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ABSTRACT

Software developers often use social media (such as Twitter) to share

programming knowledge such as new tools, sample code snippets,

and tips on programming. One of the topics they talk about is the

software library. The tweets may contain useful information about

a library. A good understanding of this information, e.g., on the

developer’s views regarding a library can be beneficial to weigh the

pros and cons of using the library as well as the general sentiments

towards the library. However, it is not trivial to recognize whether

a word actually refers to a library or other meanings. For example,

a tweet mentioning the word “pandas" may refer to the Python

pandas library or to the animal. In this work, we created the first

benchmark dataset and investigated the task to distinguish whether

a tweet refers to a programming library or something else. Recently,

the pre-trained Transformer models (PTMs) have achieved great

success in the fields of natural language processing and computer

vision. Therefore, we extensively evaluated a broad set of modern

PTMs, including both general-purpose and domain-specific ones,

to solve this programming library recognition task in tweets. Ex-

perimental results show that the use of PTM can outperform the

best-performing baseline methods by 5% - 12% in terms of F1-score

under within-, cross-, and mixed-library settings.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories.
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1 INTRODUCTION

With the proliferation of social media, such as Twitter, people ex-

press more and more opinions and share knowledge online. Soft-

ware developers also widely use Twitter to stay current, for learning,
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and for building relationships [32]. Tweets can have valuable in-

formation to help software developers [13]. For example, research

has shown that tweets can be helpful for requirement engineers to

better understand user needs, thereby providing important infor-

mation for software evolution [14, 15]. Motivated by the impact of

tweets for software development, there has been much research on

tweets for software engineering (SE) in the past years [10, 33, 44].

Most of the existing research focused on classifying tweets into

broad categories (e.g., classify if a tweet is software-related or not)

[7, 30].

Recent years have witnessed a boom of third-party libraries/-

packages. Take Python libraries for example, as of 10 Jan 2022, there

are 349,177 publicly available libraries.1 Leveraging these libraries

can greatly reduce software development efforts. However, it is

not trivial to find users’ opinions regarding certain libraries, which

would help developers in choosing the libraries. Twitter is one of

the platforms where people share their opinions about libraries.

Take two tweets as examples: “boto is the best way to interface

with Amazon Web Services when using Python” and “Turns out that

boto3 instead of boto makes a big difference”; they contain valuable

information about the usefulness of boto and the version update.

Those who want to interface with AmazonWeb Services or struggle

to use boto or boto3 can find these tweets useful. Being able to

harvest the library information from tweets may help developers to

select and learn about a particular library for their tasks. Certainly,

a library that receives generally negative reviews on Twitter may

not be an ideal choice. A lack of research on library-related tweets

motivates us to make the first attempt. In this paper, we attempt to

filter useful library-related tweets to help library developers and

users. We hope our research can encourage follow-up research

on utilizing the information in tweets for library development or

recommendation: Library users can identify suitable libraries to

help their software development effort, while library developers

can leverage these library-related tweets as feedback for improving

their libraries.

Extracting library-related tweets out of a large volume of tweets

is challenging. A significant challenge in extracting library-related

tweets is the limited size of the text in a tweet. Compared to other SE

artifacts such as posts in Stack Overflow and Stack Exchange, tweets

are shorter in length. This makes extractingmeaningful information

from them comparatively more difficult. Another challenge is to

disambiguate the library sense (an occurrence of a word that refers

to a specific library) from its normal sense (an occurrence of a

word that does not refer to the specific library). Take flask as an

example: its library sense refers to a third-party Python library for

developing web applications, and its normal sense is a container for

liquids. Library recognition in tweets involves classifying a tweet

as related to a specific library or not. When a user searches for a

1https://pypi.org/
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keyword on Twitter, some tweets are returned. However, depending

on the context, those tweets either express library sense or other

senses.

In recent years, pre-trained Transformer models (PTMs) have

brought considerable breakthroughs in Natural Language Process-

ing (NLP) community. Nevertheless, it remains unknown whether

PTMs are capable to address the library recognition task well. Given

PTMs are generally pre-trained in large corpora, such as Wikipedia

and BookCorpus [48], they can learn contextual representations

of a word. It makes PTMs a good candidate to solve this unique

challenge. They can serve as a baseline for this novel task. In this

paper, we examined a broad set of PTMs for the task of library

recognition in tweets. We choose five different PTMs - BERT [8],

RoBERTa [19], XLNet [43], BERTweet [25], and BERTOverflow [36].

Based on pre-training corpora, they can be roughly divided into

two categories: general-purpose, and domain-specific. For each

pre-trained model, we fine-tune it on our dataset. We add a linear

layer on top of the final hidden state of the [CLS] token. We then

use the cross-entropy loss function to optimize the model during

fine-tuning.

We compare the PTMs to the two closest existing works [28,

45]. Ye et al. [45] present APIReal, a semi-supervised machine

learning approach that handles API recognition in Stack Over-

flow posts. Prasetyo et al. [28] present a framework to identify

software-relevant microblogs from the irrelevant ones. Ye et al. [45]

deals with API recognition in Stack Overflow posts while our paper

deals with library recognition in tweets. Prasetyo et al. [28] identify

software-related tweets which could be seen as a broader categoriza-

tion and a precursor to library recognition, as library-related tweets

are always software-related. There are two more recent works on

identifying software-related tweets [31, 34], but their approaches

rank tweets based on their likelihood to be software-related rather

than classifying them. Therefore, their task and ours are fundamen-

tally different. We adopt the two closest existing works to our task

of library recognition.

With the lack of a proper dataset, we create a benchmark dataset

that contains a total of 4,456 tweets across 23 libraries. We then

experiment with three settings, i.e., within-library, cross-library,

andmixed-library. In the within-library setting, we pick only tweets

from a library and split them into training and test sets. In the

cross-library setting, we use tweets mentioning just one library

for testing and the remaining tweets for training. In the mixed-

library setting, we randomly pick the tweets for training and test.

For the mixed-library and within-library settings, we run 5-fold

cross-validation, while we run 23 folds for the cross-library setting

(as we have a total of 23 libraries).

