lyze the dependencies among functions and variables. AUTHEX-

PLOIT finally identifies whether the password authentication
protocol implemented in an app matches any of the three
implementation flaws listed above which are identified and
codedmanually.

In order to assess the effectiveness of AUTHEXPLOIT, we cre-
ated a ground–truth dataset by manually analyzing 1,200
Android appswith respect to the three flaws discussed above.
we also compared the results of AUTHEXPLOIT and GLACIATE
with other two orchestration tools (where some form of
manual efforts are involved), which are two state-of-the-art
SSL/TLS certificate validation tools, MalloDroid [12] and
SMV-Hunter [17], against our dataset. AUTHEXPLOIT performs
better than both MalloDroid and SMV-Hunter by successfully
identifying 627 authentication flaws. Although GLACIATE
has a lower Recall value than AUTHEXPLOIT, AUTHEXPLOIT

detects flaws more accurate with the Precision value of 93.9
percent.

Contributions. Overall, our contributions are

� We manually extract the requirements for correct
implementations of secure password authentication
protocols from official documents and secure apps. For
two commonly used protocols, i.e., SSL/TLS-based
password authentication protocol and timestamp-
based password authentication protocol, we identify
three commonflaws thatmay affect app security.

� We develop an orchestrated detection tool, AUTHEX-

PLOIT, that aim to detect authentication flaws. We
then compare the effectiveness of our tool with two
state-of-the-art orchestration tools, and demonstrate
that our tool performs better than them. Finally,we
compare the effectiveness of AUTHEXPLOIT with auto-
mation tool, GLACIATE, to check whether orchestra-
tion approach is better than automation approach.

� We have carried out several analyses to investigate
the correlations between implementation flaws and
different app features (e.g., popularity and domain
categories).

Organization. The rest of this paper is organized as fol-
lows. Section 2.3 introduces background information of the
secure password authentication protocols used in Android
and their correct implementations. We illustrate the chal-
lenges of examining authentication in an app in Section 3.2.
In Section 4.2.3, we introduce AUTHEXPLOIT in detail. In
Section 5.3, we evaluate the effectiveness of AUTHEXPLOIT by
applying it to real-world Android apps and investigate the
widespread authentication implementation. We discuss
related works in Section 6.3. Section 7 concludes the paper
and outlines directions for future work.

2 BACKGROUND

In this section, we present the relevant background about the
techniques used for identifying vulnerable implementations

1. System Approach: https://book.systemsapproach.org/security/
authentication.html
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of password authentication protocols in Android apps. First,
we introduce the most commonly used program analysis
techniques for static analysis in Section 2.1. We then present
the twomost commonly used password authentication proto-
cols and describe their security requirements in Section 2.2.
Finally, in Section 2.3 we list three common implementation
flaws and describe how they are exploited by attackers.

2.1 Static Program Analysis

Different from dynamic program analysis, static program
analysis identifies flaws in a program without running the
program. Therefore, static program analysis locates the
exact code snippet with flaws, and also examines code that
is rarely reached during execution. Generally, control flow
analysis and data flow analysis are applied to extract the
program execution process. Details are elaborated below.

Control Flow Analysis. Control flow analysis [18] is a tech-
nique for determining the execution order of program state-
ments. The control flow is represented as a control flow
graph (CFG). In a CFG, an entry block and an exit block are
defined, representing the entry and exit of an execution,
respectively. Nodes in the CFG represent a number of basic
blocks, which are a linear sequences of program instruc-
tions. A CFG also includes a number of basic blocks which
are linear sequences of program instructions. An edge
between blocks b and b0 indicates that the execution flows
from b to b0. Therefore edges in a CFG represent all possible
execution paths in the program including infeasible paths
and dead code. The set of execution traces can further be
predicted and specified via the CFG.

Data Flow Analysis. From the created CFG, data flow anal-
ysis is used to trace variable changes when the program is
executed. Data flow analysis gathers information about the
variables of interests and then traces their possible locations
in a program. From each basic block in the CFG, data flow
analysis derives the effects of each operation, and its corre-
sponding inputs and outputs. This analysis also optimizes
the CFG by removing the infeasible paths and dead code,
because variables in these statements are not data depen-
dent on any other variables.

2.2 Password Authentication Protocols

A simple password authentication protocol is a weak but con-
venient authentication scheme. In the basic password authen-
tication protocol (BPAP), a client sends a combination of
username and password in plaintext to an authentication
server and the server accepts the user only if the password is
valid. BPAP is efficient in that it requires only one message
from the client to the server without requiring the execution
of cryptographic operations. However, BPAP was originally
intended for users to be authenticated to a local computer or
to a remote server over a closed network; the protocol is vul-
nerable to eavesdropping and replay attacks when it is used
over an open network [7], [8], [19].

Two general approaches are proposed to protect BPAP
against attacks: SSL/TLS-based password authentication pro-
tocol and nonce-based password authentication protocol.

SSL/TLS-Based Password Authentication Protocol. In this
protocol, a secure channel is built by using SSL/TLS to pro-
tect the communication between the client and the server.

All transmitted messages through the secure channel are
encrypted, including the username and password of each
client.

To build a secure connection, the following verification
stepsMUST be executed:

1) A client sends a message to the server to initiate
SSL/TLS communication.

2) The server then sends back a public key certificate.
3) After receiving the certificate from the server, the client

verifies whether the certificate is valid. If the certificate
is valid, the client creates and sends an encrypted key
back to the server. Otherwise, the communication fails.

4) The server decrypts the key and delivers a digitally
signed acknowledgement to start an SSL/TLS
encrypted connection.

