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Abstract—Deep neural networks (DNN) have been widely
applied in modern life, including critical domains like au-
tonomous driving, making it essential to ensure the reliability
and robustness of DNN-powered systems. As an analogy to code
coverage metrics for testing conventional software, researchers
have proposed neuron coverage metrics and coverage-driven
methods to generate DNN test cases. However, Yan et al. doubt
the usefulness of existing coverage criteria in DNN testing. They
show that a coverage-driven method is less effective than a
gradient-based method in terms of both uncovering defects and
improving model robustness.

In this paper, we conduct a replication study of the work
by Yan et al. and extend the experiments for deeper analysis.
A larger model and a dataset of higher resolution images are
included to examine the generalizability of the results. We also
extend the experiments with more test case generation techniques
and adjust the process of improving model robustness to be
closer to the practical life cycle of DNN development. Our
experiment results confirm the conclusion from Yan et al. that
coverage-driven methods are less effective than gradient-based
methods. Yan et al. find that using gradient-based methods
to retrain cannot repair defects uncovered by coverage-driven
methods. They attribute this to the fact that the two types of
methods use different perturbation strategies: gradient-based
methods perform differentiable transformations while coverage-
driven methods can perform additional non-differentiable trans-
formations. We test several hypotheses and further show that
even coverage-driven methods are constrained only to perform
differentiable transformations, the uncovered defects still cannot
be repaired by adversarial training with gradient-based methods.
Thus, defensive strategies for coverage-driven methods should be
further studied.

Index Terms—Deep Learning Testing, Coverage-Driven Test-
ing, Software Quality

I. INTRODUCTION

Deep neural networks (DNN) models have achieved human-

level performance on many tasks (e.g., image classification [1],

speech recognition [2], game playing [3], etc.), and have

also been ubiquitously applied in our modern life, including

autonomous driving [4] and so on. As a result, ensuring the

reliability and robustness of systems that are powered by

DNN techniques is of great importance, especially in critical

domains like autonomous driving [4] and healthcare [5].

Researchers propose code coverage metrics to guide the

testing of conventional software systems, like line coverage

and branch coverage. To adequately test software systems,

programmers are encouraged to collect test suites that have

better coverage metrics [6]. Many tools are designed to au-

tomatically generate effective test cases by optimizing code

coverage. Unlike the conventional software whose logic is

encoded in the control and data flows, DNN models, which

are usually viewed as unexplainable black-boxes, encode their

behaviors in the activations of millions (even trillions) of neu-

rons. As an analogy to coverage-driven test cases generation

for conventional software, researchers have proposed neuron

coverage metrics to test DNN models. For example, Pei et

al. [7] define the neuron coverage of a test suite as the ratio

of the number of unique activated neurons for all test inputs

and the total number of neurons in a DNN model. Many

studies designed various structural neuron coverage metrics

to guide the testing of DNN models, e.g. DeepHunter [8],

DeepGauge [9], etc. Such methods are called coverage-driven

methods in the following parts of this paper, and the other

branch of works that expose DNN defects by utilizing model

parameters to computer gradients are called gradient-based

methods.

However, some recent studies [10], [11], [12] suggest that

the current neuron coverage metrics may not be effective

enough to guide the generation of DNN test cases. Yan et

al. [11] use a coverage-driven method (DeepHunter [8]) to

generate test cases and use these examples to retrain models.

They find that when the coverage metrics increase, the quality

metrics of models do not increase accordingly. They also

compare the coverage-driven method with Projected Gradient

Descent (PGD) [13], a gradient-based method, finding that

DeepHunter is less effective than PGD. Harel-Canada et

al. [12] add a regularization term to the PGD method so it can

generate examples with higher neuron coverage. But they find

that this additional regularization term harms PGD’s ability in

generating adversarial examples.

Although prior works have shed new light into neuron

coverage, they are conducted on relatively small datasets and

models, with a limited number of gradient-based attacks,

which motivates us to replicate their studies on other datasets

and models, as well as extend the experiments with more

test case generation methods to explore additional research

questions. This extended replication study has the following

features:

• More datasets and models: Prior studies on diverse soft-

ware engineering tasks, e.g., automated debugging [14],
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[15], etc., have shown that findings can be different when

data of different characteristics are used (e.g., [16], [17]).

This replication study is conducted on an additional dataset:

EuroSAT [18], which has images of the larger resolution. We

also analyse a larger model, ReseNet-56 [19]. In total, we

perform the experiments on 4 datasets and 9 models.

• More gradient-based methods: Yan et al. [11] only include

PGD [13] as a representative of gradient-based methods.

This replication study compares coverage-driven methods

with an additional and computationally less expensive

method, FGSM [20].

• More coverage-driven methods: DeepHunter [8], the

coverage-driven method used in [11], performs a series of

image transformations, which can be divided into two types:

differentiable transformations (e.g., slightly changing pixel

values) and non-differentiable transformations (e.g., rotation

and blurring). We include two variants of DeepHunter, each

of which is coverage-driven but can only perform one type

of image transformations to generate test cases.

• Detailed analysis on coverage-driven methods: We per-

form deeper analysis of the test cases generated by coverage-

driven methods. We adjust the process of improving model

robustness to be closer to the practical life cycle of DNN

models (iteratively generating test cases and retraining mod-

els) and then analyze how model quality metrics change

with neuron coverage metrics. We categorize test cases

into two types: coverage-improving examples and coverage-

remaining examples; the former can improve coverage met-

rics while the other cannot. We use the two types of test

cases to retrain models and see whether there is a significant

difference between retrained models’ quality metrics. By

introducing the two variants of DeepHunter, we also analyze

whether defects uncovered by certain types of transforma-

tions are harder to be repaired by retraining with gradient-

based methods.

