
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2022

XAI4FL: enhancing spectrum-based fault localization with XAI4FL: enhancing spectrum-based fault localization with

explainable artificial intelligence explainable artificial intelligence

RATNADIRA WIDYASARI
Singapore Management University, ratnadiraw.2020@phdcs.smu.edu.sg

Gede Artha Azriadi PRANA
Singapore Management University, arthaprana.2016@phdis.smu.edu.sg

Stefanus AGUS HARYONO
Singapore Management University, stefanusah@smu.edu.sg

Yuan TIAN

Hafil Noer ZACHIARY

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
RATNADIRA WIDYASARI; PRANA, Gede Artha Azriadi; AGUS HARYONO, Stefanus; TIAN, Yuan; ZACHIARY,
Hafil Noer; and LO, David. XAI4FL: enhancing spectrum-based fault localization with explainable artificial
intelligence. (2022). Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension, Pittsburgh, USA, 2022 May 16-17. 499-510.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7639

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7639&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7639&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
RATNADIRA WIDYASARI, Gede Artha Azriadi PRANA, Stefanus AGUS HARYONO, Yuan TIAN, Hafil Noer
ZACHIARY, and David LO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7639

https://ink.library.smu.edu.sg/sis_research/7639

XAI4FL: Enhancing Spectrum-Based Fault Localization with
Explainable Artificial Intelligence

Ratnadira Widyasari∗, Gede Artha Azriadi Prana∗, Stefanus A. Haryono∗, Yuan Tian†,
Hafil Noer Zachiary∗, David Lo∗

*School of Computing and Information Systems, Singapore Management University, Singapore

{ratnadiraw.2020,arthaprana.2016,stefanusah,hnzachiary.2019,davidlo}@smu.edu.sg
†School of Computing, Queen’s University, Canada

y.tian@queensu.ca

ABSTRACT

Manually finding the program unit (e.g., class, method, or statement)

responsible for a fault is tedious and time-consuming. To mitigate

this problem, many fault localization techniques have been pro-

posed. A popular family of such techniques is spectrum-based fault

localization (SBFL), which takes program execution traces (spec-

tra) of failed and passed test cases as input and applies a ranking

formula to compute a suspiciousness score for each program unit.

However, most existing SBFL techniques fail to consider two facts:

1) not all failed test cases contribute equally to a considered fault(s),

and 2) program units collaboratively contribute to the failure/pass

of each test case in different ways.

In this study, we propose a novel idea that first models the SBFL

task as a classification problem of predicting whether a test case

will fail or pass based on spectra information on program units.

We subsequently apply eXplainable Artificial Intelligence (XAI)

techniques to infer the local importance of each program unit to

the prediction of each executed test case. Applying XAI to the failed

test case, we retrieve information about which program statements

within the test case that are considered the most important (i.e.,

have the biggest effect in making the test case failed). Such a design

can automatically learn the unique contributions of failed test cases

to the suspiciousness of a program unit by learning the different

and collaborative contributions of program units to each test case’s

executed result. As far as we know, this is the first XAI-supported

SBFL approach. We evaluate the new approach on the Defects4J

benchmark dataset.

We compare the performance of our approach against five popu-

lar SBFL techniques: DStar, Tarantula, Barinel, Ochiai, and OP. We

measure their performance using the Top-K and EXAM scores. In

particular, we focus on the result of the Top-1, which importance

has been highlighted in automated program repair domain, where

the proposed methods often assume perfect fault localization (i.e.,

the fault must be found at the first rank of the suspiciousness list).

Our results show that our approach, named XAI4FL, has a statisti-

cally significant and substantially better performance in terms of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05 . . . $15.00
https://doi.org/10.1145/3524610.3527902

Top-1 than the SBFL approaches. We also compare our approach

with a simpler approach to get feature importance in a tree-based

model (i.e., using the Mean Decrease in Impurity method). Our

results show that XAI4FL statistically significantly outperforms

the MDI method in Top-K and EXAM score. Our results and find-

ings highlight that the utilization of XAI for fault localization can

improve the overall results of fault localization techniques.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Fault Localization, Explainable Artificial Intelligence (XAI), Model-

Agnostic Explanation Technique, Spectrum-based Fault Localiza-

tion, Testing and Debugging

ACM Reference Format:

Ratnadira Widyasari∗, Gede Artha Azriadi Prana∗, Stefanus A. Haryono∗,
Yuan Tian†,, Hafil Noer Zachiary∗, David Lo∗. 2022. XAI4FL: Enhancing
Spectrum-Based Fault Localization with Explainable Artificial Intelligence.

In 30th International Conference on Program Comprehension (ICPC ’22), May

16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3524610.3527902

1 INTRODUCTION

Debugging is a costly and time-consuming part of software develop-

ment [43], yet it is an activity that developers typically have to do at

various points of their software’s life cycle. To mitigate the cost and

time spent on debugging, researchers have proposed various auto-

mated fault localization techniques to help developers find faulty

program units more quickly. Such techniques use information from

failed and passed test cases, and output a list of locations in the

program that are “suspicious”, i.e., likely to cause the fault(s) being

investigated. By doing so, automated fault localization techniques

enable developers to quickly focus their attention on a specific

part of the source code instead of checking the whole code base,

increasing the developers’ productivity [44].

One of the major families of fault localization techniques is

spectrum-based fault localization (SBFL) [46]. This family com-

prises techniques such as Ochiai [1] and DStar [41], and is often

used by automated program repair tools, such as PraPR [12] and

CapGen [38]. Study by Pearson et al. [31] highlighted that among

the SBFL techniques, DStar achieved the best performance, with the

other four popular SBFL techniques (i.e., Ochiai, Barinel, Tarantula,

499

30th IEEE/ACM International Conference on Program Comprehension

ICPC ’22, May 16–17, 2022, Virtual Event, USA
Ratnadira Widyasari∗ , Gede Artha Azriadi Prana∗ , Stefanus A. Haryono∗ , Yuan Tian† ,

Hafil Noer Zachiary∗ , David Lo∗

and OP) being statistically indistinguishable from it. SBFL tech-

niques process inputs in the form of program spectra, which are

program traces containing details of passing and failing test cases,

along with executed paths’ information (e.g., executed statements).

Following the intuition that a program unit covered by more failed

tests but less passed tests is more likely to be faulty, SBFL applies a

statistical formula to compute a suspiciousness score for each pro-

gram unit based on the input program spectra [45]. The program

units would be ranked from most to least suspicious, which can

then be used by the developers to pinpoint the location of the fault.

Though SBFL techniques are well-researched in literature, they

are not perfect yet [25]. One limitation of existing SBFL techniques

is that they fail to fully capture the local relationship between the

result of each executed test case and the program units involved. For

instance, SBFL techniques, such as DStar [41], would assume that

two failed test cases 𝑡1 and 𝑡2 contribute equally to the suspicious-
ness of one program unit executed in both test cases, regardless of

the different number of program units involved in two test cases.

While in practice, one failed test case may be more valuable than

others as it only touches a few program units. Secondly, the fact

that program units may collaboratively contribute to the result of

each test case in different ways is ignored in many existing SBFL

techniques. To illustrate, consider a test suite that includes 3 test

cases, t1, t2, and t3, where t1 is a failed test case, and t2 and t3

are passing test cases. Test case 𝑡1 executes ten program units but

fails due to the buggy code in two connected program units 𝑝1 and
𝑝2. Meanwhile, consider the passed test cases 𝑡2 and 𝑡3 which run
program units 𝑝1 and 𝑝3 for 𝑡2, and 𝑝2 and 𝑝3 for 𝑡3 respectively.
Test cases 𝑡2 and 𝑡3 passed successfully as they do not contain both
𝑝1 and 𝑝2 in a single test case. This example highlights that 𝑝1 and
𝑝2 collaboratively cause the failure of the test case. Such cases are
not considered by many existing SBFL techniques.