In the verification steps, verifying the public key certificate
received from the server is themost essential step. A valid cer-
tificate is required to be signed by a Certificate Authority
(CA). The clientMUST validate each certificate by checking:

1) Whether the subjectAltname field and the host
portion of the server’s URL match [12];

2) Whether theCA that signed the certificate is trusted [20];
3) Whether the signature of the certificate is unexpired [21].
Nonce-Based Password Authentication Protocol. Another

mitigation to counter password eavesdropping and replay
attacks [22] is the nonce-based password authentication
protocol, which relies on an arbitrary number (i.e., a nonce).
The nonce is only used once in a cryptographic communica-
tion, i.e., the communication between the client and the
server in our paper. According to the particular approach
for generating the nonce, the protocol is classified as chal-
lenge-response or timestamp-based.

For the challenge-response protocol, a server first generates
a nonce by using a pseudo-random number generator and
sends it to the client as a challenge. The client then uses
his/her own password as a secret key to encrypt the nonce
and sends the ciphertext to the server for identity verification.
Besides using a pseudo-random number, using a timestamp
as a nonce (i.e., the timestamp-based password authentication
protocol) is anotherway to label each uniquemessage.

The construction of a secure nonce-based password
authentication protocol MUST comply with the following
requirements:

1) The pseudo-random number used for the challenge-
response password authentication protocol should
be unpredictable.

2) The timestamp involved in the timestamp-based
password authentication protocol should have the
format of Year/Month/Day/Hour/Minute/Second.

Note that we cannot determine the randomness of the
pseudo-random number generated by the server without
access to the source code; thus we only consider implemen-
tation flaws in the timestamp-based password authentica-
tion protocol in this paper.

2.3 Flaws in Protocol Implementations

A password authentication protocol is secure only if it com-
plies with the above mentioned requirements. However,
implementing a password authentication protocol correctly is
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not easy. We discovered the following flaws that make imple-
mentations non compliantwith the above requirements.

Flaw 1 : Plain Password Transmission. This flaw is an imple-
mentation of BPAP over an insecure network without any
protection, i.e., users’ passwords are transmitted in plaintext.
It is vulnerable to eavesdropping and replay attacks.

Flaw 2 : Insufficient SSL/TLS Validation. This is a common
flaw in the implementations of secure password authentication
protocols. Unless all the validation requirements listed in Sec-
tion 2.2 are satisfied, Android apps may trust invalid certifi-
cates (i.e., certificates signed by untrusted CAs, self-signed
certificates, and expired certificates) or accept invalid host-
names. This allows an attacker to connect to apps by providing
a forged certificate to steal users’ passwords. Additionally, a
malicious counterfeit server can connect with an app by using
someone else’s valid certificate if the app accepts all hostnames.

Flaw 3 : Incomplete Timestamp Format. This flaw makes the
timestamp used for authentication repeatable. For example,
a timestamp in the format of “Minute/Second” allows the
protocol message to be repeated every hour with the same
minute and second.

3 EXAMPLE

In this section, we first illustrate an implementation defect
by using a running example of code with Flaw 2 (i.e., insuffi-
cient SSL/TLS validation), and then highlight challenges in
detecting flaws in apps.

3.1 Code Example

For illustration purpose, we consider an example from a
highly popular communication app with ratings � 4.5 and
downloaded � 100,000 times. The example (in Jimple code)
given in Listing 1 is the code that allows the app to connect
with any server without verifying the hostname.

The example includes three functions in two classes:
trustAllHosts (lines 10-26) and getTrustedVeri-

fier (lines 27-39) defined in class1, and verify (line 51-
60) defined in class2. Function setHostnameVerifier

in line 23 takes as input of a hostname, which is assigned in
line 22. To make a secure connection, the assigned hostname
must be verified by function getTrustedVerifier.
Although the validation function verify is invoked, it is
set to return 1 (TRUE) without executing the hostname veri-
fication, which suffers from Flaw 2.

3.2 Challenges

Our detailed analysis of the flaw in Listing 1 clearly shows
the major challenges in the systematic identification of flaws
from the implementation:

Challenge 1: How to match specific implementation flaws
against code? In theory, the design of a password authentica-
tion protocol is simple and well-defined; however, in prac-
tice, implementations are complicated. As developers have
various coding styles, the identification of code fragments
that implement password authentication protocols is chal-
lenging. In order to check whether there are any flaws
(described in Section 2.3) in an implementation, we need to
convert each flaw into a flexible intermediate representative

Listing 1. An Example of Flaw 2
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template that can be applied to different coding styles,
while at the same time returning few/no false positives.

Challenge 2: How to efficiently and accurately identify the
implementation flaws? To detect an implementation flaw, we
must analyze whether the implementation of the password
authentication protocol suffers from any of proposed the
three flaws. As the related implementation code is a code
snippet, extracting all program dependencies structure of
an app is quite expensive, and in addition most of those
structures are not relevant to our analysis.2

Challenge 3: How to extract a complete protection scheme for
the password authentication protocol? Just analyzing the code
snippet of password authentication is insufficient for assess-
ing whether the protocol is secure. A secure password
authentication protocol is supported by at least one protec-
tion scheme that protects either the connection between the
server and the client by using SSL/TLS or the transmitted
password by using cryptographic primitives. How to iden-
tify the implemented scheme(s) used to support the pass-
word authentication protocol is equally important.

4 DESIGN

For GLACIATE, it uses a machine learning approach to
learn flaw patterns from vulnerable apps. However, devel-
opers usually name the customized functions variously. It is
imprecise by using the machine learning approach to deter-
mine whether a function is relevant to authentication. To
address the issue of GLACIATE, we construct an orches-
trated approach, AUTHEXPLOIT, to by using expert predefined
templates (human expert is involved). Having the defined
templates, it takes the following steps to automatically
detect implementation flaws in Android apps (see Fig. 1).