Our extended experiments replicate conclusion made by

the previous study [11] and also have some interesting ob-

servations. First of all, we confirm that the quality metrics

do not monotonously change when models are retrained with

datasets of increasing coverage metrics. Second, we find that

using coverage-improving examples to retrain models does not

lead to better model quality than using coverage-remaining

examples. We perform Mann-Whitney U test [21] on the

model quality metrics of models retrained using the two types

of examples, and the results suggest no significant difference,

which further doubts the usefulness of existing coverage

criteria in DNN testing. Third, we replicate the observation

that gradient-based methods are more effective than coverage-

driven methods in uncovering defects.

Besides, although coverage-driven methods generate fewer

failed test cases, such uncovered failure cannot be repaired

by adversarially training models with gradient-based methods.

Similarly, using test cases generated by coverage-driven meth-

ods to retrain models also cannot repair defects uncovered

by gradient-based methods. Prior works [11] attribute this

phenomenon to the fact that the two types of methods use dif-

ferent perturbation strategies: gradient-based methods perform

differentiable transformations like slightly modifying pixel

values, while coverage-driven methods can use additional non-

differentiable transformations like rotation and blurring. We

test a hypothesis to show that even coverage-driven methods

are constrained to only perform differentiable transformations,

the uncovered defects still cannot be repaired by adversarial

training with gradient-based methods, suggesting that more

works on fixing coverage-driven test cases are required.

The rest of this paper is organized as follows. Section II

briefly describes background information. Section III discusses

the neuron coverage and model quality metrics. We explain

the 4 research questions in Section IV and report the results

in Section V. Section VI surveys related works and Section

VII concludes this replication study.

II. BACKGROUND

This section introduces some background information, in-

cluding the concepts and definitions of deep neural networks,

adversarial attack and adversarial training.

A. Deep Neural Networks

This paper focuses on deep neural networks (DNN) for

single label classification. A DNN classifier can be formalized

as a function f : X → Y , mapping a set of inputs X into

a set of labels Y . The output of the DNN classifier is a

probability distribution P (Y |x), which is the probability that

an input vector x ∈ X belongs to each class of labels in Y ,

and the label of the input x is deemed as the class with the

highest probability. A DNN classifier f usually contains an

input layer, a number of hidden layers, and an output layer;

each layer consists of many neurons. The parameters θ of

the DNN are the weights of each connected edge between

neurons of two adjacent layers. For an input vector x, the

output of DNN fθ(x) can be computed as the weighted sum

of the outputs of all the neurons. Given a training dataset D =
{(xi, yi)}

N
i=1 containing N input examples {x1, x2, . . . , xN}

and the corresponding ground-truth labels {y1, y2, . . . , yN}, a

DNN classifier learns to optimize the following objective:

min
θ

1

N

N∑

i=1

L(fθ(xi), yi) (1)

where L is the loss function to calculate the penalties for

incorrect classifications. The DNN are trained by minimizing

the loss on the training set and updating the parameters θ
accordingly.

B. DNN Robustness

Numerous work have shown that DNN models are not

robust to adversarial perturbations in the input data. Adding

some human-imperceptible perturbations δ to an image x can

fool a DNN classifier to produce a wrong output, which can

be formalized as:

f(x+ δ) �= f(x) (2)
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The input with perturbations x + δ is referred to as an

adversarial example or a failed test case, and the process

of imposing perturbations to the input data is referred to as

the adversarial attack. Utilizing the gradient information of

DNN models to generate such small perturbations is shown to

be effective. We investigate the following two gradient-based

methods in our paper.

FGSM. Fast Gradient Sign Method (FGSM) [20] is the earliest

adversarial attack that utilizes the gradient information. Given

a DNN model f and an input x, FGSM first calculates the

gradient ∇x of the loss function with respect to the input x,

and then adds a small perturbation ǫ following the direction

of gradients on the input x to generate adversarial example

xadv . The idea of FGSM can be formalized as follows.

xadv = x+ ǫ ∗ sign(∇xL(f(x), y)) (3)

where L is the loss function, x is the original input data and y
is the original label. The perturbation is scaled by a constant

factor ǫ (to ensure that the perturbation is small enough) and

added to the input data.

PGD. Projected Gradient Descent (PGD) [13], which is based

on FGSM, attempts to find the adversarial examples using a

multistep scheme. In each step, given a DNN model f and

an input x, it first adds a small random perturbation within a

given bound, and then performs FGSM to apply the gradient

information on the perturbation of the input. The process

continues until successfully generating an adversarial example

or time-out.

The above gradient-based methods adopt one differentiable

transformation, i.e., directly changing pixel values. However,

they cannot perform non-differentiable transformations, e.g.,

rotation and blurring. The coverage-driven methods are free to

use different types of image transformations, which we explain

in Section IV.

C. Adversarial Training

When software systems contain bugs, programmers check

the program logic to fix the bug. DNN models define a data-

driven programming paradigm where models learn logic by

updating parameters automatically to minimize the loss on

training datasets. Inspired by this feature, the key idea of

adversarial repair is to improve DNN models’ robustness by

augmenting the training dataset with adversarial examples and

perform retraining. The objective of retraining this model is

to minimize the loss on the augmented dataset instead of only

on the original dataset, which can be formalized using the

following equation.

f∗ = argmin
f

E
(x,ytrue)
∼Da∪D

[L(f(x), ytrue)] (4)

where D is the original training data and Da is the generated

adversarial examples. The achieved robustness highly depends

on the adversarial examples used, thus the re-trained model

can mainly defend the specific adversarial attacks and may

not be robust against other attacks [22], [23]. In this work, we

also investigate whether the gradient-based adversarial training

methods can defend the adversarial examples generated by

coverage-driven methods.

III. COVERAGE METRICS AND MODEL QUALITY METRICS

In this section, we formally describe the DNN coverage

metrics and model quality metrics used in this paper. For more

detailed information on these metrics, we refer interested read-

ers to the following papers [7], [8], [11]. The implementation

of these metrics can be found in our replication package [24].