In most experimental settings, the fine-tuned PTMs outperform

the existing approaches that we adapted to the task of library recog-

nition in tweets. For within-library setting, RoBERTa achieves the

highest average F1-score of 0.84. For cross-library setting, RoBERTa

and XLNet achieve the highest F1-score of 0.51. For mixed-library

setting, BERT achieves the highest F1-score of 0.89. They have

gained 12%, 9%, and 5% improvement over the best performing

baseline, respectively.

Our contributions can be summarized as follows:

• We built a dataset containing tweets that mention 23 libraries

as the first benchmark for the task of library recognition in

Table 1: Example tweets: Pos and Neg in the Label column
indicates that the tweet refers to the library sense of a word

or other senses of the word, respectively.

Tweet Label

“using a python flask application with an azure ml gen-
erated api endpoint https://t.co/o119eu6l28”

Pos

“@sufw water. and the 8oz stanley classic flask
is slim enough to fit into a front pants pocket

https://t.co/or4qf2iwky (ttk.me t4ef3)”

Neg

“#protip: "bcrypt-nodejs" is not API compatible with

"bcrypt"... be sure to test your code if you switch from
one to the other. #facepalm”

Pos

“a very common hashing algorithm (bcrypt) has a 72
byte limit though and it’s unclear whether pre-hashing

might lower security.”

Neg

tweets. These 23 libraries are chosen such that they have other

commonly-acknowledged senses other than library sense.

• Wepropose to apply PTMs to library recognition in tweets: disam-

biguation between library-related tweets and non-library-related

tweets.

• We conducted a comprehensive empirical study to evaluate the

performance of PTMs in different settings. We also included

comparisons related to existing approaches.

The structure of this paper is as follows. First, we formulate the

problem in Section 2. Then we describe the details of our method-

ology in Section 3. We present our experimental setup in Section 4

including evaluation metrics, existing approaches, the experimen-

tal design, and implementations details. We analyze the results of

each setting in Section 5. We provide a discussion on the results

in Section 6. We present the related work in Section 7. Finally we

provide the conclusion of the paper and mention future work in

Section 8.

2 PROBLEM FORMULATION

Given a tweet containing a library name, we need to distinguish

whether it refers to a library or not. We refer to this problem as

the library recognition task in tweets. The underlying problem is

disambiguation between the library sense and the normal sense of a

word. It can be broken down into two subcategories: (i) The words

matching the library name is about a library or an entity that is not

software-related (ii) The words matching the library name is about

a library or an entity that is software-related. We show examples in

Table 1. To illustrate case (i), consider a Python library name flask.

Depending on its context, a tweet may refer to the flask library

or a flask object (i.e., a container for liquids), as shown in the first

two rows of Table 1. To illustrate case (ii), consider a Python library

name bcrypt. A tweet containing bcrypt may refer to the bcrypt

library or a password-hashing function, depending on the context

of the tweet, as shown in the last two rows of Table 1.

Let us denote a set of tweets as 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, each tweet
𝑡𝑘 in 𝑇 contains a library name. We would like to get an answer

set 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛} where 𝑦𝑘 = 1 indicates that 𝑡𝑘 is related to
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a library; 𝑦𝑘 = 0 means that 𝑡𝑘 is not about a library. Therefore,

library recognition in tweets is defined as a binary-classification

task to predict whether a tweet 𝑡 ∈ 𝑇 contains a library name refers

to a library or not, in other words, 𝐹𝐶 = 𝑡 → {0, 1} such that,

𝐹𝐶 (𝑡) =

{
1, if 𝑡 is library-related

0, otherwise.
(1)

Our aim is to find 𝐹𝐶 (𝑡) which can make predictions as accurate as
possible.

3 METHODOLOGY

In this paper, we identified a novel task: library recognition in

tweets. To benchmark this task, we created the first dataset and

evaluated several approaches on this dataset.

3.1 Benchmark Dataset Building

As there have been no dedicated efforts for the library recognition

task before, there is a lack of high-quality labeled datasets. Thus,

we decide to collect and annotate a dataset well-suited for this task.

We made the primary effort to create a Twitter dataset that can be

used for library recognition.

Data collection: Firstly, we obtained the 100 most popular

Python packages2 on Dec 21, 2020. We consider these packages as

our target libraries. Secondly, we check the library names manually.

If they are unique and do not have other commonly-recognized

senses, such as urllib3, there is no need for further efforts to rec-

ognize them. We then have 30 libraries with ambiguous names for

experiments. These 30 libraries have normal senses that would need

disambiguation from their library sense, e.g., mock is a commonly-

used English word, absl can also be a business term, referring to a

conference3. Note that the library name and package name are not

always the same, for example, to use the library google protobuf,

the users should install protobuf package.4 When we actually im-

port this library, we should import google.protobuf instead. In

our data, we focus on library names rather than package names.

Therefore, in this example, we consider google protobuf.

To get a list of software-relevant tweets, we use the database

that we get from a research center5 that collects tweets from people

who are likely to be software developers following the method by

Palakorn et al. [4]. These tweets were exclusively collected from

the public tweets. In total, the database contains 359,419,640 tweets,

ranging from April 2006 to February 2021. From this database, we

select tweets that contain all tokens in one of the library names; to

cater for minor variations, we ignore the order the tokens appear

in a library name. When querying with a library name, a number of

tweets were returned. In order to obtain a statistically representative

sample of tweets to be further analyzed, we randomly selected a

subset of the library’s tweets considering a confidence level of 95%

and a confidence interval of 5.

