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ABSTRACT
Quadratic unconstrained binary optimization (QUBO) models have
garnered growing interests as a strong alternative modelling frame-
work for solving combinatorial optimization problems. A wide
variety of optimization problems that are usually studied using
conventional Operations Research approaches can be formulated
as QUBO problems. However, QUBO solvers do not guarantee op-
timality when solving optimization problems. Instead, obtaining
high quality solutions using QUBO solvers entails tuning of mul-
tiple parameters. Here in our work, we conjecture that the initial
states adjustment method used in QUBO solvers can be improved,
where careful tuning will yield overall better results. We propose
a data-driven multi-start algorithm that complements the QUBO
solver (namely Fujitsu Digital Annealer) in solving constrained
optimization problems. We implemented our algorithm on a variety
of capacitated vehicle routing problem instances, and empirical re-
sults show that different initial state adjustment methods do make a
difference in the quality of solutions obtained by the QUBO solver.
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1 INTRODUCTION
The development of quantum technologies in recent years has lead
scientists and researchers to revisit ubiquitous optimization prob-
lems with real world applications through the quantum lens. Cur-
rently, quantum related technologies come in many form, ranging
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from quantum-inspired classical machines [21, 42], to classical-
quantum hybrid [11], to quantum hardware [15, 24]. Most of these
quantum related hardwares are built to solve optimization problems
in the form of quadratic unconstrained binary optimization (QUBO)
problems [25, 33, 36]. As a result, a broad spectrum of optimization
problems that are usually studied under the traditional operations
research community can also be approached as QUBO problems, e.g.
finance [10, 26, 35], computational biology [28], logistics optimiza-
tion [27, 40], to machine learning [13] and many more highlighted
in [16].

Given the growing prevalence of QUBO models, there is an
increasing interest to study new techniques and algorithms to im-
prove performance of QUBO solvers. In general, QUBO solvers
do not guarantee optimality when solving an optimization prob-
lem. Obtaining high quality solutions, i.e. feasible solutions that
are as close to the provably optimal solution as possible, relies on
several factors. In the case of constrained optimization problems,
the solution obtained by QUBO solvers also heavily depend on
the penalty terms coefficients, as previously mentioned in [16]. In
general, large penalty term coefficients used to enforce constraints
can overwhelm the solution landscape, causing solvers to be stuck
in local minima, while having too small a penalty allows infeasible
solutions. Choosing the right penalty coefficients to use is a diffi-
cult task, and not easily generalizable. For example, [41] presents
a framework to obtain a lower bound of the penalty coefficients
in QUBO models of problems having a single equality constraint.
In addition, hyper parameter optimization methods such as hyper-
opt [3] and Optuna [1] can also be used to try to tune the penalty
term coefficients of QUBO models.

In this paper, we propose an approach that utilizes a multi-start
scheme driven by a prediction model to improve the overall perfor-
mance of QUBO solvers. Our experiments will be conducted using
the third generation quantum-inspired Fujitsu Digital Annealer
(DA) as our QUBO solver, and our focus will be on the Capacitated
Vehicle Routing Problem (CVRP), even though the same approach
may potentially be applied to solve other constrained optimization
problems. This paper is divided into the following sections. We
first discuss some related work in the area of solving CVRP using
quantum related methods in Section 2. Sections 3 and 4 discuss our
methodology, which involves the QUBO model formulation for the
CVRP, and the data-driven algorithm we considered. We present
and discuss our results in Section 5, and in Section 6, we conclude
our findings and lay out potential extensions of this work.
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2 LITERATURE REVIEW
The CVRP [12] is an NP-hard constrained optimization problem that
has many real world applications. Throughout the years, various
techniques and algorithms have been developed to solve the CVRP.
Some traditional heuristic algorithms to solve the CVRP goes back
as far as [4, 17, 39]. Aside from that, [38] provides a substantial list
of excellent algorithms to solve the CVRP.