� Step 1: Select BPAP. This checks whether an app has
implemented the BPAP.

� Step 2: Recognize protection schemes. For the apps
using BPAP, this determines what protection
schemes are implemented to protect BPAP.

� Step 3: Discover flaws. According to the implementa-
tion requirements of each protection scheme, this
step matches the known requirements with the
implementations.

4.1 App Preprocessing

The preprocessing operation is organized in several steps
described below.

4.1.1 App Decompilation

AUTHEXPLOIT is built on top of Soot [23] and works directly
on Dalvik bytecode. Applied to Android apps, it translates
lowlevel Android bytecode into its intermediate representa-
tion (IR), namely, Jimple code. In Jimple code [24], Soot
represents low-level code as Scene, SootClass, SootMe-
thod, SootField, and Body.

4.1.2 Super Call Graph Generation

From the Jimple code, AUTHEXPLOIT creates a super call graph
for each app. Each node in the super call graph is a function,
represented in the format {Statement, Method Name, Class
Name}. The statement is the current line of statement. The
method name and the class name separately represent the
SootMehod and the SootClass where the statement
belongs to. A directed edge between two nodes represent
three types of relationships: function calls, control flows, and
data flows.

AUTHEXPLOIT takes the following steps to construct a
super control flow graph.

1) It builds a control flow graph (CFG) for each Soot-

Method. Following the execution sequence, it then
conducts an intra-procedural analysis [25] and con-
nects two statements by adding directed edges.

Fig. 1. Overview of AUTHEXPLOIT.

2. On average, if the size of an application is larger than 10K, the
number of Jimple code files is more than 10,000. If the size is 5k - 10k,
the number of Jimple code files is around 6,000.
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2) It extracts correlations among functions by identify-
ing function calls in each SootMethod. According
to each function call, it adds an edge directed from
the caller to the callee.

3) It collects data flows by analyzing the CFG built in
Step 1). Starting from the input parameters and
declared variables in each SootMethod, it extracts
data dependencies between two nodes. A data flow
edge is created between two nodes if a node is data
dependent on another node; the edge is labeled with
the correlated parameter/variable. The edge repre-
sents that the value of an input parameter or a vari-
able flows from the parent node to the child node.

4) It constructs a super call graph by combining the
edges generated in Steps 1), 2), and 3).

Note that dead code may have been included in the
super call graph as an independent graph. Therefore, we
remove these independent graphs to improve the efficiency
of AUTHEXPLOIT because they are irrelevant to any other code
snippets.

4.2 Flaw Location

By taking as input the Jimple code of each app and the con-
structed super call graph, AUTHEXPLOIT outputs a detection
report including the type of flaw and its location. First,
AUTHEXPLOIT identifies whether the BPAP is implemented in
an app. It then determines the protection scheme designed for
the BPAP. It finally checks whether the implemented protec-
tion scheme complieswith the security requirements.

4.2.1 Indicator Instruction Locator

Instead of creating flaw patterns automatically, AUTHEXPLOIT

requires that some manual-observed indicator instructions to
locate the BPAP code and the relevant protection schemes.
An indicator instruction is a function that is related to the
implementation of the password authentication protocol in
Android. If any of these indicator instructions is invoked in
an app, it is then labeled as BPAP-related.

To collect theAPIs thatMUST be invoked in the implemen-
tation of password authentication protocols, we manually
learn the correct implementations from official documents
in AndroidDeveloper3 and code from StackOverflow4 – this
addresses Challenge 1 mentioned in Section 3.2. Finally, 16
indicator instructions that have selected based on the manual
analysis are listed in Table 1. Since these indicator instructions
are the official APIs provided by Java programming lan-
guages, we assume that the authentication procedure imple-
mented in the Android apps must invoke at least one of them
to achieve PAP. Details about each indicator instruction are
introduced below.

BPAP. AUTHEXPLOIT relies on indicator instructions 1 and 2
to identify whether a BPAP is implemented in an app. Func-
tion getPassword is called to return a user’s password. A
combination of the username and the password is returned
by function requestPasswordAuthentication.

TABLE 1
Indication Instructions

3. Android Developer: https://developer.android.com/
4. Stack Overflow: https://stackoverflow.com/search?q=password

+authentication
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SSL/TLS. Indicator instructions 3 - 12 are commonly used in
the implementation of SSL/TLS protocol. Indicator instruc-
tions 3 - 5 are used to create a socket connection. Function
createSocket creates a connection with a specified remote
host at a specified port. Function getInstance in class
javax.net.ssl.SSLContext can specify which protocol
to use (e.g., SSL, TLS). A function call of getSession tries to
set up a handshake session through the socket. Since
SSL/TLS-based password authentication protocol requires a
correct certificate validation, indicator instructions 6 - 9 may
be called. Function getLocalCertificates returns the
certificate that is sent to the peer. While using TrustMan-

ager, function getInstance in class javax.net.ssl.

TrustManagerFactory is invoked. Functions verify

and checkValidity are certificate validation methods.
Indicator instructions 10 - 12 are used in the implementation
of hostname verifier. Function verify in class javax.

net.ssl.HostnameVerifier has to be invoked To verify
a hostname. In both classes of javax.net.ssl.

HttpsURLConnection and
org.apache.http.conn.ssl.SSLSocketFactory,

each specifies a verification function setHostnameVeri-

fier to accept the valid hostname for secure connection
construction.