A. DNN Coverage Metrics

For a neuron n in a DNN model f , we view it as an

activated neuron if given an input x, output of a neuron n
is larger than a threshold t. The set of activated neurons in the

DNN is defined as:

AC(x, t) = {n|fθ(n, x) > t} (5)

Pei et al. [7] define a model’s neuron coverage given a set

of inputs T as follows:

NC(T, t) =
|{n|∃x ∈ T, fθ(n, x) > t}|

|N |
(6)

Xie et al. [8] define several structural coverage metrics and

present a fuzz testing framework for DNN. These metrics are

defined as follows:

k-multisection Neuron Coverage (KMNC): For a neuron n,

the upper and lower boundary of its output values on training

data can be denoted as upn and lown, respectively. The k-

multisection neuron coverage measures how thoroughly the

boundary [lown, upn] are covered by the given test inputs T .

To quantify KMNC, the boundary [lown, upn] is divided into

k equal sections (i.e., k-multisections), and Sn
m denotes the

m-th section. Then φ(x, n) ∈ Sn
m means the m-th section is

covered by at least one input data x ∈ T . The k-multisection

neuron coverage is defined as:

KMNC =

∑
n∈N |{Sn

m|∃x ∈ T : φ(x, n) ∈ Sn
m}

k × |N |
(7)

Neuron Boundary Coverage (NBC): The boundary range

[lown, upn] is derived from training data. For new test inputs

T , the output values of neurons may fall into (−∞, lown) or

(upn,+∞) instead of the above boundary range. The range

(−∞, lown)∪(upn,+∞) is referred as the corner case regions

of neurons, and the Upper Neuron Coverage (UCN) and Lower

Neuron Coverage (LCN) are defined as follows:

UCN = {n ∈ N | ∃x ∈ T : fθ(x, n) ∈ (highn,+∞)}

LCN = {n ∈ N | ∃x ∈ T : fθ(x, n) ∈ (−∞, lown)}
(8)

For the input test data T , NBC measures to what extent the

corner-case regions are covered outside the boundary derived

from training data. The definition of NBC is as follows:

NBC =
|UCN |+ |LCN |

2× |N |
(9)

Strong Neuron Activation Coverage (SNAC): Similar to

NBC, strong neuron activation coverage measures how many

410



upper-corner neurons are covered by the given test inputs T .

The definition of SNAC is the ratio of the number of Upper

Neuron Coverage (UCN) and the total number of neurons in

the DNN:

SNAC =
|UCN |

|N |
(10)

Top-k Neuron Coverage (TKNC): TKNC is a layer-level

coverage testing criterion, which measures the ratio of neurons

that have at least been the most active k neurons of each layer

on a given test set T once. The definition of TKNC is as

follows:

TKNC =
| ∪x∈T (∪1≤l≤Ltopk(x, l))|

|N |
(11)

where l denotes a layer in the DNN, and topk(x, l) denotes

the neurons which have largest k output values of layer l on

the given test data T .

Top-k Neuron Patterns (TKNP): TKNP measures how many

patterns of the top-k neurons are covered by the given test data

T . For a test input x, the top-k neurons of each layer forms

a specific pattern, which is an element of k1 × k2 × · · · × kl.
The kl is a subset of top-k neurons among all neurons in the

l-th layer. The definition of TKNP is as follows:

TKNP = |{(topk(x, 1)), ..., (topk(x, L))|x ∈ T |}| (12)

B. DNN Model Quality Metrics

The evaluation metrics of DNN model quality are centered

around adversarial examples. The most common evaluation on

model quality is to measure the model accuracy in the presence

of adversarial examples. High accuracy under adversarial

attacks means that the model is robust. There exists some

metrics related to the model accuracy:

Misclassification Ratio (MR):

MR =
1

N

N∑

i=1

#(f(xa
i ) �= yi) (13)

where xa
i denotes adversarial examples and N is the total

number of them. #(f(xa
i ) �= yi) is the number of misclassified

examples. Basically, MR calculates the percentage of misclas-

sified examples over the whole input set. A DNN model with

high quality should have a low MR.

Average Confidence of Adversarial Class (ACAC):

ACAC =
1

n

n∑

i=1

p(xa
i )f(xa

i
) (14)

where n is the total number of misclassified adversarial exam-

ples. And p(xa
i )f(xa

i
) is the confidence towards the incorrect

prediction f(xa
i ). In general, ACAC measures the average

confidence towards incorrect labels of adversarial examples,

a high quality DNN model should have a low ACAC.

Average Confidence of True Class (ACTC):

ACTC =
1

n

n∑

i=1

p(xa
i )yi (15)

Similar with ACAC, n is the total number of misclassified

adversarial examples, and p(xa
i )yi

is the confidence towards

the true labels of adversarial examples yi. ACTC measures the

prediction confidence of true labels of adversarial examples, a

high quality DNN model should have a high ACTC.

In addition to the metrics about model accuracy, some met-

rics are related to the imperceptibility of adversarial examples.

The intuition behind these metrics is that some adversarial

examples are generated by injecting substantial perturbations

into the original data. These examples can violate the implicit

forms of realistic input data and DNN models can be easily

fooled. But in such cases, the failures of DNN models are

not necessarily due to the adversarial examples. The metrics

related to the imperceptibility of adversarial examples are:

Average Lp Distortion (ALDp):

ALDp =
1

n

n∑

i=1

||xa
i − xi||

||xi||p
(16)

where ||.||p is the ℓp norm to measure the distortion be-

tween the perturbed image and the original example. More

specifically, we use three kinds of norm distance to calculate

to what extent the attacks perturb original examples when

generating adversarial examples. ℓ0 calculates the number

of pixels changed in adversarial examples, ℓ2 calculates the

Euclidean distance between original examples and adversarial

examples, and ℓ∞ calculates the maximum change in all

dimensions of adversarial examples. ALDp measures the

average normalized ℓp distortion for misclassified adversarial

examples. The adversarial example with high imperceptibility

has small ALDp.

