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Legion: Massively Composing Rankers for
Improved Bug Localization at Adobe
Darryl Jarman , Jeffrey Berry, Riley Smith, Ferdian Thung , and David Lo

Abstract—Studies have estimated that, in industrial settings, developers spend between 30 and 90 percent of their time fixing bugs. As

such, tools that assist in identifying the location of bugs provide value by reducing debugging costs. One such tool is BugLocator. This

study initially aimed to determine if developers working on the Adobe Analytics product could use BugLocator. The initial results show

that BugLocator achieves a similar accuracy on five of seven Adobe Analytics repositories and on open-source projects. However,

these results do not meet the minimum applicability requirement deemed necessary by Adobe Analytics developers prior to possible

adoption. Thus, we consequently examine how BugLocator can achieve the targeted accuracy with two extensions: (1) adding more

data corpora, and (2) massively composing individual rankers consisting of augmented BugLocator instances trained on various

combinations of corpora and parameter configurations with a Random Forest model. We refer to our final extension as Legion. On

average, applying Legion to Adobe Analytics repositories results in at least one buggy file ranked in the top-ten recommendations 76.8

percent of the time for customer-reported bugs across all 7 repositories. This represents a substantial improvement over BugLocator of

36.4 percent, and satisfies the minimum applicability requirement. Additionally, our extensions boost Mean Average Precision by 107.7

percent, Mean Reciprocal Rank by 86.1 percent, Top 1 by 143.4 percent and Top 5 by 58.1 percent.

Index Terms—Bug localization, information retrieval, bug reports, data augmentation, ranker composition, industrial study

Ç

1 INTRODUCTION

SOFTWARE testing and debugging are labor-intense activi-
ties, accounting for 30 to 90 percent of labor spent for a

project [1]. Analysis suggests that sufficient testing and
debugging infrastructure can reduce software errors that
cost the U.S. economy billions of dollars [2]. Automatic bug
localization is one of the research domains that aim to limit
and reduce the cost of debugging software. It works by
automatically identifying a ranked list of potentially buggy
files to inspect given a bug report.

In this paper, we report our experience of applying a bug
localization solution in industry, specifically on Adobe Ana-
lytics repositories. Originating from web analytics, Adobe
Analytics1 provides industry-leading solutions for applying
real-time analytics and detailed segmentation across market-
ing channels. After collecting data across many digital plat-
forms using various application programming interfaces,
users act on the data by creating and pushing content to tar-
geted segments using the full suite of Adobe Analytics prod-
ucts. In this way, Adobe Analytics provides users with the

ability to action on valuable insights to improve key business
processes. As the product has evolved, engineering processes
have grown more complex resulting in efforts to eliminate
labor-intense activities.

We investigated an information retrieval approach for
bug localization proposed by Zhou et al. [3]: BugLocator.
BugLocator is well-known, and easy to re-implement and
potentially extend. For these reasons, we use BugLocator
(instead of other bug localization tools) in our study. In
order for BugLocator to be adopted by Adobe Analytics
developers, we required a high level of reliability, as a
developer will accept limited failures. To assess this, we
choose the Top N (i.e., percentage of times a file containing
a bug is found in the top N recommendations) as the most
intuitive evaluation metric for developers.

We consulted 4 developers at Adobe Analytics during
water cooler discussions to determine their minimum thresh-
olds for applicability. These discussions suggest that develop-
ers who have been working on a code repository for a long
time tend to expect the tool to run faster and bemore accurate.
This makes sense since the effectiveness of the tool would
need to be higher than their ability to guess or discover the
buggy files within a similar time frame. On the other hand, a
developer less experiencedwith the same code repositorymay
find a slower or less accurate tool to be useful as long as it still
exceeds their own ability during the same time frame. In addi-
tion, it may help them gain more familiarity with the code
as the tool’s recommendations implicitly expose relationships
between files that they have not yet noticed. These discussions
lead us to identify the following thresholds: (1) for develo-
pers new to a repository, the tool should identify a buggy file
in the top 10 recommendations at least 70 percent of the time
(Top 10 score� 70 percent) and (2) for developers familiar with
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a repository, it should identify a buggy file in the top 5 recom-
mendations at least 80 percent of the time (Top 5 score � 80
percent).

We implemented BugLocator as proposed in [3], whichwe
refer to as BL. However, this initial implementation did not
meet the aforementioned applicability requirements for
Adobe Analytics developers. In this work, we consequently
show how to meet the requirements by extending BL in two
ways. The first extension adds additional corpora that can be
matched against an incoming bug report. BL onlymatches the
incoming bug report against source code files and summary
and description of prior bug reports. Here, we consider addi-
tional corpora that exist in the issue tracking and source code
management systems. For example, these systems provide
additional text corpora such as commit messages, file change
histories, and issue comments. These additional corpora act
as intermediate information by having characteristics of both
code and human language. We refer to BLwith this extension
as BL+. The second extension ranks files based on BL+ features
of files (extracted by running BL+ considering different con-
figuration options) using a Random Forest classifier. We refer
to this extension as Legion. In effect, Legion composes a large
number of rankers (i.e., 2,772 variants of BL+). Using Legion,
the Top 10 results exceed the minimum applicability require-
ment for developers new to a repository, with a result of 76.8
percent. Moreover, Legion improves over BL by 143.4 and
58.1 percent for Top 1 and Top 5, respectively.

The contributions of our work are as follows:

1) To the best of our knowledge, our study is the first that
applies a bug localization approach to industrial data.

2) We have applied BugLocator (BL), a well known infor-
mation retrieval based bug localization approach,
and found that it does not meet our applicability
requirements.

3) We propose two extensions to BL, dubbed BL+ and
Legion, to achieve the applicability requirements. BL+
adds additional corpora while Legion composes dif-
ferent configurations of BL+ using Random Forest.

4) Our experiments show that Legion exceeds the mini-
mum applicability requirement, improving over BL
by an average of up to 143.4 percent in terms of vari-
ous metrics.

This paper is structured as follows. Section 2 provides
some background materials on bug localization and BugLo-
cator (BL). Section 3 describes the experiment settings and
results on applying BL in Adobe Analytics repositories. Sec-
tion 4 presents our proposed extensions to BL. Section 5
describes experiments, research questions, and results for
BL extensions (BL+ and Legion). Section 6 presents addi-
tional findings. Section 7 discusses lessons learned and
threats to validity. Section 8 presents related work. Last but
not least, Section 9 concludes the paper and presents some
future work.

2 PRELIMINARIES

2.1 Bug Localization

Bug localization is a technique that aims to find the location
of a bug in the program source code according to the con-
tent of a bug report. Many bug localization approaches aim
to find the relevant source code files that must be modified
to fix the bug. These relevant files might be among thou-
sands or even millions of files in the program source code,
depending on the size of the program.

Fig. 1 shows an example of a bug report in Adobe Ana-
lytics. It contains information such as summary, description,
and components. Some information, such as reporter name,
are redacted due to sensitivity. Bug localization approaches
use this information to help in better localizing bugs to rele-
vant source code files. For example, in Fig. 1, words in the
bug description can tell us the topic of the bug.

Bug localization approaches use this information to gen-
erate a ranked list of relevant source code files. This ranked
list contains all the files in the code-base which are ordered
based on their relevancy to the bug described in the bug
report. The relevancy scores can be computed by consider-
ing different types of information. Each type of information

Fig. 1. An example of a bug report in Adobe Analytics (redacted due to sensitive information).
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produces a relevancy score according to a particular strat-
egy. The relevancy scores can be aggregated in various
ways, e.g., summation [4], empirical weighting [3], [5], or
weights learned from machine learning algorithms such as
Support Vector Machine [6] and Deep Learning [7].