While the CVRP is a well-known and well studied problem, our
interest in this paper lies in the quantum approach of solving the
CVRP. Recent development in quantum technologies has given rise
to new formulations and techniques to solve the CVRP. In 2017,
In [37] presented a simplified and systematic approach to tuning
a quantum annealing algorithm for large scale vehicle scheduling
problems implemented on a classical computer. In [22], the authors
proposed a new QUBO formulation of the vehicle routing problem
(VRP) with time window and capacity, and subsequently imple-
mented it using the D-Wave 2000Q machine. Work done in[19]
presented a quantum annealing approach to solving the dynamic
multi-depot CVRP. There, the authors modeled the dynamic multi-
depot CVRP as a QUBO problem, and proposed a solution approach
to solving it on the quantum annealing hardware fromD-Wave. Tak-
ing a slightly different approach, [14] introduced a hybrid method
for the CVRP using a quantum annealer. In their approach, the
authors performed a 2-Phase-Heuristics onto the CVRP problem,
where the first phase involves clustering customers based on their
locations and demand, and the in the second phase, the algorithm
perform routing optimization to determine the shortest path inside
each cluster. Similarly, [5] also introduced new hybrid algorithms
for solving both VRP and CVRP using D-Wave’s Leap framework
on well-established benchmark cases. The authors found that their
hybrid methods produce results that are competitive with existing
classical algorithms.

In contrast, our work in this paper focuses on developing a data
drivenmulti-start algorithm to 𝑒𝑛ℎ𝑎𝑛𝑐𝑒 the performance of a QUBO
solver when solving the CVRP. Our work will be centered around
the third generation quantum-inspired Fujitsu Digital Annealer
(DA). In the next section, we present a QUBO formulation for the
CVRP that fits the Fujitsu DA, and an algorithm that enhances it
performance when applied to the CVRP.

3 METHODOLOGY
3.1 General QUBO Solving Framework
A combinatorial optimization problem can be formulated as a qua-
dratic unconstrained binary optimization problem that takes the
following form:

𝐸 (𝑥𝑖 ) =
∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗𝑥𝑖𝑥 𝑗 (1)

where 𝑥𝑖 ∈ {0, 1} is the binary decision variable of the problem, and
𝐴𝑖, 𝑗 ∈ R are coefficients. The QUBO form in Equation (1) contains
no constraints other than those requiring the decision variables to
be binary. Nonetheless, most real world problems of interest consist
of constraints that must be satisfied as the solver searches for opti-
mal solutions. Combinatorial constrained optimization problems
can be formulated as QUBO problems by introducing penalty terms
into the objective function as a way to explicitly impose constraints.

This results in augmented objective functions of the original prob-
lems. The penalty terms are formulated such that they equal zero
for feasible solutions, but when they are violated, they contribute
to a positive increase in the augmented objective function. There-
fore, when a solver attempts to minimize the augmented objective
function, the penalty terms are naturally driven to zero.

In general, when solving a QUBO problem, the solver’s algorithm
is repeated many times with varying initial states and penalty coef-
ficients to search for the optimal results. Nonetheless, in this paper,
our focus will be on the initial states selection to improve the per-
formance of a QUBO solver. In most QUBO solving algorithms, the
search algorithm is repeated with different initial states periodically
so that the solution state of the solver does not get stuck in a local
minimum. We decided to study the effects of the initial state in
a QUBO solver, and explore initial state adjustment methods to
obtain better results when solving optimization problems.

In this work, our results are centered around the third generation
Fujitsu Digital Annealer (DA) as the main QUBO solver [32]. The
Fujitsu DA is a quantum-inspired dedicated hardware architecture
designed to solve combinatorial optimization problems by mapping
to an Ising model [31]. It has fully coupled bit connectivity and
high coupling resolution which allows it to solve various combina-
torial optimization problems. Some applications of DA in the field
of optimization problems include [2, 8, 9, 20, 23, 30]. In this paper,
we use the third generation DA wwhich has a hybrid problem-
solving system consisting of a software intervention layer (SIL) and
a search core to solve binary quadratic programming (BQP) prob-
lem of up to 100,000 bits. In addition, the BQP Interface has built-in
functions to handle one-hot constraints and linear inequality con-
straints without needing to convert them to penalty terms. These
major features that are non-existent in previous generation DA’s
allow us to construct a QUBO formulation for the CVRP without
using slack variables. As we will see in our problem formulation,
the inequality constraint in our CVRP QUBO formulation will be
declared separately from the objective function and penalty terms.

