
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2022

BiasFinder: Metamorphic test generation to uncover bias for BiasFinder: Metamorphic test generation to uncover bias for

sentiment analysis systems sentiment analysis systems

Muhammad Hilmi ASYROFI

Zhou YANG
Singapore Management University, zhouyang.2021@phdcs.smu.edu.sg

IMAM NUR BANI YUSUF
Singapore Management University, imamy.2020@phdcs.smu.edu.sg

Hong Jin KANG
Singapore Management University, hjkang.2018@phdcs.smu.edu.sg

Thung Ferdian
Singapore Management University, ferdianthung@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation Citation
ASYROFI, Muhammad Hilmi; YANG, Zhou; IMAM NUR BANI YUSUF; KANG, Hong Jin; Ferdian, Thung; and
LO, David. BiasFinder: Metamorphic test generation to uncover bias for sentiment analysis systems.
(2022). IEEE Transactions on Software Engineering. 48, (12), 5087-5101.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7611

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7611&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Muhammad Hilmi ASYROFI, Zhou YANG, IMAM NUR BANI YUSUF, Hong Jin KANG, Thung Ferdian, and
David LO

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7611

https://ink.library.smu.edu.sg/sis_research/7611

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

BiasFinder: Metamorphic Test Generation to
Uncover Bias for Sentiment Analysis Systems

Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Ferdian Thung and David Lo

Abstract—Artificial Intelligence (AI) software systems, such as Sentiment Analysis (SA) systems, typically learn from large amounts of
data that may reflect human biases. Consequently, the machine learning model in such software systems may exhibit unintended
demographic bias based on specific characteristics (e.g., gender, occupation, country-of-origin, etc.). Such biases manifest in an SA
system when it predicts a different sentiment for similar texts that differ only in the characteristic of individuals described. Existing
studies on revealing bias in SA systems rely on the production of sentences from a small set of short, predefined templates. To address
this limitation, we present BiasFinder, an approach to discover biased predictions in SA systems via metamorphic testing. A key feature
of BiasFinder is the automatic curation of suitable templates based on the pieces of text from a large corpus, using various Natural
Language Processing (NLP) techniques to identify words that describe demographic characteristics. Next, BiasFinder instantiates new
text from these templates by filling in placeholders with words associated with a class of a characteristic (e.g., gender-specific words
such as female names, “she”, “her”). These texts are used to tease out bias in an SA system. BiasFinder identifies a bias-uncovering
test case (BTC) when it detects that the SA system exhibits demographic bias for a pair of texts, i.e., it predicts a different sentiment for
texts that differ only in words associated with a different class (e.g., male vs. female) of a target characteristic (e.g., gender). Our
empirical evaluation showed that BiasFinder can effectively create a larger number of fluent and diverse test cases that uncover
various biases in an SA system.

Index Terms—sentiment analysis, test case generation, metamorphic testing, bias, fairness bug

F

1 INTRODUCTION

MANY modern software systems employ AI systems to
make decisions. In AI systems, fairness is considered

to be an important non-functional requirement; bias in AI
systems, reflecting discriminatory behavior towards unpriv-
ileged groups, can lead to real-world harms. To address
this requirement, software engineering research techniques,
such as test generation, have been applied to detect bias [1]–
[5]. While various techniques have been proposed for test
generation of machine learning systems [1]–[4], there have
been limited studies on detecting biases in text-based ma-
chine learning systems [5]. Text-based ML systems have
numerous applications, for example, NLP techniques have
been used for Sentiment Analysis (SA). It is, therefore,
important that biases in these systems can be detected before
these systems are deployed.