Average Structural Similarity (ASS):

ASS =
1

n

n∑

i=1

SSIM(xa
i , xi) (17)

ASS measures the average similarity between misclassified ad-

versarial examples and their corresponding original examples.

It utilizes a metric called SSIM to quantify the similarity

between two images [25]. The adversarial example with high

imperceptibility has larger ASS.

Perturbation Sensitivity Distance (PSD):

PSD =
1

n

n∑

i=1

m∑

j=1

xi,jSen(R(xi,j)) (18)

PSD evaluates human perception of adversarial perturbations

by measuring difference between the changed pixel and its

surrounding square region. For the i-th adversarial example,

m is the total number of pixels that example has and xi,j

denotes the j-th pixel. R(xi,j) represents the surrounding

square region of xi,j . Sen(R(xi,j)) = 1/std(R(xi,j)), in

which std(R(xi,j)) denoting the standard deviation function.

The adversarial example with high imperceptibility should

have small PSD.

Another series of evaluation metrics indirectly reflect the

model quality by measuring adversarial example robustness.

Intuitively, if an adversarial example that is not robust (i.e.,
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not always lead DNNs to make misclassifications), it cannot

indicate low model quality when it is misclassified. We use the

following metrics to evaluate adversarial example robustness

in particular:

Noise Tolerance Estimation (NTE):

NTE =
1

n

n∑

i=1

[p(xa
i )f(xa

i
) −max{p(xa

i )j}] (19)

where n is the total number of misclassified adversarial

examples. p(xa
i )f(xa

i
) is the confidence towards the incorrect

prediction f(xa
i ). max{p(xa

i )} is the max confidence of

all other labels. NTE estimates the noise tolerance of an

adversarial example by measuring how much noise it can

tolerate while keeping its misclassified label unchanged. A

robust adversarial example should have a large NTE.

Robustness to Gaussian Blur (RGB):

RGB =
#(f(GB(xa

i )) �= yi)

#(f(xa
i ) �= yi)

(20)

Here GB denotes the Gaussian blur function which can reduce

noises in images. #(f(GB(xa
i )) �= yi) is the number of

adversarial examples can maintain misclassified labels after

Gaussian blur, while #(f(xa
i ) �= yi) is the total number of

misclassified adversarial examples. The greater the RGB is,

the more robust adversarial examples are in the input data.

Robustness to Image Compression (RIC):

RIC =
#(f(IC(xa

i )) �= yi)

#(f(xa
i ) �= yi)

(21)

Similar with RGB, RIC counts how many adversarial examples

can maintain their misclassified labels after being compressed.

#(f(IC(xa
i )) �= yi) denotes the number of adversarial exam-

ples can keep misclassified labels unchanged after Gaussian

blur and #(f(xa
i ) �= yi) is the total number of misclassified

adversarial examples. The greater the RIC, the more robust

the adversarial examples.

IV. RESEARCH QUESTIONS

This section describes some research questions that explore

whether neuron coverage metrics are effective criteria to help

uncover defects in DNN models and improve the model qual-

ity. RQ1, 3, and 4 are also included in Yan et al.’s study [11],

and we extend them with additional analysis. RQ2 is newly

designed for analyzing whether coverage-improving examples

are more effective than coverage-remaining examples.

RQ1. Do model quality metrics improve when coverage met-

rics increase?

Some research works suggest that developers should design

test suites that can adequately cover more lines or branches

of code to reveal more faults in the software and improve

software quality by repairing these identified faults [26]. But

researchers also conducted empirical studies to show that

code coverage may not be a strong indicator of the test suite

effectiveness when testing conventional software systems [27].

This research question explores how model quality metrics

change when neuron coverage metrics are increasing.

To answer this research question, we adopt the same ex-

periment setting as Yan et al. [11]. Based on the description

in the paper [11] and the code in the corresponding replica-

tion package [28], we introduce the process of how Yan et

al. apply a coverage-driven method and how they measure

the relationship between coverage metrics and model quality

metrics1. We assume that M0 is the original model under

test, M0 is trained on the dataset D0 and T is the original

test set for evaluating model performance. Firstly, D0 is split

into k subsets, denoted by {d1 · · · dk}. For each subset di, a

coverage-driven method, which randomly performs some pre-

defined image transformations (e.g., rotation, blurring, etc.) ,

is applied to generate a set of perturbed images d′i. Each image

in d′i is a tuple 〈x, y〉, where x is an input image and y is the

label of this image.

We explain the process of selecting the coverage-improving

examples from d′1. For each image in d′1, if it is misclassified

by M0, we add it into D0 and see whether the augmented

dataset has higher neuron coverage metrics. We select all the

images that can increase coverage metrics (i.e., they cover

additional neurons) and augment them into D0 to get D1.

Similarly, Di can be obtained by mutating di and augmenting

Di−1. So Di is a superset of Di−1, and the former covers more

(at least no less) neurons in M0 than the latter. After recording

the coverage metrics of each dataset in {D1, · · · , Dk} on

the model M0, we use the k datasets to retrain M0 and

obtain {M1, · · · ,Mk}. Then, we evaluate the quality metrics

(described in Section II) of the k retrained models and analyze

how model quality metrics change when neuron coverage

metrics are increasing.

RQ2. Are coverage-improving examples more effective in im-

proving model quality?

The process in RQ1 incrementally builds multiple test suites

that differ in the ability in covering neurons and uses them to

obtain different models by retraining the same original model.

Yan et al. [11] claim that such a process is analogous to how

the developers enhance their test suite over time to improve

coverage. It is indeed the case when developers try to design

better test suites for a single version of the software.