3.2 Problem Formulation
Our work focuses on the capacitated vehicle routing problem [12].
The CVRP is one of the many well-known variants of the vehicle
routing problem. In the CVRP, we seek to find the shortest route for
a fleet of vehicles with limited carrying capacity to pick up or deliver
items at various locations. In addition, all vehicles used must start
and end their tours at a designated depot. As we have seen from our
literature review, there are many different QUBO formulations that
have previously been used to solve the CVRP [19, 22, 37] depending
on the platform or hardware used. In this paper, our CVRP QUBO
formulation is an extension of a TSP formulation introduced in [29].
Using a binary decision variable that keeps track of the location
nodes and their position in a tour, we added an extra index to track
different vehicles. As a result, the decision variable of the CVRP in
our QUBO formulation is defined as follows:

𝑥𝑘
𝑖𝑙
=

{
1 if city 𝑖 is the 𝑙-th city visited in vehicle 𝑘’s tour.
0 otherwise

(2)
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The QUBO formulation we used for the CVRP is shown in Equation
(3), where 𝑑𝑖 𝑗 denotes the distance between city 𝑖 and 𝑗 .

min
∑︁

𝑖∈[1,𝑁 ]
𝑘∈[0,𝐾−1]

𝑑01𝑥
𝑘
𝑖1 +

∑︁
𝑖, 𝑗 ∈[1,𝑁 ]
𝑙 ∈[1,𝐿−1]
𝑘∈[0,𝐾−1]

𝑑𝑖 𝑗𝑥
𝑘
𝑖𝑙
𝑥𝑘
𝑗,𝑙+1

+
∑︁

𝑖∈[1,𝑁 ]
𝑘∈[0,𝐾−1]

𝑑10𝑥
𝑘
𝑖,𝐿 +𝐴

∑︁
𝑖∈[1,𝑁 ]

©­­­­«
∑︁

𝑙 ∈[1,𝐿]
𝑘∈[0,𝐾−1]

𝑥𝑘
𝑖𝑙
− 1

ª®®®®¬
2

+𝐴
∑︁

𝑘∈[0,𝐾−1]
𝑙 ∈[1,𝐿]

©­«
∑︁

𝑖∈[1,𝑁 ]
𝑥𝑘
𝑖𝑙
− 1ª®¬

2

(3)

where 𝑁 is the total number of locations including the depot, 𝐿 is
the number of customer locations each vehicle has to travel to, and
𝐾 is the number of vehicles used. In our formulation, 𝑖 = 0 is always
the designated depot. The first three terms in Equation (3) together
represent the objective function. As CVRP requires all vehicles to
start and end at the depot, the variables 𝑥𝑘00 = 1 and 𝑥𝑘0,𝐿+1 = 1
for all 𝑘’s, as captured in the first and third term in Equation (3).
The fourth term is a penalty term to ensure that each customer
location can only be visited once. Similarly, the fifth and last term
in Equation (3) ensures that each tour position of each vehicle can
only be assigned to one customer location. In general, the two
penalties can take different coefficients. However, since the goal
of our work is to study an algorithm that focuses on the effects of
initial state adjustment in solving QUBO problems, the penalty term
coefficients are set to be the same for both penalties. In addition
to the objective function and penalty terms, the CVRP also has
another inequality constraint that ensures that each vehicle does
not exceed their limited capacity when serving multiple customers,
where ∑︁

𝑖∈[1,𝑁 ]
𝑙 ∈[1,𝐿]

𝑞𝑖𝑥
𝑘
𝑖𝑙
≤ 𝑄 ∀𝑘 (4)

where 𝑞𝑖 denotes the demand of customer 𝑖 , and 𝑄 is the capacity
limit of one vehicle. In this paper, we consider only cases where all
vehicles have the same capacity limit. We note that Equation (4) is
written separately from the objective function and penalty terms
in Equation (3), because as we mentioned, the third generation
Fujitsu DA is able to handle linear inequality constraints separately
without having to convert them into penalty terms using slack
variables.

