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Active Learning of Discriminative Subgraph
Patterns for API Misuse Detection

Hong Jin Kang and David Lo

Abstract—A common cause of bugs and vulnerabilities are the violations of usage constraints associated with Application
Programming Interfaces (APIs). API misuses are common in software projects, and while there have been techniques proposed to
detect such misuses, studies have shown that they fail to reliably detect misuses while reporting many false positives. One limitation of
prior work is the inability to reliably identify correct patterns of usage. Many approaches confuse a usage pattern’s frequency for
correctness. Due to the variety of alternative usage patterns that may be uncommon but correct, anomaly detection-based techniques
have limited success in identifying misuses. We address these challenges and propose ALP (Actively Learned Patterns), reformulating
API misuse detection as a classification problem. After representing programs as graphs, ALP mines discriminative subgraphs. While
still incorporating frequency information, through limited human supervision, we reduce the reliance on the assumption relating
frequency and correctness. The principles of active learning are incorporated to shift human attention away from the most frequent
patterns. Instead, ALP samples informative and representative examples while minimizing labeling effort. In our empirical evaluation,
ALP substantially outperforms prior approaches on both MUBench, an API Misuse benchmark, and a new dataset that we constructed
from real-world software projects.

Index Terms—API-Misuse Detection, Discriminative Subgraph Mining, Graph Classification, Active Learning

F

1 INTRODUCTION

In modern software projects, developers often depend
on third-party libraries that provide reusable functionali-
ties. Third-party dependencies are accessed through their
Application Programming Interfaces (APIs). However, de-
velopers frequently use them incorrectly by violating us-
age constraints that these APIs may impose [1], [2], [3].
Known as API misuses, the violation of these constraints
is a frequent cause of bugs, resulting in software crashes
and vulnerabilities.

There have been many techniques proposed to detect
misuses of APIs [4]; both static and dynamic analysis have
been employed. However, recent studies have shown the
ineffectiveness of existing techniques. Manually written
specifications and API misuse detectors using static analysis
have low precision and recall [5], [6]. From a survey of
existing API misuses detectors by Amann et al. [6], most
existing detectors mine frequent patterns from existing code.
These detectors then look for code that deviates from these
patterns, assuming that these deviations are API misuses.
Along with recent studies [7], [8], [9], Amann et al. [6]
suggested that this naive assumption is the cause of the
numerous false positives of existing detectors. There may
be uncommon patterns of usage that do not conform to the
mined patterns, but do not lead to bugs. Furthermore, there
are classes of APIs where their prevalent use are incorrect,
such as Java Cryptographic APIs [1], [2], [10], [11]. For these
APIs, their correct usage may look like deviants of the most
frequent patterns. Due to these reasons, the frequency of a
usage pattern is not a reliable signal of its correctness.

• H.J. Kang and D. Lo are with the School of Information Systems,
Singapore Management University
E-mail: hjkang.2018@phdcs.smu.edu.sg,davidlo@smu.edu.sg

In this study, we propose that API misuse detection can
be framed as a classification task. We propose our approach,
ALP (Actively Learned Patterns), for detecting Java misuses.
While still using frequency information, ALP does not rely
on it as the only signal of correctness, and incorporates some
human supervision from an experienced user of each API
to identify discriminative subgraph features, i.e. subgraphs
that occur more frequently in graphs of one label than
the other. These subgraph patterns act as indicators of
either correctness or misuse. Based on the discriminative
subgraphs present in each usage example, they are classified
with a machine learning classifier.

However, it is impossible to label every usage pattern
of an API. Furthermore, similar to findings from prior
work [9], we find that API usage is highly imbalanced,
with most APIs exhibiting distributions where correct usage
examples outnumber misuse examples. Misuses are usually
the minority class in this classification-based formulation
of the API misuse detection problem. While they are the
minority, misuses may lead to bugs and vulnerabilities. As a
result, failing to detect them may have severe consequences.
A naive sampling of examples to label is likely to pick usage
examples containing frequent patterns, while omitting less
common but informative patterns that may be discrimina-
tive of the minority class. Therefore, key to our approach
is our careful use of usage examples from GitHub. ALP
uses active learning to identify informative examples for
human annotation. This enables ALP to sample a small but
informative number of examples for labeling.

Next, to reduce misclassification, ALP withholds judge-
ment on examples it cannot classify with confidence, such as
uncommon usage patterns it has not seen, and leaves them
for further human inspection. Notice that this is in contrast
with existing misuse detectors, which considers usage that
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deviates from previously seen examples as misuses. Using
a novelty detector, ALP withholds judgement on usage
instances that it is uncertain of. During practical use, it is
plausible for ALP to encounter usage instances of the API
that do not resemble any training example. Given the preva-
lence of correct alternative usage patterns [9], we suggest
that the optimal behavior of an API misuse detection tool is
to signal that it does not know how to classify such usage
instances. By withholding judgement, ALP prevents wasted
developer effort investigating false positives.

ALP has several features distinguishing it from previ-
ously proposed techniques:

• ALP’s graph classification approach uses some su-
pervision, and does not rely on the limiting assump-
tion confusing frequently seen code as correct code.

• An active learning-inspired technique enables us to
leverage the diversity of Big Code, selecting infor-
mative and representative examples to label while
minimizing human supervision. Thus, ALP learns
subgraphs patterns that can characterize an API’s
usage, including uncommon usage patterns.

• Existing work assumes code deviating from mined
patterns as misuses. We suggest that this is an invalid
assumption and we address deviations of known
patterns through the use of classification with a
reject option [12], [13]. This is enabled by novelty
detection, with which ALP refrains from providing
judgement about usage instances it cannot classify
with certainty.

To evaluate ALP, we compared it against other static
API misuse detectors for Java [7], [14], [15], [16], [17] on
an existing API misuse detection benchmark, MUBench [3],
as well as another dataset of 500 API usage examples
constructed from 16 projects on GitHub. Our evaluation
results demonstrate the promise of the ALP approach. On
MUBench, ALP achieves a precision of 43.9% compared to
the state-of-the-art precision of 34.1%, and a recall of 56.3%
compared to the state-of-the-art recall of 43.3%.

To avoid bias from focusing on the misuses collated
in MUBench, which were previously identified by exist-
ing misuse detectors, we construct a new dataset, AU500.
Labeled independently by multiple human annotators, the
AU500 has 500 usage instances randomly sampled from all
API usage instances in 16 projects studied in prior work [8].
On the AU500, ALP achieves 44.7% precision and 54.8% re-
call outperforming the state-of-the-art tool, MUDetectXP [7],
which achieves 27.6% precision and 29.6% recall. While
we do not solve the challenges of automated API misuse
detection in their entirety, the substantial improvements
shows that ALP is a step forward. The contributions of this
study are:

• Problem Formulation: We formulate API misuse
detection as a graph classification task, identifying
discriminative subgraphs as features. As far as we
know, this is the first work to propose the combina-
tion of graph classification and active learning on an
API-related problem.

• Approach: We propose ALP, a novel approach uti-
lizing active learning-based sampling and a reject

option for classification, addressing challenges faced
by existing approaches. ALP and the AU500 are
available on its artifact website1.

• Evaluation: Our evaluation results show the promise
of ALP in API misuse detection, outperforming prior
work on MUBench and a new dataset we construct,
the AU500. While MUBench has labels only for the
208 misuse locations detected by prior techniques,
the AU500 dataset has 500 labeled usage sites of both
correct usage and misuses.

2 BACKGROUND

We present some background information of ALP. Through
examples, we motivate the features of ALP through the
challenges of detecting misuses that are tackled by ALP.
Afterwards, we describe the API Usage Graph [7], a graph
representation of source code shown to be promising for the
API misuse detection problem. We build ALP on top of the
API Usage Graph.

2.1 Motivating Examples
In this section, we show simplified examples from GitHub
projects that show the challenges we attempt to address.
Existing misuse detectors usually conflate frequent usage
patterns and correct usage patterns, then look for API usage
instances that deviate from these patterns. The two primary
challenges that we tackle in this work are that there is
no known way to reliably and automatically evaluate the
correctness of a mined pattern (Challenge 1) and the
correctness of a usage example that deviates from known
usage patterns (Challenge 2).

Cipher cipher = Cipher.getInstance("DES");
cipher.init(1, secretKey);
byte[] textBytes = text.getBytes(charset);
byte[] bytes = cipher.doFinal(textBytes);

Fig. 1: A usage pattern involving Cipher. This uses the
”DES” algorithm, known to be insecure [1].

The distribution of API usages is highly skewed, and
most frequency-based pattern mining approaches assume
that the most common patterns are more likely to be cor-
rect. However, this is not the case for some APIs, such as
cryptographic APIs. An example of an incorrect API usage
is shown in Figure 1. Hence, the assumption that a highly
frequent usage pattern is a correct usage is not a valid
assumption, and we address this by including some human
supervision. Still, even with a user of the APIs labeling
a sample of usage examples, it is challenging to train an
effective classifier. Due to the imbalanced distribution of API
usage patterns, if one tries to learn usage patterns through
a random sampling of examples from GitHub, then it is
possible that the sample does not contain a single example
using an uncommon pattern. In the case of Cipher, one may
only encounter examples similar to the above, and miss out
the uncommon but correct usage examples.

1. https://github.com/ALP-active-miner/ALP
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The second challenge is related to the high rate of false
positives. To detect misuses, existing tools look for devia-
tions from mined patterns. Simply reporting any deviation
as a misuse will produce numerous false positives, and the
tools mitigate this problem through various heuristics.

For an example API, we look at java.util.Map. In-
cluded in Java’s standard library, this data structure is
ubiquitous in Java projects. Yet, when we inspect the eval-
uation results of existing detectors on API misuse detection
benchmark, MUBench [3], [6], we find that none of the
existing misuse detectors are able to detect misuses of Map.
We hypothesize that this is caused by the variety of usage
contexts it appears in. Based on an empirical analysis by
sampling API usage instances from GitHub, the idiomatic
usage pattern is a null-check performed on the return value
of the get(key) method call, but there are less common
patterns that may not be idiomatic, but are safe and correct.

// 1. A pattern that is common and correct
map1 = new HashMap<>();
Integer val1 = map1.get("data");
if (val1 != null) {

...
}
// 2. A pattern that is uncommon but correct.
// If reported as a misuse, it would be a false positive
map2 = new ConcurrentHashMap<>();
for (String key : map2.keySet()) {

int val2 = map2.get(key);
...

}

// 3. A misuse of Map.
// If not reported as a misuse,
// it would be a false negative.
// codeMap.get() may return null
((Integer)this.codeMap.get(

cause.getClass())).intValue()

Fig. 2: Three usages of Map. The first is common and correct,
while the second is uncommon but correct. The third is a
simplification of a misuse from MUBench.

In the second example shown in Figure 2, we see an
uncommon usage of a ConcurrentHashMap. While it im-
plements the Map interface, ConcurrentHashMap does
not allow for null values in it. Hence, invoking get on keys
of the map (by iterating over keySet) never returns null.
However, based on the frequent pattern of a null-check, this
usage instance may be considered a misuse as it deviates
from the pattern. Reporting it results in a false positive.
Many tools use a ranking-based approach by computing
various metrics, such as rareness [14], to rank their output
with the aim of ranking false positives below true positives.

The third usage is a misuse, in which a method is
invoked on the return value of get without checking for
null, but is not detected by existing techniques. In partic-
ular, while it is a deviation from the null-check pattern,
MUDetectXP does not report such usage instances as it
heuristically omits fields from its findings. This restriction
was required to prevent numerous false positives related to
the usage of fields. While this heuristic succeeds in reducing
the number of false positives, it may cause MUDetectXP to
miss misuses.

The poor empirical performance [6] of these tools sug-
gest the need for a different approach to reduce false

positives. We suggest that, despite some success in using
heuristics to prevent the reporting of false positives, the fun-
damental problem of distinguishing real usage constraints
from spurious usage patterns remains unsolved.