Timestamp. Indicator instructions 13 - 16 are timestamp-
related functions. Functions currentTimeMillis() and
nanoTime() generate unique timestamps in the format of
“YYYY-MM-DD hh:mm:ss”. Functions init and toMil-

lis from class java.util.Date and class java.util.

concurrent.TimeUnit generate timestamps as “Days,
Hours, Minutes, Seconds”. It is important to note that we
only analyze the code snippets that invoke both the time-
stamp instructions and BPAP instructions to ensure the
effectiveness and efficiency of our detection.

Given the indicator instructions, AUTHEXPLOIT matches
nodes in the super call graph of each app to identify the
BPAP. For the apps labeled as BPAP-related, AUTHEXPLOIT

further performs static program slicing to analyze its imple-
mentation in detail.

4.2.2 Static Program Slicing

To learn the root cause of each flaw, AUTHEXPLOIT applies
program slicing [26] (forward [27] and backward [28] pro-
gram slicing). By analyzing a specific subset of the behavior
defined in a given program, AUTHEXPLOIT extracts correla-
tions between the BPAP and the protection schemes in an
app to determine whether they are relevant to each other.

According to the matched nodes in the super call graph,
AUTHEXPLOIT locates the code snippet with BPAP. It further
identifies SSL/TLS and timestamps. Our approach to iden-
tify the location of relevant code snippet addresses Chal-
lenge 2 and Challenge 3 (see Section 3.2) since AUTHEXPLOIT

only recognizes statements that might be related to pass-
word authentication protocols. AUTHEXPLOIT then traverses
the program backward or forward starting from a matched
node (i.e., the function that matches with any indicator
instructions). It initially creates an empty data flow set in
the form of < On;Op > to record the execution, where On

is a variable or a function. Op is a variable, a value, a func-
tion call, or a field. < On;Op > indicates that a variable On

is assigned by Op or a function On takes Op as input.

AUTHEXPLOIT takes the following two steps to add the depen-
dent objects to the data flow set. First, it extracts variables
that are taken as input of an indicator instruction or
assigned by indicator instructions. Then, it moves forward
or backward to analyze the dependencies and extracts oper-
ations on the other dependent variables. This algorithm
does not terminate until a variable is assigned to a real value
or the super call graph terminates.

4.2.3 Misuse Detection

Based on data and control dependencies defined for each
app, AUTHEXPLOIT checks whether the code has any of the
three flaws discussed in Section 2.2. Specifically, it checks
whether the implementation of the password authentication
protocol complies with the corresponding requirements.

Flaw 1: Plain Password Transmission. According to the indi-
cator instruction 1 or 2, AUTHEXPLOIT determines where the
password is. If it does not detect any additional protection
scheme that is dependent on the password, it labels the app as
insecure in that users’ passwords are transmitted in plaintext.

Flaw 2: Insufficient SSL/TLS Validation.AUTHEXPLOIT analyzes
certificate signatures and hostnames separately. First, it identi-
fies the node with indicator instruction 6. It returns the certifi-
cate that is used during communication. Then, it analyzes the
nodes that are related to the certificate. If a validation function
is found and it never throws an exception or reports an invalid
certification (i.e., return true by default), AUTHEXPLOIT regards
the implementation as affected by Flaw 2. In addition, Trust-
Manager is another way to manage trust-related information.
AUTHEXPLOIT thus analyzes the implemented TrustManager

and checks if it reports invalid certifications.
Depending on the connection with customized hostname

verification, AUTHEXPLOIT relies on either indicator instruc-
tions 11 or 12. It further examines the verification function
and its return value. AUTHEXPLOIT regards an implementa-
tion as vulnerable if the input of setHostnameVerifier is
set as ALLOW_ALL_HOSTNAME_VERIFIER or the custom-
ized verfication function returns TRUE by default.

Flaw 3: Incomplete Timestamp Format.AUTHEXPLOIT extracts the
dependence relationship between the timestamp-related indica-
tor instructions and the BPAP. If they are correlated, it further
examines the format of the timestamp (i.e., the value assigned to
the timestamp variable). AUTHEXPLOIT finds a flaw if the format
is incomplete, that is, the required format “Year/Month/Day/
Hour/Minute/Second” is not followed. For indicator instruc-
tions 13 and 14, they generate a valid timestamp format only if
their return types are defined as “long”; otherwise, the time-
stamp is incomplete. In addition, AUTHEXPLOIT checks the format
of the date format when the indicator instructions 3 and 4 are
detected. It only classifies the implementation secure if the for-
mat of “Days” is customized as “YYYY-MM-DD”.

5 EVALUATION

In this section, we conduct two experiments to analyze the
implementation of password authentication in Android
apps. First, we assess the effectiveness of orchestrated and
automated approaches for exploring authentication flaws
in Android apps. Then, we analyze the correlations
between the occurrence of authentication flaws and various
app characteristics.
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5.1 Assessment of Orchestration Versus
Automation

5.1.1 Dataset

We randomly collected 1,200 free apps from the Official
Google Play site.5 In order to ensure that our dataset has
a wide coverage and does not have a bias towards any
particular type of app, we included apps from six cate-
gories: Communication, Dating, Finance, Health & Fitness,
Shopping, and Social Networking. We downloaded 600
highly popular apps (100 in each category) which had at
least 1,000 ratings and four stars or more. The other 600
apps are less popular (100 in each category) with 200 or
fewer ratings. The size of the apps used ranges from 1 to
70 MB.

Due to the lack of an open source labeled dataset of
apps with identified authentication flaws, we created our
own. As most implementations of password authentica-
tion protocols follow the same structure, we believed
that the structures are generalizable enough for our
purpose.