To overcome the aforementioned limitations, we propose the

usage of eXplainable Artificial Intelligence (XAI) techniques to

learn the local relationship between program units and the fail-

ure/pass outcome of each test case. XAI aims to gain insights into

the black-box machine learning models and explain their output,

e.g., explaining how input feature values lead to the predicted label

of a specific data point and identifying important features [4]. Ap-

plications of XAI in software engineering are still minimal, with

only a few studies have explored their potential usage in explaining

defect prediction models [15, 19, 36]. Defect prediction aims to find

the potential buggy files, commits, etc. based on historical data of

prior bugs. Meanwhile, fault localization aims to find the root cause

location (typically buggy statements) of failures based on available

test data. The two lines of work consider different inputs and are

deployed in different phases of software development. Due to these

differences, they are studied as separate lines of work.

XAI can be applied to improve the performance of software

engineering tasks due to several reasons [4]. For example, XAI can

be utilized to provide justification. In this approach, XAI is used

to ensure that Artificial Intelligence based decisions are not made

erroneously. Meanwhile, other than using XAI for an explanation,

XAI can also be used to enhance the predictive performance of the

existing model. For example, previous work by Wattanakriengkrai

et al. [36] utilized XAI to get better predictive performance for defect

prediction. In our study, we do not use XAI for their explanation

capability. Rather, our goal of XAI utilization is to achieve better

results and accuracy for fault localization tasks.

Our intuition in utilizing XAI for fault localization is that XAI

techniques can learn the local importance of program unit(s) to each

test result by modeling the SBFL problem as a classification task,

where each data point is an executed test case, data point’s label

is the result of the test, and input features are the corresponding

program spectra. Such design allows us to learn how program units

collaboratively contribute to each test result addressing the second

limitation of many SBFL methods (i.e., not taking into account that

program units can collaboratively contribute to the failure/pass test

case). For instance, given a model trained to predict test results, and

a failed test case 𝑡1. XAI techniques may assign higher importance
scores to program unit (feature) 𝑝1 and 𝑝2 based on the patterns
captured by the model and their execution status (feature value),

e.g., both program units are executed in test 𝑡1, indicating that 𝑝1
and 𝑝2 collaboratively contribute to the prediction of 𝑡1. In this

design, since each pair of program units and the failed test case

will be assigned a different importance score, the first limitation

of SBFL (i.e., all failed test cases have equal contribution) is also

resolved as not all failed tests are equally important for calculating

the suspiciousness of each program unit.

Our XAI-supported SBFL approach (for faulty statements local-

ization), i.e., XAI4FL, contains three main steps:

(1) We run a machine learning algorithm with the goal of clas-

sifying whether a test case is failed or passed.

(2) We use an XAI technique to identify important statements

score which acts as an important factor in the prediction of

the trained model for each failed test case.

(3) We calculate the suspiciousness score of each candidate state-

ment by combining its importance scores from all failed test

cases. These scores are then used to rank the faulty state-

ments from the most to the least suspicious.

In this study, our goal is to design, implement, and investigate

the effectiveness of XAI4FL for fault localization. Specifically, we

aim to answer the following research questions:

(1) RQ-1: How effective are the variants of XAI4FL? We

seek to investigate the effectiveness of XAI4FL in localizing

fault. We inspect three variants of our XAI4FL to identify

the variant that works the best on localizing fault.

(2) RQ-2: How does XAI4FL improve the fault localization

results compared to a simpler approach in getting the

feature importance?We compare the performance of the

model-agnostic explanation technique (i.e., XAI4FL) with a

simpler approach (i.e., by using Mean Decrease in Impurity

(MDI) for tree-based model [29]) to get feature importance.

We aim to investigate whether our XAI-based method can

provide better results compared to a simpler approach.

(3) RQ-3:Howdoes XAI4FL comparewith traditional SBFL

techniques in terms of effectiveness?We compare XAI4FL

performance against popular SBFL techniques. This compari-

son is aimed to check whether XAI4FL achieves better results

in localizing faults compared to SBFL techniques.

We evaluate XAI4FL to identify faulty statements on the De-

fects4J V1.2.0 dataset [18]. Defects4J contains 395 faulty versions

from six Java projects and has been used widely as a benchmark

500

XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence ICPC ’22, May 16–17, 2022, Virtual Event, USA

for fault localization and automated program repair [31]. We eval-

uate the fault localization performance by measuring the EXAM

score [40], which is popularly used in many previous studies [2, 23,

31, 42]. Motivated by findings of Parnin and Orso study [30] where

the absolute rank (i.e., Top-K score) is more important than the

percentage ranking (i.e., EXAM score), we also calculate the Top-K

scores, which is also used in many previous studies [23, 31]. For

the Top-K scores, the value of K must be set to a specific value. One

of the value that has been used in many previous studies [20, 23]

is k=1 (i.e., Top-1 score). The Top-1 accuracy is crucial as many

works in automated program repair [9, 14, 27] assume perfect fault

localization (i.e., the fault is positioned in the top-1 prediction).

Due to this assumption, automated program repair may not work

well if the fault is not found in the Top-1 result. Our experiment

results show that XAI4FL statistically significantly outperforms

five popular SBFL techniques [42] (i.e., Tarantula [16], Ochiai [1],

OP [28], BARINEL [2], and DStar [41]) in terms of Top-1 accuracy.

In summary, our contributions are as follows:

(1) We propose a new fault localization technique based on the

combination of machine learning and model-agnostic expla-

nation technique. We are the first to promote the usage of

XAI (eXplainable Artificial Intelligence) for fault localization.

(2) We conduct an evaluation of our proposed approach on a

dataset that consists of 395 faults from 6 projects and show

that our approach statistically significantly and substantially

outperforms popular SBFL techniques on Top-1.

(3) We highlight our findings from XAI4FL, which include its

current limitation and challenges that should be addressed

in future work.

The rest of this paper is organized as follows. In Section 2, we

briefly explain SBFL techniques and model-agnostic explanation

techniques. Section 3 provides details of our proposed approach,

while the experiment settings of our study is presented in Section 4.

We show the experiment results and analyze them in Section 5. In

Section 6, we discuss the possible limitations of our approach and

how to mitigate them.We discuss the threats to validity in Section 7.

In Section 8, we summarize the related works. Finally, we conclude

our work and present future directions in Section 9.

2 BACKGROUND

2.1 Spectrum-based Fault Localization
Techniques

Spectrum-based fault localization (SBFL) technique is a popular

and actively researched family of fault localization techniques [42].

SBFL uses a statistical formula to measure the suspiciousness of

each program unit (e.g., statement, function) being the cause of the

investigated fault(s), based on test results and the corresponding

execution traces. An execution trace is a sequence of program units

invoked while executing a test case. Program units are then ranked

based on the calculated suspiciousness score from highest to lowest.

Many SBFL techniques have been proposed [1, 41]. Although

they use distinct formulas to calculate the suspiciousness score

of each program unit, the underlying assumption is the same, i.e.,

the program units executed in more failed test cases and fewer

passed test cases are more likely to be faulty. The five most popular

and well-studied SBFL techniques are Tarantula [16], Ochiai [1],

OP [28], Barinel [2], and DStar [41]. A previous study by Pearson et

al. [31] focused on evaluating the effectiveness of various SBFL tech-

niques. They reported that among the 5 popular SBFL techniques

mentioned earlier, DStar, Tarantula, Barinel, and Ochiai produces

approximately equivalent performance on the Defects4J data.

Using these popular SBFL techniques, we calculate the suspi-

ciousness score of each program unit 𝑠 using the following formula:

𝑂𝑐ℎ𝑖𝑎𝑖 (𝑠) = 𝑛𝑓 (𝑠)√
𝑛𝑓 .(𝑛𝑝 (𝑠)+𝑛𝑓 (𝑠))

𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎(𝑠) =
𝑛𝑓 (𝑠)
𝑛𝑓

𝑛𝑓 (𝑠)
𝑛𝑓

+𝑛𝑝 (𝑠)
𝑛𝑝

𝐷𝑆𝑡𝑎𝑟 (𝑠) = 𝑛𝑓 (𝑠)2
𝑛𝑝 (𝑠)+(𝑛𝑓 −𝑛𝑓 (𝑠)) 𝐵𝑎𝑟𝑖𝑛𝑒𝑙 (𝑠) = 1 − 𝑛𝑝 (𝑠)

𝑛𝑝 (𝑠)+𝑛𝑓 (𝑠)

𝑂P (𝑠) = 𝑛𝑓 (𝑠) − 𝑛𝑝 (𝑠)
𝑛𝑝+1

where 𝑛𝑓 denotes the number of total failing test cases, 𝑛𝑝 denotes

the number of total passing test cases, 𝑛𝑓 (𝑠) denotes the number
of failing test cases that execute program unit s, and 𝑛𝑝 (𝑠) denotes
the number of passing test cases that execute program unit s.