We also address a third challenge, which is that API
usage patterns can be complex (Challenge 3). Some studies
model method calls and their order of invocation, data-flow,
and control-flow [16], [17], other studies has suggested the
need for modelling multiple objects [18], static methods
and constants [19], self-usages [7] (the usage of an API
within its own implementation), inheritance [19], argument
values [1], [20], and synchronization [7], [21]. Consequently,
the representation of a usage pattern has to be sufficiently
rich to capture this complexity.

1 class CopyOnWriteMap<K,V> implements ConcurrentMap<K,V> {
2 ...
3 public V putIfAbsent(K k, V v) {
4 synchronized(this) {
5 if (!containsKey(k))
6 return put(k, v);
7 else
8 return get(k);
9 }

10 }
11 ...
12 public V get(K k) {
13 this.internalMap.get(k);
14 }
15 }

Fig. 3: Example usage of Map in a CopyOnWriteMap, which
transitively implements the Map interface

In Figure 3, we show an example of the complex relation-
ships between program elements related to usage of an API.
We see uses of Map that have relationships with program
elements beyond control-flow. The class, CopyOnWriteMap,
is a sub-type of Map through the ConcurrentMap interface.
The get(key) on line 8 is a self-usage, invoking get(key) which
is overridden by the class (line 12). The object, itself a Map,
is used to synchronize access to the other method calls on
line 4.

2.2 API Usage Graph

As prior work [6], [7], [14], [19] have shown the promise of
using a graph representation of API usage for detecting API
misuses, our work represents programs as graphs. Amann
et al. [7] proposed the API Usage Graph. An example is
shown in Figure 4, constructed based on the putIfAbsent
method in Figure 3. The API Usage Graph is a directed
multi-graph with labeled nodes and edges. Nodes represent
objects, values, method invocations, constructor calls, field
accesses, and conditional checks. Edges represent data and
control flow between the program elements of the nodes.
Edges have the following labels:

• recv (linking method calls that are invoked on a
object),

• param (linking variables/literals used as arguments
to the methods called. While labeled “param”, a
more accurate label may be “arg” as this links vari-
ables/literals used as arguments to method call.),

• def (linking actions creating/returning a data),
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Fig. 4: Example of an API Usage Graph

• order (linking actions in order of execution),
• sel (for control-flow; representing a control-

relationship),
• sync (linking actions to objects they are synchro-

nized on),
• throw and handle (for exceptional flow).

Amann et al. [7] mined subgraphs of the API Usage
Graph. Alternatives to using the API Usage Graph are to
use patterns mined from other representations of a pro-
gram. For example, Grouminer [14] considers control and
dataflow dependencies, while DMMC [15] encodes the set
of methods called on an object. Still, the expressivity of
the API Usage Graph allows it to distinguish more types
of misuses from correct usage. While previously proposed
detectors have modelled some of these relationships, they
were not considered in tandem. On the other hand, these
relationships are combined in the API Usage Graph [7].
Therefore, patterns mined in these prior studies [14], [15]
can also be represented as a subgraph pattern in the API
Usage Graphs Frequent subgraphs mined from API usage
graphs was shown to be able to capture usage constraints of
APIs in previous work [7]. Therefore, we express programs
as API Usage Graphs in our work and mine subgraphs from
them.

2.2.1 Discriminative Subgraph Mining
Many existing approaches focus on mining frequent usage
patterns of source code using an API. Frequent subgraphs
are discovered by identifying subgraphs occuring more than
a user-specified number of times in a collection of graphs.
Most of these frequent subgraphs will not be discriminative
of API misuses, in other words, they may appear equally fre-
quently in both correct and incorrect API usages. Moreover,
there is usually a large number of subgraphs with frequency
greater than the user-specified number of times. The large
volume of frequent subgraphs may make further processing
of the subgraphs unscalable.

One solution to the limitations of frequent pattern min-
ing is to mine discriminative subgraphs. Used for graph
classification tasks where graphs have different labels, these
subgraphs are both frequent and have discriminative power
to distinguish between graphs of different labels. In our
study, we mine discriminative subgraphs to distinguish

Fig. 5: Vector representation of a usage example. The i’th el-
ement in the vector is 1 if the i’th discriminative subgraph is
present in the usage example. Given that the second element
represents a check for containsKey, and the program in
Figure 3 contains a checks for containsKey, the second
element is 1.

API usage graphs that are misuses from API usage graphs
that are correct. In other words, we look only for frequent
subgraphs that are indicative of either correct or incorrect
API usage. While all discriminative subgraphs are frequent,
not all frequent subgraphs are discriminative.

Graphs can be represented by the subgraphs that they
contain. To use discriminative subgraphs to perform clas-
sification, each usage location is expressed in terms of the
presence and absence of these subgraphs. A vector of the
same length of the number of discriminative subgraphs,
containing 0s and 1s representing absence and presence
respectively, is passed into a machine learning classifier. For
example, the source code given in Figure 3 could be repre-
sented as a vector in Figure 5. A single usage example may
match multiple subgraph features (e.g. both the second and
last subgraph features in Figure 5 are matched). The other
discriminative subgraphs that are not present in the API
usage location have a value of 0 in the vector. Representing
the usage in this form allows the use of machine learning
classifiers which take vectors as input.

The task is of a probabilistic nature; while it is typically
the case that containsKey followed by get is a correct usage,
this usage pattern does not guarantee that the usage is
correct. Some implementations of java.util.Map may
allow a null value. As such, an approach that directly
matches programs to a singular pattern cannot capture
this uncertainty while the machine learning classifier-based
approach of ALP reflects the nature of this task.

2.3 Active Learning

Active learning is a subfield of machine learning that aims
to achieve better effectiveness while requiring fewer labelled
examples [22], [23], [24], [25], [26]. Many machine learning
techniques require many labeled examples, which are exam-
ples where their true class has been indicated by a human
annotator, to train a model. Active learning techniques can
be useful in situations where labels of examples are hard
to obtain. Rather than selecting random examples to be
labelled, active learning aims to select informative and rep-
resentative examples, and has been shown to be effective in
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Fig. 6: Data points projected onto the input feature space.
Each point represents one example. The dashed line repre-
sented the decision boundary of the model, which learned
to distinguish between examples of two different labels.
The figure indicates two groups of examples that have been
labeled. The unfilled circles indicate examples that have not
been labeled. An active learner may select an example from
Unlabeled for labeling.

minimizing the number of labels required to learn an effec-
tive classifier. Approaches using active learning ask queries
that are answered by an oracle (usually human annotators).
These queries are unlabelled examples; their true classes are
not known yet as they have not been labeled by the human
annotator. In the context of graph classification, an active
learning technique poses query graphs, unlabeled graphs, to
the human annotator.

Many frameworks for querying unlabelled examples
have been proposed [22], [23], [24], [25], [26]. Many of these
strategies direct the human annotator’s attention at informa-
tive examples, such as examples where the model produces
the most uncertain predictions [22], [23], [24], examples
that would cause the model to change the most [27], or
examples that will reduce the variance of a model [25]. In
Figure 7, points with similar features as the already labeled
examples (and are close to them in the input space) are less
likely to be selected, since they likely share the same label
as the labeled examples. An example from the Unlabeled
region is likely to be selected as it is far from the already
labeled examples. Another direction of research measures
the representativeness of unlabelled examples, addressing
limitations of prior techniques that tend to select outliers
for labeling (e.g. selecting the outlier in Figure 7 may not
give us information about the other points in the Unlabeled
cluster). These techniques, e.g. [26], [27], favour examples
that are in dense regions of the input space, or are most
similar to other unlabelled examples (e.g. examples from
Unlabeled in Figure 7) . In short, active learning tries to
minimize the total number of labels required by selecting
query examples that are informative and representative. An
informative example is one that should be dissimilar to

examples that are already labelled, while a representative
example is one that is similar to other unlabelled examples.

In ALP, we leverage active learning to iteratively iden-
tify examples from GitHub to be labelled by the human
annotator. We describe in Section 3.6 how we determine
unlabelled usage examples that are dissimilar from already
labelled examples, while ensuring that they are similar to
other unlabelled usage examples.

To motivate this, we use Figure 1 as an example. If
ALP has already obtained enough examples to mine a
feature indicating that getInstance(”DES”) is an incorrect
use, ALP will focus more on examples that do not contain
getInstance(”DES”) (hence, dissimilar to existing labeled ex-
amples). However, of the different usage examples, it will be
helpful to focus on examples with usage patterns that do not
appear by coincidence and are not outliers (in other words,
examples which are similar to other unlabelled examples).
These heuristics would help ALP to locate examples that
use other types of algorithm (e.g. ”AES”).

2.4 Learning with Rejection and Novelty Detection

Researchers have proposed a framework for classification
with a reject option [12], [13], [28]. This framework consists
of two components: a traditional classifier and a rejection
function. The goal is a machine learning model that knows
what it does not know. It is suggested that this framework
is useful for scenarios where incorrect predictions can be
costly, such as medical diagnosis [13]. Typically, approaches
that incorporate learning with rejection estimate the confi-
dence of a prediction. If less confident about a prediction,
the model withholds its prediction.

Rejecting a classification and task of novelty detection
are closely related [29]; a classification should be rejected if
the object under classification is an outlier [29], and novelty
detection is the task of identifying that some test exam-
ple does not resemble the examples used during training.
While modern machine learning techniques learn from large
amounts of data, it is still possible that a large number of
examples that exist in the real world are not reflected within
the dataset. Solutions to this problem learn a model of
“normal” examples seen during training, and use the model
to detect “abnormal” examples during testing. One-class
classification can be used to approach this problem [30], [31],
in which a model learns to differentiate the “normal” class
seen during training from all other examples [32].

In ALP, we use a classifier with a reject option, in which
we use an off-the-shelf novelty detector (later described in
Section 3.7) as a measure of the confidence of a prediction.
If the novelty detector determines that the example is novel,
then it rejects the classification and does not make a pre-
diction. The novelty detector compares a test instance to its
neighbours to determine how isolated the instance is; the
more isolated and further it is from its neighborhood, the
more novel it is.

In the example of Cipher, if ALP has only seen
examples that allowed it to mine some features for a
small set of algorithms (e.g. getInstance("DES") and
getInstance("AES")), it will not be able to correctly
judge the correctness of a previously unseen algorithm.
When faced with a test instance that use a new algorithm,
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Fig. 7: Examples projected onto the input feature space.
Given that two features related to “DES” and “AES” have
been identified, a novelty detector detects if a test instance
(shown with a question mark, “?”) uses an algorithm it has
not seen (e.g. “RSA”). This allows ALP to make the right
choice to reject the classification as it has no way to make
the right prediction.

e.g. getInstance("RSA"), as shown in Figure 7 as the
question mark (“?”), the novelty detector allows ALP to
detect that it is a an out-of-distribution instance as it does
not resemble any of the training examples, all of which have
one of the two subgraph features.

3 APPROACH

3.1 High-level Overview

In ALP, the API misuse detection task is reformulated as a
graph classification task. In this formulation of the problem,
usage sites of an API (methods using an API) can be clas-
sified as either a misuse or a correct usage. Summarized in
Figure 8, ALP relies on a human annotator to label a small
set of selected examples as correct and misuse examples.
Next, it performs discriminative subgraph mining while
picking more examples for the human annotator to label
based on principles of Active Learning. Finally, a machine
learning classifier is trained together with a novelty detector.

We represent each method with a usage of the API as a
graph, G. ALP extends the API Usage Graph to represent
source code (Section 3.3). Examples of API usage are mined
from GitHub (Section 3.4) and these examples are trans-
formed into graphs. In order to train and use a machine
learning classifier, each graph is represented as a feature
vector, v. To this end, we identify and use discriminative
subgraphs features (Section 3.5).

The difficulty of addressing Challenge 1 using a super-
vised approach is the need to minimize human effort while
labeling examples that are less common but informative. It
is not possible for a human to label every possible usage
pattern. ALP directs human attention to examples that differ
from already labeled examples to maximise the diversity
of labeled examples, addressing Challenges 1 and 2. This
is enabled by an active-learning inspired approach (Section
3.6), in which ALP iteratively queries the human annotator
for the labels of a small but informative batch of examples.