However, AI systems (as well as conventional software

systems) are continuously evolving. Developers find and fix

faults in the current version of the software and then deliver

a new version. Before giving a new version of the software,

regression testing is usually performed to see whether new

changes break some original functions. Then, developers de-

sign test suites that can adequately test the new software. Such

an iterative process is repeated to enhance software quality.

We refine the retraining process in RQ1 to be closer to the

aforementioned processes of developing DNN models, which

is illustrated in Algorithm 1.

1We use different notations as Yan et al. [11] but convey the same meaning.
We have also consulted with the first author to get additional details.
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Algorithm 1: The refined process of iteratively generating
test cases and improve model quality.

Input: M0: the original model under test, D: the original
training dataset, k: times to split the training dataset,
t: the test data to evaluate model quality metrics

Output: Coverage metrics and model quality metrics
1 # split the training dataset into k subsets d1 · · · dk;
2 d = split(D0, k);
3 # generate examples that can improve coverage;
4 for i in 1 · · · k do
5 Di = Di−1;
6 # randomly transform images in dk;
7 d′k = mutate(di);
8 for 〈x, y〉 in d′k do
9 if y �= Mi−1(x) ∧ nc(Mi−1, D ∪ 〈x, y〉) >

nc(Mi−1, D) then
10 # select coverage-improving examples;
11 Di.append(〈x, y〉);
12 end
13 end
14 Mi = retrain(Mi−1, Di) # change 2 ;
15 # measure coverage and model quality metrics;
16 coveragei = measure c(Mi−1, Di) # change 3 ;
17 qualityi = measure q(Mi, t);
18 end
19 return coverage, quality

In Algorithm 1, we first split D0 into k subsets {dk · · · dk}
(Line 2). For each subset di, some pre-defined image transfor-

mations (e.g., rotation, blurring, etc.) are randomly applied to

generate the perturbed images d′i (Line 7). Then, we iterate all

the images 〈x, y〉 ∈ d′i (Line 8), and see whether a perturbed

image is misclassified by the current state of model Mi−1

and can activate more neurons in Mi−1 instead of the original

model M0 (Line 9). If the condition in Line 9 is satisfied, we

call such images coverage-improving examples and add them

into Di for later usage. Then, Di is obtained by augmenting

all the coverage-improving examples into the previous training

dataset Di, and Mi is obtained by retraining Mi−1 on Di (Line

15). Then, we measure how well Di covers the original model

Mi−1 and the model quality of the newly obtained model Mi

(Line 16 to 17).

The above revised process can better depict how DNN

models are iteratively tested and improved using the coverage-

improving examples. In this research question, we also explore

the values of coverage-remaining examples, which we define

as the generated test cases that cannot cover additional neu-

rons. The intuition is that if test cases with higher coverage

are of better quality, the models retrained on such coverage-

improving examples should be better than models retrained

on coverage-remaining examples. We explore this research

question by testing the following hypothesis:

Hypothesis 1: Quality metrics of models trained with

coverage-improving examples are significantly better

than that of models trained with coverage-remaining

examples.

To test the hypothesis, we run Algorithm 1 to collect the

coverage-improving examples, as well as run a modified ver-

sion to collect and use the coverage-remaining examples. More

specifically, we replace the coverage metrics-related condition

in Line 9 with y �= Mi−1(x) ∧ nc(Mi−1, D0 ∪ 〈x, y〉) ≤
nc(Mi−1, D0). Then, we compare the model quality metrics

of models retrained on the two types of examples.

RQ3. Are gradient-based methods more effective in uncovering

failure?

Software testing is thought of as an effective way to

uncover bugs in software systems. In this research question,

we compare coverage-driven test case generation methods with

two gradient-based methods (i.e., PGD [13] and FGSM [20])

to see whether we can replicate the conclusion from Yan et

al.’s experiment: PGD is more effective in uncovering failure

in DNN models. We validate this conclusion by testing the

following hypothesis:

Hypothesis 2: Misclassification rates on test cases

generated by gradient-based methods are significantly

larger than that on test cases generated by coverage-

driven methods.

On top of the original experiment, we collect more data

points with the following extension to experiments. The orig-

inal experiment only selects PGD as the representative of

gradient-based methods. PGD is effective but also expensive

to use; it utilizes gradient information and performs attacks

iteratively. We extend the experiment with another popular

and computationally cheaper method, FGSM [20]. Besides, we

evaluate these test case generation methods on an additional

model (i.e., ResNet-56 [19]) and dataset (i.e., EuroSAT [18]).

Yan et al. [11] select DeepHunter [8] as the single rep-

resentative of coverage-driven methods, which pre-defines

some image transformations like adjusting brightness, rotation,

blurring, etc. The image transformations that DeepHunter

applies can be divided into two types: differentiable trans-

formations (e.g., slightly changing pixel values) and non-

differentiable transformations (e.g., rotation and blurring). The

non-differentiable transformations cannot be adopted by the

gradient-based methods. We wonder whether the reason why

coverage-driven methods are less effective is that the non-

differentiable transformations it uses (e.g.,., rotation) may

hurt the ability in uncovering defects. So we include the

two variants of DeepHunter: DP-D and DP-N. The former is

constrained to only perform differentiable transformations, and

the latter can only perform non-differentiable transformations

(more details of them will be given in Section V-B). We

analyze the difference between two types of image transfor-

mations via testing Hypothesis 3:

Hypothesis 3: Misclassification rates on test cases

generated by DP-D are significantly larger than that

on test cases generated by DP-N.
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RQ4. Can adversarial training repair failed test cases gener-

ated by coverage-driven methods?

After failed test cases are discovered, programmers debug

to find and repair faults in the programs. DNN models are

developed in a data-driven paradigm: datasets are fed into

DNN models, and models can automatically update parameters

to learn patterns in the data, which can be viewed as an

analogy to the automatic program repair techniques [29].