2.2 XAI and Model-Agnostic Explanation
Techniques

XAI is a rising research field of interest, aiming to provide expla-

nations for machine learning models. Recent studies have shown

the importance of having such explanations in maintaining trans-

parency, trust, and fairness in the Machine Learning decision-

making process, as well as in facilitating better model design [11].

XAI techniques can be model-agnostic or model-specific. Model-

agnostic explanation techniques work for any machine learning

model, while model-specific techniques rely on a certain model

structure. Model-agnostic explanation techniques can be local, aim-

ing to understand why a trained model made a certain prediction

on a specific instance, or global, aiming to understand the model’s

behavior as a whole. In this study, we utilize local model-agnostic

explanation techniques to identify the local contribution of each

feature in a given input to its prediction.

Several model-agnostic explanation techniques have been pro-

posed, with the two most popular local model-agnostic are Local

Interpretable Model-Agnostic Explanations (LIME) [32] and SHap-

ley Additive exPlanations (SHAP) [26]. LIME implements a local

surrogate model to explain individual prediction, with the surro-

gate model being an interpretable model trained to approximate the

predictions of the underlying black-box model. LIME main idea is

that explanation may be derived locally from records generated ran-

domly in the neighborhood of the instance that has to be explained.

On the other hand, SHAP is based on coalitional game theory and

measures the feature importance while also considering interaction

within features. There are currently several strategies to compute

SHAP values, such as KernelSHAP, which can produce local ex-

planation from any models, and TreeSHAP which can compute

SHAP values from tree ensemble models such as Random Forest

and Decision Tree, and Gradient Boosted Tree in polynomial-time.

In software engineering, we find that XAI techniques are most

commonly applied to improve the interpretability of a machine-

learning based automation approach. Specifically, XAI is often uti-

lized to improve defect prediction [15, 19, 36]. Different from exist-

ing approaches, our idea is to utilize model-agnostic explanation

501

ICPC ’22, May 16–17, 2022, Virtual Event, USA Ratnadira Widyasari∗ , Gede Artha Azriadi Prana∗ , Stefanus A. Haryono∗ , Yuan Tian† ,
Hafil Noer Zachiary∗ , David Lo∗

techniques to improve the effectiveness of SBFL. The aim of fault

localization is to find the root cause location (e.g., buggy statements)

of failures based on available test data. Meanwhile, defect prediction

aims to find the files, commits, etc. that are prone to a bug, based on

historical data of prior bugs. Defect prediction and fault localization

are studied as separate lines of work as they need different inputs

and are deployed on different phases of software development.

3 PROPOSED APPROACH

Our main idea is to enhance SBFL by incorporating a machine learn-

ing model and model-agnostic explanation technique to provide a

more accurate ranking of a program unit from being a root cause

of a set of failures. Following many previous studies [5, 31, 48], the

granularity of the program unit that we consider in this study is a

statement. As a note, our method can also be applied for method-

level localization by changing the data input. The summarized

workflow of our approach is as follows. Given inputs in the form

of program spectra, we train a classification model that predicts

whether each input is from a passed or failed test case. Then, we

apply model-agnostic explanation techniques to infer the local im-

portance score of each statement to predict whether or not a test

will fail. Finally, we combine the importance scores of the features

from failed test cases to infer the suspiciousness of each statement.

Figure 1 presents an overview of our approach. Details on each

component are provided in the rest of this section.

(Step 1) Obtain program spectra from test cases. In this step,

we take as input a faulty program, and a set of test cases. We use

GZoltar1 to run the test cases and collect their execution traces.

GZoltar outputs two files: (1) a matrix file that contains the execu-

tion traces (i.e., series of program units that are executed by the

passed and failed test cases), and (2) a spectra file that contains a

list of all statements that executed by test cases. Then, we combine

these two outputs (i.e., the matrix and spectra files) for easier pro-

cessing by the classification algorithm. An example of the combined

result between the matrix and spectra files is shown in Figure 1.

Each row in this combined program spectra represents a single

test case. The failed test case is labeled as negative (“–") and the

passed test case is labeled as positive (“+"). Meanwhile, the columns

located in between the id and label columns represent the state-

ments (e.g., column named Node#375, SortOrder#74). The value for

these statements on each row is either 1 or 0, where 1 indicates

a program unit executed by the test case, and 0 otherwise. This

combined program spectra representation is then used as the input

for the training process of the machine learning classifier.

(Step 2) Train the machine learning classifier. Given a pro-

gram spectra (logs of program units executed by a set of failing

and passed test cases), we train a model to approximate a function

to measure the likelihood of whether the execution of a program

unit determines the outcome of the test case. This function is then

used to identify the important program units that are likely to be

responsible for the failing test case. These program units are likely

to be the locations where the faults reside. For this purpose, we

choose Random Forest for our classifier, as it has been reported to

outperform other basic classifiers in many Software Engineering

1http://www.gzoltar.com/

Table 1: Example of program spectra.

id SortOrder#74 SortOrder#75 ... Node#375 Label

0 1 1 ... 0 +

1 0 0 ... 0 +

2 1 1 ... 1 -

tasks [15, 19, 36]. Moreover, we have also tried other classifiers

such as Support Vector Machine, and they perform worse than

Random Forest in our dataset. The machine learning classifier is

then used to determine whether a given input test case is a passed

or failed test case.

(Step 3) Apply model-agnostic explanation technique. We

apply a local model-agnostic explanation technique to identify

which features (statements) are important in each failed test case.

In other words, we want to get the program statements that have

the biggest effect in making the machine learning model predict

a test case as failed. We consider two model-agnostic technique,

which are SHAP and LIME (c.f., Section 2). After an initial test,

we pick SHAP as it provides better performance on our dataset.

Specifically, we use TreeSHAP, an algorithm to compute SHAP

values for tree ensemble models such as Random Forest. Consider

a failed test case 𝑡1, which contains statements 𝑠1 to 𝑠100. Applying
TreeSHAP to this test case, it calculates the importance score of

each statement. Figure 2 shows an example of Top-5 most important

statements for a sample failed test case returned by TreeSHAP. In

this example, 𝑠52 is the most important statement to predict that
the sample test case is failed, as indicated by 𝑠52 having the highest
importance score calculated by TreeSHAP.

(Step 4) Aggregate scores and rank the results. The model-

agnostic explanation technique outputs the importance score of

statements from all the failed test cases. In this step, we combine

these importance scores by considering three variants:

• Mean variant: for each statement, calculate the average of
its importance scores on all failed test cases.

• Max variant: for each statement, calculate the maximum of

its importance scores on all failed test cases.

• Min variant: for each statement, calculate the minimum of

its importance scores on all failed test cases.

Finally, we rank the statements based on the combined scores

from the highest to the lowest score. This ranking can then be

used as the reference for developers in fixing the faults or for the

automated program repair to get the location of the fault.

4 EXPERIMENT SETTINGS

4.1 Dataset

Weevaluate our approach on version 1.2.0 of theDefects4J dataset [18]

that consists of 395 faulty versions of six Java projects (i.e., JFreeChart,

Google Closure compiler, Apache Commons Lang, Apache Com-

mons Math, Mockito, and Joda-Time). We choose Defects4J because

it contains real faults and has been widely used as a benchmark

to measure the performance of fault localization techniques and

automated program repair techniques [21, 31]. We note that sev-

eral other datasets have been used to evaluate fault localization

techniques in previous studies [17, 24, 41]. However, these other

datasets are mostly comprised of artificial faults (e.g., [24] dataset

502

XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence ICPC ’22, May 16–17, 2022, Virtual Event, USA

Project

Execute test
cases and collect

the execution
traces

1 0 +
sta
tem
en
t_1

sta
tem
en
t_N

Labe
l

...