Finally, we perform classification using a machine learn-
ing classifier (Section 3.7). We utilize reject option in classifi-
cation [12], [13] for handling usage instances with uncertain

labels. This helps addresses Challenge 2 during testing
time, detecting if the usage instance is too abnormal from
training usage examples. When faced with an abnormal
example, ALP does not consider it a misuse, but defers
judgement. The classification module outputs one of three
labels, Rejection (signalling uncertainty), Misuse, or Correct.

ALP represents programs using the API Usage Graphs
(see Section 2.2). This enables ALP to mine subgraph fea-
tures that are complex, consisting of multiple types of in-
formation (e.g. both constraints on parameter values and
control-flow can be included within a single pattern). To
tackle Challenge 3, we address several limitations of the API
Usage Graph by extending it to include richer information
about the program. In this work, we refer to our extension
as the EAUG (Extended API Usage Graph).

To sum up, ALP consists of the following components:

• Extensions to the API Usage Graph (Extended API
Usage Graph). This allows for the subgraph mining
process to mine features that are key to avoid false
positives.

• A wrapper over GitHub’s search API. This is used
to obtain usage examples.

• A loop over the human annotating the examples,
the discriminative subgraph miner, and the selector
of examples to label. This is the only component
requiring (potentially multiple iterations of) human
input.

• The graph classifier. Based on the features mined
by the discriminative subgraph miner, the classifier
is tuned over the training dataset. It outputs one of
three labels (Correct, Misuse, and Unknown) for an
unlabelled instance during testing time.

3.2 Workflow of ALP
ALP is intended for use by an experienced user of a given
API. We assume that these users are knowledgeable about
the use of the API, and can accurately label the correctness of
their usages with relatively low effort. ALP enables a user to
identify potential problems without writing a specification
by hand. Some studies have shown that manually written
specifications may introduce many false positives as they
fail to account for all usage patterns used by API clients [5].
Other studies also suggest that developers face many chal-
lenges writing specifications [33], [34].

In this work, the first author studied the APIs carefully
before labeling the data. We envision that our work may
be useful for an API developer to locate all projects and
locations where the API may be used incorrectly, such as
if a vulnerability related to the API has been reported, or
if the API developer plans to introduce a breaking change
that may affect clients that have used the API in a way
not expected by the API developer [35] (e.g. due to API
workarounds [36]). There is often a knowledge gap be-
tween API developers and API users [36], [37], and it is
possible that users may use an API in ways that violate
undocumented usage constraints (i.e., misuses) . For such
cases, a modification to the API by the developer may
break the client projects [38], [39]. Considering the latter
usage scenario (developer introduces breaking changes), the
following illustrates the benefit of ALP:
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Fig. 8: High-level overview of ALP. ALP’s objective is to classify API usages. A user labels a small sample of usage
examples, categorizing them as misuses or correct uses. Discriminative subgraphs, which are indicative of either correct
uses or misuses, are identified from these labeled examples. ALP may identify more samples of informative and
representative code examples for labeling. Based on the discriminative subgraphs, a given API usage can be represented
as a vector, and then input to a Machine Learning classifier to determine if it is a misuse.

Without ALP, the API developer will have to search
for all usages of the API and manually inspect them to
determine if it is a misuse. The API developer may try to
filter the usages, but ultimately will find it difficult to per-
form a search that checks if a given constraint holds and to
enumerate over all the valid usage scenarios. The developer
may also miss out uncommon usage patterns. This leads to
loss of time and increases the cost of maintenance when the
API developer wishes to introduce breaking changes.

With ALP, the API developer only has to label a small
number of usage examples, and ALP can classify the lo-
cations that are likely to be misuses, acting as a filter for
usages that the developer has to inspect. Moreover, once
ALP has been trained, it can be used again without any cost.
The developer only needs to inspect the few locations that
ALP reports misuses in, and can quickly reach out to the
developers of the client projects. As a result, the developer
can save time and effort while detecting potential problems.

The workflow of using ALP is given as follows:

• First, the type of the API is given as input, then ALP
randomly selects a small number of examples for the
user to label.

• Next, the first batch of inputs is input to ALP, which
may query the user for the labels to another batch of
examples. This step is repeated until the stopping
criteria (e.g. a maximum of 5% of the dataset are
labelled, or if ALP has found enough discriminative
subgraphs for 95% of the dataset) is met. After this
step, no further data is labeled.

• ALP uses the labeled examples as input to construct

a machine learning model of the API. Both the graph
classifier and novelty detector are trained in this step.

• After ALP has a trained model of the API, it can
accept test instances as input. Given a file with source
code using an API, ALP converts each method using
the API into a vector. For each instance, the model
produces one of three labels, Correct, Misuses, or
Unknown.

Within this study, we limit ourselves to look for misuses
in MUBench and AU500. To evaluate the generalizibility of
the approach, we do not label usage examples from projects
that are present in MUBench and the AU500. The usages in
MUBench and AU500 are used only as test instances.

3.3 Extended API Usage Graph

To mine discriminative subgraphs, we represent an API
usage as a graph, and we propose extensions to the API
Usage Graph (AUG). While the AUG can represent many
important aspects of an API usage, we find that it considers
only information of program elements directly related to
the execution of the program. We hypothesize that other
elements in the source code, which may not directly influ-
ence a program’s execution, may serve to inform developers
of their purpose and can act as indicators of the different
contexts of an API usage. Extending the AUG with these in-
dicators may allow subgraphs that are more discriminative
to be mined. In this subsection, we motivate the choices we
make for extending the AUG using concrete examples from
GitHub.
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1 void sendNck(String protocol, PrintWriter printWriter,
2 String result) {
3 printWriter.write(protocol + TOKEN_DIVISION +
4 result + "\r\n");
5 printWriter.flush();
6 }
7
8 void quit(String nickName, PrintWriter printWriter,
9 BufferedReader bufferReader, Socket socket) {

10 ... // removed irrelevant code
11 printWriter.close();
12 ... // removed irrelevant code
13 }

Fig. 9: Simplified example usage of PrintWriter. The
PrintWriter’s use is spread across multiple methods.

Parameters and fields. The AUG does not distinguish be-
tween variables that are instantiated locally in the scope
of the current method, the fields of the class, and the
parameters of the current method. We suggest that having
the ability to distinguish between them will help to further
distinguish between different usage contexts, including self-
usages [6] where the implementation of an API calls itself.
In practice, developers may use fields and parameters dif-
ferently from local variables. Fields have a wider range of
usage compared to local variables; the usage of fields may
extend beyond a single method and may hold the result of
partial computation, may be used for synchronization, or for
caching. Empirically, we found that the use of some APIs
are not self-contained within a single call site, e.g. many
usages of PrintWriter use it as a field in an enclosing
class. While the correct use of a PrintWriter requires
close to be invoked at the end of its lifecycle, its correct
use may be spread across multiple methods of the enclosing
class. Hence, a misuse only occurs if a usage constraint of
the enclosing class is, itself, violated. Another frequently
observed pattern (e.g. in Figure 9) is that a PrintWriter
is passed as an argument to the method, and it would not
be a misuse if the PrintWriter wasn’t closed as the client
of the API that passed in the PrintWriter should close it
from the outside of the API. On the other hand, had the
PrintWriter been instantiated as a local variable, then
failing to invoke close on it will cause a resource leak. Note
that while the AUG has an edge type (described above as the
param edge) to indicate that a particular variable is passed
as an argument in a method call, the AUG does not indicate
the parameters of the method represented by the AUG.

In the EAUG, we indicate fields and parameters differ-
ently from local variables, indicating this piece of informa-
tion in the data node. Similar to fields, method parameters
may have implicit usage constraints on them and may
follow specific rules and patterns [20], [40].

Constructors and field initializations. We observe that
constructors and field initializations provide essential infor-
mation to identify misuses. For example, some fields are
immutable (e.g. the name of a cryptographic algorithm,
such as “DES” and “AES”, as a string constant, and this
information is essential to identifying API misuses related
to cryptography), such as the example in Figure 11. Once
assigned a value, they are never reassigned and this value
is critical in deciding if the use of an API is a misuse. To

Fig. 10: When a field is used in a method, the initialization
of the field is linked to the method through an order edge.

1 // a constant with a choice of algorithm
2 private static String DES_CBC = "DES/CBC/PKCS7Padding";
3
4 byte[] process(
5 byte[] src, byte[] key, byte[] iv) {
6 ...
7 Cipher cipher = Cipher.getInstance(DES_CBC);
8 ...
9 }

Fig. 11: Simplified example usage of a Cipher. The Cipher
is initialized using the value of a field.

include such information, we find statements from blocks of
code containing the initialization of fields (e.g. constructors,
field initialization, and initialization blocks), linking them to
the graph of methods that use these fields. As the execution
of the initializations and constructor must occur before the
execution of other methods, they are joined by order edges
in the graph, where the initializations are ordered before the
method invocations. An example is shown in Figure 10.

Subtyping and inheritance. The self-usage of members
of an API often imply different usage constraints [7], for
example, one source of false positives was related to self-
usage, in which a class invokes its own API in its own
implementation [7] as API usage within its own implemen-
tation may deviate from common usage patterns [7]. For
example, a class implementing the Iterator interface may
internally call its next() method without a check of the has-
Next() method [6]. Usage constraints expected of clients, e.g.
guarding method calls or checking a return value, may not
be necessary for self-usages. Other studies also found that
API clients may extend the API through inheritance [19].
We try to detect this context by including information about
subtyping and inheritance in the Extended AUG (EAUG);
if a class implements a given interface, a correct usage of
the API may resemble other usages that implements the
same interface. Thus, the EAUG can model self-usages by
generalizing it as a usage contextualized by a particular
interface.

We encode such information by including the super-
class/interface as a data node linked to the method entry.
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(a) Example of an Extended API Usage Graph (b) Example of an API Usage Graph

Fig. 12: Example of an Extended API Usage Graph, shown in (a). The corresponding API Usage Graph, previously presented
in Figure 4, of the same program is shown in (b)

Concretely, this allows ALP to extract this information as
a subgraph of a single node during the discriminative
subgraph mining process. In the vector representation of the
usage example, it may not be directly useful on its own, but
it may provide useful information in conjunction with the
other subgraph features for the classifier to make a decision.

Comparison with AUG In Figure 12, we provide a visual-
ization of the EAUG of the example shown earlier in Figure
3, which is represented as an AUG shown ealier in Figure 4.
In the EAUG, the interface, ConcurrentMap, implemented
by the CopyOnWriteMap is captured in a node. Moreover,
the type of the variable is suffixed with “param:” if it was
passed into the method from the calling site as an argument.
While this example does not use a field, the type of a
field would be similarly prefixed with “field:”. This allows
ALP to distinguish between fields, parameters, and locally
instantiated variables.

3.4 Mining GitHub
To learn subgraph features, we first require a set of usage ex-
amples of a given API. We take advantage of the numerous
usage examples of an API on GitHub. The examples from
GitHub are later labeled by the human annotator and this
data is used as the training dataset.

We mine GitHub for usage examples by adapting a
tool [41] that wraps over GitHub’s search API. Types are
resolved on a best-effort basis by downloading the latest
version of the libraries whenever requiring third-party de-
pendencies. If type resolution fails, we discard the usage
example.

As the majority of files on GitHub are clones [42], we per-
form a file-level code clone de-duplication to avoid wasted
effort and space storing redundant information. We use a
token-based algorithm similar to SourcererCC [43]. Much
of SourcererCC focuses on scalability, which we did not
need in our work and we used only its code comparison
algorithm. Next, methods using the API are identified and
a method-level de-duplication is used to further trim the

dataset. Hence, only unique methods will be labeled by a
human annotator.