4 DATA DRIVEN MULTI-START ALGORITHM
A prior work in [6] introduces an approach that learns an evaluation
function that predicts the outcome of a local search algorithm, based
on features of states visited during search. The approach consists
of a primary solver denoted by 𝜋 , and a surrogate model denoted
by 𝑉̃ 𝜋 . The solutions obtained by the primary solver will be used
as new training data for the surrogate model designed to learn how
different initial states will lead to better objective values, i.e. closer
to the optimal value. Using this general framework, we developed a
data-driven multi-start algorithm to improve the search algorithm

carried out by the DA. Figure 1 illustrates our algorithm, which
henceforth will be referred to as multi-start DA. The algorithm is
described in Algorithm 1, with the following notations:
• 𝑁𝑠 is the number of repetitions of the algorithm.
• 𝑇 total time set for DA to solve the QUBO problem.
• Δ𝑡 is the time interval where intermediate solution states
are generated.
• ®𝑥𝑛 ’s are the intermediate states generated at intervals of Δ𝑡 .
• 𝑚 ∈ [0, 𝑀] is the number of hill climbing steps.
• 𝐹 ( ®𝑥𝑛) denotes the feature encoding function.
• 𝐸𝑓 is the objective value obtained by DA after 𝑇 .

Algorithm 1: Multi-start DA
for 𝑠 ← 0 to 3 do

Start with a random initial state and a fixed set of
penalty coefficients.

for 𝑡 ← 0 to 𝑇 do
DA is used to solve the QUBO problem.
At every interval of size Δ𝑡 , the features of the
solution state, 𝐹 ( ®𝑥𝑛) is computed and stored.

end
The corresponding energy of ®𝑥 𝑓 is denoted by 𝐸𝑓 .
A surrogate model is built/updated using the set
{𝐹 ( ®𝑥𝑛)} as variables and 𝐸𝑓 as the target.

end
for 𝑠 ← 3 to 𝑁𝑠 do

for 𝑡 ← 0 to 𝑇 do
DA is used to solve a QUBO problem.
At every interval of size Δ𝑡 , the features of the
solution state, 𝐹 ( ®𝑥𝑛) is computed and stored.

end
When DA finishes, the final solution state obtained,
denoted as ®𝑥 𝑓 is stored.

The corresponding energy of ®𝑥 𝑓 is denoted by 𝐸𝑓 .
The surrogate model is updated using the set {𝐹 ( ®𝑥𝑛)} as
variables and 𝐸𝑓 as the target.

A hill climbing algorithm is performed to find the next
initial state to be used by DA:

The best state obtained after𝑀 hilclimbing steps will be
fed back to DA as an initial state.

end

The goal of the multi-start DA algorithm is to improve the ini-
tial state selection of DA using past data that DA provides. Using
features of solution states explored by the DA, the multi-start DA
algorithm tries to learn the energy landscape of a corresponding
problem through a surrogate model. To this end, there are three
components that are important to the performance of the algorithm
as a whole, namely the type of feature encoding function, surro-
gate model, and the local neighbourhood perturbation scheme. Our
choices for each of these components heavily hinges on the type
or problem we are solving, and their compatibility with the Fujitsu
DA.