As we mentioned earlier, after developing a new version of

the software, regression testing is usually performed to see

whether new changes break some original functions. Similarly,

we evaluate the retrained models on the original benign

datasets and test the following hypothesis:

Hypothesis 4: The accuracy of retrained models on

benign datasets is higher than accuracy of original

models on the same datasets.

Then, we explore whether gradient-based adversarial train-

ing can repair the defects uncovered by the coverage-driven

test cases generation techniques. Yan et al. [11] find that PGD-

based retraining can improve model performance against PGD

attacks but cannot improve model accuracy against test cases

generated by DeepHunter. We re-investigate this conclusion

the conclusion by testing the Hypothesis 5 on more datasets

and models.

Hypothesis 5: Retraining models using gradient-based

methods harms the model accuracy on test cases

generated by coverage-driven methods.

Beyond attempting to replicate the finding, we are also

interested in whether the additional non-differentiable image

transformations reveals defects that cannot be repaired by

retraining with gradient-based methods, which use differen-

tiable transformations only. So we include the two variants

of DeepHunter mentioned in RQ3 (DP-D and DP-N) and test

another hypothesis:

Hypothesis 6: After retaining using gradient-based

methods, model accuracy on test cases generated by

DP-D is higher than accuracy on test cases generated

by DP-N.

V. EXPERIMENT SETTINGS AND RESULT ANALYSIS

In this section, we first explain the experiment settings,

including datasets, models under test, and hyper-parameter

settings for test case generation methods. Then, we answer

the research questions in Section IV with detailed analysis.

A. Datasets and Models under Test

Our experiments cover the three datasets investigated in Yan

et al.’s study [11]: MNIST [30], CIFAR-10 [31], SVHN [32],

which are widely used in both coverage-driven and gradient-

based test case generation for DNN models [8], [9], [33], [34].

TABLE I: Statistics of models under test and their performance

on different datasets.

Datasets Models Layers Parameters Accuracy

MNIST [30]
LeNet-1 9 3,246 98.67%
LeNet-4 10 25,010 98.65%
LeNet-5 11 44,426 98.93%

CIFAR-10 [31]
VGG-16 56 33,687,922 92.80%

ResNet-20 71 274,442 91.74%
ResNet-56 200 860,026 92.76%

SVHN [32]
SADL-1 19 6,531,786 89.70%
SADL-2 15 1,646,794 87.72%
SADL-3 33 2,923,050 92.57%

EuroSAT [18]
VGG-16 56 33,687,922 96.50%

ResNet-20 71 274,442 97.11%
ResNet-32 200 860,026 97.22%
ResNet-56 71 274,442 93.65%

The MNIST [30] dataset contain images of handwritten digits

(from 0 to 9). It has 60, 000 28×28 grayscale training images

and a test set of 10, 000 images. The CIFAR-10 [31] dataset

consists of 60,000 32x32 colour images that are categorized

into 10 classes, with 6,000 images per class. We split the

CIFAR dataset into training and testing sets with 50, 000 and

10, 000 images, respectively. We also include SVHN [32],

a real-world image dataset for recognizing house numbers

obtained from Google Street View images. It has 73, 257
32x32 colour training images and 26, 032 testing images.

Beyond these datasets, we also include a more recently pro-

posed dataset, EuroSAT [18], which contains satellite images

covering 13 spectral bands and consisting of 10 classes with

27, 000 labelled and geo-referenced samples. Images in the

EuroSAT dataset have 4 times higher resolution than the above

three datasets and can be an appropriate benchmark to see

whether the results from [11] can generalize to larger images.

As shown in Table I, each dataset corresponds to several

baseline models. Considering that models used in the original

experiment [11] are relatively small, whose coverage met-

rics can be easily improved, we investigate a larger model

(i.e., ResNet-56 [19]) in this replication study. We follow

the instruction in a popular computer vision repository to

train ResNet-56 on CIFAR-10 and EuroSAT datasets. Other

baselines models are obtained from previous works [8]. The

statistics of these models (e.g., number of layers and param-

eters2), as well as their performance on different datasets,

are displayed in the Table I. All the datasets, models and

results of the experiments can be accessed from our replication

package [24].

B. Test Case Generation and Parameter Settings

We explain the test case generation methods we use in

the experiments, as well as the hyper-parameter settings.

DeepHunter [8] can perform 9 different image transformations.

According to whether they are differentiable, they are divided

into two groups. Four differentiable transformations include

adjusting image contrast, brightness, changing some pixel val-

ues and adding noises. Five non-differentiable transformations

2The numbers of layers and parameters information is obtained using Keras
APIs.
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Fig. 2: Trends of model quality metrics of models retrained

using datasets with increasing coverage metrics.

include image translation, scale, shear, rotation and blurring.

We build two variants of DeepHunter: DH-D, which can only

perform differentiable transformations, and DH-N, which can

only perform non-differentiable transformations.

According to the parameter settings in Yan et al.’s ex-

periments [11], we set the magnitude of the two gradient-

based methods (the maximum perturbation allowed to each

pixel) as MNIST: 0.3, CIFAR-10: 16
255 , SVHN: 8

255 , EuroSAT:
16
255 . To generate test cases and perform adversarial training,

we use a popular library: Adversarial Robustness Toolbox

(ART) v1.8 [35]. To faciliate the large-scale experiments, we

parallelly train and test DNN models on two servers that both

have Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 500 GB

memory, and 8 NVIDIA GeForce P100.

C. Result Analysis

1) Answers to RQ1: According to the process described

in Section IV, for one model and its corresponding training

data, we apply DeepHunter on the training data and select

examples that can cover additional neurons in the model. Then

we gradually augment these coverage-improving examples

into the original training set to construct k new datasets

with different coverage metrics. Fig 1 illustrates how well

DNN models are covered by their corresponding augmented

training data during this incremental process3. For more clear

visualization, all the metrics are normalized by being divided

by the values at D0.