Data annotation and cleaning: After getting the tweets, we

further clean them by (1) removing all the duplicate tweets; and

(2) removing the tweets containing more than one library name

2https://pythonwheels.com/
3https://abslsummit.com/
4https://pypi.org/project/protobuf/
5https://larc.smu.edu.sg/

Table 2: Detailed Statistics of our dataset

Library name # Pos. # Neg. Total

absl 5 11 16

apiclient 6 0 6

appdirs 1 0 1

bcrypt 7 296 303

boto 120 92 212

click 1 379 380

colorama 4 18 22

cryptography 2 352 354

docker 321 41 362

flask 248 93 341

futures 17 349 366

google auth httplib2 1 0 1

google protobuf 41 84 125

ipaddress 5 75 80

mock 62 305 367

more itertools 3 8 11

packaging 2 370 372

pandas 175 178 353

pluggy 13 7 20

prometheus client 7 10 17

prompt toolkit 31 5 36

requests 4 375 379

websocket 13 319 332

Total 1,089 3,367 4,456

from the chosen 30 libraries. (2) is done for two main reasons- (i)

when a tweet contains more than one library name, it is extracted

each time one of those library names is used as a keyword for

extraction, which results in duplicates across different libraries and

(ii) each of those library names can be disambiguated to have a

library sense or other senses, making it difficult to use the tweet for

training or testing, because the label is at the tweet-level instead of

the individual token-level. After cleaning, we exclude one library

from our dataset since all the tweets mentioning the library were

removed. At the end of the process, we have 6,074 tweets, each of

which includes the name of one of the 29 libraries.

For the remaining tweets, two annotators labeled them indepen-

dently. Positive labels indicate that the tweets are actually men-

tioning a library, while the negative labels indicate that they are

not. We excluded the tweets whose labels they disagreed on. The

inter-annotator agreement was 0.88, measured by Cohen’s Kappa

value [21], which indicates almost perfect agreement. There are 6

libraries with zero positive labels, such as bleach (i.e., no tweet

in our database is referring to the library bleach). Therefore, we

removed these libraries. In the end, we have a total dataset of 4,456

tweets with 23 library names in our dataset. Table 2 shows the

statistics of our dataset.
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3.2 Pre-trained Transformer Models

In NLP field, distributed representations, which are low-dimensional

and dense vectors representing the syntactic or semantic features of

the language, make it easy to develop various NLP systems [29]. Ac-

cording to Qiu et al. [29], there are two kinds of word embeddings,

i.e. non-contextual and contextual word embeddings. The difference

between them is whether the embedding of a word dynamically

changes based on the context it appears in. Non-contextual em-

beddings, sometimes are called static word embeddings, and two

popular examples are word2vec [22] and GloVe [27]. Contextual

embeddings, like BERT [8], can learn contextual representations:

the same word will have different representations depending on

the context. Therefore, these dynamic embeddings can handle the

issue of polysemy (a word can have different senses) and distin-

guish the semantics of words in different contexts [29]. Since the

introduction of the original BERT, many different BERT variants

have been proposed in recent years. They are generally pre-trained

on a large-scale unlabeled corpus to learn a good representation

and then has been shown to be beneficial on many downstream

tasks.

In this work, we select BERT [8], RoBERTa [19] and XLNet [43],

as they achieved good performance on sentiment classification task

for SE [47]. As our task involves SE and tweets, we also considered

two domain-specific variants of BERT, i.e., BERTOverflow [36]

and BERTweet [25]. We collectively call pre-trained Transformer

models as PTMs in the following sections. Based on the pre-training

corpus, the PTMs adopted in this work can be divided into two

groups: (1) general-purpose: BERT, RoBERTa, and XLNet; and (2)

domain-specific: BERTweet, BERTOverflow. As general-purpose

PTMs, RoBERTa and XLNet were pre-trained in larger pre-trained

corpora than BERT. Among all the PTMs used, the two domain-

specific PTMs have the two largest vocabulary sizes. Their details

are described as follows (we put the exact model version in the

popular Hugging Face library that we use 6 in parentheses):

• BERT [8] (bert-base-uncased) stands for Bidirectional En-

coder Representations from Transformers. It is the first fine-

tuning based representation model that achieved state-of-the-

art performance on many sentence-level and token-level tasks.

BERT is pre-trained with two objective tasks: (1) Masked Lan-

guage Model (MLM): To train a bidirectional representations,

some tokens are masked at random and MLM is aimed to pre-

dict these masked tokens. (2) Next Sentence Prediction (NSP):

To understand the relationship between two sentences, BERT

is also pre-trained with NSP: given two sentences A and B, pre-

dict whether B is the sentence after A. Two versions of BERT are

available, and we follow the original paper to denote the num-

ber of layers (i.e., Transformer blocks) as L, the hidden size as

H, and the number of self-attention heads as A. These two are

BERTbase (L=12, H=768, A=12, Parameters=110M) and BERTlarge
(L=24, H=1024, A=16, Parameters=340M). In this work, we use

BERTbase.

• RoBERTa [19] (roberta-base) is robustly optimized BERT ap-

proach and it makes several modifications over BERT. Firstly,

it trains the model longer, with bigger batches, over more data.

Secondly, it removes the NSP, which is a pre-training task used

6Available on https://huggingface.co/models

in BERT. Thirdly, it trains on longer sequences. Finally, it dynam-

ically changes the masking pattern. Other than the BooksCor-

pus [48] plus English Wikepedia data used by BERT, RoBERTa

also included more pre-trained data: CC-News [3] (English por-

tion of the CommonCrawl News dataset); OpenWebText [2] (an

open-source recreation of the WebText corpus), and Stories [40]

(a subset of CommonCrawl data that match the story-like style).

The best RoBERTa model achieved the state-of-the-art perfor-

mance on several NLP benchmarks. Similar to BERT, RoBERTa

also has two versions: RoBERTabase (L=12, H=768, A=12, Param-

eters=125M) and RoBERTalarge (L=24, H=1024, A=16, Parame-

ters=355M). We also use the base version, i.e., RoBERTabase.

• XLNet [43] (xlnet-base-cased) is a generalized autoregressive

(AR) method that leverages the advantages of both AR language

modeling and autoencoding (AE) while avoiding their limitations.

Either AR or AE language modeling has its own pros and cons.