SA systems are used to measure the attitudes and affects
in text reviews about an entity, such as a movie or a news
article [6], [7]. In this work, we focus on uncovering bias in
SA for three reasons:

Firstly, SA has widespread adoption in many do-
mains [8], [9], including politics [10], [11], finance [12]–
[15], business [16], education [17]–[19], and healthcare [20]–
[22]. In the research community, SA continues to be widely
studied [23]–[28]. In the industry, many companies, such

• M.H. Asyrofi, Z. Yang, I.N.B. Yusuf, H.J. Kang, F. Thung, D. Lo are
with the School of Computing and Information Systems, Singapore
Management University
E-mail: mhilmia@smu.edu.sg, zyang@smu.edu.sg,
imamy.2020@phdcs.smu.edu.sg, hjkang.2018@phdcs.smu.edu.sg,
ferdianthung@smu.edu.sg, davidlo@smu.edu.sg

Manuscript received April 19, 2005; revised August 26, 2015.

as Microsoft1 and Google2, have developed and provided
APIs for software developers to access SA capabilities. This
suggests the prevalence of SA in real-life applications. As a
result, bias in SA systems can have a big impact on society.

Secondly, SA has generalizability to other areas of NLP.
Some NLP researchers have considered SA to be “mini-
NLP” [9], as research on SA techniques builds on top of a
wide range of topics and tasks in the NLP domain. Cambria
et al. [29] argues that SA is a problem with a composite
nature, requiring 15 more fundamental NLP problems to
be addressed at the same time. Therefore, we believe that
tackling bias in SA is a suitable first step that could lead to
a more general approach to detect bias in textual data.

Thirdly, due to the importance of SA systems, there are
many recent research works [5], [30]–[34] that focus solely
on the fairness issues in SA systems. Although these works
are not guaranteed to be fully generalizable to all kinds of
NLP systems, the importance and wide applicability of SA
justify the need of fairness studies that focus on it.

Modern SA models have outstanding performance on
benchmark datasets, which demonstrates their effectiveness.
However, there has been a growing understanding in both
the Software Engineering [3] and Artificial Intelligence [5]
research communities that it is important to study non-
functional requirements, such as fairness, which have been
overlooked. AI systems learn from data generated by hu-
mans. In the case of SA, the training data is typically a
dataset of human-written reviews. The training data may re-
flect human biases. SA systems may, therefore, exhibit biases

1https://azure.microsoft.com/en-us/services/cognitive-services/
text-analytics/

2https://cloud.google.com/natural-language/docs/
analyzing-sentiment

ar
X

iv
:2

10
2.

01
85

9v
2

 [
cs

.S
E

]
 5

 O
ct

 2
02

1

https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://cloud.google.com/natural-language/docs/analyzing-sentiment
https://cloud.google.com/natural-language/docs/analyzing-sentiment

towards a demographic characteristic, such as gender [30],
[32]. For example, the sentiment predicted by an SA system
may differ for a piece of text after a perturbation in the text
to replace words that describe a demographic characteristic,
e.g., changing “I am an Asian man” into “I am a black
woman” may cause a predicted sentiment to change from
positive to negative, therefore, showing that the SA system
reflects demographic bias.

As SA systems are used in many domains, including
sensitive areas such as healthcare, and may be used for
business analytics to make critical business decisions, it is
important to detect biases in these systems. Early discovery
of these biases will help to prevent the perpetuation of
human biases, and aid to prevent real-world harms. To do
so, SA systems should be tested for fairness (i.e., absence
of unintended bias), as existing studies suggest [5], [30].
Prior studies have relied on a small number of templates to
generate short texts that may uncover bias. Specifically for
SA systems, Kiritchenko and Mohammad [30] propose EEC,
which generates test cases produced from 11 handcrafted
templates. These test cases help to detect if an SA system
predicts a different sentiment given two texts that differ only
in a single word associated with a different gender or race.

These test cases are limited in number and may not
adequately uncover biases in a system. Very recently, SA
researchers [9] have noted that “the templates utilized to
create the examples might be too simplistic” and identify-
ing such biases “might be relatively easy”. They suggest
that “Future work should design more complex cases that
cover a wider range of scenarios.” In this work, our goal
is to address these limitations of handcrafted templates by
automatically generating test cases to uncover biases.