0 1 -

test_0

test_1
test_N

Program Spectra

Build Machine
Learning Model

Machine
Learning
Model

Model-Agnostic
Explanation
Technique

Importance Features ()

Combine feature
scores and rank

statements

Failed test cases

Ranked
Statements

Figure 1: Overview of our approach

Figure 2: Example of TreeSHAP output showing the Top-5

most important statements for the prediction on a sample

failed test case.

Table 2: Statistics of Defects4J v1.2.0

Projects KLOC # Faults # Tests

JFreeChart 96 26 2,205

Google Closure compiler 90 133 7,927

Apache Commons Lang 22 65 2,245

Apache Commons Math 85 106 3,602

Mockito 45 38 2,115

Joda-Time 28 27 4,130

Total 366 395 22,224

consists of only 35 real faults while the other 165 are artificial

faults). Considering that the evaluation of fault localization in arti-

ficial faults may not be a useful predictor for fault localization in

real faults [31], we decide to utilize the real faults in the Defects4J

dataset. Table 2 shows the basic statistics of our evaluation dataset.

4.2 Evaluation Metric and Experimental Setting

We consider two evaluation metrics for measuring the effectiveness

of fault localization techniques, i.e., Top-K score and EXAM score.

These metrics are widely used in literatures [17, 20, 24, 30, 31, 41].

In particular, we focus our evaluation in the Top-1 result of the

fault localization techniques. This is due to the Top-1 prediction

being crucial for automated program repair which often assumes

that the fault is positioned in the Top-1 prediction [9, 14, 27].

Top-K score first counts the number of successfully localized

faulty versions of projects by checking the Top-N ranked results,

and then divides it by the total number of faulty versions. We use

this metric as a previous study by Parnin and Orso [30] found

that absolute ranking is more important than percentage ranking

for fault localization. Their evaluation reveals that if the correct

faulty program unit is not shown in the top-ranked list, developers

would not find the fault localization result useful. In real projects,

such as those in Defects4J, multi-statement faults exist. We treat a

localization of a faulty version (ranking of suspicious statements)

as successful if any faulty statement(s) that need to be repaired

are found in Top-K most suspicious statements. For statements

with the same suspiciousness score, we calculate an average rank

using (𝑛2) + (𝑘 − 1), where 𝑛 is the number of statements that

share the same suspiciousness score and 𝑘 is the best rank of the
statement [31]. As an illustration, consider the statements 𝑠1, 𝑠2,
and 𝑠3 with a suspiciousness score of 1, which is the highest among
all statements. The statements 𝑠1, 𝑠2, 𝑠3 have an average rank of 1.5
(i.e., (32) + (1−1) = 1.5). Other than measuring the Top-1 prediction,
we also measure the Top-5 and Top-10 predictions.

The EXAM score is the percentage of program units that needs

to be checked before we reach the first faulty program unit. The

formula for calculating the EXAM score is as follows:

EXAM Score =
Rank of the first faulty program units

Total number of program units

Lower EXAM score indicates a better performance of the fault

localization technique. The EXAM score ranges from 0 to 1 inclusive.

As mentioned in Section 3, we pick Random Forest [7] as the

machine learning algorithm and SHAP [26] as the model-agnostic

explanation technique. To train the machine learning classifier, we

first split the input data into train and test sets. Specifically, we

perform stratified sampling strategy [3] to randomly pick 80% input

program spectra as the train set and the remaining 20% as the test

set, while making sure that the train and test dataset contain the

same ratio of failed test cases. We believe that such balanced data

would help to train a model that can better generalize into the

whole dataset. We use this combination as it performs the best in

our experiment.

For each fault, we built a single machine learningmodel using the

corresponding program spectra (i.e., sequences of statements that

were executed by the test cases) as inputs. As we consider 395 faults

in our evaluation, there are 395 separate models. The average from

the precision, accuracy, and F1 for the models test results are 71%,

96%, and 73% respectively. As a baseline, we utilize five popular

SBFL techniques, namely DStar, Barinel, Ochiai, Tarantula, and

OP. To collect the program spectra and implement these baselines

techniques, we use the code provided by Pearson et al. [31]. The

code of our implementation is publicly available.

4.3 Research Questions

4.3.1 RQ-1. : How effective are the variants of XAI4FL?

503

ICPC ’22, May 16–17, 2022, Virtual Event, USA

Ratnadira Widyasari∗ , Gede Artha Azriadi Prana∗ , Stefanus A. Haryono∗ , Yuan Tian† ,
Hafil Noer Zachiary∗ , David Lo∗

In RQ-1, we inspect the three variants of XAI4FL: mean, max,

min (see Section 3). These three variants are based on the approach

on howwe aggregate the results from the feature importance scores

produced by the model-agnostic technique. We run the three vari-

ants of XAI4FL usingDefects4J data. To evaluate their performances,

we use EXAM and Top-K score metrics. After retrieving these per-

formance metrics, we utilize Wilcoxon rank-sum test [39] following

previous work by Le et al. [23]. Wilcoxon rank-sum test is used to

identify whether the differences in performance between the three

variants are statistically significant. We use 5% significance level,

meaning that if the p-value is lower than 0.05, we can reject the

null hypothesis and conclude that there is a statistically significant

difference between the variants. This statistical test is applied for

both Top-k and EXAM score metrics for each variant of XAI4FL.

Furthermore, we also compute Cliff’s d effect size [10], following

the work by Le et al. [10]. Cliff’s d effect size is commonly used to

measure how substantially different the two techniques are. Using

this, we measure whether the differences between the three XAI4FL

variants are substantial. To interpret the effect size, we use the

following interpretation: negligible if d < 0.147; small if 0.147 ≤ d

< 0.33, medium if 0.33 ≤ d < 0.474, and large if d>=0.474 [13].

4.3.2 RQ-2. : How does XAI4FL improve the fault localization

results compared to a simpler approach in getting the feature im-

portance?

For the second research question, our goal is to confirm whether

our proposed XAI4FL performs better than a simpler approach to

get feature importance. In RQ-1, we use the model-agnostic expla-

nation technique, specifically SHAP, to get the feature importance

score. Meanwhile, in our RQ-2 investigation, we use a simpler ap-

proach to get feature importance. For this purpose, we utilize the

already built nodes from the tree-based model. To get the feature

importance score, we add up the weighted impurity decreases for

all nodes and average them over all trees. This method to get the

feature importance is called Mean Decrease in Impurity (MDI) [29].

After we get the feature importance score using the MDI method,

we rank the statements based on the score from highest to lowest.

The feature importance score produced using this method is not

based on the individual test case. Rather, it is based on the whole

machine learning model. In other words, we only get one score for

every feature/statement. Thus, we do not need to aggregate the

feature importance score like in XAI4FL. Then, we compare the

results from XAI4FL with the MDI method.

To compare the two approaches, we use EXAM and Top-K score

as the performance metrics. To ensure a fair comparison, we use the

same random forest models that are used for the model-agnostic

technique in XAI4FL (RQ-1). Then, we determine whether the dif-

ferences between the two techniques are significant by using the

Wilcoxon test [39] and whether the differences are substantial by

calculating Cliff’s d effect size [10]. The Wilcoxon test and Cliff’s d

effect size interpretation that we use for this RQ-2 is the same as

the one that we use for RQ-1 (c.f. Section 4.3.1).

4.3.3 RQ-3. : How does XAI4FL compare with traditional SBFL

techniques in terms of effectiveness?

In RQ-3 we investigate how XAI4FL performs compared to the

SBFL techniques. We consider five popular SBFL techniques for

this comparison, which are DStar, Barinel, Ochiai, Tarantula, and

OP. These five techniques are well studied and commonly used in

prior studies on SBFL [31, 37, 47]. In particular, a study by Pearson

et al. [31] highlighted that DStar performs the best with the other

four techniques having comparable performance. We run these

five SBFL techniques using the same Defects4J dataset that we use

in prior RQs. We also utilize two performance metrics, which are

EXAM and Top-K score. After obtaining the performance metrics

from the SBFL techniques, we then compare their results with

XAI4FL. We use the same statistical test and effect size test as RQ-1.