For example, AR language modeling seeks to estimate the proba-

bility distribution of a text corpus with an AR model. However,

an AR language model is only trained to encode a uni-directional

context (either forward or backward), which makes it ineffective

at modeling deep bidirectional contexts. AE-based models, such

as BERT, aim to reconstruct the original data and AE can benefit

from the bidirectional contexts. To benefit from both AR and AE,

XLNet not only adopts a novel pre-training objective, but also

improves architectural designs for pre-training. Compared to

BERT, XLNet also involved more pre-training data, such as Com-

mon Crawl [1]. XLNet consistently outperforms BERT on a wide

spectrum of problems including language understanding tasks,

reading comprehension tasks, and text classification tasks. In the

Hugging Face library, it also has two variants, i.e., XLNetbase, and

XLNetlarge, which has the same architecture hyperparameters

as BERTbase and BERTlarge, respectively. We adopted the base

version of XLNet in this work.

• BERTweet [25] (vinai/bertweet-base) is the first large-scale

pre-trained language model for English tweets. It has the same

architecture as BERTbase and it adopts RoBERTa pre-training

procedure. The experimental results demonstrate that BERTweet

does better than its competitors, including RoBERTabase, and

outperforms the previous state-of-the-art approaches on three

downstream tweet NLP tasks: part-of-speech tagging, named-

entity recognition and text classification.

• BERTOverflow [36] (jeniya/BERTOverflow) is a BERTbase
pre-trained on Stack Overflow 10-year archive of 152 million sen-

tences and 2.3 billion tokens. It is originally designed to help iden-

tify code tokens or software-related named entities which appear

with natural language sentences, especially on Stack Overflow.

The experimental results on the name entity recognition task on

Stack Overflow dataset shows that fine-tuning over BERTOver-

flow improves F1-score bymore than 10 points compared to using

the off-the-shelf BERT.

3.3 Research Questions

To understand how different approaches perform on this library

recognition task, we aim to address the following Research Ques-

tions (RQs):
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RQ1: How effective are the approaches when trained on tweets

from one library in classifying tweets belonging to the same library?

In this research question, we want to measure how well the ap-

proaches work in the scenario where some tweets from a library

is known and additional tweets from the same library need to be

obtained. We call this setting the within-library setting.

RQ2: How effective are the approaches when trained on tweets

from some libraries to classify tweets from another library?

In this research question, we analyze how the approaches perform

in the scenario where we have tweets from a set of libraries and

we want to find tweets from another library that are not in the set.

We call this setting the cross-library setting.

RQ3: How effective are the approaches in classifying library and

non-library related tweets when we mix tweets across various libraries

in the training and test sets?

By answering this question, we want to estimate how well the

different approaches are in filtering library and non-library related

tweets when we apply it to a random set of tweets that may be

related to libraries. We call this setting the mixed-library setting.

4 EXPERIMENTAL SETUP

In this section, we explain evaluation metrics, baseline methods,

experimental design, and implementation details.

4.1 Evaluation Metrics

As mentioned before, we formulate the library recognition task

in tweets as a binary classification task. We apply the following

evaluation metrics, i.e., precision, recall, and F1-score, which are

commonly used for the binary classification task. The formula to

calculate these three metrics are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4)

𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 represents true positives, false positives, and false nega-

tives, respectively. 𝑇𝑃 indicates the number of tweets that mention

a library (i.e., they have a positive label) and have been classified as

positive correctly. Similarly, 𝐹𝑃 is the number of the tweets that do

not mention a library (i.e., they have a negative label) and have been

mistakenly classified as positive. 𝐹𝑁 is the number of tweets that

mention a library (i.e., they have a positive label) and are mistakenly

classified as negative. 𝐹1 is a weighted average of the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
and 𝑅𝑒𝑐𝑎𝑙𝑙 , where 𝐹1 ranges from 0 to 1; the larger, the better. In

our work, we use F1-score, which measures the trade-off between

precision and recall, as the main evaluation metric.

4.2 Methods to Compare With

Although there is no existing approach that is specially designed

for library recognition in tweets, we identified two closest pieces of

work that can serve as the baselines. Therefore, we adapt them for

our task to understand how fine-tuned PTMs perform in the task of

library recognition in tweets. We use the same experimental design

settings and evaluation metrics outlined later for each approach.

• Strawman: All the tweets that we have collected for our dataset

contain library names as keywords. In this approach, we assume

that all of these tweets in fact refer to library names and mark all

the tweets as positive. We refer to this as the Strawman approach.

• APIReal [45] : APIReal is used for API recognition and linking

in Stack Overflow posts. API and library are close concepts in

SE, thus, we regard API recognition as similar to library recog-

nition. Only the first part of APIReal, i.e. API recognition, has

been leveraged and implemented as it is the only part that is

relevant to our task of library recognition in tweets. The steps of

API recognition consist of: (1) text pre-processing steps includ-

ing code snippet removal, HTML tag clearing, and tokenization,

(2) usage of two unsupervised language models (i.e., class-based

Brown clustering [5] and neural-network-based word embed-

ding [22, 41]) to learn word representations from unlabeled text

and cluster semantically similar words, (3) constructing an API

inventory containing the generated clusters, (4) building a linear-

chain Conditional Random Field (CRF) model [35] using ortho-

graphic features from tokens, compound word-representation

features from the two different unsupervised language models,

and gazetteer feature from the API inventory and (5) performing

an iterative self-training process to alleviate the lack of labeled

data for model training. The final trained model would be used

to check if a sentence contains mentions of API or not. Note that

APIReal is a token-based approach and it recognizes tokens that

may refer to public modules, classes, methods, or functions of

certain libraries as API mentions. We adjust the model to our task

by labeling the library names as “APIs”. The model would then

learn whether each token is library-related. As our task is tweet-

based, in the inference stage, if any of the tokens are recognized

as positive, we regard the whole tweet is recognized as positive.

For library names with more than one token, we labeled all the

tokens in the library name as positive. We included the original

replication package by APIReal 7 and the adaptation scripts we

wrote in our replication package.

• Prasetyo et al. [28] : Prasetyo et al. proposed a framework to

identify the relevant software micro-blogs from the irrelevant

ones. As a tweet mentioning a library is certainly a software-

related one, but not vice versa, we consider their task is a broader

one over our library recognition task. Their framework consists of

three components: (1) a webpage crawler, (2) a text processor, and

(3) a machine learning classifier. A set of features are extracted

from the tweet content as well as their embedded URLs. Then

they train a discriminative model using Support Vector Machine

(SVM) as the classifier. This discriminative model is then used

to classify the tweets as software-relevant or not. We re-trained

this approach on our dataset to make it able to conduct library

recognition on tweets.