For creating this ground-truth dataset, we asked a
team of annotators (1 PhD student and 2 postdoctoral
research fellows), all with more than 7 years of program-
ming experience in Java, to check implementations of
password authentication protocols in apps. We first
required team members to label apps independently.
Then all members went through the labels together and
discussed apps that were labeled differently. The team
had to come to an agreement before an app could be
included in the dataset. To evaluate whether the agree-
ment was good enough, we computed the Fleiss’s Kappa
score [29]. The kappa score of the agreement is 0.901,
which means there was almost perfect agreement. Ulti-
mately this procedure found a total of 1,205 implementa-
tions of password authentication protocols in 742
Android apps (since some apps implement multiple
schemes), and 1,087 authentication flaws were identified
in 695 apps (Flaw 1: 284, Flaw 2: 736, Flaw 3: 67).

5.1.2 Experiment Design

To evaluate the performance of AUTHEXPLOIT, we generated
an evaluation matrix of Precision, Recall, and F1 metrics.
Precision measures how precise/accurate our tool is; recall
reflects how many vulnerabilities are actually detected; and
F1 is used to balance precision and recall. They are defined
as follows:

Precision ¼ TP

TP þ FP

Recall ¼ TP

TP þ FN

F1 ¼ 2 � Precision �Recall
PrecisionþRecall

;

where TP is the number of authentication flaws that are
detected correctly, FP is the number of authentication flaws
that are detected incorrectly (false positives), and FN is the
number of authentication flaws that are not detected.

5.1.3 Performance Comparison

To evaluate the detection effectiveness of orchestrated and
automated tools, not only did we compare our orchestration
approach, AUTHEXPLOIT, with our proposed automation tool,
GLACIATE [16], but also compares with two state-of-the art
orchestration tools,MalloDroid [12] andSMV-Hunter [17]. Sim-
ilar to AUTHEXPLOIT, bothMalloDroid and SMV-Hunter require
manual efforts; MalloDroid relies on predefined rules to iden-
tify vulnerable implementations, and SMV-Hunter triggers
vulnerabilities by using manually generated inputs. Different
from AUTHEXPLOIT and GLACIATE, MalloDroid and
SMV-Hunter only focus on examining the correctness of the
SSL/TLS implementation.

For comparison we applied AUTHEXPLOIT, GLACIATE,
MalloDroid, and SMV-Hunter to the entire dataset. As GLACI-
ATE relies on agglomerative hierarchical clustering to learn
flaw patterns automatically, we used 10-fold cross valida-
tion [30] to evaluate the performance. Following the original
settings of GLACIATE,we set Tdist ¼ 1:3 andminrule ¼ 2.

Since MalloDroid and SMV-Hunter only detect
SSL/TLS-related vulnerabilities (i.e., Flaw 2 in this paper),
we limited AUTHEXPLOIT and GLACIATE to detect Flaw 2 in
this experiment. From the results, we computed the Preci-
sion, Recall and F1 over the entire dataset for each tool.

Table 2 shows the assessment results. Specifically, the auto-
mated tool, GLACIATE, performedbetter than the other tools,
achieving a F1 of 92.4 percent. Different from GLACIATE, the
other three detection tools are orchestration tools that rely on
manual efforts to determine the vulnerable patterns. There-
fore, AUTHEXPLOIT, MalloDroid, and SMV-Hunter achieved a
higher precision than GLACIATE. More specifically, AUTHEX-

PLOIT has the highest precision that correctly detected 627 out
of 736 SSL/TLS authentication flaws, with the Precision value
of 93.9 percent. Comparing with GLACIATE, AUTHEXPLOIT

has a 2.96 percent better precision. Through our manual
inspection, we found that GLACIATE filtered out some

TABLE 2
Detection Result: AUTHEXPLOIT, MalloDroid, SMV-Hunter, and GLACIATE

5. Google Play: https://play.google.com/store?hl=en
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control flows that contain customized functions. For these sit-
uations, developers generally declared authentication activi-
ties into different Java classes. When the declared activities
are too complicated, GLACIATE fails to identify the correla-
tions among these Java classes.

In addition, MalloDroid only detected 201 flaws out of 736
SSL/TLS-related authentication flaws, achieving a recall of
only 27.3 percent. AUTHEXPLOIT detected about 2 times more
SSL/TLS-related authentication flaws than MalloDroid.
SMV-Hunter successfully detected 572 SSL/TLS-related
authentication flaws with Precision, Recall and F1 values of
91.2, 77.7, and 83.9 percent. Compared with SMV-Hunter,
AUTHEXPLOIT identified 9.6 percent more flaws and has a
2.9 percent better Precision. This means that AUTHEXPLOIT gen-
erates proportionally fewer false positives thanSMV-Hunter.

TrustManagers are responsible for managing the trust
material that is used for deciding whether the received pub-
lic key certificates should be accepted. Besides the vulnera-
ble TrustManagers detected by MalloDroid, AUTHEXPLOIT

also found three new types of vulnerable TrustManagers,
namely BlindTrustManager, InsecureTrustManager and
AllTrustingTrustManager. Apps with these vulnerable
TrustManagers suffer from Flaw 2.

5.1.4 Further Analysis of Performance

In comparing the detection performance, we found that
MalloDroid and SMV-Hunter fails to analyze apps with
authentications implemented in different classes.

AUTHEXPLOIT and GLACIATE did fail to analyze some apps
successfully. Since they were built on top of Soot, each app
has to be decompiled using Soot. In total, Soot was unable to
decompile 184 apps, failing in “Soot:PackManager”. This
method runs the ThreadPoolExecutormultiple times, and the
executor Runnable is unable to handle those threads sepa-
rately. These fail-to-decompile apps will be reconsidered

when Soot is next upgraded.6

5.2 Characteristics of Apps With Authentication
Flaws

To gain further insights, we posed the following questions
to determine whether the occurrence of authentication flaws
is correlated with selected app characteristics:

� RQ1: Are paid apps more secure than free apps?
� RQ2: Are highly popular apps more secure than less

popular apps? How long does it take to repair an
authentication flaw?