Table 3: Top-K scores of XAI4FL techniques.

Technique Top-1 Top-5 Top-10

XAI4FL (Max variant) 13.5% (53) 31% (124) 42% (166)

XAI4FL (Mean variant) 13% (50) 32% (126) 42% (166)

XAI4FL (Min variant) 13% (51) 31% (123) 41% (163)

Table 4: EXAM scores of XAI4FL, MDI, and SBFL techniques.

Results in bold shows the best performance.

Technique EXAM Score

XAI4FL (Max variant) 0.031873

XAI4FL (Mean variant) 0.031995

XAI4FL (Min variant) 0.032205

MDI 0.073372

DStar SBFL 0.036680

Barinel SBFL 0.037718

Ochiai SBFL 0.036815

Tarantula SBFL 0.037718

OP SBFL 0.044025

5 EVALUATION RESULTS

5.1 RQ-1 How effective are the variants of
XAI4FL?

We evaluate the three variants of our approach by utilizing three fea-

ture importance scores aggregation methods: Max, Min, and Mean

variant. Table 3 and Table 4 show the Top-K (i.e., Top-1, 5, and 10)

scores and EXAM scores of the three variants, respectively. Overall,

the Max variant achieves the best performance when considering

the Top-1, Top-10, and EXAM score. The difference in the number

of faults localized at Top-K within three aggregation methods span

from 0 to 3. The highest number of real faults (from 395 faults in

Defects4J) that can be localized at Top-1 is 53 (Max variant).

We pair variants of XAI4FL against each other (e.g., mean vs.

max, mean vs. min, and max vs. min). Then we run statistical test

for each pair to get whether the differences between them are

statistically significant. Based on the statistical test, we find that

the differences between the EXAM score of those three variants are

not statistically significant for all the pairs, as shown by the p-value

of statistical test results that are higher than 0.05. The effect sizes

are also negligible which are indicated by the effect size that is less

than 0.147. For the Top-K results, there are also no statistical and

substantial differences between the variants.

All of the 50 faults that are localized in the Top-1 by the mean

variant variant are also localized in the Top-1 for the max variant

504

XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence ICPC ’22, May 16–17, 2022, Virtual Event, USA

and min variant variants. Meanwhile, the improvement of Top-1

in max variant and min variant variants from the mean variant do

not overlap. There are three additional faults (i.e., total of 53 faults)

that are localized in Top-1 by the max variant variant. Meanwhile,

for the min variant variant, there is one additional fault (i.e., total

of 51 faults) that is localized in the Top-1.

The EXAM score and the Top-1 results from the mean variant

have lower performance than the max variant. This may happen

because, in the mean variant, the contribution of each test case

will be equal as they are averaged. Meanwhile, in the max variant,

the results will depend on the test cases that have higher feature

importance scores. For the remainder of the RQs (RQ-2 and RQ-

3), we use the max variant of XAI4FL variant, which is the best

performing XAI4FL, for our comparisons.

RQ-1 Findings: The XAI4FL variant that produces the

best results to localize faulty statement is max variant. It

achieves the best Top-1, Top-10, and EXAM score. However,

the differences are not statistically significant with the

other two variants (i.e., the mean variant and min variant).

5.2 RQ-2 How does XAI4FL improve the fault
localization results compared to a simpler
approach in getting the feature importance?

In this RQ-2 we compare XAI4FL with a simpler approach to get

the feature importance score. The simpler approach that we choose

for this task is the MDI (Mean Decrease in Impurity) method [29]

that is obtained from the Random Forest machine learning model.

The Top-K results from this method are shown in the second row

of Table 5 (i.e., row “MDI"). For all the K values (i.e., 1, 5, and 10),

MDI gives lower performance results compared to the XAI4FL

techniques. The number of faults that are localized in Top-1 is 43,

while in XAI4FL, the number of localized faults for Top-1 is 53

(23.26% improvements). For the Top-5 and Top-10, MDI localizes

113 and 148 faults respectively, compared to the XAI4FL that can

localize 124 and 166 faults for Top-5 (9.73% improvements) and Top-

10 (12.6% improvements) respectively. The improvement in Top-K

by using XAI4FL compared to the MDI to get feature importance

ranges from 9 to 18 faults, with the biggest improvement shown in

Top-10 (18 fault improvements in max variant XAI4FL).

Table 5: Top-K scores of XAI4FL and MDI techniques.

Technique Top-1 Top-5 Top-10

XAI4FL (Max variant) 13.5% (53) 31% (124) 42% (166)

MDI 11% (43) 29% (113) 37.5% (148)

The results of statistical test and effect size test between XAI4FL

and MDI approach can be found in Table 6. Based on the statistical

test, we observe that the differences between XAI4FL and MDI are

statistically significant. It shows that XAI4FL statistically signif-

icantly outperforms the performance of the simple approach on

Top-1, Top-5, and Top-10.

Figure 3 represents the faults that are successfully localized in

Top-1 by XAI4FL and by the simpler approach (i.e., MDI, the feature

Table 6: Cliff’s d effect sized and Wilcoxon test results:

XAI4FL VS. MDI (simpler approach than model-agnostic

technique to get feature importance). "*" indicates that

the differences between the distribution of Top-K scores

is statistically significant (at significance level of 5%).

"(Neglible(N)/Small(S)/Medium(M))" denotes the categoriza-

tion of effect size.

MDI
Technique

Top-1 Top-5 Top-10

XAI4FL (Max variant) 0.16* (S) 0.10* (N) 0.09* (N)

importance score for tree model). From the 43 faults that are local-

ized in Top-1 by the MDI approach, 27 (63%) of them are already

localized in Top-1 by XAI4FL. Analyzing the other 16 faults that are

localized in Top-1 using MDI but not on Top-1 in XAI4FL, we find

that 69% of them are localized in the Top-5 by XAI4FL. Moreover,

we also observe that there are 26 faults that are localized in Top-1

by XAI4FL but not by MDI.

Figure 3: Venn diagram of Top-1 results for XAI4FL vs. sim-

pler approach to get feature importance (MDI)

The EXAM score result for the MDI approach is shown in Table 4.

Comparing the results of the XAI4FL and MDI approach, XAI4FL

has a lower EXAM score which indicates a better performance.

The best value of EXAM score from XAI4FL is 0.0319, while the

MDI only achieves a score of 0.0734 which is more than twice

the EXAM score value of XAI4FL. The p-value from the statistical

test comparing the EXAM score of the XAI4FL max variant with

MDI is lower than 0.05 (p-value = 0.015) which highlights that the

differences between XAI4FL and MDI are statistically significant.

The overall results show that XAI4FL outperforms MDI. One

possibility of the lower performance of the MDI is due to the feature

importance scores of the simpler model are dependant on the model.

This results in the feature importance scores being based on the

whole training data rather than based on only the failed test cases.

This is different than in XAI4FLwhere the feature importance scores

are based on the test cases that are failed (i.e., specific per instance).

These results highlight that simpler models which are derived from

the machine learning model are not specific enough to explain the

individual failed instances. Another reason why the MDI method

gives lower performance is because of the limitation ofMDI itself, as

it is biased toward correlated features [35]. In the event of correlated

features, it might choose one feature while ignoring the relevance

of the other, which can lead to wrong conclusions.

505

ICPC ’22, May 16–17, 2022, Virtual Event, USA

Ratnadira Widyasari∗ , Gede Artha Azriadi Prana∗ , Stefanus A. Haryono∗ , Yuan Tian† ,
Hafil Noer Zachiary∗ , David Lo∗

RQ-2 Findings: XAI4FL statistically significantly outper-

form MDI method (i.e., simpler approach to get feature

importance in tree-based model) in both Top-K and EXAM

scores. The lower results of MDI method may be due to

the feature importance scores in MDI which represent the

whole model rather than only the failed instances.