4.3 Experimental Design

We run extensive experiments to answer each RQ. Inspired by

settings consider by prior works (on defect prediction) [16, 37, 46],

we first consider within-library and cross-library settings in RQ1

and RQ2. Other than these two settings, we further conducted an

extra setting that mixed libraries.

7https://github.com/baolingfeng/APIExing
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• Within-library: In this setting, we train the model on the tweets

mentioning a library name and test on the tweets containing the

same library name. As many libraries in our dataset only con-

tains a small number of tweets and a limited number of positive

samples, we can only evaluate the within-library setting on five

libraries: boto, docker, flask, mock and pandas. Thus, for each

of these five libraries in our dataset, we conduct a 5-fold cross-

validation. At each fold, 80% of the data is used for training, and

the remaining 20% is used for testing. We report the averaged

precision, recall, and F1-score across the 5 folds.

• Cross-library: In this setting, we train and test the model with

tweets containing different library names. As mentioned earlier,

our final dataset consists of a total of 23 libraries. In this setting,

we use the tweets in 22 libraries to train the model, and the tweets

containing the remaining library name will be used for testing.

Therefore, each library is used as a test dataset once. We report

the average precision, recall, and F1-score across 23 runs.

• Mixed-library: In this setting, we do not distinguish between

different library names. The training and test set may contain

tweets with the same or different library names. We run five-fold

cross-validation on the entire tweets. At each fold, 80% of the

tweets is used for training, and the remaining 20% is used for

testing. We report the average precision, recall, and F1-score

across the 5 folds as the final result.

4.4 Implementation Details

In this part, we detailed how we implemented PTMs for our task as

follows:

Pre-processing: Other than common words, library names are

often mentioned with @ (i.e., entity mentions) or # (i.e., hashtags).

We keep both special tokens. We pre-processed all the tweets as

follows: (1) lower-casing all the words; (2) removing URLs, retweet

abbreviation (‘rt’); and (3) removing all trailing white spaces.

Fine-tuningPre-trainedTransformerModels:Wefine-tuned

the PTMs to solve the library recognition task on tweets. Figure 1 il-

lustrates the overall architecture of the fine-tuned PTMs. The input

is a single tweet, and the output is the predicted class label: library-

related (positive) or not library-related (negative). According to the

original paper [8], the first output token of every sequence is al-

ways a special classification token ([CLS]). For classification tasks,

we can use the final hidden state of this token as the aggregate

sequence representation. Therefore, for each PTM, we add a fully-

connected linear layer on top of the final hidden state of the [CLS]

token. We then apply the sigmoid function to scale the output from

the linear layer to obtain the probability of the predicted label. We

train the models with the cross-entropy loss and use AdamW [20]

with a linear learning rate scheduler for optimization. The formula

to calculate the cross-entropy loss is as follows:

L(𝒚, �̂�) = −𝑦1 · log(𝑦1) − (1 − 𝑦1) · log(1 − 𝑦1) (5)

where 𝑦1 represents the probability of positive class in ground

truth and 𝑦1 represents the predicted probability of positive class.
We implemented PTMs for classification with PyTorch [26] and

Hugging Face library [42].

In case the model overfits the training data, we use 10% of the

training data for validation. We run a model for 10 epochs, so for

each epoch, we get a checkpoint of the current model. As our main

Figure 1: The architecture of fine-tuned PTMs

Table 3: Within-library: 5-fold averaged Precision, Recall,

F1-score

Approach Precision Recall F1

Strawman 0.59 1.0 0.69

APIReal 0.79 0.75 0.75

Prasetyo et al. [28] 0.63 0.72 0.66

PTM

– BERT 0.82 0.83 0.81

– RoBERTa 0.83 0.87 0.84

– XLNet 0.76 0.79 0.77

– BERTweet 0.84 0.82 0.81

– BERTOverflow 0.6 0.75 0.66

evaluation metric is F1-score, we save the model checkpoint that

achieves the highest F1-score on the validation set across the 10

epochs. In the inference stage, we load these best checkpoints to

predict the labels for tweets on the held-out test data. The hyper-

parameters used in our experiments are: (1) Learning rate: 2𝑒 − 5;
(2) Batch size: 32; (3) Max length: 100; (4) Epochs: 10. We run all the

experiments on a Linux machine that is equipment with GeForce

RTX 2080Ti.

5 RESULTS

In this section, we demonstrate the details of our results to answer

the RQs.
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Table 4: Within-library: Detailed F1-scores of all the ap-

proaches in each library

Approach boto docker flask mock pandas

Strawman 0.72 0.94 0.84 0.29 0.66

APIReal 0.92 0.93 0.88 0.16 0.84

Prasetyo et al. [28] 0.73 0.94 0.85 0 0.76

PTM

– BERT 0.96 0.94 0.96 0.3 0.91

– RoBERTa 0.96 0.94 0.95 0.44 0.92

– XLNet 0.94 0.94 0.96 0.09 0.91

– BERTweet 0.95 0.94 0.96 0.29 0.93

– BERTOverflow 0.84 0.94 0.84 0 0.69

5.1 Effectiveness in the Within-Library Setting

Table 3 demonstrates the overall results on the within-library set-

ting. It shows the average metrics for 5-fold cross validation per-

formed on each of the 5 selected libraries - boto, docker, flask,

mock and pandas. RoBERTa has the highest F1-score among the

PTMs, while BERTOverflow has the lowest F1-score. Regarding

F1-score, RoBERTa beats APIReal by 12%, Strawman by 22%, and

Prasetyo et al. [28] by 27%. The PTMs have high scores with preci-

sion ranging from 0.6 to 0.82, recall ranging from 0.75 to 0.87, and

F1-score ranging from 0.66 to 0.84. All the PTMs achieve high scores

for all libraries except mock. In this setting, APIReal’s performance

is lower than that of the other four PTMs, while it is better than

BERTOverflow.