2.2 BugLocator (BL)

BL is a well-known information-retrieval based bug localiza-
tion approach [3]. BLmakes use of the following information:

1) Source code files. Files that contain the same or similar
words as found in the bug report are more likely to
be relevant.

2) Similar bug reports. Past bug reports that are similar
with the current bug report may share the same set
of relevant source code files (i.e., files that need to be
modified to fix the bug).

3) File size. Large files are more likely to contain bugs
than small files.

Based on the above information, BL creates a ranked list
that combines the ranking based on source code files and
the ranking based on similar bug reports.

BL first represents bug reports and source code files in a
Vector Space Model (VSM). For bug reports, words from
the bug report’s summary and description are extracted.
Stop words are removed and the remaining words are
reduced to their roots, i.e., stemmed (e.g., the word driving
is reduced to the word drive). The resulting words are then
represented as vectors in a VSM. For source code files,
tokens are extracted, and symbols and numbers are
removed. Programming language keywords (e.g., for, if)
are also removed. Depending on coding style, tokens are
split using camel or snake case splitting. For example, in
camel case splitting, “getString” token is split into “get”
token and “string” token. The resulting tokens are then
treated like words in bug reports’ summaries and
descriptions.

For the ranking based on similarities between an input
bug report and source code files, BL uses a revised Vector
Space Model (rVSM). rVSM revises the classical VSM by
introducing a function that accounts for the source code file
size, ensuring that large source code files are not poorly rep-
resented [8]. It also gives higher scores to large source code
files (i.e., as compared to classical VSM) due to their higher
probability of containing bugs [9], [10], [11]. rVSM similarity
score rVSMScoreðb; fÞ between bug report b and source
code file f is defined as follows:

rVSMScoreðb; fÞ ¼ cosðb; fÞ
1þ e�Nð#termsÞ ; (1)

where cosðb; fÞ is a classical VSM cosine similarity score
between b and f , #terms is the total number of terms in f ,
and Nð#termsÞ is the normalized value of#terms.

For the ranking based on similar bug reports, BL creates a
bug-file graph that links a new bug report to its similar past
bug reports that are in turn linked to their relevant source
code files (i.e., files that were modified to fix the bug
reports). This graph is used to compute a similarity score
between the new bug report and a source code file accord-
ing to localized past bug reports. The similarity score

SimiScoreðb; fÞ between bug report b and source code file f
is defined as follows:

SimiScoreðb; fÞ ¼
X

pb2P ðfÞ

cosðb; pbÞ
nðpbÞ ; (2)

where P ðfÞ is a set of past bug reports that have been local-
ized to source code file f , cosðb; pbÞ is a classical VSM cosine
similarity score between b and pb, and nðpbÞ is the number
of files that were modified to fix the bug reported in pb.

BL then combines the above two scores into a final score
as follows:

FinalScoreðb; fÞ ¼ a� rVSMScoreðb; fÞ
þ ð1� aÞ � SimiScoreðb; fÞ; (3)

where a is a weighting factor and 0 � a � 1. The above com-
bined score represents the estimated relevancy between bug
report b and source code file f . This combined score is used
to rank the source code files in order of their likelihood to
be buggy.

3 APPLYING BUGLOCATOR (BL) TO ADOBE

ANALYTICS REPOSITORIES

In this section, we describe experiments that answer the fol-
lowing research question:

RQ1: How effective is BugLocator (BL) on Adobe Analytics
repositories?

To answer this question, we ran BL on a dataset of histor-
ical bug reports in Adobe Analytics repositories. We then
measure and report the accuracy of BL. We describe this
dataset in Section 3.1, and our experiment settings, evalua-
tion metrics, and results in Section 3.2.

3.1 Datasets

For this study, seven of the most functionally important
repositories in the Adobe Analytics product were used.
These repositories ranged in function across user interface
components, micro services and backend collection and
processing projects. The source code languages included
C++, Java, JavaScript, and PHP. Only source code files are
collected — config, build, and test files and folders are
excluded. Six of the seven repositories had a total number
of source code files ranging from 300 to 700. One repository
had an order of magnitude more than the others ranging
from 2,500 to 5,000 files. Fig. 2 shows the summary of the
dataset statistics.

Adobe Analytics uses Jira for issue tracking and Git for
source code management. Adobe Analytics has no formal
process mandating how the Jira and Git repositories are
linked. Each development team has the freedom to establish
the process that works best for them. For the purposes of
this study, we needed to link these two data sources. To
establish this link, we used the following heuristic, which is
similar to the procedure followed by Bissyand�e et al. [12].
For every Git repository, all commit messages for every file
in the history of the repository were searched for text pat-
terns matching Jira issue IDs that represented issues of type
bug. When a Jira issue ID was found, information was col-
lected from both Git and Jira. For Jira, the following fields
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were collected: bug summary, bug description, bug ID, bug
reporter, bug report creation date, customer-reported flag
(true if customer-reported, false if internally reported), and
all available comments, including the timestamp reflecting
when the comment was added. This information, along
with the linked Git commit message and commit ID, were
collected.

When dealing with customer-reported bugs, within
Adobe Analytics, it is standard practice for the repositories
we examined to include the Jira issue ID in the commit mes-
sage in order to link the commits to the issue. This is not
strictly enforced, however, and therefore we were unable to
link some Jira issues with their accompanying commits.
Often an issue that is initially reported as a bug is judged by
the developer to be a feature request or working as
designed. In these cases there were no Git commits linked
to the issue, and therefore they were excluded from our
data as well.

Fig. 2 shows the basic descriptive statistics for each of
these data sources and the number of experiments for each
repository. Each experiment represents an application of BL
to localize buggy source code files for a bug report. For these
bug reports, we have the ground truth (i.e., files that were
modified to fix the corresponding bug report), and can
therefore evaluate the accuracy of BL.

Prior studies, e.g., [13], [14], [15], [16], [17], reported that
three data-set biases are of concern when using learning to
rank methods for defect/bug localization. These include: (1)
misclassified bugs, (2) using bloated oracles and (3) the pres-
ence of code snippets in bug reports. An additional general
concern in machine learning is target leakage. Target leakage
occurs when information for a given experiment includes
data thatwas not available at the time of the initial bug report.
This can happen if commits, comments, etc, that have been

added after the bug report date, are present in the training
data for any experiment.

The main impetus for adoption of a bug localization tool at
Adobe Analytics is to obtain improvements in bug fixing
accuracy and rates. Customer-reported issues should have
the highest potential benefit from these improved rates. They
are of greater value to Adobe than internal issues, as these are
cases that are directly impacting customers, and are therefore
likely to affect customer retention and up-sell prospects in the
future. Developers understand that these bugs take the high-
est priority and work to resolve these as quickly as possible.
Any tool that can aid in this process even slightly presents a
high value to the company. As such, this study limits defects
to customer-reported issues only. To the best of our knowl-
edge, no previous defect localization study has been carried
out using only customer issues. Using only customer-reported
issues also results in the reduction of the previously stated
biases. This reduction is possible due to differences in report-
ing and tracking of internal and customer-reported issues.