To detect code clones, we use a token-based
approach [43]. We consider a block of code as a bag
of tokens. The similarity measure, O (Bx, By), between two
code blocks, O(Bx, By), is computed based on the number
of tokens shared by the code blocks, it is given as follows:

O (Bx, By) = |Bx ∩By|

If O (Bx, By) is greater than 0.7, then we consider the
code blocks as clones. As earlier described, we perform code
clone deduplication at the method-level, and the human
annotator does not waste any effort in labeling a code clone
of an earlier labeled method.

On average, we find that there are about 7 code clones
(explained ) for a file containing an API usage. 37% of the
files have at least one clone, and the most frequently cloned
file had over 1600 code clones. This is in line with previous
studies [42], [44], which found a large number of copy-and-
pasted code on GitHub.

3.5 Discriminative subgraph mining

Unlike typical machine learning applications, graphs cannot
be immediately encoded in a vector space, which is required
to pass the graph as input to a machine learning classifier.
One method of encoding a graph in a vector space is to run a
subgraph mining algorithm and identify the best subgraph
features. The graph is represented as a vector indicating if
these subgraphs are contained in it. Then, we mine sub-
graphs that are discriminative, i.e. occurring more frequently
in graphs of one label than the other. Rather than using
frequent subgraphs, we posit that discriminative subgraphs
are more likely to better represent usage constraints.

In Figure 13, we illustrate the discriminative subgraph
mining process using the running example. Given some
examples that have been labeled, ALP mines subgraphs
from them. Among the examples containing a null-check
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(a) Fragments of three examples using java.util.Map

(b) Parts of the three examples represented as EAUGs

Fig. 13: Simplified examples of three usages of
java.util.Map, shown in (a), and parts of their EAUG
representation, shown in (b)

Fig. 14: Example discriminative subgraph mined from the
examples in Figure 13 after labeling. This discriminative
subgraph represents a null-check following get

following a get method call, there are significantly more
examples that are labeled by the human annotator as correct
usages than incorrect usages. Thus, the subgraph shown in
Figure 14, common to the three examples in Figure 13, is
identified as a discriminative subgraph feature.

In this study, discriminative subgraphs are identified
by two criteria. As ALP enumerates through frequent sub-
graphs, a test of statistical significance is performed to filter
out insignificant subgraphs. At the end of the frequent
subgraph mining process, a second round of filtering is
done using the CORK criterion [45], which we use to re-
move subgraph features that do not contribute to improving
classification.

Enumerating frequent subgraphs Enumerating frequent

subgraphs allows us to skip the consideration of subgraphs
with support below a threshold, min sup. However, iden-
tifying frequent subgraphs is computationally costly due
to the cost of checking for subgraph isomorphism, which
determines if a graph contains a particular subgraph. This
check is known to be NP-complete. To enumerate frequent
subgraphs quickly, we leverage the frequent subgraph min-
ing algorithm, gSpan [46], which is well-understood and
efficient.

gSpan takes a collection of graphs andmin sup as input,
identifying subgraphs with frequency above min sup as
output. To efficiently enumerate the frequent subgraphs,
gSpan maps each subgraph to a canonical representation,
a minimum DFS code. Through a depth-first search, gSpan
enumerates subgraphs in their DFS code order. The order of
subgraphs visited can be viewed as a traversal of a DFS
code tree. When a subgraph with a non-minimum DFS
code is reached, it is directly pruned from the code tree.
Using this strategy, gSpan visits subgraphs in the canonical
search space, without the computationally expensive test for
subgraph isomorphism. In this work, we set min sup to
a small value, 3. In practice, the threshold required for a
subgraph to be discriminative predominantly depends on
the Chi-Square test of independence if the choice of the
min sup parameter is small.

Fig. 15: Simplified example of a frequent subgraph that is
not discriminative, representing usages printing to standard
output. ALP enumerates such subgraphs, but they fail to
pass the checks used to identify discriminative subgraphs.

Testing for significance A frequent subgraph may occur
commonly among the usage examples of an API, but have
no implication on the correctness of the usage. For example,
a frequent subgraph of java.util.Map may capture the
common use of System.out.println (as shown in Figure 15),
which is unrelated to using java.util.Map, while another
frequent subgraph captures the usage pattern of a null-
check following get, a true usage constraint (previously
shown in Figure 14). Our objective is to filter away the
subgraph shown in Figure 15, but keep the subgraph shown
in Figure 14. Therefore, when enumerating the frequent
subgraphs, we perform a second check that the frequent
subgraph has some discriminative power. In the case of
java.util.Map, the subgraph that captures the null-check
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would be discriminative, while the subgraph that encodes
printing to System.out would be filtered out.

Next, we try to find subgraphs that appear more fre-
quently among one label (C or M). To determine if a sub-
graph appears significantly more in graphs of one label than
the other, we compute the support of each subgraph. We
count four quantities. They are CH , the support (number of
‘hits’) of the subgraph among examples labeled C, examples
of correct usage, CM , the number of graphs labeled C that
does not contain the subgraph (‘misses’), and MH and MM ,
similarly defined for the examples labeled M, the examples
of misuses. Then, we use a Chi-Square test of independence
to determine if the difference in the number of occurrences
of a subgraph in the two set C and M is more often than
expected by chance, using a significance level of 0.05 as a
threshold. The Chi-Square statistic measures the statistical
significance of a pattern, and is calculated as follows:

χ2 =
∑

i={C,M}

∑
j={H,M}

(
oij − eij

)2
eij

(1)

oij is the support observed of CH , CM , MH , and MM .
eij is the expected support, given the null hypothesis that
the subgraph is not discriminative of either label. Under
the null hypothesis, the subgraph is expected to appear a
similar number of times in graphs of both labels. The Chi-
Square statistic is, therefore, a measure that the difference
in the number of observations did not occur by chance.
For the null hypothesis to be rejected, the subgraph should
appear significantly more frequently in graphs of one label.
The larger χ2 is, the more probable there is a relationship
between the subgraph and the label. Subgraphs that are not
discriminative with respect to the two label are filtered out.

CORK scoring criterion Finally, we use the CORK scor-
ing criterion [45]. While the subgraphs remaining after the
previous step are discriminative, the subgraphs may not be
independent and may frequently co-occur with one another.
The CORK criterion allows us to address this by discarding
subgraphs that do not contribute to better classification.
CORK counts the number of correspondences, which are
pairs of misuse and correct examples that cannot be disam-
biguated from each other given the selected set of features.
A high correspondence indicates that the selected features
lack discriminative power and more features should be
selected. CORK is defined by the following equation, where
v is the example represented as a feature vector, and f is
a feature in the set of selected features, F . Given a pair
of labeled examples i and j, i and j correspond with each
other if they have different labels but their feature vectors,
v, constructed based on the currently selected features, are
identical.

correspondence(i, j)⇔
(
v(i) ∈ C

)
∧
(
v(j) ∈M

)
∧ ∀f ∈ F

(
v
(i)
f = v

(j)
f

) (2)

Initially, F is empty. We iterate through the significant
subgraphs in the decreasing order of their coverage of the
unlabeled dataset, considering one subgraph at a time. A
subgraph feature is added to F only if it improves the CORK

score (i.e. only if it contributes to disambiguating at least one
pair of misuse/correct example). After this step, we have
obtained a set of discriminative subgraphs which will be
used to construct the feature vector of a usage site.

Branch-and-prune Mining subgraphs is known to be com-
putationally intensive. For mining subgraphs in a shorter
time, researchers have proposed various methods to speed
up the search. Such approaches may involve pruning
the search space. For example, gSpan employs a heuris-
tic to prune branches during the traversal of the code
tree. Branches corresponding to supergraphs are pruned
if a subgraph has frequency below the minimum support,
min sup, as any supergraph has a lower frequency than
its subgraph. Similar to existing subgraph mining algo-
rithms [45], ALP’s extends the branch-and-prune approach
in the canonical search space to speed up subgraph mining.
As our focus is to identify subgraphs that occur more
significantly for one label, we compute the upper-bound of
significance that a supergraph can have in this particular
branch. For any subgraph, the best case is that one of CH

or MH is maximized while the other is 0. Within the code
tree, as we traverse from a subgraph to its supergraph, a
supergraph feature is most informative when one of CH or
MH reaches 0 while the other (MH or CH ) is maintained at
its current value. As such, we compute the best p-value (as
given by the Chi-Square test) that a supergraph can achieve
on a traversal of a particular branch. If this score is insignif-
icant, then we prune this branch. This allows us to speed
up the subgraph mining process. In this study, we only
consider subgraph patterns with size up to 6 edges to keep
running time reasonable. The size of subgraphs considered
influences the running time. There is an exponential increase
in running time for every increase in the number of edges
we consider. Six was, therefore, selected as this was the
maximum size of subgraph that we could mine within one
hour from a dataset of over 2000 API usage examples. The
size of the subgraph affects the specificity of the features we
mine; if we set the size to a greater value, then it could mine
larger patterns. However, the larger the pattern is, the more
likely it is specific to a few usage locations, while smaller
patterns are more likely to be found in more usage locations.
Empirically, all the mined subgraphs in our experiments had
fewer than 6 edges.

3.6 Selection of examples to label

ALP involves a human-in-the-loop, using multiple rounds
of labeling. It initially queries for labels of several dozens
randomly sampled unique methods. For the subsequent
rounds of labelling, ALP applies principles of active learn-
ing [47], [48], [49] to the selection of queries for labeling. Dif-
ferent from typical scenarios that active learning is applied
to [48], the choice of selected examples to label and the iden-
tification of discriminative subgraphs features are closely
coupled. For a subgraph to be identified as a discriminative
subgraph, it has to occur among the labeled usage examples
enough times such that it can be statistically more common
in either the correct usage or misuse examples. Therefore,
a sufficient number of graphs that contain the subgraph
must be labeled. Otherwise this subgraph, regardless of how
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potentially discriminative it can be (given a hypothetical
fully-labeled dataset), cannot be selected as a feature.

However, it is prohibitively expensive for us to label
enough graphs to have information about every subgraphs.
As described earlier in Section 2, performing active learning
on graphs requires the selection of query graphs in each
round. These query graphs are the usage examples that
the human annotator will annotate in the coming round.
Existing studies [47], [49] suggest a good selection of query
examples should be both informative and representative. A
query graph should not be similar to graphs already labeled
(i.e. informative), and it should be similar to other graphs
that are unlabeled (i.e. representative).

Informativeness Using these principles, we identify heuris-
tics for picking examples to label. To pick informative ex-
amples, we only select queries from the graphs uncovered
by the currently selected features. Thus, the query graphs
will be dissimilar from already-labeled graphs as they will
not share features. Due to the coupling between the choice
of examples to label and subgraph features, we propose
that the informativeness of labeled examples can be viewed
through the informativeness of the subgraphs features they
contain. As such, we measure the informativeness of sub-
graphs using the notion of coverage following the work of
Wang et al. [50], but viewed through the lens of graphs and
subgraphs:

• Coverage: the proportion of total examples contain-
ing at least one selected subgraph. Having a high
coverage indicates that we can characterize the space
of the API usage using the selected subgraphs. The
more the coverage increases when a subgraph is
selected, the more informative the subgraph is.

In the example of labeling java.util.Map, if ALP
has already seen enough examples to know that a null-
check following get is a common and correct usage pattern,
ALP focuses the labeler’s attention to examples that do not
contain a null-check following get.

Representativeness To prevent the selection of non-
representative examples, i.e. outliers, we filter out sub-
graphs that appear in too few graphs. These subgraphs
can never be discriminative even if all graphs are labeled,
as the number of graphs they appear in is too small. The
number of graphs, min signif , required to be significant is
pre-computed based on the Chi-Square test of independence
and the threshold of statistical significance (p-value=0.05).
We pick only query graphs containing the remaining sub-
graphs. In other words, we only select graphs containing
potentially discriminative subgraphs, which are subgraphs
that are contained in at least min signif graphs. Conse-
quently, graphs containing such subgraphs share at least
one feature with min signif − 1 other graphs, and are less
likely to be outliers.