� RQ3: Which is the most secure category, e.g., e-com-
merce apps?

� RQ4:Which party is responsible for these authentica-
tion implementation flaws - third party packages or
developers?

5.2.1 RQ1: Paid Versus Free

From a user’s perspective, one might intuitively expect that
a paid app would be designed by a professional developer,

and thus be more secure than a free app. However, previous
research has shown that paid apps have more vulnerabil-
ities since they include more code and functionalities [31].
Hence, we hypothesized that being paid or not does corre-
late with the correctness of password authentication imple-
mentation. To evaluate the relationship between payment
and authentication flaws, we randomly downloaded the
top-150 paid apps and the top-150 free apps from Google
Play. We ran AUTHEXPLOIT to detect authentication flaws in
these apps, and for each app.

We used the Mann Whiteney U test [32], intended for
testing differences in the means of two independent sam-
ples. It determines the significance of the differences in the
occurrence of authentication flaws in paid and free apps.
The test is applied to validate the following null (H0) and
alternative (H1) hypotheses:

� H0: The mean number of authentication flaws found
in free apps � the mean number of authentication
flaws found in paid apps.

� H1: The mean number of authentication flaws found
in free apps > the mean number of authentication
flaws found in paid apps.

We ran the MannWhitney U Test by performing a one tail
test and setting the significance level at 5 percent. The calcu-
lated result shows that p� value ¼ 5:4e�8 < 5%. Thus, H0 is
rejected, whichmeans that authentication flaws found in paid
apps are significantly fewer than flaws found in free apps.

5.2.2 RQ2: Highly Popular Versus Less Popular

The popularity of apps might also influence the implemen-
tation of password authentication protocols. We hypothe-
sized that highly popular Android apps are not more secure
than less popular apps. A prior study by Scholte et al. [33]
has concluded that the highly popular web apps are not less
vulnerable than the less popular ones. The following analy-
sis was conducted on the vulnerable apps detected by
AUTHEXPLOIT to evaluate the correlation between app popu-
larity and authentication flaws.

The null (H0) and alternative (H1) hypotheses for the
MannWhiteney U Test are:

� H0: There is no difference in the mean number of
authentication flaws found in the highly and less
popular apps.

� H1: There is difference in the mean number of
authentication flaws found in the highly and less
popular apps.

For this dataset, we ran the Mann Whitney U Test as a
one tail test with alpha = 0.5. The calculation gave p�
value ¼ 0:579 > 0:5, which means H0 cannot be rejected.
Thus, there is no statistically significant differences between
the number of authentication flaws found in the highly pop-
ular and less popular apps.

Besides, we also investigated how promptly developers
fix authentication flaws. We randomly chose 200 apps and
downloaded their previous updated versions at intervals of
three months. Fig. 2 reports the results of such analysis.
AUTHEXPLOIT initially found that the number of apps with
Flaws 1, 2, 3 are 13, 24, 4, respectively. Then an analysis of
the subsequent versions showed that most authentication

6. The exception, “ERROR heros.solver.CountingThreadPoolExecu-
tor - Worker thread execution failed: Dex file overflow”, was posted in
March, 2018. Soot might solve this problem in its next version.
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flaws are fixed after six months. However, 13 apps retained
their flaws for more than one year.

5.2.3 RQ3: App Categories

Since users might have different security expectations for dif-
ferent application categories, we were interested in assessing
whether e-commerce apps are more secure than apps in other
categories. Vijayaraghavan and Kaner [34] highlighted that e-
commerce apps often use secure protocols, such as SSL, to
protect online transactions. Therefore, wewere expecting that
the password-based authentication schemes of e-commerce
apps (e.g., shopping and finance apps) would be more secure
than apps in other categories. We used the flaw detection
results for the different categories to analyze the association
between app categories and authentication flaws.

We used the Chi-Square Independent test [35] to deter-
mine whether there is a significant relationship between
two categorical variables: type of authentication flaw and
app categories (i.e., Communication, Dating, Finance,
Health & Fitness, Shopping, and Social Networking). The
test is used to validate the following null (H0) and alterna-
tive (H1) hypotheses:

� H0: There is no association between authentication
flaws and app categories.

� H1: There is an association between authentication
flaws and app categories.

We set the significance level to 5 percent. H0 is rejected if
the p-value � 5 percent. The Chi-Square Independent test
gave pðx2 > 16:040Þ ¼ 0:379. Thus, H0 cannot be rejected,
i.e., there is no statistically significant association between
app categories and authentication flaws.

We further built a multiple linear regression model to esti-
mate how these categories are affected by the occurrence of
authentication flaws. Regarding the coefficients as notewor-
thy, a category is statistically significant if p < 5%. Based on
the results of this multiple linear regression model, we
observed that no category is significantly associated with the
authentication flawswhen p� value > 5% is used as test.

5.2.4 Causes of Authentication Flaws

There are a number of libraries available for developers to
implement secure password authentication protocols [36],
such as native SSL/TLS libraries supported by Android,

FirebaseAuthentication, GnuTLS, openSSL.7 We further
examined the ground-truth dataset to investigate whether
the found authentication flaws were related to the use of
external libraries for implementation or due to incorrect
custom implementations by developers.

By analyzing the flawed customized implementations,
we observed that they are written as not to check the host-
name or never throw exceptions regardless of the certificate
validity. A more interesting finding is that although an
external library provides an option to build a secure SSL
implementation, developers still choose to ignore invalid
certificates and hostnames even though an option of verifi-
cation is provided. One potential reason why developers do
so is that verifying certificates and hostnames may slow the
applications at runtime.