Important differences exist between customer-reported
and internally reported issues at Adobe Analytics. Internal
issues differ from customer-reported issues by being less for-
mal in reporting format and therefore have a wider range of
included details — being either more or less verbose depend-
ing on developer habits. Internal bug reports usually have
some indication of where the issue might be addressed in
comments, descriptions, or steps to reproduce. Also, they fre-
quently include actual code and code related information
such as debug traces or source file names. Additionally, inter-
nal issues are more likely to be used broadly and be linked to
commits with code changes for a variety of issues, related or
not. Issue type and resolution status are also less frequently
monitored for accuracy. These features make internally
reported issues prone to the biasesmentioned above.

Fig. 2. Descriptive statistics of the data sources. See Table 8 in the Appendix for more details, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3075215.
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For customer-reported issues, AdobeAnalytics implements
several formal procedures. Some of these procedures include:
standardized bug reporting formats, trained customer support
representatives who create the initial reports, and issue and
resolution type assignment guidelines andmonitoring to accu-
rately reflect the work performed to resolve a given customer
issue. Because the customer is often informed of the steps
taken to resolve an issue, adherence to these procedures are
given a high priority. Since customer bugs with a resolution
status of fixed are released into production on a regular basis,
the potential need to roll back a faulty fix encourages develop-
ers to only include changes directly related to an issue in the
source control commit. It is very bad practice to roll back fixes
that are working, to change a single one that is not, as is the
case for a commit that includes changes for multiple bugs.
Another advantage of using customer-reported defects alone,
is the avoidance of the bias of code related information in the
bug report. Customer issues rarely have source code or code
related words in them. Bug reports are most often reported in
terms of functionality and violations of expected behaviors.
These practices reduce the biases ofmisclassified bugs, bloated
oracles and the presence of code snippets.

The issue of target leakage is addressed by carefully
implementing checks during experiment data collection.
For this study, timestamps are recorded for all collected cor-
pora. By collecting timestamps, it is simple to exclude all
data that occurred after the initial issue reporting date, for
all text, across all experiments. This approach eliminates the
issue of target leakage.

3.2 Experiment Settings, Evaluation Metrics and
Results

Setting:We ran BL on customer-reported bug reports collected
from each of the seven repositories. Each individual bug report
corresponds to one experiment. In total, we have 933 experi-
ments. For each pair of a customer-reported bug and its linked
Git commit message, we collected the changed files for the
commit. Only files that existed in the version before the com-
mit were labeled as buggy files. Given the summary and
description of each customer-reported bug report, BL was
evaluated based on its ability to process these textual contents
and rank the buggy files higher in its returned list of files.

Evaluation Metrics: We used several evaluation metrics
that were also used by Zhou et al. [3] and many other bug
localization studies in their evaluation. They include: Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR)
and percentage of experiments where at least one buggy file
is located in the top 1, 5, and 10 (i.e., Top N for N 2 {1, 5,
10}). These are defined as follows:

AP ðbÞ ¼
PjF j

i¼1 P ðiÞ � relði; bÞ
#buggy source code files

MAP ¼
PjBj

i¼1 AP ðbiÞ
jBj (4)

MRR ¼ 1

jBj
XjBj

i¼1

1

rankbi
(5)

Top N ¼
PjBj

i¼1 localizedðbi; NÞ
jBj ; (6)

where B is the set of bug reports to localize to their linked
source code files, F is the set of source code files in the
repository, P ðiÞ is the proportion of buggy source code files
in the top-i returned source code files, relði; bÞ value is 1 if
source code file at rank i is linked to bug report b (i.e., the
file is one of those that need to be modified to resolve the
bug report) and 0 otherwise, rankbi is the rank of the first
source code file that is linked to bug report bi, and
localizedðbi; NÞ value is 1 if at least one file that is in the top-
N list was present in the commit linked to the fix of bug
report bi, and 0 otherwise. For the evaluation, we define a
returned file to be correct if it was present in the commit
linked to the bug fix.

Results: The results for applying BL to Adobe Analytics
repositories are shown in Fig. 3. Comparing the results in
the Open Source and AA in the figure, we can note that BL
applied to the Adobe Analytics repositories performed
worse than when applied to open source repositories as
reported in [3]. This is due in large part to the very poor
results for Adobe Analytics repository 7 and the somewhat
poor results of Adobe Analytics repository 6. The results for
the remaining 5 repositories are comparable to BL for open
source repositories. Unfortunately, this result is insufficient
in meeting the projected minimum applicability require-
ment for adoption of a defect localization tool by Adobe
Analytics developers.

The poor accuracy for repository 7 is likely due to the
large number of files that BL has to choose from (roughly 10
times more than the other repositories), which makes pre-
dicting the correct files much more difficult. On the other
hand, given this reasoning, the poor accuracy on repository
6 is somewhat surprising, since it is on the smaller end in
terms of number of files. Perhaps the relatively smaller
number of issues evaluated (N ¼ 39) may have led to the
poorer evaluation metrics. These results convinced us that
we needed to find ways to improve BL in order to meet our
applicability requirements.

4 BUGLOCATOR EXTENSIONS

The results of RQ1 show that, for Adobe Analytics, BL is
insufficient to be used by developers as a reliable debugging

Fig. 3. Comparison of the accuracy of BugLocator on 4 open source
repositories as reported in [3] versus 7 Adobe Analytics repositories (in
percentage). See Table 2 in the Appendix, available in the online supple-
mental material, for more details.
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tool. Here, we propose two extensions to BL for improving
accuracy to a chosen target applicability level, which is a
Top 10 of 70 percent for developers new to a repository.

4.1 BL+: Extending BL With Additional Corpora

During our implementation of BL, we found that there
were additional data sources in the bug reports and source
management system that BL was not making use of. In our
experiments with BL, we noticed that optimal parameter
settings differed for each repository. Therefore our first
attempt to improve the accuracy of BL was to add addi-
tional configurable settings and data corpora to the set
of information that BL uses. These new data corpora
were easily obtainable, since we were already collecting
source code and bug reports for BL. More importantly,
they contain natural language descriptions associated
with code, which improve BL recommendations. We in-
corporate these changes to BL to create BL+. It has the fol-
lowing 4 parameters with 2� 63� 2� 11 ¼ 2,772 possible
configurations:

i. Pre-processing (2 options): BL+ has a parameter that
allows one to choose whether stop word removal
and stemming should be performed in the pre-proc-
essing step of BL or not.

ii. rVSMScore computation (63 options): For computing
rVSMScoreðb; f) (see Equation 1), BL compares the
summary and description of a target bug report b
against content of source code file f . BL+ has a
parameter that allows one to choose to compare the
summary and description of the target bug report
against one out of 63 possible k-combinations of the
6 following corpora (k 2 f1; 2; 3; 4; 5; 6g):
1) Source code file content. The content of the file

itself.
2) Source code differences. This is a collection of all

changes performed to the source code file, up to
the time when the target bug report is reported.

3) Commit messages. This is a collection of messages
from commits that modified the source code file,
up to the time when the target bug report is
reported.

4) Bug report summary. Commits that modified the
source code file might be linked to past bug
reports that describe bugs that were fixed by
modifying the file. For such bug reports, we col-
lect their summaries.

5) Bug report description. Similar to bug report sum-
mary, we collect the descriptions of past bug
reports that match the same criteria.