Firstly, the main challenge with exploring different feature en-
coding functions to encode solution states is that the solution states
of QUBO problems are binary vectors. There are not many general
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Figure 1: Illustration of our data-drivenmulti-start algorithm.
Processes inside the red dotted box are repeated for 𝑁𝑠 itera-
tions.

features that we can extract from a binary solution state that can
be applied to various types of problems, but on the other hand,
studying features that are overly problem specific can sacrifice
the overall robustness of the algorithm when applied on different
types of problems. For the case of the CVRP, we define our feature
encoding function as:

𝐹

(
®𝑥 𝑓
)
=
(
𝜇𝑑 , 𝜎𝑑 , 𝜇𝑞, 𝜎𝑞

)
(5)

where 𝜇𝑑 and 𝜎𝑑 denotes the mean and standard deviation of the
distance traveled by a vehicle in the solution respectively. Similarly,
𝜇𝑞 and 𝜎𝑞 denotes the mean and standard deviation of the occupied
capacity of a vehicle in the solution respectively. Secondly, the
surrogate model that we use in this work is a quadratic regression
model. The quadratic regressionmodel is chosen because it is simple
to implement, quick to execute, and suits the type of data that
we have. Last but not least, the local neighbourhood perturbation
scheme we used in this work is described in Algorithm 2. The idea
behind the local neighbourhood perturbation scheme in the multi-
start DA algorithm is to use the current solution state to search for
another feasible solution state that can be used as an initial state
for the next DA input to obtain a better solution with the help of
the surrogate model. This is akin to existing multi-start heuristics
algorithm used in solving various other optimization problems [7,
18, 34]. Nonetheless, for our mult-start DA algorithm, we opted for
something simpler and much more efficient to implement, so as to
not further increase the computational cost of the algorithm. Not
only that, the simplicity of the local neighbourhood perturbation
algorithm described in Algorithm 2 is also easily customized to
apply to other types of constrained optimization problems under
our multi-start DA framework.

5 EXPERIMENTAL RESULTS
Our main goal of developing the data driven multi-start DA algo-
rithm is to improve the general performance of the third gener-
ation Fujitsu DA. Thus, we design our experiments to compare
the performances of these two methods. We briefly summarize our
experimental setups for both methods in the following.

Algorithm 2: Local Neighbourhood Perturbation
Using the solution state ®𝑥 𝑓 .
for𝑚 ← 0 to𝑀 do

while 1 do
Randomly select 2 vehicles (𝑘1 and 𝑘2), and denote
the vehicles’ used capacity as 𝑞1𝑡 and 𝑞

2
𝑡

respectively.
A random customer from 𝑘1’s tour is selected, and
set their demand as 𝑞𝑖 . Let the customer’s position
in vehicle 𝑘1’s tour be 𝑙1.

A random customer from 𝑘2’s tour is selected, and
set their demand as 𝑞 𝑗 . Let the customer’s position
in vehicle 𝑘2’s tour be 𝑙2.
if 𝑞1𝑡 − 𝑞𝑖 + 𝑞 𝑗 ≤ 𝑄 and 𝑞2𝑡 − 𝑞 𝑗 + 𝑞𝑖 ≤ 𝑄 then

The customer with demand 𝑞𝑖 will be swapped
to vehicle 𝑘2, and will take over the position in
tour 𝑙1, and vice versa.
break

end
else

Re-select vehicles and customers randomly.
end

end
end

5.1 DA benchmark algorithm setup
The third generation Fujitsu DA is a general QUBO solver with a
proprietary architecture and built-in algorithm. In order for us to
ascertain that the multi-start DA algorithm is able to offer improve-
ments when solving the same QUBO problem, we try to set up the
DA experiments to be as similar as the multi-start DA experiments
in terms of computational resources, problem parameters, and hard-
ware settings. Our benchmark DA algorithm has the following
settings and parameters:

• Total runtime of 𝑇 = 600𝑠 .
• The penalty term coefficients,𝐴 = 10𝑑max, where 𝑑max is the
maximum distance between any two cities in the problem
instance.