5.3 RQ-3 How does XAI4FL compare with
traditional SBFL techniques in terms of
effectiveness?

We compare XAI4FL with five well-known SBFL techniques: DStar,

Barinel, Ochiai, Tarantula, and OP. Table 7 shows the performance

comparison in terms of Top-K score between the SBFL techniques

and XAI4FL. We can observe that the number of real faults local-

ized at Top-1 by XAI4FL is approximately twice the number of

localized faults by the SBFL techniques. The number of faults that

are localized in Top-1 using SBFL techniques ranges from 24 to 27,

while the number of faults localized by XAI4FL ranges from 50 to

53. This highlights that XAI4FL can provide 23 to 29 localized fault

improvements in the Top-1. We believe that such improvement at

the Top-1 score is important as many existing automated program

repair approaches assume perfect fault localization, where the fault

can be localized at Top-1 [9, 14, 27].

Table 7: Top-K scores of XAI4FL and SBFL techniques.

Technique Top-1 Top-5 Top-10

XAI4FL (Max variant) 13.5% (53) 31% (124) 42% (166)

DStar SBFL 7% (27) 32% (127) 42% (166)

Barinel SBFL 6% (24) 31% (123) 42% (166)

Ochiai SBFL 7% (27) 32% (128) 42% (168)

Tarantula SBFL 6% (24) 31% (123) 42% (166)

OP SBFL 7% (26) 30% (119) 40% (157)

Table 8: Cliff’s d effect sized and Wilcoxon rank-sum test

results: XAI4FL VS. DStar (a traditional SBFL Approach).

DStar
Technique

Top-1 Top-5 Top-10

XAI4FL (Max variant) 0.39* (M) 0.02 (N) 0.006 (N)

We also conduct statistical test for the SBFL technique to compare

the result with XAI4FL. Specifically, we compare XAI4FL against

the SBFL technique that achieves the best Top-1 and EXAM score,

DStar. The results of the Wilcoxon rank-sum test and Cliff’s d effect

size are shown in Table 8.We find that XAI4FL outperforms DStar at

Top-1 with a statistically significant difference. Moreover, the effect

sizes indicate that the differences between the Top-1 scores of DStar

and XAI4FL are substantial (i.e., medium effect size). The results

of our approach at Top-5 and Top-10 are on par with the results

from DStar, with no statistically significant difference. The results

for DStar are also inline with four other popular SBFL technique

where XAI4FL statistically and substantially improve the results in

Top-1 and achieve comparable results in Top-5 and Top-10.

Figure 4 represent the faults that are localized in top-1 for XAI4FL

and DStar. We choose DStar as a representative as it achieves the

best result among the SBFL techniques. Based on the diagram, we

observe that the majority of faults that are localized in the Top-

1 of DStar are also localized by XAI4FL. From 27 faults that are

successfully localized in Top-1 by DStar, there are 16 faults (60%)

that are localized in Top-1 by XAI4FL. Meanwhile, for the other 11

faults that are localized on Top-1 only by DStar, 10 out of the 11

faults are localized within Top-5 predictions by XAI4FL (another

1 fault is localized in Top-9). This finding indicates that for cases

that are perfectly localized in DStar, XAI4FL can also provide good

results. On the contrary, 19% of the faults that are localized in Top-1

by XAI4FL but not by DStar are localized by DStar with a rank

higher than 5. This indicates that there are cases where XAI4FL

can localize but DStar cannot. Moreover, in the 37 faults localized

in Top-1 by XAI4FL but are not localized in Top-1 by DStar, there

are many features that share the same high suspiciousness score

in DStar, resulting in average the ranking of the statements that

share suspiciousness score (e.g., ranked in 1.667). This makes the

localization in Top-1 not possible in some of DStar cases.

Figure 4: Venn diagram of Top-1 results for XAI4FL vs. DStar

Table 9 shows the detailed Top-K scores achieved by our ap-

proach and DStar on each project. For most projects (4 out of 6),

we observe big improvements in terms of Top-1 score in our ap-

proach compared to DStar to our approach, i.e., the number of faults

that are localized at Top-1 using our model is more than twice the

number of that localized by DStar. For project Lang and Time, the

number of successfully localized faulty versions at Top-1 increases

4 to 5 times when using our approach compared to DStar.

Table 9: Top-K results for detailed project of XAI4FL (max

variant) and DSTAR (a traditional SBFL approach). Results

in bold is the best for each project.

Project Technique Top-1 Top-5 Top-10

Chart
XAI4FL 7.7% (2) 38.5% (10) 53.8% (14)

DStar 3.8% (1) 26.9% (7) 50.0% (13)

Closure
XAI4FL 6.0% (8) 15.0% (20) 24.1% (32)

DStar 5.3% (7) 18.0% (24) 25.6% (34)

Lang
XAI4FL 18.5% (12) 44.6% (29) 58.5% (38)

DStar 3.1% (2) 46.2% (30) 61.5% (40)

Math
XAI4FL 18.9% (20) 39.6% (42) 48.1% (51)

DStar 10.4% (11) 34.9% (37) 45.3% (48)

Mockito
XAI4FL 13.2% (5) 28.9% (11) 42.1% (16)

DStar 13.2% (5) 39.5% (15) 42.1% (16)

Time
XAI4FL 22.2% (6) 44.4% (12) 55.6% (15)

DStar 3.7% (1) 51.9% (14) 55.6% (15)

Upon further analysis, we find that projects Lang and Math (i.e.,

projects that have the biggest number of faults localized in Top-1

using XAI4FL) have the lowest number of average failed test cases,

506

XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence ICPC ’22, May 16–17, 2022, Virtual Event, USA

which are 1.9 and 1.6 respectively. Meanwhile, Lang and Math

projects also have the lowest average number of a passed test case.

The ratio between the failed test cases and the number of test cases

for these two projects is also the highest compared to other projects.

These number of failed and passed test cases, and the ratio between

the failed and number of test cases, may be one of the reasons on

why projects Lang and Math achieve good results using XAI4FL.

As the ratio of failed test cases and passed test cases on these two

projects are higher than the others (i.e., there are fewer differences

in the number of failed and passed test cases), the data for these

projects are more balanced, resulting in better performance.

Meanwhile, Closure project has the lowest performance com-

pared to the other projects. We observe that this project has the

highest number of features (i.e., the number of statements that are

executed by test cases). Closure project has an average number of

features of 16,538, compared to other projects which number of fea-

tures range from 850 to 5,150. Having many features will increase

the dimension of search space for the problem. This may cause the

model to suffer from Curse of Dimensionality [8] and overfitting

problem. We discuss how we can mitigate this problem in Section 6.

Table 4 shows the performance of our approach and SBFL tech-

niques in terms of EXAM score. The best result between the SBFL

techniques is achieved by DStar, while OP gives the lowest perfor-

mance. We observe that all the three variants of XAI4FL achieve a

slightly lower EXAM score than all the SBFL techniques, indicating

better performance. However, the differences are not significant.

RQ-3 Findings: XAI4FL gives better results in both Top-1

and EXAM scores compared to the traditional SBFL tech-

niques. The improvements for the Top-1 results are statis-

tically significant and substantial. Analyzing the improve-

ments in specific projects, we observe that XAI4FL can

localize two to five times the number of faults in Top-1

compared to using traditional SBFL techniques.

6 DISCUSSION

In this section, we discuss the limitation of our approach and how

they can potentially be addressed in the future.

Failed test cases may have different contributions. RQ-2 and

RQ-1 results imply that not all failed instances contribute equally.

As an example, consider the mean variant of XAI4FL (RQ-1) results

where all the feature importance scores are divided equally. This

mean variant shows lower performance results compared to the

max variant of XAI4FL which only takes the maximum feature

importance score. Furthermore, consider the results of the simpler

approach to get a feature importance score (RQ-2) where the scores

are not based on individual failed test cases. We observe that the

scores on this simpler approach give a statistically significantly

lower performance than using XAI4FL which scores are based on

the individual failed test case instances. These observations high-

light that some failed instances may have a bigger contribution,

and thus, should be prioritized in fault localization. This finding

provides one direction for future work, which is to update exist-

ing tool to provide developers with ways to determine the failed

test cases that should be considered more important. One possible

approach is to allow developers to input the weights of failed test

cases, where the more important test cases have a bigger weight.

Using this approach, developers can specify which part of the test

suite they want to focus on. With this additional input, the fault

localization tool may provide a more accurate prediction that is

more directed towards the failed test cases that are prioritized.