6) Bug report comments. Similar to bug report sum-
mary, we collect the comments of past bug
reports that match the same criteria.

iii. SimiScore computation (2 options): For computing
SimiScoreðb; f) (see Equation 2), BL compares the
summary and description of a target bug report b
against the summary and description of past bug
reports. BL+ has a parameter that allows one to
choose whether comments of past bug reports
should be considered or not. The comments for the
target bug report are not considered as they are

unavailable for a newly reported bug. We refer to
the SimiScore that considers bug report comments as
Extended SimiScore.

iv. FinalScore computation (11 options): For computing
FinalScoreðb; f) (see Equation 3), BL+ has a parame-
ter that allows one to choose an a value among 11
possible options in the range of 0.0 to 0.3 (in steps of
approximately 0.033). The step size was chosen to
roughly divide the range evenly. Specifically, the
values are 0.0, 0.010, 0.033, 0.066, 0.100, 0.133, 0.166,
0.200, 0.233, 0.266, 0.300.

Note that, Zhou et al. [3] found the best value of a
to be between 0.2 and 0.3. We found that, when add-
ing corpora, values less than 0.2 can be better at
locating buggy files. However, values more than 0.3
were not found to be useful.

4.2 Legion: Composing BL+ Configurations

The addition of 2,772 parameter configurations for BL+ nat-
urally led to the problem of hyper parameter calibration.
For any given repository, we have no way of knowing a pri-
ori what the optimal configuration should be. Indeed, we
observed that for each bug report we evaluated, the best
performing configuration was different. This dilemma trig-
gered the idea to use all 2,772 BL+ parameter configurations
as an ensemble of feature extractors, and train a supervised
model to predict a score given the BL+ scores as inputs.
Legion composes the results produced by the various con-
figurations of BL+ by following these steps:

i. Run all BL+ configurations: Legion first runs all possi-
ble configurations of BL+. Note that for each parame-
ter configuration, BL+ produces a FinalScore for
each source code file. Thus, overall, there are 2,772
FinalScores produced.

ii. Generate stacked scores: For each file, Legion then
sums the generated FinalScores for the file; we refer
to this sum as the stacked score. One may imagine that
stacked scores of files can possibly be used to re-rank
the source code files. However, our initial experi-
ments show that while this may result in some gains
for files ranked poorly, it may have an undesirable
effect of lowering correct highly ranked files.

iii. Learn a supervised model to rank files: To learn how to
improve rank for files ranked poorly while retaining
the correct highly ranked files, Legion considers the
stacked score and the 2,772 scores from BL+ as fea-
tures. We refer to these as BL+ features. These fea-
tures, along with a label indicating whether the
source code file is buggy or not is considered as a
classification instance. Given a set of such classifica-
tion instances, Random Forest [18] is then used to
learn a model that scores the features so that many
buggy source code files can be ranked higher than
non-buggy source code files. This model can then be
used to rank source code files for a new bug report.
Given a new bug report, for each file, it outputs a
probability score indicating how likely it is for the
file to be buggy. The files are then ranked based on
these probabilities.
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5 APPLYING BL EXTENSIONS TO ADOBE

ANALYTICS REPOSITORIES

5.1 Datasets

For the application of BL+ and Legion at Adobe, we used
the repositories discussed in Section 3.1. We collected the
additional corpora discussed in Section 4.1 following these
steps:

1) Using the bug report creation date, find the closest
production release for the repository that occurred
before the creation date. This gives us the best chance
of looking at the same code that the bug was
reported against. n

2) Clone the repository and loop through all source
code files collecting the following information for
each file:
a) The file itself.
b) The file size.
c) All source code differences over the entire his-

tory of the file.
d) All commit messages in which this file was

included.
e) If a commit is linked to other bug reports in the

dataset, we collect the bug reports’ summaries,
descriptions, and comments. The comments are
combined with a timestamp indicating when the
comment was added.

5.2 Research Questions and Experiment Settings

RQ2: How effective is the inclusion of additional corpora in boost-
ing the accuracy of BL?

In order to determine if adding additional corpora to BL
was useful, we ran BL+ with all 2,772 possible parameter
configurations and measured the accuracy of each configu-
ration. Each parameter configuration produces a different
ranking for the source code files. We investigated which
parameter configuration produces the best accuracy for
each evaluation metric defined in Section 3.2. We report the
best accuracy for BL+. This is the upper bound on the accu-
racy of BL+ assuming we know in advance which configu-
ration setting performs the best. In practice however, we
have no way to know which configuration will be the best
performer. This dilemma triggered us to turn to the Ran-
dom Forest model in Legion to overcome this limitation.

RQ3: How effective is Random Forest when applied to compose
BL+ features?

For Legion, we obtained scores for each file in each
experiment using the following cross-validation method: (1)
The experiments were divided into 10 groups. (2) We held
out the data from one group and trained a Random Forest
classifier on the data from the other 9 groups. (3) We scored
the data from the hold-out group using the trained Random
Forest model. We repeated steps (2) and (3) 9 more times
using a different group as the hold-out set, training a new
Random Forest classifier each time, until we had scores for
every file in every experiment. This cross-validation
approach was necessary for evaluation of our historical
data set. In practice, we train the Random Forest only once
on the entire data set, and use the trained model for new
bug reports as they arrive.

RQ4: How efficient are BL+ and Legion?
In some situations, the efficiency of a bug localization

tool might be of high importance. In order to address the
issue of how long it takes to get results from each of the
approaches, timing information was tracked across all
repositories and experiments.

5.3 Results

Figs. 4, 5, and 6 summarize the results. Fig. 6 shows Top 1, 5
and 10 results along with MAP and MRR for each reposi-
tory. In all cases, BL+ and/or Legion showed substantial
improvements over BL.

RQ2: As shown in Fig. 4, BL+ improved over BL across
all evaluation metrics. For Top 1, 5, and 10, BL+ achieved an
average score of 37.5, 56.7 and 66.0 percent, respectively.
This is an improvement over BL by 29.0, 14.1 and 8.7 per-
cent in terms of Top 1, 5, and 10, respectively (see Fig. 5 for
details).

RQ3: As shown in Fig. 4, Legion achieved an average Top
1, 5, and 10 scores of 57.2, 71.5 and 76.8 percent across all
repositories, respectively. This is an improvement over BL
by 143.4, 58.1 and 36.4 percent in terms of Top 1, 5 and 10,
respectively (see Fig. 5 for details).

RQ4: The time it takes to complete an experiment (i.e., an
application of a bug localization approach to localize a bug
report) depends on the number of files in a repository and
the size of the corpora. On average, 95 percent of the experi-
ment time is spent collecting and pre-processing the corpora
into vector form in VSM. Excluding repository 7, which is
very large in terms of corpora size, the average time to run
BL+ over all 2,772 parameter configurations is 34.8 minutes.
Legion runtime for these 6 repositories took an average of
15.12 minutes. This includes both training and testing of the
Random Forests. Experiments were carried out on machines
having 4-12 cores and 8-32GB memory. Timing information
per machine was not collected.