We use these augmented data to retrain the original model

and measure model quality metrics of these newly obtained

models. Fig. 2 visualizes the trends of model quality metrics,

and all the metrics are normalized by being divided by the

values at D5. We replicate Yan et al’s observation that none

of the model quality metrics is monotonous. So our answer to

this research question is:

Answer to RQ1: The quality metrics of models do

not improve as the coverage metrics increase.

2) Answers to RQ2: Unlike the experiments in RQ1, to

answer RQ2, we intentionally select the examples that cannot

cover additional neurons to retrain models. Such examples are

called coverage-remaining examples because if we add them

into the training set, the augmented training set has the same

coverage metrics on the model.

If a group of examples that cover more neurons is better,

we expect that models retrained using coverage-improving

examples should demonstrate better performance than models

retrained using coverage-remaining examples. We measure

the model quality metrics of models retrained using the two

types of examples. We use the Mann–Whitney U test [21] to

quantify the difference between the model quality of these

two models. Table II shows our statistical results. We can

see that models trained using coverage-improving examples

lead no significant improvement on the models trained using

coverage-remaining examples (p > 0.05 for all robustness

metrics). Therefore, we reject Hypothesis 1 and our answer

to RQ2 is as follows.

Answer to RQ2: Coverage-improving examples are

not more effective in improving model quality.

3) Answers to RQ3: Other than using the DeepHunter [8]

and PGD [13] from the original paper [11], we introduce three

additional test case generation methods for further evaluation.

The new gradient-based method we include is FGSM [20],

which is computationally cheaper than PGD. We split the

image transformations that DeepHunter can operate into two

types: differentiable transformations and non-differentiable

transformations. More specifically, directly changing pixels

(e.g., add noise, adjust brightness, etc.) is differentiable,

while transformations like rotation and blurring are non-

differentiable. We then introduce two variants of DeepHunter,

each of which is coverage-driven but can only perform either

differentiable or non-differentiable image transformations. We

apply the five test case generation methods on the original test-

ing datasets, and evaluate the models on the newly generated

test cases.

3Due to the limited space, we only visualize the results for retraining
LeNet-1 on the MNIST dataset. The results for other models and datasets
are available in our replication package [24].
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TABLE II: Statistical tests for quality metrics of models trained on coverage-improving and coverage-remaining examples.

Robustness Metrics MR ACAC ACTC ALDℓ0
ALDℓ2

ALDℓp ASS PSD NTE RGB RIC

p-value 0.245 0.100 0.487 0.079 0.139 0.188 0.206 0.139 0.079 0.139 0.245

We collect the misclassification rates on test cases gener-

ated by both coverage-driven and gradient-based methods. By

performing statistical testing on Hypothesis 2, we find that

misclassification rates on test cases generated by gradient-

based methods are significantly higher than that on test

cases generated by coverage-driven methods, with a p-value

less than 0.001, which confirms the original observations.

Then, we compare the effectiveness of the two variants of

DeepHunter: DP-D and DP-N. Our statistical test results reject

the Hypothesis 3 as the p-value is 0.45, much larger than 0.05.

It indicates that only using non-differentiable or differentiable

transformations does not significantly affect the performance

of coverage-driven methods. So our answer to the RQ3 is as

follows.

Answer to RQ3: Gradient-based methods are more

effective in uncovering DNN failures (p < 0.001).

Besides, differentiable and non-differentiable transfor-

mations do not show significant difference in terms of

generating failed test cases as p-value is 0.45.

4) Answers to RQ4: In the process of developing conven-

tional software systems, when failed test cases are identified,

programmers or automated program repair tools need to lo-

calize the faults that cause the failed test cases and repair

them to make test cases pass. Unlike the above test-driven

development, the training of DNN models is a data-driven

paradigm. To repair defects in DNN, we can augment the

failed test cases (or examples of a similar distribution) into

the training set and then retrain the models.

In this research question, we mainly care about whether

using gradient-based methods to perform adversarial training

can repair defects uncovered by coverage-driven methods. For

DeepHunter and its two variants, we first apply them on the

training images, augment all the generated images into the

original training set, and then retrain the models. For the

two gradient-based methods, we use a popular library [35]

to perform adversarial training.

We first test the hypothesis about whether adversarial train-

ing can harm model performance on the benign dataset. We

find that on the benign datasets, the accuracy of retrained mod-

els (either using coverage-driven or gradient-based methods)

is statistically significantly smaller than the original models

(p-value is 0.002 < 0.05). Although this conclusion is not

explicitly mentioned by Yan et al., we can also observe similar

results reported in tables from their paper [11].

Yan et al. [11] make an observation that adversarial training

using gradient-based methods has a limited impact on increas-

ing model robustness on test cases generated by coverage-

driven methods and even hurts the robustness in some cases.

We test Hypothesis 5 to see whether we can confirm this

observation. We first retrain models using gradient-based

methods and independently evaluate obtained models on test

cases generated by coverage-driven methods. A statistical test

is performed to examine whether the accuracy of retrained

models on coverage-driven test cases is lower than that of

the original models. The statistical test results show a p-value

of 0.024 < 0.05, which suggests accepting Hypothesis 5.

In other words, we confirm the above observation made in

[11], which highlights that more works on defending coverage-

driven methods are needed.

To explore whether the non-differentiable image transfor-

mations are the ones that cannot be repaired, we consider

two variants of DeepHunter in our experiment, each of which

is coverage-driven but can only perform either differentiable

or non-differentiable image transformations. We test Hypoth-

esis 6 and find that using gradient-based methods to repair

models does not help increase more robustness against differ-

ential transformations than non-differentiable transformations.