To pre-compute min signif , we simply enumerate pos-
sible values starting from 1 and pass these values to the
Chi-Square test, given the number of occurrences of correct
and incorrect uses among the currently labeled set of exam-
ples. We pick the smallest value that satisfies the threshold
of statistical significance (0.05) and set min signif to this
value.

String rule = inputSourceMap.get(ruleName);
...
InputSource is = new InputSource(
StreamUtil.stringTOInputStream(rule));

Fig. 16: An example usage of java.util.Map that
is not representative. It uses project-specific code
(StreamUtil.stringTOInputStream). ALP has little to
gain even if this example was labeled.

In the example of labeling java.util.Map, ALP
should avoid wasting the labeler’s attention on outliers,
such as uncommon usages that are specific to a given client
project (e.g. the example shown in Figure 16). Knowing
the labels of the outliers would not help ALP to learn
discriminative subgraph features.

Constraint solving For each iteration, we view the selection
problem as an optimization problem where we pick un-
labeled examples to optimize quality metrics with respect
to some constraints. The first constraint is that for each
potentially-informative subgraph, we only want to pick the
minimal number of graphs for the subgraph to be selected
as a discriminative feature. The second constraint is that,
in each batch, we pick at most 0.5% of graphs to label.
Therefore, solving the optimization problem can be seen as
the selection of a minimal number of graphs to maximize
our knowledge of subgraphs that cover many graphs.

We encode information about the graphs, subgraphs,
and subgraph isomorphisms as a logic program. We pass
the logic program as input to an off-the-shelf logic program
solver, Clingo [51], selected for its ease-of-use and its strong
performance against other systems [52]. The solution to
the optimization problem is the next set of examples to
label. These graphs are labeled and passed to the subgraph
mining algorithm. This process is continued until one of
two stopping criteria is satisfied: 1. more than 95% of the
training dataset has been covered by the identified subgraph
features, or 2. we have labeled 5% of the dataset. As only
0.5% of graphs are labelled in each batch, it may take up
to 10 batches to satisfy the stopping criterion of 5% of the
dataset being labeled. These values were picked arbitrarily.
We assumed that a limited number of examples were col-
lected and 5% was chosen as a sweet spot. Empirically, we
collected an average of 2330 usage examples per API, and
on average, only about 1% of the examples were labeled.

In this logic program, we consider a set of predicates.
First, we define graph(i) for all uncovered graphs in the
dataset. Next, we define subgraph(j) for all frequent
subgraphs that were mined as an intermediate product of
the discriminative subgraph mining process. Note that these
are frequent subgraphs, and not discriminative subgraphs,
as we are trying to determine the next set of graphs to label.
Therefore, these graphs do not yet contain a subgraph that
we have found to be discriminative. After this, covers(i,
j) is defined over graph(i) and subgraph(j), and it
holds subgraph if j is present in the graph i. As earlier
described, coverage gives us the total number of graphs
that have been covered; containing at least one subgraph
that may be discriminative. The output of executing the
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logic program on Clingo is the answer set containing the
query graphs, which are the graphs that are selected.
These are the usage examples that will be labeled in the next
iteration. Logically, we express the two desired properties of
informativeness and representativeness by maximizing the
coverage of graphs, given a set of subgraphs that may be
discriminative subgraphs.

We show the encoding of these properties in Figure 17.
After the logic program is executed, the output are the query
graphs, which are the graphs that are selected. Line 2
specifies a constraint that each graph can be selected for
labelling at most once. Lines 5-7 determine if a subgraph
may be discriminative given the currently selected graphs.
A frequent subgraph has to appear a statistically significant
number of times (n in Figure 17) among the labelled graphs
for it to be considered a discriminative subgraph. Therefore,
if a subgraph appears in fewer labeled graphs than this
threshold, it cannot be discriminative. In this formulation,
we consider that a subgraph may be discriminative if it
appears in at least n query graphs, where n is the sup-
port required for a subgraph to be discriminative. Line 10
denotes that the total number of query graphs should not
exceed s, set to be 0.5% of the total number of graphs. This
number is the number of instances that the human annotator
has to label in the next iteration. Lines 12 and 15 declares
that the choice of selected graphs should maximize the
coverage. In short, we find a small set of graphs such that
labelling them may help to identify the set of subgraphs that
maximises coverage.

Observe that, at each iteration of selecting a batch of
query examples, the coverage can only increase as we only
select graphs that were not previously covered. This helps
in identifying query graphs that are more informative than
if we had randomly selected examples. Next, the selection of
query graph targets only subgraphs that may be discrimina-
tive. This helps to select only graphs that are representative.

We visualize this process in Figure 18, and to improve
the intuition of this process, we work backwards from
our objective. Our objective is to maximise coverage of all
unlabeled graphs. A graph is covered when a subgraph
is discriminative and is contained in this graph. A sub-
objective is, then, to determine the choice of discrimina-
tive subgraphs that can maximise coverage. To determine
if a graph is discriminative, ALP requires a statistically
significant number of graphs to be labeled. In Figure 18,
to simplify our example, we assume that only one graph is
required to be labeled for a subgraph to be discriminative.
Then, in this simple example, three subgraphs will suffice
to cover 9 out of 10 examples. The next sub-objective is
to select the graph for labeling. One graph is selected for
each potentially discriminative subgraph. As there are three
subgraphs, three graphs that contain these subgraphs are
selected. By labelling these three selected graphs, we will
have information about the subgraphs they contain, and
these subgraphs cover most of the examples.

3.7 Graph classification
The final part of ALP is the classification module which
uses classification with a reject option. Apart from (M)isuses
and (C)orrect, we introduce a third decision, reject, express-
ing uncertainty and inability to classify the usage instance

accurately. This module comprises of a machine learning
classifier and a novelty detector, as seen in Figure 19. To
classify an API usage instance, the input API usage is
encoded into an EAUG, G, and subgraph isomorphism tests
are performed for each discriminative subgraph [53]. This
gives us the feature vector, v.

vi =

{
1 if Fi v G (i.e. Fi is a subgraph of G)
0 otherwise (3)

v is a binary indicator vector, given in Equation 3. vi is set
to 1 if the graph contains the i-th discriminative subgraph
feature, Fi.

To train the classification module, a grid-search is done
on the training data to identify the best-performing (in terms
of F1) classifier in 5-fold cross validation. As the dataset is
imbalanced, we oversample instances of the minority class.
SVM (with linear, RBF kernel), K-nearest neighbors and
Bayes Classifier (Naive and Complement [54]) are included
in the grid search. Our choice of classifiers exclude Deep
Learning models as they need voluminous data, but our
dataset typically have only about 50 labels for each API. We
train one model per API.

Novelty detection The novelty detector allows the classi-
fication module to identify that a code usage is abnormal
and is unrepresented in the training dataset. Novel usage
patterns can appear during practical usage, and cannot
be characterized by the set of patterns identified from
the training dataset. As we train our classification model,
the novelty detector is also tuned on the training dataset.
To perform novelty detection, we use the Local Outlier
Factor [55] algorithm. For each data point, the algorithm
measures how isolated is it with respect to its neighbors.
The novelty detector can be viewed as a binary classifier,
categorizing an example as an outlier or not. If it is an
outlier, then ALP withholds its judgement. We use an off-
the-shelf implementation2 of this algorithm in this work.

This algorithm was selected for its effectiveness on data
distributions where the data forms clusters of different
densities. We expect that API usage examples follows this
distribution. Due to alternate usage patterns, we expect
that majority of examples belong to a core-pattern cluster,
with smaller, loose clusters containing other examples using
alternative patterns. An advantage of this technique is that it
provides an outlier factor, which is a measure of how much
of an outlier a point is, rather than just producing a binary
output. We train one model for each API.

4 EMPIRICAL EVALUATION

4.1 Benchmarks
To evaluate the effectiveness of ALP, we run an empirical
evaluation using two benchmarks. MUBench was used to
evaluate prior work [3], [6], [7], and the AU500 dataset
that was constructed from API usage instances in real-world
projects. The training dataset comprises usage examples of
the API selected by ALP from GitHub, To evaluate ALP
on the benchmarks, we took care to construct the training

2. https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.LocalOutlierFactor.html
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1 % each graph can be selected only once
2 { selected(G) : graph(G) } <= 1 :- graph(G).
3
4 % a subgraph may_be_discriminative if n graphs are selected and contains the subgraph
5 may_be_discriminative(SG) :- #count {
6 G : selected(G), covers(G, SG), graph(G) } >= n,
7 subgraph(SG).
8
9 % s or less graphs are selected

10 :- { selected(G)} > s.
11
12 % a graph is covered if a subgraph that may_be_discriminative is contained in it
13 coverage(X) :- X = #count {G: covers(G,SG), graph(G), may_be_discriminative(SG) }.
14
15 #maximize {X : coverage(X) }.

Fig. 17: Expressing the constraints as a logic program, trying to find the best selected graphs based on the subgraphs
that may be discriminative.

Fig. 18: Our objective is to maximise coverage (green dots
on the right, each dot represents a one usage example)
while minimizing the number of labeled examples (black
dots on the left). In this example, by labeling 3 graphs,
we gain enough information about the subgraphs that can
collectively cover 9 graphs.

dataset such that API usage examples from projects in
the benchmarks were not labeled. Therefore, ALP takes
advantage of data from many projects from GitHub, but
this dataset is separate from the testing dataset. For each
API, an average of 2330 usage examples (at the granularity
of a method) were collected from GitHub. Using the pro-
cedure described in Section 3.6, we use an average of 23
labels for each iteration, and an average of slightly over
2 iterations were required for each API. This quantity is
fewer than other studies that use active learning for tasks
related to defect and fault prediction [56], [57], as well as

API
Usage

Novelty
Detector

Reject

Classifier

C/M

Classification Module

Fig. 19: ALP’s Classification Module. Given an input
method, it either signals that it cannot be classified (Reject),
or classifies it as a misuse (M) or correct use (C).

studies using active learning for inferring state machine
specifications [58], which may require the user to answer
several hundred queries.

We studied the same APIs as prior work [7], which are
57 APIs from both the Java standard library as well as third
party libraries. Through the discriminative mining process,
we mined about 6 discriminative subgraphs per API. As the
size of the vector passed to the machine learning classifier
is equal to the number of discriminative subgraphs, the
average vector size in our experiments is also 6.

All experiments were run on a Ubuntu server with an
Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz and 64GB of
RAM.

4.1.1 MUBench
First, we perform the experiments using the API Misuse De-
tector benchmark, MUBench [3], that was used to systemat-
ically evaluate the existing misuse detectors. These existing
misuse detectors are Tikanga [16], Jadet [17], DMMC [15],
GrouMiner [14], MUDetect [7], MUDetectXP (MUDetect on
its cross-project setting, where it mines multiple projects [7]).
Tikanga, JADET, DMMC, GrouMiner, and MUDetect mine
patterns from the project with the misuse. Instead of only
a single project, MUDetectXP uses Boa [59] to search for
examples on GitHub, mining API usage patterns from mul-
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tiple projects. We report the results that were previously
reported by Amann et al. [7]. Similarly, we use examples
from GitHub to train ALP. While the existing approaches are
unsupervised, ALP harnesses the power of limited human
supervision to boost its performance.

We follow the experimental setup from prior work [6]
for computing Recall and Precision. For computing Recall,
an experimental procedure known as Experiment R was
proposed. In Experiment R, the findings of the detectors are
inspected to count the number of known misuses reported.
The extended version of MUBench was used, containing
208 methods with a misused API. Consisting of misuses
identified in prior studies, MUBench allows comparison
between misuse detectors over these known misuses. This
procedure allows us to compare and contrast the misuses
found by each detector. We use ALP to train models of the
APIs studied in Experiment R.

As studies [60], [61], [62] have shown that develop-
ers rarely use tools producing many false positives, an
experimental setting for computing Precision is provided
by MUBench. In this experimental setup, Experiment P,
ten projects from the MUBench are selected and the mis-
use detectors are run on these projects. We use the same
projects as the previous studies: Of these ten projects, five
were used by Amann et al. [3] in the original version of
MUBench, while another five were included in the extended
version of MUBench [7]. These projects were selected as they
were among the projects where previously studied detectors
could successfully run on, and at most one detector did not
report any findings [7].