Concerns about efficiency of Legion can be divided into
two kinds: (1) efficiency in training the model, and (2) effi-
ciency in running the trained model. Efficiency of type (1) is
not considered highly important for the application of
Legion at Adobe Analytics. It is possible to run automated
processes to update Random Forest models periodically
and have these models available for new customer-reported
bugs when needed. Although this training may take hours,
or even days for large repositories, this can be run in the
background periodically while using the previously trained
model for new incoming issues. Additionally, applying

Fig. 4. Average results for all repositories (in percentage). See Table 3 in
the Appendix, available in the online supplemental material, for more
details.
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these models to incoming bug reports can also be auto-
mated. It is also possible to provide a developer with the
recommended files directly within the bug report manage-
ment system so that a developer does not have to run the
tool themselves. When running the pre-trained model on a
new issue (type 2 efficiency), performance has to be better
than the current time required to get a customer-reported
bug into the hands of the correct developer. This is typically
on the order of days. This provides ample time to create a
Legion recommended files list even for the largest dataset.
Therefore, although the runtime for a new issue may take
up to an hour, this level of efficiency is suitable for our
requirements.

6 ADDITIONAL FINDINGS

BL is a strong research tool for recommending files to be
fixed given a bug report. When applying BL at Adobe Ana-
lytics, results across 5 of 7 repositories found good results
similar to those reported in [3]. However, for adoption
within Adobe Analytics, these results are not sufficient to

pass BL as a reliable debugging tool. BL failed to meet our
minimum applicability requirements for both developers
new to a code base and developers having extensive experi-
ence with the code base. We have shown that, by adding the
following steps, BL can be improved to the required level of
accuracy and dependability:

1) Adding additional corpora (BL+).
2) Composing BL+ features using a Random Forest

(Legion).
To further analyze the improvement of Legion over BL

and evaluate its ability in real world usage, we asked the
following research questions:

RQ5: Are all BL+ features needed?
In order to achieve the minimum applicability require-

ment, we use many BL+ features to improve the accuracy of
BL. We want to dig deeper to understand if all these fea-
tures are needed. We answer this RQ in Section 6.1.

RQ6: How do Adobe developers perceive Legion’s recommen-
dations?

We have shown that Legion achieves the minimum
applicability requirement that Adobe developers expected
to have. Here, we would like to get inputs from Adobe
developers on Legion’s outputs for recent customer-
reported issues. We answer this RQ in Section 6.2.

6.1 Are all BL+ Features Needed?

It is not possible to know ahead of time which BL+ features
will do well in recommending buggy files for a given bug
report. There might be large variations in both quality and
quantity of the corpora. BL+ and Legion attempt to solve
this problem by exploring the ranking of source code files in
all parameter configurations. We hypothesize that some
configurations can recommend files that others might miss.

Fig. 5. Average accuracy improvement (in percentage). See Table 4 in
the Appendix, available in the online supplemental material, for more
details.

Fig. 6. Breakdown of results by repository (in percentage). See Table 6 in the Appendix, available in the online supplemental material, for more
details.
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In order to maximize good recommendations, we use Ran-
dom Forest to weight features in a way that retains well
ranked files from all configurations. Yet, is this what actu-
ally occurs in practice? To answer this question, we investi-
gate two dimensions: observation and correlation.

Observation. After running BL+ with all possible parame-
ter configurations and computing the accuracy of each con-
figuration, we take a look at the best performing parameter
configuration that results in the highest score for each pair
of repository and evaluation metric. Fig. 7 shows the param-
eter that contributes to the best performance for each pair of
repository and evaluation metric. Most parameter values,
except a, appear in at least one of the best performing
parameter configurations. For a, only 8 of the 11 possible
values are in such configurations. Interestingly, a values in
the best performing configurations are � 0.2. This is slightly
different from what Zhou et al. [3] found. They found that a
values between 0.2 and 0.3 worked best. These values were
occasionally in the top 10 best performing parameter config-
urations (8 times), but never in the best performing one. If a
given parameter was of little value, we presume that it
would not be present in any best performing parameter con-
figuration. Since every parameter does occur, we consider
that all parameters play a part and are, therefore, necessary.

Correlation. Although all parameters contribute unique
information to the problem, we expected that scores resulting
from similar parameter configurationswould be highly corre-
lated. We calculated the pairwise correlation between the
source code file scores from the 2,772 parameter configura-
tions using Pearson and Spearman correlation, and Principal
Component Analysis (PCA). As expected, most parameter
configurations resulted in highly correlated scores. For exam-
ple, Fig. 6 shows the percentage of Pearson correlation coeffi-
cients for each pairwise comparison of scores in repository 6.
Over 61 percent of Pearson’s r coefficients were greater than
0.8, and more than 26 percent greater than 0.9. For PCA, the
first component explained 81.9 percent of variance in the
scores, followed by 7.8 and 2.6 percent of variance for the sec-
ond and third components.

This highmulticollinearity could present problems for com-
bining the scores using logistic regression. For this reason, we
chose to use a Random Forest, which is more robust to collin-
ear data [19]. Other algorithms could be used aswell. The high
multicollinearity is also reflected in feature importance scores
from the Random Forest model. We calculated these scores

using theMeanDecrease in Gini Impurity, as part of the Scikit-
learn Python library [20]. The scores decrease slowly, starting
from 0.0073 for the top ranked feature to 0.0022 for rank 50.
This shows that there is no single BL+ parameter configuration
that dominates the Random Forest scores. 2 configurations
in the top 5 remove stop words and use stemming. Only 2 use
the source code. All 5 use commit messages and bug report
descriptions. 4 use the bug report summary. Only the top
ranked configuration uses the extended SimiScore. Values for a
range from 0.033 to 0.2. Source code differences and bug report
comments do not appear in the top 5 configurations.

6.2 How Do Developers Perceive Legion’s
Outputs?

We conducted a pilot study with a team at Adobe Analyt-
ics. Over a 9 month period, this team received 11 cus-
tomer-reported issues that they subsequently fixed. We
evaluated these issues using Legion, which produced a
Top-10 list of files likely to be changed for each issue. Of
the 11 issues, we correctly predicted a changed file in the
Top-10 in 7 of the issues. Then, we conducted a pilot study
where we asked the developer who fixed the issue (each
issue was fixed by one developer) to evaluate effectiveness
of the predictions. Consequently, study participants are
limited to 3 senior developers, each of whom fixed some of
the 11 issues.

Note that our pilot study is not meant to produce gener-
alizable knowledge as the study is only with 3 individuals,
each providing inputs on recommendations that Legion
provides for just several issue reports. To get generalizable
and conclusive results, a full-fledged user study over more
developers and issues is needed, which we reserve for
future work. Our goal here is to get initial responses and
insights on what can be done and what factors to consider
in such future study.

In our pilot study, we sent the 3 developers an email with
the following text:

“We are developing a tool that attempts to locate files contain-
ing defects given the JIRA description in the Customer Reported
Issue. We would like to get your feedback on the potential useful-
ness of this tool for locating defects more quickly. To this end, we
have identified several issues that occurred over the last 9 months
that you fixed. We have included the list of files that our tool iden-
tified as potentially containing defects at the time of the reported
issue, along with the files that were changed in commits tagged
with the JIRA issue. Given these results, please answer the follow-
ing questions concerning the tool.”

Fig. 7. Distribution of BL+ parameters that contributes to the best perfor-
mance (out of 35 possible pairs of evaluation metric and repository).
See Table 7 in the Appendix, available in the online supplemental mate-
rial, for more details.

Fig. 8. Percentage of pairwise correlation for 2,772 BL+ parameter con-
figurations in repository 6. See Table 6 in the Appendix, available in the
online supplemental material, for more details.
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We asked them to provide the following inputs:

I1 On a scale of 1-5 where 1 is extremely unhelpful and 5 is
extremely helpful, how useful could this be in debugging?

I2 On a scale of 1-5 where 1 is extremely ridiculous and 5 is
extremely useful, rate the recommendations.