Table 4 shows the detailed F1-score produced by each approach

for each library. By looking at Tables 3 and 4 together, we observe

that the performance of models for different libraries closely follows

the positive and negative label distribution of the tweets. Specifi-

cally, the performance is high if the number of positive tweets in

the dataset is nearly equal to or more than the number of negative

tweets used for training. In other words, the performance is high if

the dataset is mostly balanced. In the case of mock, when the number

of positive tweets is significantly less, the performances of models

are also less, with BERTOverflow having the lowest F1-score of 0.

Another interesting result is BERTOverflow having a high F1-score

of 0.94 for docker while it ranges from 0 to 0.84 for the remaining

libraries. This is expected considering that docker is a widely used

software terminology and mock is not a SE-related word. Moreover,

BERTOverflow is exclusively pre-trained on software-related data

from Stack Overflow posts. From the experiment results, we can

conclude that in a within-library setting, fine-tuned PTM performs

better than the baseline approaches.

Within-library setting: The fine-tuned PTMs outper-

form all the baseline approaches, with the exception of

BERTOverflow. The best-performing PTM (RoBERTa) get

an averaged F1-score of 0.84, which beats the best perform-

ing baseline - APIReal by 12%.

Table 5: Cross-library: averaged Precision, Recall, F1-score -

for each approach, we run it 23 times, each time, 22 libraries

for training, and the rest library is for testing.

Approach Precision Recall F1

Strawman 0.39 1.0 0.47

APIReal 0.22 0.07 0.08

Prasetyo et al. [28] 0.66 0.38 0.41

PTM

– BERT 0.59 0.65 0.47

– RoBERTa 0.6 0.63 0.51

– XLNet 0.62 0.65 0.51

– BERTweet 0.53 0.62 0.48

– BERTOverflow 0.51 0.49 0.4

5.2 Effectiveness in the Cross-Library Setting

Table 5 demonstrates the results on the cross-library setting. For

each approach, the metrics are averaged across 23 folds. This setting

has the lowest performance across the three settings. Simply treat-

ing all the tweets as library-related (Strawman) approach produced

higher F1-scores than the other two baseline approaches, APIReal

and Prasetyo et al. [28]. It indicates that the current approaches are

not good at recognizing libraries in tweets under the cross-library

setting. Especially, APIReal has the lowest performance here with

an averaged F1-score of only 0.08. This may suggest that APIReal

does not have a good ability to transfer the knowledge it learns

from some libraries to another given its limited knowledge base.

All the PTMs have produced precision ranging from 0.51 to 0.62,

recall ranging from 0.49 to 0.65, and F1-score ranging from 0.4 to

0.51. In this setting, APIReal’s performance is much lower than that

of the PTMs. Prasetyo et al. [28] got much higher F1-score over

APIReal. Here, RoBERTa and XLNet have the best performance

and beat Prasetyo et al. [28] by 24% and Strawman by 9%. BERT

and BERTweet also have good performance with almost the same

F1-score. BERTOverflow has the lowest performance among the

PTMs, lower by at least 0.06 from the second-lowest model (BERT).

Although all the approaches perform worse in the cross-library

setting compared to them in the within-library setting, PTMs are

still able to produce a better result than the rest approaches. It can

be concluded that in the cross-library setting, PTMs are better than

other existing approaches. Specifically, fine-tuned RoBERTa and

XLNet perform better than the other PTMs and existing approaches.

Cross-library setting: All of the fine-tuned PTMs outper-

form the existing approaches. RoBERTa and XLNet have

the best performance among the PTMs. They improved the

F1-score over the best baseline approach - Strawman by

9%.

5.3 Effectiveness in the Mixed-Library Setting

Table 6 demonstrates the results on the mixed-library setting. It

shows the average metrics for 5-fold cross-validation on all 23
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Table 6: Mixed-library: 5-fold averaged Precision, Recall, F1-

score

Approach Precision Recall F1

Strawman 0.24 1.0 0.39

APIReal 0.88 0.83 0.85

Prasetyo et al. [28] 0.92 0.59 0.72

PTM

– BERT 0.89 0.89 0.89

– RoBERTa 0.87 0.88 0.87

– XLNet 0.85 0.89 0.87

– BERTweet 0.86 0.9 0.88

– BERTOverflow 0.85 0.78 0.81

libraries. APIReal and Prasetyo et al. [28] can achieve better perfor-

mance than Strawman by a large margin. It indicates that directly

treating all the tweets with a library name as library-related is

far from satisfactory. All the PTMs have high scores with preci-

sion ranging from 0.85 to 0.89, recall ranging from 0.78 to 0.9, and

F1-score ranging from 0.81 to 0.89. In this setting, APIReal’s perfor-

mance is close to that of the PTMs, and it is significantly better than

Prasetyo et al. [28]. Fine-tuned BERT has the highest F1-score and

beats Prasetyo et al. [28] by 24% and APIReal by 5%. BERTOverflow

has the lowest performance among the PTMs by being at least 0.06

less than the other PTMs. Comparing the results from the within-,

cross-, and mixed-library setting, it can be observed that in the

mixed-library setting, all the approaches can achieve higher F1-

scores. Consider that in the mixed-library setting, the training data

is more than that in the within-library setting, and the predicted

libraries may also be included in the training data. Inference in the

mixed-library setting can leverage more information than the other

two settings. It can be concluded that in the mixed-library setting,

fine-tuned BERT performs better than the other PTMs and existing

approaches.

Mixed-library setting: The fine-tuned PTMs can outper-

form all the existing approaches in this setting, with the

exception of BERTOverflow. The best-performing PTM

(BERT) get an averaged F1-score of 0.89, which beats the

best performing baseline - APIReal by 5%.