To compute precision, the findings of the misuse detec-
tors are investigated manually. Because of the large volume
of findings that are reported by existing misuse detectors,
only the top-20 findings of each detector on each project
are investigated, allowing us to compute Precision@20. This
is the same procedure used for evaluating Precision in
previous studies [3], [6], [7]. This keeps the amount of effort
required to investigate the findings reasonable. ALP does
not produce a ranking of findings. To allow for comparison
against the other detectors, we sample 20 reported misuses
using the outlier factors produced by the novelty detector,
which may be interpreted as a degree of confidence that
ALP has in a particular finding. As the outlier factors are not
comparable between different APIs, we randomly sample
(without replacement) 20 misuses inversely weighted by its
outlier factor; we are less likely to sample a misuse if the
misuse is likely to be an outlier.

MUBench [3] also provided an experiment setup for
the Recall Upper Bound. In this setting, perfect examples
to mine patterns of, i.e. only correct usage examples, are
provided to the detectors for each misuse. However, this is
irrelevant to ALP and MUDetectXP [7], as they mine GitHub
for usage examples.

4.1.2 AU500
To gain a different perspective of the overall effectiveness
of ALP, we construct a new dataset. To avoid bias from
focusing on the misuses collated in MUBench, which were
previously identified by existing misuse detectors, we sam-
ple 500 API usage instances randomly from 16 open-source
Java projects, which are clients of the APIs we study. We

TABLE 1: Number of usage sites in our evaluation dataset,
AU500

Category Project Commit Sites

GUI

Apache FOP [63] 1942336d7 59
SwingX [64] 820656c 16
JFreeChart [65] 893f9b15 51
iTextPdf [66] 2d5b6a212 71

Commons

Apache Lang [67] 0820c4c89 34
Apache Math [68] 1abe3c769 22
Apache Text [69] 7d2b511 13
Apache BCEL [70] 5cc4b163 3

Security

Apache Fortress [71] a7ab0c01 6
Santuario [72] 3832bd83 15
Apache Pdfbox [73] 72249f6ff 17
Wildfly-Eytron [74] a73bbba0f0 14

Database

JackRabbit [75] da3fd4199 90
H2Database [76] 0ea0365c2 84
Curator [77] 2af84b9f 3
Apache BigTop [78] c9cb18fb 3

Total 500

TABLE 2: Breakdown of correct and misuses in AU500

Project # Misuses # Correct usage
Apache FOP [63] 18 42
SwingX [64] 3 15
JFreeChart [65] 10 42
iTextPdf [66] 13 56
Apache Lang [67] 4 30
Apache Math [68] 3 16
Apache Text [69] 1 12
Apache BCEL [70] 1 2
Apache Fortress [71] 0 6
Santuario [72] 2 13
Apache Pdfbox [73] 6 11
Wildfly-Eytron [74] 4 10
JackRabbit [75] 5 85
H2Database [76] 43 41
Curator [77] 0 3
Apache BigTop [78] 2 1
Total 115 385

use the same client projects as those investigated by Wen et
al. [8] These projects were identified as projects that were
from diverse domains, categorized based on their official
definition and GitHub topics [8] . Wen et al. [8] studied the
APIs in MUBench, as well as popular APIs discussed on
StackOverflow [79]. However, in this work, we look only
for uses of the APIs studied by Amann et al. [7], as we
use MUDetectXP as our baseline. The details of the projects
that are given in Table 1. We use exactly the same projects
studied by Wen et al. [8], identifying the right commits
based on the dates that the projects were accessed by Wen et
al. [8]. Each usage instance of an API was labeled by human
annotators as either a correct use or a misuse. The dataset
and labeling guideline are available on the artifact website.

As we randomly sampled usages from the clients
projects, the distribution of API usages in the AU500 reflects
the actual distribution of 9972 API usage locations in the
client projects. A further breakdown of the API usages into
misuses and correct usages is given in Table 2.

We had 4 annotators label the dataset. Only one of the
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TABLE 3: The number of misuses with a particular violation
type, based on the MUC, in the AU500

Violation Type # violations
Missing Method Call 51
Missing Condition 62

null check 21
value or state 41

Missing Exception Handling 2

annotators is an author of this paper. One of the annotators
has a working experience of over 10 years in industry and
all the annotators have at least one year of experience.
Each usage instance was independently labeled by at least 2
annotators. When there were disagreements, consensus was
reached through a discussion between the annotators.

A typical annotator took about 4 minutes to annotate
each usage instance, but first spent up to 32 minutes to
understand the labeling guideline and the APIs through
reading its Javadoc, related StackOverflow posts, and exam-
ples of misuses. Similar to previous studies on API misuses,
we consider usages at the granularity of a method. When
considering a usage example, an annotator was expected
to look at the rest of the source code in the same file. The
usage example is presented in its original source code with
code comments intact. We instructed the annotators to use
the projects’ Javadoc documentation and code comments of
other files in the project when required. If a class or method
from a third-party library is used, then the annotators were
instructed to use the documentation of the third-party li-
brary.

For inter-annotator agreement, we computed Fleiss’
Kappa [80] of 0.49, which is interpreted as Moderate Agree-
ment. Disagreements were caused by differences in opinion
about other mistakes in the same function and if they should
be considered as a violation of the API’s usage constraint.
Another source of disagreement was over the enclosing
class’ undocumented invariants and usage constraints.

Next, we used the API-Misuse Classification (MUC),
developed by Amann et al. [6] to label each misuse with
the type of violation. The MUC allows for the comparison
of different API misuse detectors in terms of the types of
violation they can detect. the MUC distinguishes between
misuses with missing or redundant program elements. The
breakdown of violation types in the AU500 is given in Table
3. Compared to MUBench, the AU500 has 4 categories of
violation types related to missing API usage elements, while
MUBench has 7 categories of missing API usage elements. In
the AU500, there are no violations with redundant program
elements, which are the minority of misuses in MUBench.
However, similar to MUBench, the vast majority of mis-
uses in the AU500 are related to missing method calls or
condition checks. While MUBench had a single instance for
misuses related to missing or additional synchronization,
context, iteration, the AU500 does not have any misuses re-
lated to them. In the construction of the AU500, we selected
the same APIs as the APIs studied in MUBench. However,
while MUBench largely consists of misuses identified in
prior studies, the instances in the AU500 were randomly
sampled from 16 projects. Therefore, the distribution of
misuses in the AU500 are representative of the distribution

of misuses in the 16 projects.
Compared to the projects evaluated in MUBench’s Ex-

periment P, AU500 share 3 projects (IText, JFreeChart,
Apache Math), but different versions (as identified by their
commits) of each project were used in the AU500 and
MUBench.

For the AU500, we compute Recall, Precision and F-
measure by running the misuse detectors on all the projects,
and retain only the reported misuses among the 500 anno-
tated instances. As every test instance was annotated, we
can compute Precision instead of computing Precision@20
as we have done for MUBench. Precision can be computed
similarly to its use in machine learning literature, in which
it is the proportion of true misuses among the reported
misuses in the 500 labeled instances. True positives is the
size of the intersection of the reported misuses and the
instances labeled as a misuse. False positives is the size of
the intersection of the reported misuses and the instances
labeled as a correct usage. False negatives is the size of the
intersection of the reported correct usages and the instances
labeled as a misuse.

Precision = TP
FP+FP Recall = TP

FP+FN

Finally, the F1 is the harmonic mean of Precision and
Recall:

F1 = 2× Precision×Recall
Precision+Recall

To obtain the results for MUDetectXP, we run MUDetec-
tXP on the 16 projects, but we do not retrain it on new data
as it already had models for the APIs we study. Both ALP
and MUDetectXP learn their models from data obtained
from GitHub.

4.2 Research Questions
Our evaluation aims to answer these research questions:

RQ1. Is ALP able to detect misuses previously detected by
existing tools?

This research question concerns the ability of ALP to
detect misuses found by existing misuse detectors. We com-
pare ALP against existing misuse detectors on MUBench.

RQ2. Does ALP find more misuses compared to existing
approaches?

The objective of this research question is to evaluate the
effectiveness of ALP. Rather than focusing on the misuses
found in previous studies, we evaluate ALP on the AU500,
constructed from API usage instances in real-world projects.

RQ3. What is the effect of having a reject option and
EAUG in ALP?

In this research question, our objective is to have an
ablation study, where we determine if the reject option and
our extensions to the AUG are extraneous. To minimize
false positives, ALP leverages a novelty detector to reject
classifying test usage instances that are dissimilar to train-
ing examples. Also, to incorporate more signals beyond
program elements used in the execution of a program,
ALP used an extended version of the AUG that captures
more information. Using the same metrics, we compare the
performance of ALP with and without the two components
on the AU500 dataset.



17

TABLE 4: Statistics of running MUBench’s Experiment P.
Other than ALP, the results of the detectors were taken from
prior work [7].

Detector Experiment P
# findings # true misuses Prec. @ 20

Tikanga 85 7 8.2%
JADET 91 8 8.8%
DMMC 161 12 7.5%
GrouMiner 156 4 2.6%
MUDetect 146 32 21.9%
MUDetectXP 91 31 34.1%
ALP 164 72 43.9%

TABLE 5: Statistics of running MUBench’s Experiment R. #
unique is the number of misuses found only by one detector.
Other than ALP, the results of the detectors were taken from
prior work [7].

Detector Misuses in Experiment R
# found # unique Recall

Tikanga 13 0 6.3%
JADET 7 1 3.4%
DMMC 21 4 10.1%
GrouMiner 5 0 2.4%
MUDetect 42 4 20.2%
MUDetectXP 90 6 43.3%
ALP 117 35 56.3%

RQ4. What is the effect of using a different training
dataset?

ALP was trained with usage examples of APIs mined
from GitHub. In machine learning-based approaches, the
quality of data used for training is known to affect effective-
ness. Therefore, in our last research question, we investigate
the change in performance of ALP when a different training
dataset is used. We observe and compare the change in per-
formance metrics when ALP is trained on the same dataset
used by MUDetectXP [7]. This training data was constructed
through the 2015 GitHub dataset from BOA [59], containing
up to 1,000 usage examples for each API.

4.3 Experimental Results

4.3.1 RQ1. Performance of ALP on MUBench

Table 4 and 5 summarize the results of our evaluation on
MUBench. During our manual inspection of the results, we
find that one of the misuses in MUBench, identified by
MUDetect in prior work, was, in fact, a false positive. This
case, identified as a misuse of java.util.Map, is actually a
usage of Multimap3. Unlike Map, Multimap does not return
null, and instead returns an empty collection when get(key)
is invoked with a key not contained in the map. As its
usage in this case is not a misuse, we removed this case
from our evaluation. Another misuse site was in a project
that was no longer publicly accessible, and as such, we
also removed this case from our evaluation. Without using
examples from GitHub, MUDetect outperforms the other
existing tools in both precision and recall, and by using ex-
amples from GitHub, MUDetectXP improves substantially
over MUDetect and is the strongest baseline.

3. https://guava.dev/releases/23.0/api/docs/com/google/
common/collect/Multimap.html#get-K-

For Precision@20, following the procedure described in
MUBench [6], we4 manually inspected the top 20 cases
found by ALP on each project, and finished with a pre-
cision of 43.9%. We computed Cohen’s Kappa to measure
the agreement between the two annotators and obtained
a Kappa value of 0.75 – usually interpreted as substantial
agreement [81], [82]. According to Landis and Koch [81], a
Kappa value between 0.40 to 0.6 corresponds to moderate
agreement, while 0.6 to 0.8 is substantial agreement, and a
value above 0.8 is almost perfect agreement. In total, ALP re-
ports 164 violations in the top-20 findings in the ten projects,
identifying 72 true misuses. Compared to existing detectors,
ALP outperforms the baseline detectors in terms of Preci-
sion, with the strongest baseline, MUDetectXP, achieving
a precision of 34.1%. Table 4 summarizes Experiment P’s
results.