I3 On a scale of 1-5 where 1 is extremely obvious and 5 is
extremely surprising, rate the correct recommendations.

I4 One a scale of 1-5 where 1 is extremely junior and 5 is
extremely experienced, what experience level would find
these recommendations helpful?

I5 Please tell us what could make this tool more useful, or
what other kinds of things you would like to see.

Note that we collect their responses via emails, and thus
for I1-I4 developers may also provide some short texts that
explain their rationales.

The survey results are shown in Table 1. For I1 and I2,
considering an average rating higher than 2.5 as positive,
and below it as negative, the senior developers responses
were positive. Developer 1 was negative, Developer 2 was
very positive, and Developer 3 was marginally positive.
Developer 1 was only given Legion’s recommendations for
two issues that he fixed and Legion was unable to include
the buggy file in its top-10 recommendation for one of them;
the developer provides the following reason for his low rat-
ing for I1 and I2: “it didn’t have correct file in 1 instance”.
Developers 2 and 3 were happy about the helpfulness of the
tool (I1), with Developer 2 stating, “Our codebase is very
large and complex, and despite 4.5 years of experience on it
I frequently struggle to find the appropriate location for a
change.” However, they were affected by incorrect recom-
mendations that Legion provided (I2), as Legion was able to
uncover correct files in the top-10 for only 7 out of the 11
issues. All of our participants are senior developers, and
our earlier informal discussion with developers (see Sec-
tion 1) uncovers that for developers familiar with a reposi-
tory, a bug localization tool should identify a buggy file in
the top-5 recommendations at least 80 percent of the time.

For I3, the senior developers perceived the recommenda-
tions to bemore obvious to them than surprising – the ratings
received are 3, 2, and 2, with an average of 2.33. Our study is a
retrospective one though – it was performed after the issues
were fixed – and the perception of developers, especially on
the surprisingness of the recommendations, may differ if the
study was performed prior to the issues being fixed (see Sec-
tion 7.3). For I4, the senior developers perceived that the tool
will benefit people who are junior or mid-level developers,
rather than those who are extremely experienced – the ratings
received are 2, 3, and 3, with an average of 2.67.

Feedback from I5 provides additional inputs to improve
Legion further. Developer 1 mentioned: “Out of 2 bugs this
tool didn’t have a correct file in 1 instance. Does this tool use

only description or also xml? (I think it has better chance find-
ing correct source using xml)”. This highlights the potential of
further expanding the input to Legion to also consider con-
tents of related XML and configuration files. Developer 2
mentioned: “The results are ranked, but I’m assuming they
are sorted according to some kind of weighting. I think it
could be useful to see that weighting – if 1-3 are all function-
ally the same, I would react to that differently than if #1 had
10x the weight of #2.” This highlights the value of including
the raw scores from the Legion tool to the list. Interestingly, a
similar heuristicwas employed by Le et al. [21] to create a trust
score that can be used by developers to assess recommenda-
tions given by a bug localization tool. Developer 3mentioned:
“Pi in the sky: Automatic reducing of test cases to minimal
ones”. This highlights the value of combining bug localization
with testing. A recent study has demonstrated the value of
combining information contained in bug reports and failed
test cases formore effective localization of bugs [22], [23].

Overall, these results show that senior developers find the
recommendations provided by the tool to bemoderately help-
ful. It stands to reason that developers who are less experi-
enced with the codebase or people new to the team stand to
benefit more. The team that we invited for the pilot study
only received a low number of issues (11 issues) in a relatively
long period of time (9 months); the benefit of a bug localiza-
tion tool is likely to be more for teams who received a high
number of issues to resolve daily. Still, from the survey, it is
clear that there is room to improve upon these results, possi-
bly by incorporating other advances that have been proposed
in other bug localization studies that have not been included
in Legion – for example, the incorporation of trust score [21],
[24], the integration of additional sources of information [22],
[23], [25], [26], [27], usage of more advancedmachine learning
(deep learning) approaches [6], [28], [29], design of intuitive
and interactive interfaces, etc. (c.f., Section 8.1).

7 DISCUSSION

7.1 Reflection

In this study, ourmain goal is to experimentwith a bug locali-
zation approach, applying it to industrial data, and improving
its accuracy to an acceptable level, based on requirements
identified by developers. This goal is both important and
novel; all previous studies on bug localization only make use
of open-source data. Can a bug localization tool performwell
on industrial data? Our study has succeeded in answering
this question; we found that relatively high accuracy scores
reported in the literature can also be achieved for industrial
data, and developer requirements can be partially met. Still,
we are unable to claim generalizability of the findings as all
our data comes from only one company. Thus, we encourage
further studies to perform a replication of our work on data
from other companies. Although such studies are not easy to
perform due to the closed nature of industrial data, different
interests between researchers and developers, and the chang-
ing priorities of a company (indeed, a reorganization within
Adobe prevents us from doing more at this point in time), we
believe they are needed to push bug localization tools to go
from research prototypes towidely-adopted industrial tools.

Also, our study finds that the requirement for junior
developers (“the tool should identify a buggy file in the top

TABLE 1
Developer Responses to Questions I1-I4

Dev 1 Dev 2 Dev 3 Avg

I1 Unhelpful vs. Helpful 2 5 3 3.33
I2 Ridiculous vs. Useful 2 4 2.5 2.83
I3 Obvious vs. Surprising 3 2 2 2.33
I4 Junior vs. Senior 2 3 3 2.67
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10 recommendations at least 70 percent of the time”) cannot
be met by BugLocator, but it can be met by Legion that
extends it. However, Legion is still unable to fully meet the
requirement for senior developers (“the tool should identify
a buggy file in the top 5 recommendations at least 80 percent
of the time”). This is partly corroborated by findings from
our pilot study that peeks into how several senior develop-
ers respond to Legion’s recommendations. We find that the
developer ratings are very much related to the accuracy of
Legion. For Developer 1, 2, and 3, Legion identified a buggy
file in the top 10 recommendations 50, 100 and 62.5 percent
of the time respectively. We find that their overall ratings of
Legion (for I1) are correlated to these accuracy scores; the
ratings were 2, 5, and 3 respectively. Developer 1 was not
satisfied, Developer 2 was very satisfied, while Developer 3
was marginally satisfied. This suggests the value of research
effort on boosting the accuracy of bug localization tools;
while a small boost in accuracy may not matter much, a sub-
stantial (e.g., �10 percent) boost in accuracy can result in a
noticeable increase in developer satisfaction (in our pilot
study, 12.5 and 37.5 percent boost in accuracy increased
overall rating by 1 and 2 points, respectively).

Legion incorporates new features that were not investi-
gated in prior studies (see Section 8.1). Still, many features
that were proposed in the literature have not been incorpo-
rated in Legion. Indeed, Legion is based on a classic bug
localization approach, named BugLocator [3], which was
published close to a decade ago. It is possible that the incorpo-
ration of other features can boost Legion’s accuracy further,
up to a level that is deemed acceptable by senior developers.
We leave the exploration of this possibility to futurework.

Findings from our pilot study pose a question as to who
should be the target users of a bug localization tool. Should
they be junior developers? Can senior developers benefit
too? The participants seem to suggest that Legion is more
beneficial to junior and mid-level developers (their ratings
were either 2 or 3 out of 5, with 5 corresponding to
“extremely experienced”). Still, we do not have a conclusive
answer. Our findings are based on a pilot study involving a
team that received few issue reports. The findings may dif-
fer if we consider teams that are inundated with issue
reports. Future industrial studies on a larger pool of devel-
opers, including both junior and senior developers, working
in teams that receive varying levels of bug reports are
needed to fully answer this question.