It suggests that coverage-driven and gradient-based methods

uncover different defects in DNN models even using the same

image transformations. Although coverage-driven methods can

generate fewer failed test cases than gradient-based methods,

these test cases can uncover different defects and more effec-

tive defensive approaches need to be designed specially. Based

on the above results, our answer to this research question is:

Answer to RQ4: Statistical test results with p-value <
0.05 show that adversarial training with gradient-based

methods cannot defend against coverage-driven test

cases.

D. Summary for Replication Results

Table III summarizes the hypotheses and the corresponding

findings obtained by testing these hypotheses. A ‘�’ means

that a finding is explicitly made in Yan et al.’s paper [11].

VI. RELATED WORK

In this section, we survey some related works about DNN

models, DNN testing and adversarial attack. Section II pro-

vides more detailed information about the test case generation

methods investigated in this replication study.

A. Testing and Verifying DNNs

Models that are based on deep neural networks have

achieved competitive results on many tasks, such as transla-

tion [36], speech recognition [2], semantic segmentation [37],

game playing [3] and so on. Such models are now also widely

used in our daily life, e.g. autonomous driving [4], ensuring

the DNN quality is of great importance.

416



TABLE III: Summarization of replication results. Column 1

describe the findings that we get from testing hypotheses,

column 2 describes hypotheses in Section IV, and column 3

describes whether the findings are reported in [11].

Findings Hypothesis [11]

Coverage-improving examples are not more
effective than coverage-remaining examples.

H1

Gradient-based methods are more effective
than coverage-driven methods in uncovering
defects.

H2 �

Both non-differentiable and differentiable
transformations have similar ability in
uncovering defects.

H3

Retraining models with generated test cases
can harm performance on benign datasets.

H4 �

Retraining using gradient-based methods
cannot defend against coverage-driven methods.

H5 �

Both non-differentiable and differentiable
transformations have similar ability in
improving model quality.

H6

Researchers from software communities have proposed

many methods to test DNN models. Inspired by using code

coverage as guidance to test conventional software, Pei et

al. [7] present the concept of neuron coverage and DeepXplore

to detect behaviour inconsistencies of different DNNs. The

follower researchers propose more structured neuron coverage

metrics and design a list of coverage-driven tools (e.g., Dee-

pHunter [8], DeepTest [38], DeepGauge [9], DeepCT [39],

etc.) to test DNNs. But recently, there are some studies

questioning the effectiveness of using neuron coverage as

guidance to test DNNs. Li et al. [10] point out that structural

coverage criteria for neural networks could be misleading.

Dong et al. [40] shows that there is a limited correlation

between neuron coverage and robustness for DNNs. Harel-

Canada et al. [41] show that neuron coverage may not be a

useful measure for testing DNN, and Yan et al. [11] also find

no strong correlations between neuron coverage and model

quality metrics. Trujillo et al. [42] find that it is ineffective

to use neuron coverage to test deep reinforcement learning.

These studies are conducted on relatively small datasets and

models and do not follow the process of how DNNs are tested

and improved in practice. So we replicate the study by [11]

and extend the experiments to more systematically compare

coverage-driven methods and gradient-based methods.

There are also DNN testing works that utilize different

approaches and test models beyond image classification tasks.

BiasFinder [43] leverages the metamorphic relationship to

uncover inconsistency of sentiment analysis systems. Sun et

al. [44] propose TransRepair that combines mutation with

metamorphic testing to detect inconsistency bugs in machine

translation systems. Gao et al. [45] adopt genetic programming

to generate images that can uncover more failed test cases

and better improve model robustness. Asyrofi et al. [46], [47]

developed a differential testing framework to test automatic

speech recognition systems. DeepConcolic [33] proposes a

white-box DL testing technique based on concolic testing.

Research also propose verification techniques to ensure

the DNNs behave as expected. AI2 [48] uses abstract in-

terpretation to certify the safety and robustness property of

DNNs. Reluplex [49] use an SMT Solver to verify the safety

property of DNNs. BiasRV [50] is a tool that can verify the

fairness property of sentiment analysis systems at runtime, and

BiasHeal [51] can repair uncovered fairness issues.

B. Adversarial Attack and Training

Although Deep Neural Network (DNN) models have

achieved great success on many tasks, many research works

show that state-of-the-art models are vulnerable to adversarial

attacks. In 2014, Szegedy et al. [52] firstly exposed that adding

a small perturbation that is not recognizable by the human eye,

to the input of DNN will produce a misclassified prediction

with high confidence.

According to the target model information that an attacker

can access, adversarial attacks can be divided into two types:

white-box and black-box. White-box attacks can access all the

information of the target models, e.g. using model parameters

to compute gradients. Black-box attacks mean that the attacker

only knows the inputs and outputs of target models. The

gradient-based methods investigated in our replication study

are white-box attack. Goodfellow et al. [20] propose the

first popular attack named as Fast Gradient Sign Method

(FGSM), which slightly modify image pixels following the

sign of gradients on images. PGD [13] is a first-order universal

adversary attack based on FGSM [20]. Black-box attackers

like SquareAttack [53] and SpatialTransformation [54] query

the model for multiple times and get outputs to estimate

useful information for generating adversarial examples, e.g.

approximating gradients.

VII. CONCLUSION AND FUTURE WORK

This paper conducts a replication study of the work by Yan

et al. and performs more detailed analysis. Our experiment

results confirm that the model quality does not monotonously

improve as the coverage metrics increase. We perform sta-

tistical tests and to show that coverage-improving examples

is not more effective than coverage-remaining examples in

terms of improving model quality. Our experiment results also

replicate the conclusion that coverage-driven methods are less

effective than gradient-based methods. We test several hy-

potheses and further show that even coverage-driven methods

are constrained to perform differentiable transformations only,

the uncovered defects still cannot be repaired by adversarial

training with gradient-based methods. Defensive strategies for

coverage-driven methods should be further studied.

The replication package of this study are made open-source

at https://github.com/soarsmu/Revisiting Neuron Coverage.
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