5.3 Limitation

By manually inspecting the detection results, we conclude
the following limitation of AUTHEXPLOIT.

[Unsuccessful Decompilation.] Since we build AUTHExploit
on top of Soot, each application has to be decompiled using
Soot. In total, Soot fails to decompile 184 applications, which
is caused by “Soot.PackManager”. It runs the ThreadPoolExe-
cutor multiple times, and the executor Runnable is unable to
handle those threads separately. These unsuccessful applica-
tions can be analyzed again once Soot is upgraded.8

[Complex Dependencies.] For some cases, the same SootField
may be used by multiple methods. When applying program
dependency analysis, two independent SootMethods may be
considered as dependent because of the mutual SootField.
This impacts the analysis since two independent SootMethods
will be analyzed as one. Suppose that two independent Soot-
Methods method1 and method2 are connected through a
mutual SootField. In method1, a PAP with the timestamp
scheme uses a timestamp generated by calling the method
currentTimeMillis(). However, method2 only extracts the date
from method currentTimeMillis() for the other purpose.
AUTHExploit considers such date as the timestamp used for
PAP and determines that the PAPwith timestamp implemen-
tation is insecure.

[Customized Authentication.] Since we summarize the
indicator instructions through the official documents and
websites, we only collect the APIs that are official included
in the Java programming languages. Therefore, for some
authentication procedures that are designed by developers,
AUTHEXPLOIT is unable to exploit them.

6 RELATED WORK

We broadly classify existing flaw detection techniques to two
broad categories: orchestration and automation. Orchestra-
tion refers to the approaches that put human in the loop,
whereas automation refers to the approaches that do not need
human intervention. Orchestration approaches can be further
classified into two categories, rule-based techniques and

Fig. 2. Time interval to fix authentication flaws.

7. Firebase: https://firebase.google.com/docs/auth/; GnuTLS:
https://www.gnutls.org/; openSSL: https://www.openssl.org/

8. This exception is proposed in March, 2018. Soot might solve this
problem in its next version.
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attack-based techniques. Machine learning approaches are all
put together under themachine learning techniques below.

6.1 Rule-Based Techniques

Most existing techniques detect vulnerabilities by using pre-
defined rules/templates.MalloDroid [12] is a tool for analyz-
ing SSL/TLS code in Android apps to check whether the
code is potentially vulnerable to MITM attacks. MalloDroid
checks the Internet permissions and analyzes the network
API calls to identify certificates and hostname verification
code. According to the API calls and permissions,
MalloDroid determines whether the code has vulnerabilities,
including accepting all certificates, accepting all hostnames,
trusting many CAs, and using mixed-mode/no SSL. How-
ever, because it only analyzes the network API calls,
MalloDroid is unable to identify all the potential flaws due
to its inability to extract the inter-component communica-
tions. Instead of constructing a call graph/control flow
graph, HVLearn [37] is a black-box learning approach that
infers certificate templates from the certificates with certain
common names by using an automated learning algorithm.
It further detects those invalid certificates that cannot be
matched with certificate templates. However, this approach
can only be applied to the certificates with specific common
names. Spinner [38] is also a tool targeting on black-box
detection. It checks certificate pinning vulnerabilities which
may hide improper hostname verification and enables
MITM attacks. Without requiring access to the code,
Spinner generates traffic that includes a certificate signed by
the same CA, but with a different hostname. It then checks
whether the connection fails. A vulnerability is detected if
the connection is established and encrypted data is trans-
mitted. However, some unnecessary input will be generated
while applying a fully automated approach.

Other types of vulnerabilities are detected using similar
approaches. IntentSoot [39] detects intent injection vulner-
abilities by using static analysis. It builds call and control
flow graphs for an app, and then tracks taint propagation
within a component, between components, and during the
reflection call. An intent injection vulnerability is detected if
the taint propagation violates the defined rules. Similarly,
cryptographic misuses are predefined in CRYPTOLINT [40].
By manually analyzing Android apps, the correct ways of
implementing cryptographic algorithm are provided.
CRYPTOLINT first computes a super control flow graph for
the app, and then uses program slicing to identify whether
the cryptographic implementation violates any of the correct
implementations. IoTFUZZER [41] aims to detect flaws in
IoT devices. Without precisely locating software flaws,
IoTFUZZER performs a dynamic analysis to identify the con-
tent in IoT apps, and then forms and deliversmessages to the
target devices. It monitors the devices to capture a triggered
crash. Manual effort is needed in defining the fuzzing policy
which IoTFUZZER follows to generate messages.

Besides analyzing source code or binary code of software,
some researchers created inputs to trigger the corresponding
vulnerabilities. DTaint [42] performs static analysis to detect
taint-style vulnerabilities - vulnerabilities in the firmware
where an input results in an unsafe path to a sensitive sink. By
analyzing the unsafe paths (from sources to sensitive sinks),
DTaint analyzes data dependency from callees to callers.

DTaint explores vulnerabilities through static code analysis,
SMV-Hunter [17] conducts dynamic analysis by simulating
user interactions and launching MITM attacks to detect SSL
vulnerabilities. However, the detection performance relies on
how well user inputs are created, and some vulnerabilities
cannot be identified since they are not triggered by the MTIM
attacks. Like SMV-Hunter, Hush [43] also uses hybrid analysis
to detect server-based oversharing vulnerabilities. First, Hush
applies static analysis to invoke network APIs that can deseri-
alize network data and manipulate user interfaces. Then, it
uses dynamic analysis to test the candidate vulnerabilities. To
confirm a vulnerability, Hush analyzes whether some specific
fields have flows from sources to sinks. Hush is a semi-auto-
mated detection tool, requiring one to create an account for
each app before connecting to the server. Although inputs can
be generated automatically, it is still a challenge to construct
precise inputs to trigger vulnerabilities.