Lastly, we would like to comment that a company-wide
deployment requires more than part-time effort from a few
developers keen on adopting state-of-the-art research tools,
but rather long-term and continuous support from a dedi-
cated team within a company. The team needs to develop a
user-friendly interface that is integrated into developer
workflow, actively promote the tool among developers,
manage developer expectations [30], and provide continu-
ous maintenance support [31]. Although we are unable to
do this at this point in time, we hope that this can be real-
ized in the future, either at Adobe or beyond.

7.2 Lessons Learned

Relatively High Accuracy Scores Can be Realized for Industrial
Datasets and Customer-Reported Issues. Prior works, e.g., [3],

[4], [5], [25], [32], [33], use open source datasets consisting of
mainly developer-reported issues due to their availability.
This is the first work that makes use of industrial datasets
consisting of customer-reported issues. Prior to this work,
the accuracy of bug localization on industrial datasets and
customer-reported issues were unknown. It is possible that
the accuracy of bug localization on industrial datasets and
customer-reported issues are very different than the ones
reported in existing works. Through this study, we demon-
strate that it is not the case; Legion can achieve an average
Top-10 score of 76.8 percent across all repositories, and an
average Top-5 score of 71.5 percent.

Developers, Especially Highly Experienced Ones, Have High
Expectations. Our study, through informal water cooler dis-
cussions and a pilot study, highlights that developers have
high expectations for adoption of bug localization tools. The
thresholds for adoption differ depending on the seniority
and experience level of developers. Senior developers have
higher expectations as they are very familiar with the code-
base that they have worked on for years.

One interesting direction for future work is to design a
solution that can elicit domain knowledge from senior
developers that can be embedded into a bug localization
tool that can in turn be used to aid less experienced devel-
opers or newcomers to a development team. Another possi-
ble direction is to build a personalized recommendation
system that considers a developer’s prior experience (e.g.,
only output recommendations when a potentially buggy
file falls outside the files that developers normally main-
tain). Yet, another possibility is to incorporate solution
designed by Le et al. that can output “trust” scores to bug
localization outputs [21]; “unsure” bug localization recom-
mendations can be marked as such and developers can
focus on high-confidence recommendations. Bug localiza-
tion tools can then focus on satisfying developers’ high
expectations for those high-confidence cases.

Additional Data Sources Should be Used to Boost Bug Localiza-
tion Performance. Our BL+ considers various additional corpora
that were not considered in prior work. The corporawere easy
to collect, as they consist of artifacts inherently linked to the
bug reports and source commits (e.g., commit messages and
bug report comments). These corpora strengthen the associa-
tions between source code files and natural language bug
reports which allow the BL algorithm to find better matches.
Our findings augment the existing body of work that has used
other kinds of additional pieces of information to boost bug
localization performance—see Section 8.1. Some of these addi-
tional pieces of information may be harder to obtain or less
available than the others (e.g., execution traces, etc.).

An interesting direction of future work is to combine all
the additional data sources considered in the literature to
boost performance of Legion further. Another interesting
direction is to compare the efficacy and availability of these
data sources for bug localization purposes considering vari-
ous contexts (e.g., open source versus industrial, etc.).

Tuning Matters for Bug Localization. Each bug report is dif-
ferent from many other bug reports. Each repository is dif-
ferent from many other repositories. Thus, an adaptive
approach that can be tuned for various repositories and bug
reports can perform better than a one-size-fits-all approach
(in our case: one configuration of BL+). This is supported by
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the superior results that Legion achieves over the baselines.
The benefit of tuning and an adaptive approach has also
been reported in many prior works, e.g., [34].

In this work, we only investigate the use of Random Forest
to tune a composition of rankers (in our case: different config-
urations of BL+) for improved bug localization. Many other
approaches can potentially be used to ensemble these rankers.
We encourage further research to be done in this direction.

7.3 Threats to Validity

Legion worked well within the minimum applicability
requirement specified by Adobe Analytics developers. We
also received positive experiences from our small pilot study
involving a team of Adobe Analytics developers. However, it
is unclear whether the same level of satisfaction would be
observed by other teams in Adobe Analytics. That said, we
believe the results should extend well to them due to the
shared culture. On the other hand, it remains to be seen
whether Legion would achieve the same level of applicability
on other teams outside Adobe Analytics. Nevertheless, we
believe our work provides valuable insights on the applicabil-
ity of bug localization tools in Adobe and possibly on the
industrial setting in general.

In the pilot study, there is a threat that the developers may
not have answered the questions truthfully. However, we
believe this threat is minimal as the developers were aware
that we are developing Legion for possible adoption in Adobe.
Therefore, we believe it was in their best interest to provide
their honest opinions about Legion as theymay possibly use it
in the future. Indeed,we find that our participantswere honest
in providing their ratings; for example, Developer 1 found that
Legion was successful in only one of the two issue reports that
he had fixed, and the developer gave a rating of 2 (out of 5) for
both I1 and I2. Also, our pilot study is a retrospective study;
we collected developers’ perception of Legion’s outputs for
bugs that they had fixed before. Developers’ perception of
Legion’s outputsmay have differed if we had asked the devel-
opers to provide inputs prior to them fixing the bugs. For
search tasks with specific goals, prior studies, e.g., [35],
reported that people’s perceptions of search task difficulty
decreases after the task is completed. Thus, the ratings that we
obtained, e.g., for helpfulness of Legion’s output (I1), how
obvious Legion’s recommendations were (I3), can be a lower
bound on the ratings that developers would provide if the
study were replicated prior to them fixing the bugs. Also, we
did not limit or recommend what the developers should do
when answering the questions. Some of them may have
looked back to the task or just recalled the answers frommem-
ory. This could be a threat if the developers wrongly recalled
frommemory.

Another possible threat is related to the correctness of
our implementation and experiments. We have checked our
implementation and experiments multiple times. Thus, we
believe the threat is minimal.

8 RELATED WORK

8.1 Bug Localization Tools

Bug localization approaches can be put in two main families:
IR based bug localization and spectrum based bug localiza-
tion. IR based bug localization treats bug localization as an

information retrieval problem, e.g., [3], [4], [5], [6], [7], [25],
[28], [32], [33], [36], [37], [38]. These approaches treat a bug
report as a query that is used to search program elements
(e.g., files) that should be modified to fix the bug described in
the bug report. Spectrumbased bug localization analyzes pro-
gram spectra (i.e., statistics related to program execution
traces) to find program elements (e.g., files) that are likely to
contain bug(s), e.g., [22], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55]. This work
focuses on the first. Since bugs in Adobe Analytics reposito-
ries are usually reported by customers, IR based bug localiza-
tion is a natural choice. Such bugs usually only have
descriptions from customers and lack other information such
as program spectra.

We describe some related prior IR based bug localization
work categorized into three families based on their major
contributions (e.g., use of new data analytics algorithms,
consideration of additional data sources, and incorporation
of additional processing steps) below. Our survey is by no
means complete; for a comprehensive survey of the topic,
please kindly refer to [56].