For Recall, ALP identifies 117 misuses out of the 208 mis-
use (56.3%) in MUBench. In contrast, MUDetectXP identifies
90 cases out of 208 misuses (43.3%). Thus, ALP improves
over the state-of-the-art by 13%.

The results of Experiment R are summarized in Table 5.
From the results, there are 35 misuses that only ALP can
find, and there are just 15 misuses that the existing detectors
can find that ALP is unable to. This shows that ALP is
capable of detecting misuses that none of the existing misuse
detectors can detect.

Next, we construct a composite baseline detector built
from all baselines. This detector reports a misuse at a partic-
ular location as long as a single baseline detector reports a
misuse. This composite detector would correctly report 111
misuses, and have a resulting Recall of 53.4%, which is still
fewer than the 117 misuses and recall of 56.3% ALP detects.
Comparing the composite detector and ALP, there are 15
misuses found only by the composite detector, while there
are 35 misuses found only by ALP. This indicates that ALP
is complementary to prior techniques.

Compared to MUDetectXP, ALP was able to mine more
usage constraints with fewer spurious patterns. Together
with the extensions to the AUG, ALP was able to mitigate
the effect of self-usages (where the internal implementation
of an API calls itself) without the need for handcrafted
heuristics. We will provide a further discussion of the dif-
ferences between ALP and MUDetectXP in Section 5.1.

We investigated the true misuses that ALP did not find.
For misuses related to some APIs, we find that there are too
few examples on GitHub to learn any meaningful patterns.
Neither ALP nor MUDetectXP was able to detect misuses
related to these APIs as both correct and incorrect usages of
these APIs are too rare. These APIs include:

• org.apache.jackrabbit.core.config.ConfigurationParser,
• org.apache.commons.lang.text.StrBuilder,
• org.apache.commons.httpclient.auth.AuthState.

We did not observe any trend regarding the misuses
that ALP could detect in the AU500 dataset based on
the categories of misuses in the API-Misuse Classification
(MUC) [6] framework, which categorizes misuses based on
the type of violation (e.g. missing null-check). ALP was able

4. Two annotators, including a non-author of this paper who was not
informed about the purpose of the labels
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TABLE 6: Experimental results on the AU500 dataset

Detector Prec. Recall F1
ALP 44.7% 54.8% 49.2%

ALP (w/o reject option) 36.0% 62.6% 45.7%
ALP (w/o EAUG) 19.0% 45.2% 26.7%

MUDetectXP 27.6% 29.6% 28.6%

to detect misuses in the AU500 belonging to every category
of the MUC. Consistently, the remaining misuses that were
undetected by ALP are spread across various categories.

4.3.2 RQ2. Performance of ALP on the AU500
Next, we compare the evaluation metrics of the best-
performing baseline, MUDetectXP [7], against ALP on the
AU500. As MUDetectXP was shown to outperform the other
existing baseline detectors, we focus on it.

Table 6 shows the evaluation metrics of ALP and MUDe-
tectXP on our evaluation dataset. Of the 500 usage in-
stances to classify, ALP reports 141 of them to be misuses,
identifying 63 true misuses correctly, while MUDetectXP
reports misuses for 123 of them, identifying 34 true misuses
correctly. ALP finds 29 more misuses than MUDetect. In
total, there are 115 true misuses among the 500 usage sites.
Therefore, ALP has a recall of 54.8% while MUDetectXP has
a recall of 29.6% (a difference of 25.2%). ALP has a precision
of 44.7% while MUDetect has a precision of 27.6% (a dif-
ference of 17.1%). Overall, ALP achieves an F1 of 49.2%,
a substantial improvement (of 20.6%) over MUDetectXP,
which achieves an F1 of 28.6%.

Among the true misuses detected by either tool, ALP
managed to find 36 misuses that MUDetectXP did not iden-
tify, while MUDetectXP identified 7 misuses that ALP did
not detect. There are 27 misuses that both MUDetectXP and
ALP identified. These numbers indicate that if combined,
ALP and MUDetectXP will detect 70 of the 115 true misuses
(a recall of 60.9%). This represents an increase in Recall of
about 6% compared to the use of ALP alone, and it suggests
that ALP is complementary to MUDetectXP. Overall, ALP
outperforms the state-of-the-art approach, MUDetectXP, but
a developer trying to detect as many misuses as possible,
regardless of the amount of developer effort needed, should
use both tools together.

4.3.3 RQ3. Effect of reject option and EAUG on ALP
The first two rows of Table 6 shows the performance of
ALP with and without the reject option. Without the reject
option, ALP reports 59 more instances are buggy (among
the 500 annotated usage instances), however, its precision
is lowered by 8.7%. Among the 59 more findings, only 9 of
them were true misuses (or about 15.3%). This indicates that
the novelty detector was helpful in withholding inaccurate
decisions. ALP’s recall increases by about 7.8% without the
reject option, but overall, it attains a reduced F1 of 45.7%
compared to 49.2%.

On MUBench Experiment R, ALP finds 1 more misuse
when the reject option is removed. Without the use of the
novelty detector, we have no means to rank the misuses
reported by ALP. Therefore, we are unable to compare
the change in performance in Precision@20, which requires

TABLE 7: Summary of differences in performance metrics
when ALP is trained with the same dataset (GitHub 2015)
as MUDetectXP

Detector MUBench AU500
Prec.@20 Recall Prec. Recall F1

ALP (original data) 43.9% 56.3% 44.7% 54.8% 49.2%
ALP (GitHub 2015) 36.3% 47.6% 28.2% 58.3% 38.0%

MUDetectXP 34.1% 43.3% 27.6% 29.6% 28.6%

the top 20 misuses for each project. Instead, we run ALP
with and without the reject option, and we report the total
number of misuses reported among the projects. Without
the reject option, ALP reports 543 misuses in total, while
with the reject option, it reports 440 misuses in total. Thus,
by removing the reject option, ALP would report 23% more
usage locations. We sampled 30 of the 103 rejected misuses,
and found that just 3 of them were true positives. Therefore,
we see that the reject option helps to mitigate Challenge 2,
and overall, improves F1.

Next, we evaluate ALP with and without the extensions
made to the AUG. The third row of Table 6 shows the
performance of ALP without the EAUG, i.e., using only
the original AUG. We found that the performance of ALP
dropped substantially without the EAUG, with a reduction
in precision of over 20% on the AU500. On MUBench’s
Experiment R, the Recall of ALP dropped to 24.5%, a decline
of 30%. We observed that the decrease in effectiveness was
caused primarily by reporting many false positives related
to ResultSet, which implements the Closeable inter-
face. Without the EAUG distinguishing between parameters
and local variables, ALP would report that any usage of
the ResultSet without a corresponding close method call
as a misuse, even if the ResultSet was passed in as an
argument or was a field. Therefore, we conclude that cap-
turing this information, as done in the EAUG, is important
for distinguishing between correct and incorrect usages of
some APIs.

4.3.4 RQ4. Effect of using a different training dataset
In our final research question, we compare the performance
of ALP when using the same training data as MUDetec-
tXP [7]. Referring to the dataset used by MUDetectXP as
the GitHub 2015 dataset, Table 7 summarizes the differences
in performance metrics. On both MUBench and the AU500,
overall performance declined when the GitHub 2015 dataset
was used. On MUBench, both Precision@20 and Recall
drops from 43.9% to 36.3% and from 56.3% to 47.6%. On the
AU500, Precision drops from 44.7% to 28.2%. While Recall
increased from 54.8% to 58.3%, the overall performance, in
terms of F1, dropped from 49.2% to 38.0%.

Compared to MUDetectXP, all performance metrics of
ALP remained higher. In particular, the F1 of ALP is almost
10% higher than the F1 of MUDetectXP on the AU500.
The results suggest that ALP improves over MUDetectXP
even when using the same training dataset, validating our
findings and design decisions, even though the choice of
training dataset influences overall effectiveness.

Overall, the experimental results suggest that the ef-
fectiveness of ALP depends heavily on having a training
dataset that is sufficiently large. This supports the intuition
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that ALP leverages the diversity in the training dataset to
mine discriminative subgraphs and construct an accurate
classifier. Qualitatively, we observed that the smaller dataset
had the consequence of having lower diversity among the
usage examples used for training. This hindered the iden-
tification of discriminative subgraphs for many APIs. For
some APIs, there were extremely few examples of incorrect
usage in the smaller dataset, preventing ALP from learning
a model of that API.

5 DISCUSSION

5.1 Qualitative Analysis

So far, this paper has shown a quantitative evaluation of
ALP. Next, we perform a qualitative evaluation of ALP. In
this section, we look into the features that were identified by
ALP and MUDetectXP. We also discuss cases of misuses of
the most common APIs, which provide insights as to why
ALP was able to detect some misuses that MUDetectXP
missed, as well as some cases that ALP failed to detect a
misuse.

Developers may implement a class that extends
Enumeration. In their implementation of the nextElement
method, the obligation to check for hasMoreElements falls
on the client of the new class. Take, for example, the code
snippet from a real GitHub project given in Figure 20.
Reporting new FileInputStream(fileNames.nextElement()) as a
misuse of nextElement results in a false positive. ALP cor-
rectly identifies that the information about implementing
the Enumeration interface is an important feature for
detecting misuses of nextElement. This is possible as ALP
includes subtyping in its model of source code, the EAUG.
Therefore, ALP is able to correctly detect that this usage
is a correct usage, avoiding a false positive. On the other
hand, existing misuse detectors are incapable of encoding
any pattern that captures such information, showing the
difficulty of Challenge 3, which motivates an expressive
representation of programs.

class MyInputStreamEnumerator implements
Enumeration<FileInputStream> {

private Enumeration<String> fileNames;

public MyInputStreamEnumerator(
Enumeration<String> fileNames) {

this.fileNames = fileNames;
}
@Override public boolean hasMoreElements() {

return fileNames.hasMoreElements();
}
@Override public FileInputStream nextElement() {

FileInputStream ret = null;
try {

ret = new FileInputStream(
fileNames.nextElement());

} catch(FileNotFoundException ex) {
ex.printStackTrace();

}
return ret;

}
}

Fig. 20: A client of nextElement. A salient feature recognised
by ALP is that the class implements Enumeration, high-
lighted in red, which helps ALP to correctly judge that this
is not a misuse without the need for handcrafted heuristics.

TABLE 8: Patterns discovered by MUDetectXP and ALP

Detector total patterns # unrelated
MUDetectXP 81 72

ALP 35 9

Next, we investigate the patterns mined by ALP and
MUDetectXP as both MUDetectXP and ALP produce sub-
graph patterns as a by-product. As each usage instance
was compared against the mined patterns, having many
patterns that are unrelated to the API usage will lead to
lower effectiveness. We analyze these subgraph patterns for
java.util.Map. As mentioned previously, we focus on
Map due to its prevalence in virtually all Java projects.

The results are given in Table 8. While MUDetectXP did
not detect any misuse of java.util.Map in MUBench,
MUDetectXP mines 81 patterns related to it. Of these pat-
terns, 72 (88%) do not relate any of the program elements
(e.g. method invocations, parameter values) of Map, and
instead are spurious patterns (e.g. related to printing data
to standard output) that occur frequently with Map in the
dataset. These patterns can never identify a misuse of Map,
only producing false positives. The remaining patterns are
related to Map, but do not represent usage constraints. For
example, the pattern in Figure 21 was identified by MUDe-
tectXP and led to several false positives. While this pattern
frequently appeared, it is not a usage constraint; when
violated, there are no consequences. This demonstrates that
MUDetectXP faces Challenge 1 and 2; it is difficult to
automatically and reliably determine the correctness of a
pattern, and when given a violation of a pattern, it is difficult
to determine if the violation really is a misuse.