6.2 Attack-Based Techniques

Instead of using rules/templates, some orchestration
approaches locate vulnerabilities by launching attacks.
AUTHScope [44] targets the vulnerabilities at the server
side. Since it is difficult to extract the source code running
on the remote servers, AUTHScope sends various network
requests to the server and applies differential traffic analysis
to identify when the server does not provide proper token
verification. D’Orazio et al. [45] applied their detection tool
to Android and iOS. The tool creates a self-signed certificate
to start a connection with the server to identify whether a
self-signed certificate can be accepted. However, those two
approaches only analyze one type of vulnerability, do not
consider apps with multiple protection schemes and can
only identify apps without hostname verification. Instead of
launching one attack, six different attack scenarios must be
launched by AndroSSL [13], which provides an environ-
ment for developers to test their apps against connection
security flaws. The environment has an actual server that
accepts authentication requests and static and dynamic
URLs without verifying the hostnames and certificates.
Chen et al. [46] focused on the Host head of HTTP imple-
mentations. They launched a new attack “Host of Troubles”
on those HTTP implementations, and analyzed behaviours
of implementations in their handling of Host headers. Such
approach only detected a specific type of vulnerability,
namely SSL-related vulnerabilities.

6.3 Machine Learning Techniques

Orchestration approaches might be inefficient because of the
involvement of manual efforts. To address this drawback,
machine learning can be used to construct a fully automated
detection approach. Harer et al. [47] created two models, a
build-based model and a source-based model, to detect vul-
nerabilities. Build-based features are collected from the func-
tion level by extracting operations (i.e., the definition and use
of variables), and source-based features are collected from
source code by extracting individual tokens (e.g., types, vari-
able names and comments). However, the result is imprecise
since source code is not simply a string of words, but syntax-
and semantic-based representations.

VulDeePecker [48] and SySeVr [49] detect vulnerabilities
by using deep learning, which can replace human expert
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effort while learning. By extracting library/API function
calls, VulDeePecker generates training vectors to represent
the invocations of these function calls. It then trains a bidi-
rectional long short-term memory (BLSTM) neural network
model with the training vectors. To improve the detection
accuracy, SySeVr collects more features, including function
calls, array usage, pointer usage, and arithmetic expressions
for training. Although VulDeePecker and SySeVr detected
many types of vulnerabilities without any manual effort, a
strong requirement for the training dataset is that each code
segment includes only one vulnerability.

A large dataset is always required for machine learning
approaches. DRLgencert [50] tests certificate validation in
SSL/TLS implementations by using deep reinforcement
learning. It first chooses one certificate from the dataset to per-
form differential testing. If a discrepancy is triggered, this cer-
tificate is valid. Otherwise,DRLgencert collects some features
from the certificate based on a pre-defined feature extraction
scheme, and then sends it to reinforcement learning model to
be modified.WoodPecker [51] detects shadowed domains by
using machine learning models (Support Vector Machine,
Random Forest, Logistic Regression, Naive Bayes, andNeural
Network models). It takes as input a large set of training data
(confirmed shadowed domains) and then collects 17 features
to train its classificationmodels.

The above detection approaches which use machine
learning/data mining have the desirable property of work-
ing automatically and we investigated their application to
our problem. We extracted control flow graphs and used
different machine learning algorithms (i.e., convolutional
neural network (CNN), decision tree, naive Bayes, support
vectore machine (SVM), and logistic regression) to build
detection models. However the detection results were
found to be poor. For example, SVM – the approach with
the highest accuracy, had Precision, Recall, and F1 of 52.7,
92.9, and 67.6 percent, respectively. Our observations show
that the main difficulties in using these approaches for our
problem is the question of how to filter the useful features
and how to build a model accurately from limited data.

7 CONCLUSION

In this paper, we studied the detection effectiveness of two
detection schemes, orchestration and automation, while
exploring authentication flaws inAndroid apps. According to
the results generated by GLACIATE, we were interested in
whether the performance can be improved by involving the
manual effort (i.e., orchestration approach). Targeting on the
authentication flaws in Android apps, i.e., Flaw 1 — plain
password transmission, Flaw 2 — insufficient SSL/TLS vali-
dation and Flaw 3— incomplete timestamp format, wemanu-
ally created several detection templates and then built an
orchestration tool, AUTHEXPLOIT, to detect these flaws.

We assessed the effectiveness of AUTHEXPLOIT by apply-
ing it to 1,200 real world Android apps and then compared
it with GLACIATE, and other two orchestration tools,
MalloDroid, and SMV-Hunter. The results indicated that
AUTHEXPLOIT if more accurate than GLACIATE with a higher
Precision. However, GLACIATE performed the best when
we consider the entire performance. While only comparing
the orchestration tools, AUTHEXPLOIT performed better than
both MalloDroid and SMV-Hunter. To gain a further insight,

we focused on paid apps, popular apps and different app
categories. Through statistic analysis, we analyzed whether
these factors affect the implementation correctness of the
password authentication protocol significantly. The results
proved that there are no correlations between these features
and the implementation correctness.

We intend to make AUTHEXPLOIT available as an open
source tool that help towards the development of secure
Android applications. However, app developers may need
training to recognise the potential security threats that are
most significant. As we only focus in this work on the time-
stamp-based password authentication protocol, we plan to
extend AUTHEXPLOIT with additional security rules to capture
implementation defects in nonce-based password authentica-
tion. Furthermore, as several implemented authentication
flaws can be fixed automatically, it is also important to
develop approaches to correct the defects or provide fix sug-
gestionswhen they are detected.
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