Excessive number of features may reduce performance. Too

many features (in our case: number of lines of code) can make the

model perform badly. As an example, consider the performance of

XAI4FL in Closure project (c.f. row 3 of Table 9). Compared to the

results on other projects, Closure project results are comparatively

low, especially on Top-5, Top-10, and EXAM scores. Upon further

analysis, we find that the number of statements/feature in Closure

project are much higher compared to the other projects. Closure

project has 16,538 features, while other projects have a number of

features that range from 850 to 5,150. This indicates that the bigger

number of features may lower the performance of fault localization.

One possible solution to address this problem is to utilize the results

of SBFL in combination with XAI4FL. By applying SBFL first, we

can retrieve the Top-K (e.g., K=200) predictions, which are then

used as the features for XAI4FL. This is based on the intuition that

by reducing the number of features, we would make the feature

denser, which will enable better predictions from the model. As

an illustration, we try to initialize XAI4FL using only the 200 top

statements produced by SBFL. We run this experiment using the

faults of Closure project that is successfully localized in Top-200

by SBFL (i.e., 91 faults). The result of this experiment is shown

in Table 10. We observe that the combination of XAI4FL and the

SBFL technique achieves better performance compared to using

only XAI4FL. This combination is one possibility for future work.

Table 10: Top-K and EXAM scores for 91 faults from Closure

project of XAI4FL max variant and XAI4FL + DStar. Results

in bold is the best for each category.

Technique Top-1 Top-5 Top-10 EXAM score

XAI4FL (Max variant) 6.0% (8) 15.0% (20) 24.1% (32) 0.01135

XAI4FL + DStar 9% (12) 20.3% (27) 28.6% (38) 0.00154

7 THREATS TO VALIDITY

Internal validity. A source of threat to internal validity is the cor-

rectness of the implementation of our approach. We have checked

our implementation to ensure its correctness, and we utilize scikit-

learn2, one of the most popular machine learning libraries to build

the classifier. For the implementation of the model-agnostic expla-

nation technique, we utilize the SHAP library that has been used in

3,501 projects in GitHub and has 14.5k stars. We also open-source

our code so other researchers can validate our findings. Thus, we

believe that the threat is minimal.

External validity. A source of threat to external validity is the

generalizability of our approach. We implement our XAI4FL ap-

proach and compare its performance with other SBFL techniques.

For this comparison, we utilize version 1.2.0 of Defects4J dataset [18],

a dataset of real faults collected from six Java projects. It is possible

that we may find differing results in other settings (e.g., different

dataset, different programming language, etc.). However, as the

2https://scikit-learn.org/stable/

507

ICPC ’22, May 16–17, 2022, Virtual Event, USA

Ratnadira Widyasari∗ , Gede Artha Azriadi Prana∗ , Stefanus A. Haryono∗ , Yuan Tian† ,
Hafil Noer Zachiary∗ , David Lo∗

Defects4J dataset that we use has been commonly used to bench-

mark the performance of fault localization techniques in many prior

studies [21, 31], we believe that this threat is minimal.

Construct validity.A source of threat to construct validity is the

metrics that we use for our evaluation.We evaluate and compare the

performance of our XAI4FL against other SBFL techniques by using

Top-K [23, 31] and EXAM score [17, 24, 31, 41] metrics. Specifically,

we focus our evaluation on the Top-1 metric. Many automated

program repair tools assume perfect fault localization [9, 14, 27],

which makes it crucial for fault localization to identify the fault in

the Top-1 result. There may be other metrics that are also suitable

for this performance comparison. Nevertheless, as both the Top-K

and EXAM scores are often used in many previous studies [17, 23,

24, 31, 41], there is minimal threat to this potential issue.

8 RELATEDWORK

Besides the SBFL techniques [41] introduced in Section 2, more

works on fault localization have been proposed [6, 22, 33, 34, 49].

Work by Roychowdhury and Khurshid [33] modeled fault localiza-

tion task as a feature selection. Le et al. [23] extended the previous

work by adding constraints on feature selection rather than directly

using the scores computed by a feature selection. Another work

by Le et al. [6] attempted to reduce the debugging effort for the

developer by proposing fault localization techniques that utilize

learning-to-rank strategy (i.e., inferred variant) which is used to

rank faulty method based on the likelihood whether it is a root

cause to a failure. Sohn et al. [34] extended SBFL by having more in-

put called code and change metrics such as size, age, and code churn.

They combined the suspiciousness score from SBFL formula and the

code and change metrics as a feature for the machine learning algo-

rithm. Zhang et al. [49] enhanced the SBFL techniques by utilizing

the PageRank algorithm to recalculate the spectra information by

taking into account the contributions of different tests. Using this

approach, they can run the traditional SBFL techniques using the up-

dated spectra information. Meanwhile, Laghari et al. [22] extended

SBFL by leveraging the hit spectrum with frequent item mining.

In our study, we utilize eXplainable Artificial Intelligence (XAI)

for statement-level fault localization by implementing XAI4FL. We

compare our XAI4FL with popular SBFL techniques that are com-

monly used in recent previous studies [31, 37, 47], which are DStar,

Barinel, Ochiai, Tarantula, and OP.

As for the usage of model-agnostic approach in software engi-

neering tasks, there have been several papers [15, 19, 36] that inves-

tigate the usage of model-agnostic for defects prediction. Different

from fault localization which is used to find the location of program

units that cause a failure based on test data, defect prediction is

used to find potential buggy program units based on historical data.

They are also deployed in different phases of software development.

Defect prediction is used to predict whether a defect may appear

in the future. Meanwhile, SBFL is used to locate faults based on

the results of test cases (i.e., failed and passed test cases). Work by

Jiarpakdee et al. [15] focused on an empirical study by evaluating

model-agnostic explanation technique in defect prediction task.

They utilized 65 software metrics (e.g., number of lines added, code

changes, number of owner, etc.) as the inputs of their defect predic-

tion model. Meanwhile, Khanan et al. [19], built a defect prediction

framework that uses model agnostic explanation technique to give

feedback for the developers. The model-agnostic explanation tech-

nique is based on the empirical study by Jiarpakdee et al. [15]. This

tool is already integrated with Github CI/CD pipeline to make it

easier for developers to use the tool. Wattanakriengkrai et al. [36],

proposed defect prediction in line-level by utilizing model-agnostic

explanation technique. Unlike other previous studies [15, 19] that

used model-agnostic explanation technique to justify the results of

defect prediction to the developer, they leverage model-agnostic to

get better performance and more-fine grained results. This study

is one of the examples of the utilization of the XAI technique to

improve the prediction of the model. To the best of our knowledge,

there has been no study which utilizes model-agnostic explanation

technique for fault localization.

9 CONCLUSION AND FUTURE DIRECTIONS

The research on eXplainable Artificial Intelligence (XAI) has been

gaining interest recently, mainly to improve the transparency and

actionable of AI solutions. In this paper, we explore another usage

of XAI for enhancing the effectiveness of spectrum-based fault

localization (SBFL) by proposing XAI4FL, the first XAI-supported

SBFL approach. XAI4FL models SBFL as a classification task, in

which program spectra of each test case are used to predict the

failure/pass of the test case. XAI4FL applies XAI to learn the local

importance of each program unit to each test result.

We build three variants of XAI4FL based on how we aggregate

the feature importance scores for each failed test case. The results

show that max case shows the best performance while the dif-

ferences are statistically insignificant compared to the two other

variants (i.e.,min case andmean case). We compare the XAI4FL with

the simpler approach to get feature importance in the tree-based

model (i.e., MDI). The XAI4FL results statistically significantly out-

perform the results from MDI approach. We also compare XAI4FL

with five popular traditional SBFL approaches (i.e., DStar, Taran-

tula, Barinel, OP, and Ochiai) on the Defects4J dataset. Our results

show that the number of real faults successfully localized at Top-1

using XAI4FL is more than twice that is localized by DStar for most

projects (four out of six). As the previous studies [9, 14, 27] in auto-

mated program repair assumes perfect fault localization (i.e., fault

localized in Top-1). This shows that improvements for the Top-1

results are deemed as needed and important.