ALP mines 35 patterns of java.util.Map. Of these
patterns, just 9 (25%) of them are patterns that do not show
any relationship between program elements of Map. The
patterns mined for each API are available on the artifact
website. This suggests that ALP addresses Challenge 1
and 2; it reduces the number of spurious patterns that
are mined, and largely picks up subgraphs that are more
likely to affect the correctness of the API usage.

One reason that ALP detects some misuses that are
missed by MUDetectXP is that MUDetectXP failed to mine

Fig. 21: A spurious usage pattern mined by MUDetect.
While frequent, its violation leads to no consequences.
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the usage constraint using its subgraph mining algorithm.
For example, MUDetectXP is not able to detect misuses
related to java.util.List, which was often misused
in cases when its size was not checked before invoking
get(index) on it. We hypothesize that this limitation is caused
by the different ways that the size can be checked before in-
voking get(index), for example, within a for-loop or checking
for isEmpty before invoking get(0), as well as the possibility
of having arbitrary amounts of code in between the check
on the size and the invocation to get(index). On the other
hand, ALP is able to represent a usage using multiple
disjoint subgraphs, and the use of human labels allows
it to filter out subgraphs that are incidentally mined from
the arbitrary code in between the relevant code.

We also inspected some cases that ALP did not suc-
cessfully detect. Because ALP makes a decision based on
subgraphs which are disjoint from one another, it may fail
to detect a misuse when a single method contains multiple
instances of the object. For instance, if there are multiple
uses of an API in a method, it cannot detect cases where
the first object is correctly used, but the second object is not.
The first correct usage masks the incorrect second usage. In
contrast, MUDetectXP is able to detect that the second usage
violates a usage constraint.

In Section 4.3.4, we observed that ALP was less effective
when using the smaller and, as a result, less diverse dataset.
This is related to another limitation of ALP, in which it
cannot identify patterns which occur extremely rarely. Both
correct and incorrect usage patterns that are rare cannot be
identified as discriminative subgraphs as ALP will consider
them outliers. MUDetectXP shares a similar limitation. If it
fails to identify any patterns from a limited set of examples,
then it cannot detect any misuses. However, unlike ALP,
MUDetectXP only requires examples of correct usages.

Ultimately, while ALP outperforms MUDetectXP quan-
titatively, both tools are complementary, outperforming the
other under different circumstances. Fundamentally, both
approaches rely on different strategies, having strengths and
limitations that are different from each other. As mentioned
previously in Section 4.3.2 (RQ2), and they should be used
together if the goal is to detect as many misuses as possible.

To conclude, our takeaways from the qualitative evalua-
tion are as follows:

• ALP’s extensions to the API Usage Graph allowed
it to correctly detect self-usages (calling another
method from within the same interface) without the
need for handcrafted heuristics.

• ALP has some success in addressing the challenges
we described at the start of the paper. It identifies
usage constraints while minimizing the number of
irrelevant patterns mined.

• By representing each graph using a vector of disjoint
subgraphs, ALP avoids some difficulties faced by
prior studies.

• ALP and MUDetectXP may outperform each other
under different circumstances and have different lim-
itations, and to detect as many misuses as possible,
both tools should be considered.

5.2 Threats to Validity

To mitigate threats to internal validity, we double checked
our source code and data, however, errors may remain.
Whenever possible, we reused existing, off-the-shelf imple-
mentations of algorithms to reduce the risk of implemen-
tation mistakes. We also make our source code publicly
available on the artifact website. Another threat is bias in
our dataset. To mitigate this bias, each instance is labeled by
at least one annotator with industry experience.

For minimizing threats to construct validity, we reused
the same benchmark and evaluation metrics as previous
studies. For the AU500 dataset, as we have a complete set of
labels, we reuse evaluation metrics that are more commonly
used for various classification problems in other domains.

The projects used by ALP differ from those used by
MUDetectXP, however, both sets of projects were obtained
from GitHub. Since the projects were sampled from GitHub,
we do not expect substantial differences between the
projects used. However, we note that ALP downloaded a
larger corpus of usage examples (about 2000 examples of
API usage examples compared to only 1000 for MUDetec-
tXP). When we modified the source code for MUDetectXP
to mine patterns from up to 2000 examples, we found that
MUDetectXP faces scalability issues. Running on a machine
with 64GB of RAM, MUDetectXP exhausts all the available
memory while mining patterns. Therefore, we are unable to
complete the experiments without changing the subgraph
mining process used by MUDetectXP, which would fun-
damentally change how MUDetectXP identifies patterns.
Furthermore, in RQ4 (see Section 4.3.4), we have investi-
gated the performance of ALP when using the same dataset
as MUDetextXP and found that ALP still outperformed
MUDetectXP on both MUBench and the AU500 dataset.
Fundamentally, ALP mines only discriminative patterns
considering informative usage examples, while MUDetec-
tXP mines all frequent patterns considering all examples.

To mitigate threats to external validity, we have used two
benchmarks to increase the spread of API usage examples
considered. A threat is that our findings may not apply to
APIs that were not studied. However, we study the same
APIs as prior work, and both the APIs and projects studied
are from diverse domains.

6 RELATED WORK

6.1 API misuses

Static analysis Many studies have proposed approaches
for mining API usage patterns [7], [9], [14], [15], [16], [17],
[79], [83], [84], among these studies, several studies describe
how to use their patterns for detecting API misuses in
source code [7], [9], [14], [15], [16], [17], [84]. Many of
these studies mine frequent patterns and detect misuses
from anomalies from frequent patterns in their choice of
source code representation. PR-Miner [84] uses frequent
itemset mining over the function calls invoked to identify
association rules between functions. JADET [17] constructs
finite state automatas based on temporal properties over
method calls and extracts patterns from them. It detects
anomalies that violate the model and heuristically ranks
them. Building on JADET, Tikanga [16] converts JADET’s
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models into formulas in Computational Tree Logic, then use
model checking to identify formulae with enough support
in a codebase. DMMC [15] detects missing calls on a receiver
type, characterising methods by the invocations on each re-
ceiver type. Alattin [9] is an approach that mines alternative
patterns to detect missing conditional checks. All of these
studies proposed unsupervised techniques to mine patterns
solely based on their frequency.

Most similar to our work are GrouMiner [14] and MUDe-
tect [7]. GrouMiner represents programs as groums, which
are graphs that encode method calls, field accesses, control,
and data-flow. Frequent pattern mining is used to identify
correct usage patterns. MUDetect [7] encodes methods as
API Usage Graphs, building on top of Groums but encoding
more relationships between program elements, as described
earlier in Section 2.2. MUDetect mines frequent subgraphs
through the Apriori algorithm [85]. Like our work, MUDe-
tectXP uses examples from GitHub, however, unlike ALP,
it is unsupervised and is limited by the assumption that
frequent patterns are correct. ALP is supervised, while iden-
tifying a limited number of informative examples to label.

Compared to other detectors, ALP and MUDetectXP
mines usage examples from GitHub projects (a cross-project
setting) rather than a single project. Both ALP and MUDe-
tectXP search for client projects with usage examples using
the type of the API, and afterwards, use the API to filter
usage examples in these client projects. Without using the
type of the API to search and filter for usage examples, the
pattern mining process will not be scalable as hundreds
of projects may be considered for each API. In contrast,
other tools such as GrouMiner [14] do not need a target
API beforehand. Instead, they learn usages of the APIs used
within a single project and find misuse locations in the same
project.

Dynamic analysis Researchers have proposed the use of
runtime verification to detect violations of API specifica-
tions [86], these specifications can be both automatically
mined [18] or written by hand. However, Legunsen et al. [5]
have shown that both manually written specifications and
automatically mined specifications have high false positive
rates. This suggests the need for more tooling in mining
and writing API specifications. Their analysis revealed that
the manually written JavaMOP specifications did not suffi-
ciently encode valid alternative usages. ALP is complemen-
tary to these approaches; ALP can help to discover salient
patterns for writing specifications. Some patterns may not
be obvious and ALP may assist specification writers in
discovering unusual usage patterns.

Catcher [87] uses search-based testing to detect API
misuses. Focusing on the API of the Java standard library,
it generates test cases directed at code using the API of
interest to find a test case triggering an exception from
the API. MUTAPI [8] is an approach using mutation test-
ing for discovering API misuse patterns. MUTAPI mutates
correct usage of an API within client projects. In contrast
to our work and other API misuse detectors, MUTAPI is
focused on misuse pattern discovery. Its precision was not
evaluated on MUBench. While the misuse patterns found by
MUTAPI achieved a recall of 49% on the original version of
MUBench [3] (with about 50 misuses), our work achieves a

recall of about 56% on the extended version of MUBench [6],
[7] (with 208 misuse locations). Both Catcher and MUTAPI
are limited to misuses which cause exceptions to be thrown,
while our approach can detect misuses with other conse-
quences, such as resource leaks. We do not directly compare
the performance of ALP and MUTAPI as MUTAPI relies
on the execution of a test suite to detect misuses while ALP
relies on static analysis to detect misuses. MUTAPI can work
only on projects with an available test suite, while ALP is
able to detect misuses in projects without test suites or with
test suites with limited coverage. Existing research has also
shown that many projects have poor code coverage and that
developers do not always write test cases [88], [89].

Other work on API
There are other research efforts on other ways to assist

development using APIs. Researchers have worked on bet-
ter search for API usage examples [50], [90], [91], recom-
mendation of APIs [92], [93], [94], generating or improving
documentation [95], [96], studying API usage in StackOver-
flow answers [79], [97], and finding API workarounds [36].
Lamothe et al. [36] showed that developers may intention-
ally use APIs in ways that are not officially supported by
the API developers; these workarounds may be viewed as
alternative usage patterns.

6.2 Active Learning in Software Engineering
Active learning has been utilized in Software Engineering
for various tasks. Researchers have used active learning for
the generation of assertions from test suite [98], classification
of execution traces [99], and tasks related to defect and fault
prediction [56], [57].

Some studies performs active automata learning, using
Angluin’s L* algorithm [100] or the QSM technique [101],
to build models of software systems [58], [102], [103]. For
example, the work by Walkinshaw et al. [58] use execution
traces as input to construct a specification of a software
system. An oracle, which can be a human user, is involved
in answering membership queries, i.e. if a sequence of
events (e.g. method calls) should be accepted or rejected
by the ground-truth state machine. Others have used ac-
tive automata learning for finding differences between pro-
grams [102] and finding security flaws in TLS implemen-
tations [103]. In the study by Walkinshaw et al. [58], the
human user answers several hundred queries. In our work,
we do not infer automata. We use active learning to identify
subgraph features for detecting misuses among API usage
instances. Rather than considering just the sequential order-
ing of events, our work learn patterns over more complex
program features.

7 CONCLUSION AND FUTURE WORK

We propose ALP, which represents programs as graphs and
classifies them to detect API misuses. ALP is a human-
in-the-loop technique that identifies examples for mining
discriminative subgraphs. Through the principles of active
learning, a small but informative number of examples are
identified and labeled. These examples are used to train
a classifier with a reject option, which reserves judgement
when encountering programs that it is uncertain about. On
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both MUBench and our newly constructed AU500 dataset,
ALP substantially outperforms existing approaches and the
state-of-the-art tool, MUDetectXP. However, there is still
room to improve on both its precision and recall. In the
future, we will explore more ways to further improve ALP
and expand its evaluation to an even larger benchmark with
more data. In particular, we will investigate the effectiveness
of ALP on other APIs as well as further investigate the
effects of reducing the amount of labeled data.
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“How good are the specs? a study of the bug-finding effective-
ness of existing Java API specifications,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 602–613.

[6] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini,
“A systematic evaluation of static API-misuse detectors,” IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1170–1188,
2018.

[7] ——, “Investigating next steps in static API-misuse detection,” in
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 265–275.

[8] M. Wen, Y. Liu, R. Wu, X. Xie, S.-C. Cheung, and Z. Su, “Exposing
library API misuses via mutation analysis,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 866–877.

[9] S. Thummalapenta and T. Xie, “Alattin: mining alternative
patterns for defect detection,” Automated Software Engineering,
vol. 18, no. 3-4, pp. 293–323, 2011.
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