5.2 Multi-start DA setup
In order to obtain a meaningful comparison with respect to the
benchmark algorithm, our multi-start DA parameters and settings
are defined to be as similar to the benchmark algorithm as possible.
We set the following settings and parameters for the multi-start DA
algorithm

• Total runtime per iteration is 60𝑠 , with Δ𝑡 = 20, and total
iteration 𝑁𝑠 = 10. This results in the same computational
time limit for both algorithms.
• The penalty term coefficients, 𝐴 = 10𝑑max.
• Number of hill climbing steps 𝑀 = 200. From our experi-
ments, this part of the algorithm takes less than a second
to implement, thus it does not drastically increase our total
computational time.
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5.3 Results

Figure 2: Illustration of single of the multi-start DA execu-
tions CVRP instances. The blue data points represent solu-
tions obtained by the DA, while the red data points represent
initial states predicted by performing hill climbing algorithm
onto the surrogate model. In the first 3 iterations of DA, no
hill climbing was performed. From the 4th iteration onwards,
the black arrows represent the trajectory of solution states
being fed back and forth between the DA and the surrogate
model, in a continuous effort to update the surrogate model,
then use it to predict a better initial state for the next DA
iteration.

Before we discuss the difference in performance between the two
different DA methods, we first draw our attention to the behaviour
of a single execution of the multi-start DA algorithm. Figure 2
shows the typical evolutions of a single execution of the multi-
start DA algorithm when used to solve a CVRP instance. There
are a few important observations here. As indicated by the legend
in Figure 2, blue data points represent solution states obtained
by DA, and red data points represent predicted initial states by
performing a hill climbing algorithm onto the surrogate model.
Firstly, in the beginning of the algorithm, there is no hill climbing
in place. This is because we want to generate a some data points
before building the surrogate model, and performing hill climbing
based on the resulting surrogate model. Subsequently, we observe

the black arrows that goes back and forth between a blue data
point and a red data point. This helps us illustrate the exchange of
solution states that happen between the DA and the hill climbing
algorithm:
• A black arrow that starts from a blue data point and ends
at a red data point indicates that a solution state obtained
by DA is being used by the surrogate and hill climbing al-
gorithm to predict a new initial state that should result in
a lower objective value. The solution state from DA (the
blue data point) is first used to update the surrogate model.
Then, a hill climbing algorithm is performed on the surro-
gate model to predict an initial state that will result in a
lower objective function. This predicted initial state has the
objective function represented by the red data point at the
end of the arrow.
• Conversely, a black arrow that starts from a red data point
and ends at a blue data point indicates that the predicted
initial state is being relayed back into DA to be used as the
initial state of the next iteration of DA’s search algorithm.
This results in a new solution state obtained by DA, with an
objective value represented by the blue data point at the end
of the arrow.

The results illustrated in Figure 2 has significant implications. We
recall that the goal of our work is to enhance the performance of
the third generation quantum-inspired Fujitsu DA using our data
driven multi-start approach. Figure 2 shows that our multi-start DA
algorithm is able to use solutions generated by DA to construct a
surrogate model that can then be used to predict good initial states
to use, i.e., initial states that will lead to a lower objective value
when used in DA. The gap between the red and blue line implies
that when solution states obtained by DA are used to update the
surrogate model, it is able to suggest initial states that will lead to
better solution states when when these suggested initial states are
used by DA. Furthermore, our experimental setup indicates that
this is achieved without increasing the total computational time
significantly.

Next, Table 1 shows the performance difference between the
benchmark DA algorithm and our multi-start DA algorithm when
solving multiple CVRP instances. As a way to compare the general
performance, we conduct 30 experiments on the same instance
with the same fixed penalty coefficients and compared the mean
optimality gap obtained by both methods. We define the optimality
gap as

Δ = 100 ×
objalgo − objopt

objopt
(6)

where objalgo is the objective value obtained by either one of the two
algorithms studied: the benchmark DA algorithm or our mult-start
DA algorithm. objopt denotes the optimal solution of the problem
instance. The optimal solutions of all instances studied here can
be found in CVRPLIB 1. Table 1 shows that our data driven multi-
start algorithm using the DA is able to obtain significantly better
solutions when solving CVRP instances. There are a few important
discussion points we wish to highlight from the results in Table 1.
Firstly, initial state adjustment method plays an important role in