For future work, we plan to improve XAI4FL by exploring other

XAI techniques and designing a new XAI model for FL while con-

sidering the program spectra characteristics. We also plan to extend

our evaluation by considering more baselines and projects con-

taining real faults. Our replication package is available at https:

//github.com/soarsmu/XAI4FL.

Acknowledgement. This research / project is supported by the

National Research Foundation, Singapore, under its Industry Align-

ment Fund – Pre-positioning (IAF-PP) Funding Initiative. Any opin-

ions, findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not reflect the views

of National Research Foundation, Singapore.

We also acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC), with funding

reference number: RGPIN-2019-05071.

508

XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coefficients for software fault localization. In 2006 12th Pacific Rim
International Symposium on Dependable Computing (PRDC’06). IEEE. https:
//doi.org/10.1109/PRDC.2006.18

[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2009. Spectrum-based
multiple fault localization. In 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering. IEEE. https://doi.org/10.1109/ASE.2009.25

[3] Anita S Acharya, Anupam Prakash, Pikee Saxena, and Aruna Nigam. 2013. Sam-
pling: Why and how of it. Indian Journal of Medical Specialties 4, 2 (2013),
330–333.

[4] Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box:
A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018).
https://doi.org/10.1109/ACCESS.2018.2870052

[5] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. 2011. Fault localization
for dynamic web applications. IEEE Transactions on Software Engineering 38, 2
(2011).

[6] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. 177–188.
https://doi.org/10.1145/2931037.2931049

[7] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001).
[8] Vincent Charles, Juan Aparicio, and Joe Zhu. 2019. The curse of dimensionality of

decision-making units: A simple approach to increase the discriminatory power
of data envelopment analysis. European Journal of Operational Research 279, 3
(2019), 929–940.

[9] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

[10] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological bulletin 114, 3 (1993).

[11] Arun Das and Paul Rad. 2020. Opportunities and challenges in explainable
artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371 (2020).

[12] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-
pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. https://doi.org/10.1145/3293882.
3330559

[13] Melinda RHess and JeffreyDKromrey. 2004. Robust confidence intervals for effect
sizes: A comparative study of Cohen’sd and Cliff’s delta under non-normality
and heterogeneous variances. In annual meeting of the AERA. Citeseer.

[14] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE.

[15] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Hoa Khanh Dam, and John
Grundy. 2020. An empirical study of model-agnostic techniques for defect pre-
diction models. IEEE Transactions on Software Engineering (2020).

[16] James A Jones, Mary Jean Harrold, and John T Stasko. 2001. Visualization for fault
localization. In in Proceedings of ICSE 2001 Workshop on Software Visualization.
Citeseer.

[17] Xiaolin Ju, Shujuan Jiang, Xiang Chen, Xingya Wang, Yanmei Zhang, and Heling
Cao. 2014. HSFal: Effective fault localization using hybrid spectrum of full
slices and execution slices. Journal of Systems and Software 90 (2014). https:
//doi.org/10.1016/j.jss.2013.11.1109

[18] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database
of existing faults to enable controlled testing studies for Java programs. In Pro-
ceedings of the 2014 International Symposium on Software Testing and Analysis.
https://doi.org/10.1145/2610384.2628055

[19] Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Ji-
rayus Jiarpakdee, Chakkrit Tantithamthavorn, Morakot Choetkiertikul, Chaiyong
Ragkhitwetsagul, and Thanwadee Sunetnanta. 2020. JITBot: an explainable just-
in-time defect prediction bot. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering.

[20] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis. https://doi.org/10.1145/
2931037.2931051

[21] Yiğit Küçük, Tim AD Henderson, and Andy Podgurski. 2019. The impact of rare
failures on statistical fault localization: the case of the defects4j suite. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE.

[22] Gulsher Laghari and Serge Demeyer. 2018. On the use of sequence mining
within spectrum based fault localisation. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing. 1916–1924. https://doi.org/10.1145/3167132.
3167337

[23] Tien-Duy B Le, David Lo, and Ming Li. 2015. Constrained feature selection for
localizing faults. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE.

[24] Tien-Duy B. Le, David Lo, and Ferdian Thung. 2015. Should I Follow This Fault
Localization Tool’s Output? Empirical Software Engineering 20, 5 (Oct. 2015).
https://doi.org/10.1007/s10664-014-9349-1

[25] Lucia, David Lo, and Xin Xia. 2014. Fusion fault localizers. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering.
https://doi.org/10.1145/2642937.2642983

[26] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting
model predictions. In Proceedings of the 31st international conference on neural
information processing systems.

[27] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
ISSTA.

[28] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-
ology (TOSEM) 20, 3 (2011).

[29] Stefano Nembrini, Inke R König, and Marvin N Wright. 2018.
The revival of the Gini importance? Bioinformatics 34, 21
(05 2018), 3711–3718. https://doi.org/10.1093/bioinformatics/
bty373 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/34/21/3711/26146978/bty373.pdf

[30] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 international symposium
on software testing and analysis.

[31] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and B.
Keller. 2017. Evaluating and Improving Fault Localization. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE).

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
https://doi.org/10.1145/2939672.2939778

[33] Shounak Roychowdhury and Sarfraz Khurshid. 2011. Software fault localization
using feature selection. In Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering.

[34] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273–283.

[35] Laura Toloşi and Thomas Lengauer. 2011. Classification with corre-
lated features: unreliability of feature ranking and solutions. Bioin-
formatics 27, 14 (05 2011), 1986–1994. https://doi.org/10.1093/
bioinformatics/btr300 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/27/14/1986/18530216/btr300.pdf

[36] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tan-
tithamthavorn, Hideaki Hata, and Kenichi Matsumoto. 2021. Predicting defective
lines using a model-agnostic technique. 2021 IEEE/ACM International Conference
on Software Engineering (ICSE) (2021).

[37] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2021. Historical Spectrum Based Fault Localization. IEEE
Transactions on Software Engineering (TSE) 47, 11 (2021), 2348–2368. https:
//doi.org/10.1109/TSE.2019.2948158

[38] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In 2018
IEEE/ACM 40th ICSE. IEEE.

[39] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer.

[40] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. 2008. A crosstab-based statistical
method for effective fault localization. In 2008 1st international conference on
software testing, verification, and validation. IEEE, 42–51.

[41] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method
for effective software fault localization. IEEE Transactions on Reliability 63, 1
(2013).

[42] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
(TSE) 42, 8 (2016).

[43] Craig S Wright and Tanveer A Zia. 2011. A quantitative analysis into the eco-
nomics of correcting software bugs. In Computational Intelligence in Security for
Information Systems. Springer.

[44] Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. 2016. “automated debugging
considered harmful” considered harmful: A user study revisiting the usefulness
of spectra-based fault localization techniques with professionals using real bugs
from large systems. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE.

[45] Yan Xiaobo, Liu Bin, and Wang Shihai. 2021. A Test Restoration Method based
on Genetic Algorithm for effective fault localization in multiple-fault programs.
Journal of Systems and Software 172 (2021), 110861. https://doi.org/10.1016/j.jss.
2020.110861

[46] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
theoretical analysis of the risk evaluation formulas for spectrum-based fault

509

ICPC ’22, May 16–17, 2022, Virtual Event, USA

Ratnadira Widyasari∗ , Gede Artha Azriadi Prana∗ , Stefanus A. Haryono∗ , Yuan Tian† ,
Hafil Noer Zachiary∗ , David Lo∗

localization. ACM Transactions on software engineering and methodology (TOSEM)
22, 4 (2013).

[47] Deheng Yang, Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2021. Evaluating the usage
of fault localization in automated program repair: an empirical study. Frontiers
of Computer Science 15, 1 (2021), 1–15.

[48] Shin Yoo, Mark Harman, and David Clark. 2013. Fault localization prioritiza-
tion: Comparing information-theoretic and coverage-based approaches. ACM
Transactions on software engineering and methodology (TOSEM) 22, 3 (2013).

[49] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using pagerank. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 261–272.

510

	XAI4FL: enhancing spectrum-based fault localization with explainable artificial intelligence
	Citation
	Author

	XAI4FL: Enhancing Spectrum-Based Fault Localization with Explainable Artificial Intelligence