6 DISCUSSION

6.1 Learning from Multiple Sources of
Knowledge

Fine-tuned PTMs are able to perform better than the existingmodels

when conducting the library recognition task in tweets. It indicates

that fine-tuning PTMs can serve as a strong baseline for this new

task. Furthermore, we find that different settings produce varying

results across the different PTMs, c.f., Fig. 2 for a visual comparison

of the F1-scores of different models in different settings. On average,

PTMs perform the best in the mixed-library setting followed by the

within-library setting and the cross-library setting. It is expected

Figure 2: Comparison of F1-scores of the PTMs in different

settings

Table 7: Example misclassified tweets by BERT in mix-

library setting

Tweet

“Keen to master #Python’s best development practices and mod-

ule system? Take a look at @robsmallshire hands on course!

For more info click here: https://bit.ly/2mkVa5v”

“@bphogan It’s frustrating that packaging Ruby tools up isn’t
even worth the time. Dropbox was built with alot of Python,

but did we notice?”

“@gnuconsulting @zobar2 FanExpo! I got a fun flask”

“@gegere @fredjean #docker and coffee”

that the PTMs perform better for the within-library setting as com-

pared to the cross-library setting. In the within-library setting, the

learned knowledge is within the same domain, as the PTMs are used

to classify a library using the knowledge about the library itself.

In the cross-library setting, PTMs need to transfer the knowledge

that they learn from some libraries to classify a totally different

one. According to the results, some knowledge is apparently useful

but some is not. The interesting part is that PTMs perform the best

in the mixed-library setting, which can be viewed as a mixture of

both the within-library and the cross-library settings. This suggests

that we should learn knowledge from the same library as well as

leverage knowledge from other libraries to boost the performance

of PTMs.

6.2 Analyzing the Misclassified Tweets by
PTMs

To understand the failed cases produced by PTMs, we take a deep

analysis of the fine-tuned BERT under the within-library setting.

Table 7 shows some example tweets. We observe several emerging

patterns like follows:
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(i) The tweet is software-related but the library name does

not refer to its library sense. For example, consider the first two

rows in Table 7. The first tweet contains the keyword click. Since

click here refers to a verb, the tweet was marked as negative (not

library-related). However, BERT classifies it as a relevant tweet,

perhaps since the tweet is heavy with terms relevant to software

development. It also talks about the module system, which is closely

related to the library. The second tweet was extracted with keyword

packaging. This tweet also has a software context but packaging

is the “-ing" form of package and it is used as a gerund, which has

nothing to do with the packaging library. However, the models

cannot capture this information and classify the tweet as relevant.

(ii) Very short tweets. Short tweets with no meaningful context

are marked as irrelevant, but BERT marks them as relevant in

some cases. The last two tweets from Table 7 are both quite short

with limited information. For the first tweet, it is simple for us to

decide that this flask is not the Python library. For the second one,

we cannot conclude that it is library-related given the insufficient

context. It probably refers to the general docker software. Both

tweets have negative labels in our data, however, BERT predicted

them are positive. Moreover, the second tweet actually contains

the image after the short text in the original tweet link. Leveraging

visual information is a possible direction to explore in the future.

From these misclassified examples, we can see that library recog-

nition in tweets is not a trivial task, especially with the limited

number of words in a tweet.

6.3 Need of a Specialized Approach

Although fine-tuning PTMs is promising in this novel task - library

recognition in tweets – we believe that more efforts should be made.

Considering the generally poor performance in a cross-library set-

ting, a detailed and specialized approach is required to achieve sat-

isfactory performance. Given that tweets are generally short, PTMs

are likely the way to go. The PTMs can learn knowledge from other

contexts, and transfer the knowledge to library recognition. The

PTMs utilized in this work are pre-trained general knowledge, like

Wikipedia, or domain-specific knowledge, such as Stack Overflow

posts. None of them perfectly contain the knowledge to address

the library recognition in tweets. A potentially better pre-training

corpus is a dataset of tweets containing software-related knowl-

edge. The benefits are twofold, they are from the same platform

and the context is similar. We encourage future work to design a

domain-specific PTM for library recognition in tweets.

6.4 Threats to Validity

Threats to internal validity relate to the experiment bias. Our

ground-truth dataset is manually labeled. Like other manual la-

beling activities, this procedure can be biased or inconsistent. To

alleviate this threat, two annotators were involved and they both

have at least 4-year experience in computer programming. They la-

beled the data independently. We have achieved the inter-annotator

agreement of 96.3%, and the Cohen’s Kappa value [21] is 0.88, which

indicates almost perfect agreement. We then discarded the tweets

they disagreed with. Therefore, we only experimented on the tweets

both of them agreed on. We include the labeled dataset in our repli-

cation package for others to inspect.

Threats to external validity relate to our findings may not be

generalized to other library names. In this work, we have investi-

gated the 100 most popular Python libraries and randomly chose

30 libraries for our experiments – we retain 23 of them, as for the

other 7, we do not have any tweet about the library from sampled

tweets from our database. Since we only experimented with Python

library names, it is unclear whether similar results can be achieved

for libraries in other languages. We pick Python as it is one of the

most popular programming languages today.

Threats to construct validity relate to the evaluation metrics

used in our experiments. As our task is a binary text classification

task, we followed the prior work [34, 45, 47] to use precision, recall,

and F1-score to evaluate the model performance. For all the three

experimental settings in our work, we reported the averaged results.

Specifically, for mixed- and within-library settings, we run 5-fold

cross-validation. For the cross-library setting, each library has been

used for the test set once. Andwe hereby report the 23-fold averaged

performance. Thus, we believe the threats are minimal.

7 RELATEDWORK

Identifying Software EngineeringRelatedTweets. Identifying

SE-related tweets can be seen as a broader task. A number of studies

have focused on this topic (e.g., [28, 34]). We already introduced

Prasetyo et al. [28] in Section 4.2. Sulistya et al.[34] investigated

adopting the knowledge from SE Stack Exchange and Stack Over-

flow to automate knowledge-seeking tasks in other less software-

development-specific platforms, i.e., Twitter and YouTube. One

of the two tasks they investigated is identifying software-related

tweets. Our work is different from the above work as we focus

on a more fine-grained classification task, i.e., library recognition

task: we disambiguate whether a tweet that contains a library name

actually refers to its library sense or normal sense. Moreover, not

all of the aforementioned work cast the problem as a classification

task. For example, Sulistya et al. cast it as a ranking problem.