Different Data Analytics Algorithms. Different data analyt-
ics algorithms have been employed for bug localization. For
example, Rao and Kak [33] conducted a comparative study
of generic and text based models for information retrieval
approaches at the time. They found that Unified Model and
Vector Space Model (VSM) are more effective for bug locali-
zation than Latent Dirichlet Allocation. Thomas et al. [57]
cast IR based bug localization as a classification problem,
and showed that the bug localization performance is sensi-
tive to the classifier parameters, and combining different
classifiers usually helps to improve performance. Ali et al.
[58] proposed LIBCROSS, an approach that utilizes Binary
Class Relationship (BCR) to improve standard IR based bug
localization approach such as VSM. BCR includes class rela-
tionships such as inheritance, association, and aggregation
and each of them has a “vote” for the relevancy between a
bug report and a source code file. Zhou et al. [3] proposed
BugLocator, an approach that uses a revised Vector Space
Model (rVSM) and bug report similarity to localize bugs.
Saha et al. [4] proposed a structured retrieval for bug locali-
zation. This retrieval considers the structure of bug reports
and source code files. Ye et al. [6] proposed a bug localiza-
tion approach that uses surface lexical similarity, API-
enriched lexical similarity, collaborative filtering, class
name similarity, bug fix recency, and bug fix frequency as
features that are fed to a learning-to-rank algorithm. Lam
et al. [7], [28] proposed an approach that improves bug local-
ization performance using a combination of Deep Neural
Network (DNN) and rVSM. DNN bridges lexical gaps
between bug reports and source code files by learning the
relation between terms in bug reports with terms in source
code files. Xiao et al. [29] used a Convolutional Neural Net-
work for bug localization, together with bug fix recency and
frequency, bug report embedding, and source code file
embedding as features.

Different Sources of Information. Different sources of infor-
mation have been leveraged to boost the performance of
bug localization. For example, Sisman and Kak [25] esti-
mated the bug proneness of a source code file, along with
time decay, to improve bug localization. Wang et al. [26]
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used stack trace information included in a bug report to
improve the performance of IR based bug localization. They
defined crash correlation groups and used them as features
for a Bayesian Belief Network that learns to rank source
code files in order of their likelihood of being buggy. Simi-
larly, Moreno et al. [59] calculated similarities between pro-
gram elements in the stack trace with program elements in
the source code. Rath et al. [27] utilized the project’s require-
ments and trace links for bug localization. Le et al. [22] pro-
posed an Adaptive Multi-modal bug Localization (AML)
approach that combines IR based bug localization and spec-
trum based bug localization. They also introduced a concept
of suspicious words, which are words that are associated
with a bug.

Additional Processing Steps. Different processing steps
have been added to the IR-based bug localization pipeline
to improve performance. For example, Wong et al. [60]
boosted existing bug localization performance by segment-
ing source code files and analyzing file position in the stack
trace. Sisman and Kak [61] reformulated bug report queries
using terms that consistently appear in the response of the
original queries. Chapparo et al. [38] improved bug localiza-
tion performance by reformulating low-quality bug report
queries to only the terms that described the observed behav-
iour. Rahman and Roy [62] reformulated bug report queries
by first categorizing the bug report and then performing
graph based term weighting according to its category.
Terms with the highest weights are added to the bug report
query. Chapparo et al. [63] evaluated bug report query
reformulation strategies that selectively pick certain parts of
a bug report. They found that using the bug report’s title
along with the observed behaviour entry gives the best per-
formance among different bug localization techniques and
granularities (e.g., files, methods).

Comparison With This Study. In this work, BugLocator is
used as the bug localization approach of choice since it is a
classic IR-based approach that is easy to re-implement and
extend. Comparison of bug localization approaches is
beyond the scope of this work. Such an effort is costly and
requires tremendous care to ensure all the reimplementa-
tions are correct. Additionally, the extensions that we pro-
pose here on top of BL can possibly be used for other bug
localization tools. Moreover, to the best of our knowledge,
as also evident from the descriptions of the long list of
related work that have we reviewed above, the extensions
that we propose here—BL+ adds additional corpora (source
code diffs, commit messages, bug report comments, etc.)
while Legion composes different configurations of BL+
using Random Forest—have not been considered by any
prior work.

8.2 Usability and Bias Studies

There have also been studies that investigate the usefulness of
bug localization tools, e.g., [64], [65] aswell as bias in the eval-
uation of such tools [17]. Both Wang et al. [64] and Xia et al.
[65] investigate the usability of bug localization tools via a
user study; they highlighted both the benefits and limitations
of the tools. The user studies however were not performed
on bug reports from industrial projects, and are not necessar-
ily customer-reported bugs. Kochhar et al. highlighted that

consideration of developer-reported bugsmay cause a signifi-
cant bias in the evaluation of the tools [17]; those bug reports
might already explicitly specify the buggy program files and
for these reports bug localization tools are not needed. Our
study is inspired by the aforementioned studies and extends
them by the consideration of industrial data, and customer-
reported bug reports. Also, while previous studies consider
participants who are not developers of the respective buggy
projects (they are mostly graduate students), our study inves-
tigates the perspectives of industrial developers who fixed
the buggy code.

9 CONCLUSION AND FUTURE WORK

BugLocator (BL) proposed by Zhou et al. [3] is a well-known
and effective tool and has a good track record in the
research community for localizing buggy files that need to
be fixed given a bug report. This study is an attempt to
show that BL can be useful in an industrial setting. Replica-
tion of Zhou et al.’s work showed that, across 5 of 7 highly
important repositories in Adobe Analytics, BL performed as
well as the results reported for open source repositories.
However, for a bug localization tool to gain adoption,
higher accuracy seems necessary. Based on inputs from
Adobe developers, two different target accuracy scores
were selected as the most likely needed for developer adop-
tion within Adobe Analytics. These minimums are: (1) for a
developer new to a repository, a Top 10 score of 70 percent
must be reached for the tool to be considered useful and; (2)
for a developer experienced with the repository, a mini-
mum Top 5 score of 80 percent is required. BL failed to
meet these requirements.

However, this study went beyond replication and found
that the minimum Adobe Analytics requirements could be
met by extending BL. By adding additional corpora to BL,
buggy file localization accuracy is improved. By further
applying a re-scoring approach using Random Forest, an
average Top 10 score of 76.8 percent across all repositories
is achieved. Therefore, the minimum requirement for a
developer new to a repository has been met. Legion
obtained an average Top 5 score of 71.5 percent. While this
result is below the requirement for experienced developers,
one repository did reach this standard with Top 5 score of
86.7 percent, and another came very close with Top 5 score
of 77.1 percent. This suggests that further improvements
could potentially achieve this goal.

In the future, we plan to evaluate BL, BL+, and Legion on
more repositories and bug reports from Adobe Analytics
and beyond (e.g., open-source projects). It will also be inter-
esting to also investigate internal reports more carefully (in
terms of what support developers need, how to clean the
dataset from biases, and what additional sources of infor-
mation, beyond what we have considered in Legion, could
potentially be useful). We also plan to evaluate the effective-
ness of other bug localization approaches on Adobe Analyt-
ics repositories. Also, we plan to improve Legion further,
e.g., by finding correlating BL+ configurations (not just sin-
gle parameters) and trying to improve results by removing
them, by considering inputs given by our pilot study partic-
ipants, by incorporating other advances proposed in prior
bug localization studies, etc. Moreover, we encourage future
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studies to extend our limited pilot study with developers;
the extended study can include more bug reports, more
developers, and inclusion of junior developers who are
likely to benefit more from automated bug localization
tools.
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