1http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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obtaining better solutions when solving constrained optimization
problems. Our results showed that by developing an algorithm
around improving the initial state adjustment between subsequent
iterations, we can significantly improve the performance of a QUBO
solver such as the Fujitsu DA. Besides that, our experiments are
also structured in a way that is agnostic to the inherent algorithm
of the DA. In our work, the multi-start DA algorithm uses the
intermediary solution state outputs of the DA to build a surrogate
model that is able to suggest better initial states to be used to obtain
solution states that are closer to optimality. This general framework
is not unique to DA and can be applied to other QUBO solvers.

Instances
Optimality Gap (%)

DA benchmark Multi-start DA

A-n32-k5 24.28 ± 3.84 9.75 ± 3.23

A-n33-k5 24.44 ± 4.03 11.57 ± 1.89

A-n44-k6 46.87 ± 5.02 27.62 ± 4.90

A-n48-k7 40.90 ± 5.38 19.94 ± 3.65

B-n35-k5 18.97 ± 3.27 6.13 ± 1.48

B-n34-k5 13.96 ± 3.33 3.89 ± 1.32

B-n45-k6 51.30 ± 4.32 24.27 ± 6.15

B-n51-k7 46.67 ± 5.58 18.65 ± 5.69

E-n33-k4 20.23 ± 2.83 9.40 ± 2.16

E-n30-k3 21.65 ± 3.88 6.90 ± 2.64

P-n50-k7 33.59 ± 4.15 16.81 ± 2.67

P-n50-k10 28.06 ± 3.31 12.60 ± 3.18

P-n40-k5 27.92 ± 4.80 6.59 ± 4.75
Table 1: Comparing the performances of the DA benchmark
algorithmwithmulti-start DA algorithmwhen solvingCVRP.
Numbers in bold denote lower optimality gaps between the
two algorithms.

6 CONCLUSION AND FUTUREWORK
On the whole, our work explored the potential of initial states
adjustment algorithms in improving performance of QUBO solvers
using the third generation quantum-inspired Fujitsu DA as the core
hardware in our study. We conjecture that a data driven multi-start
approach that enhances the selection process of initial states in the
DA’s search algorithm can improve its overall performance. To this
end, we implemented a data driven multi-start DA algorithm that
uses a surrogate model created by learning solution states obtained
by DA to predict initial states that will lead to better solutions
when used by DA in subsequent iterations. Using the CVRP as the
problem of interest, we compared the solutions obtained by both
the multi-start DA and the benchmark DA algorithm.

Our work has shown that improving QUBO solvers’ performance
can also come in the form of better initial state adjustments in be-
tween iterations. Our empirical results with CVRP showed that we

can construct effective algorithms to introduce better initial states
into QUBO solvers, and there are much more to be explored in this
area. A natural extension of our work would be to explore different
types of optimization problems with this framework. Throughout
our experiments, we have tried our best to keep the algorithm to be
as generalizable as possible, such as our choice of surrogate model,
feature encoding function, and local neighbourhood perturbation
scheme. Furthermore, there are also compelling questions regarding
the components in the overall multi-start DA algorithm framework.
It will be interesting to study the effects of different surrogate
models, feature encoding functions, and local neighbourhood per-
turbation schemes have in terms of enhancing the performance of
QUBO solvers.

In addition, we would also like to investigate a more compre-
hensive QUBO solver framework that utilizes both penalty term
coefficients tuning and initial state adjustment method. Recall that
in our current work, the focus is on obtaining better initial states
for the QUBO solver’s search algorithm to produce better solu-
tions. However, in any general QUBO solver, the optimization task
involves penalty term coefficients tuning as well. Being able to
systematically tune the penalty term coefficients while improving
the initial states adjustment will provide a more complete insight to
solving combinatorial optimization problems using QUBO solvers.
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