Disambiguation in NLP and SE. Our work can be categorized

as disambiguation in SE, as we disambiguate the library sense of

a common word from its other senses. Our work is close to word

sense disambiguation (WSD) [24], which is a well-researched topic

in NLP. WSD determines the sense of polysemous words in a given

context. The difference between our work and classic WSD is that

we do not distinguish among many commonly-used senses for a

word. We only distinguish between library sense and non-library

sense. In other words, our focus is whether we can identify the

library sense accurately. The WSD itself is a challenging problem

and it is out of the scope of our paper.

Several efforts have been devoted to creating software-specific

word similarity databases. Although they do not directly deal with

WSD, they highlight the different word senses in the software con-

text [38, 39]. Tian et al. observed that software-specific words are

generally not contained in WordNet [23], and the meanings of the

same words inWordNet are often different than when they are used

in the SE context. They [38] propose a technique to automatically

construct a database called𝑊𝑜𝑟𝑑𝑆𝑖𝑚𝑆𝐸
𝐷𝐵 that stores the similarity

of words used in the SE context. They [39] also presented a word-

similarity database for the SE community: SEWordSim, which is
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trained from software-specific documents. Their evaluation shows

that considering software context allows SEWordSim to be more

accurate than WordNet-based approaches on words related to soft-

ware development.

Recently, disambiguation in SE has gained more attention [9, 45].

One particular application is API recognition. Ye et al. [45] proposed

a semi-supervised machine learning approach for API recognition

in informal text, specifically, Stack Overflow text.We have discussed

their method in Section 4.2. They claimed that API recognition is

the prerequisite to API linking, which aims to link the recognized

API to its unique fully qualified name. Other than the API linking

problem, API recognition can benefit other tasks, such as API rec-

ommendation [30], and bug fixing [7]. Similarly, we believe the

library recognition task tackled in this paper can also benefit many

other tasks, such as library recommendation. Another application

is disambiguating software requirements. Ezzini et al. [9] focus on

handling coordination ambiguity and prepositional-phrase attach-

ment ambiguity due to the prevalence of these types of ambiguity

in natural-language requirements. Their approach is based on the

automatic generation of a domain-specific corpus from Wikipedia.

Their evaluation also shows that integrating domain knowledge

can lead to an improvement in the accuracy of ambiguity detection

and interpretation. Different from the aforementioned two works,

our work focuses on disambiguating the library sense of a word

from the normal sense of the word in tweets. Our work and these

works are complementary. Together, we aim to solve ambiguity

issues in SE, while concentrating on different aspects.

Pre-trained Transformer Models for Software Engineering.

Given the success witnessed in many NLP tasks, researchers in

the SE field have started to utilize PTMs to solve many SE-related

tasks as well. There are generally two lines of research of PTMs for

SE. The first focuses on pre-training large-scale domain-specific

models in SE field [11, 12, 17]. One example is BERTOverflow [36],

which has been introduced in Section 3. Another example is Code-

BERT [11], which is a bimodal pre-trained model for both program-

ming languages and natural languages. The experimental result

showed that fine-tuning CodeBERT achieved state-of-the-art per-

formance on two downstream tasks, i.e., natural language code

search and code-to-documentation generation. Similar to Code-

BERT, there are also many PTMs that have been pre-trained on

programming languages, such as GraphCodeBERT [12] considers

the inherent structure of code.

The second one pays attention to fine-tuning PTMs for boosting

the performance in downstream SE tasks [18, 47]. For example,

traceability recovery [18], sentiment analysis for software arti-

facts [47] and code search [11]. Zhang et al. [47] conducted an

empirical study, which compared the four general-purpose PTMs

with four widely-adopted sentiment analysis tools in SE. The ex-

perimental results demonstrate the superior performance of PTM

on sentiment analysis for SE. It suggested that PTMs are more

ready for practice use than prior existing sentiment analysis tools,

such as Senti4SD [6]. Lin et al. [18] utilized CodeBERT, a variant

of BERT which was pre-trained on source code and documents, to

recover links between issues and commits on open-source projects.

The results indicate that the architecture that applies CodeBERT

generates trace links more accurately than the state-of-the-art ap-

proaches, e.g., RNN. Both these two works demonstrate that PTMs

can benefit the downstream tasks. Similar to these two works, our

work also exploits PTMs to boost the performance for SE. Different

from them, we focus on the library recognition task and we also

adopted domain-specific PTMs, i.e., BERTweet and BERTOverflow.

8 CONCLUSION AND FUTUREWORK

In this work, we focus on addressing the library recognition chal-

lenge in tweets, i.e., disambiguation between the library sense of

a common word and the normal sense of the word in tweets. We

built the first benchmark dataset for this task. As a starting point,

we also conducted extensive experiments which utilized the pow-

erful PTMs to solve this challenge. Specifically, we worked with

pre-trained BERT, RoBERTa, XLNet, BERTweet, and BERTOverflow

for this study and compare their performances with three baselines.

Our study shows that the fine-tuned PTMs are able to produce

better results than the existing approaches. In all of the experimen-

tal settings, at least one of the fine-tuned PTMs outperforms the

existing approaches that we adapted to the library recognition task.

The best models across different settings are different. Different ap-

proaches also produce varying results across different settings. For

within-library setting, RoBERTa gets the highest average F1-score

of 0.84. For cross-library setting, RoBERTa and XLNet get the high-

est F1-score of 0.51. Formixed-library setting, BERT has the highest

F1-score of 0.89. The models show different performances for differ-

ent settings and show some fluctuations within a setting based on

the dataset. Fine-tuned PTMs are effectively able to classify tweets

as being related to a library or not.

In the future, we would like to evaluate PTMs for the library

recognition task using libraries written in other programming lan-

guages, such as Java. We are also interested in designing a specific

solution to recognize the library more accurately. Furthermore, we

would like to adopt the library recognition result for more down-

stream tasks, such as the library recommendation.

Replication Package. We make the replication package of our

work available online8.
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