We propose BiasFinder, a framework that automatically
generates test cases to discover biased predictions in SA sys-
tems. BiasFinder automatically identifies and curates suit-
able texts in a large corpus of reviews, and transforms these
texts into templates. Each template can be used to produce a
large number of mutant texts, by filling in placeholders with
concrete values associated with a class (e.g., male vs. female)
given a demographic characteristic (e.g., gender). Using these
mutant texts, BiasFinder then runs the SA system under test,
checking if it predicts the same sentiment for two mutants
associated with a different class (e.g. male vs. female) of the
given characteristic (e.g. gender). A pair of such mutants are
related through a metamorphic relation where they share
the same predicted sentiment from a fair SA system.

The key feature of BiasFinder is its automatic identifi-
cation and transformation of suitable text in a corpus to a
template. This allows BiasFinder to produce a large number
of test cases that are varied and realistic compared to pre-
vious approaches. Identifying suitable texts to transform to
a template is challenging. For instance, all references to an
entity should be replaced in a consistent way that does not
make the text (e.g., a paragraph) incoherent. An example is
shown in Figure 1, in which all expressions referring to an
entity (“Jake”) need to be updated. The name “Jake” and
its references (bolded and underlined) need to be updated
together for the text to remain coherent. BiasFinder ad-
dresses this challenge through the use of Natural Language
Processing (NLP) techniques, such as coreference resolution
and named entity recognition, to find all words that require

modification.

Original Text
It seems that Jake with all his knowledge of the great
outdoors didn’t realize the danger! He enters a mine shaft
that’s leaking with dangerous gas!
Mutated Text
It seems that Julia with all her knowledge of the great
outdoors didn’t realize the danger! She enters a mine shaft
that’s leaking with dangerous gas!

Fig. 1. An example of how all references to the same entity has to
be considered when mutating a text to be associated with a different
gender.

Our framework, BiasFinder, can be instantiated to iden-
tify different kinds of bias. In this work, we show how
BiasFinder can be instantiated to uncover bias in three
different demographic characteristics: gender, occupation,
and country-of-origin. We obtained 10 SA models by fine-
tuning 5 Transformer-based models on two popular senti-
ment analysis datasets: the IMDB movie review and Twitter
Sentiment140 (the IMDB and Twitter datasets for short in the
following parts). We compare BiasFinder with two baselines
(EEC [30] and MT-NLP [31]) on the two datasets. We eval-
uate the effectiveness of BiasFinder in uncovering biases by
measuring the number of bias-uncovering test cases (BTCs)
found. A BTC is a pair of two mutants, which only differ
in sensitive information (e.g., gender), that is predicted
as different sentiments by an SA system under test. Our
experiments showed that BiasFinder could uncover more
BTCs than two baselines (EEC [30] and MT-NLP [31]) on
two datasets. Additionally, we evaluate whether the gen-
erated texts are fluent by performing a manual annotation
study. The results demonstrate that participants consistently
consider texts generated by BiasFinder to be more fluent
than texts generated by MT-NLP.

The contributions of our work are:
• We propose BiasFinder, a framework that uncovers bias

in SA systems through the automatic generation of a large
number of realistic test cases given a target characteristic.
The source code of BiasFinder is publicly available3.

• BiasFinder automatically identifies and curates appropri-
ate and realistic texts (of various complexity) and trans-
forms them into templates that can be instantiated to
detect different types of bias. Prior work only considers
a small set of manually-crafted simple templates or focus
on detecting one type of bias.

• We compare BiasFinder with two baselines on IMDB and
Twitter datasets. The results show that BiasFinder can
generate more BTCs, and an annotation study demon-
strates that human annotators consistently consider that
BiasFinder can generate more fluent text mutants.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the necessary background related to our
work. Section 3 presents BiasFinder. Section 4 elaborates
GenderBiasFinder, an instantiation of BiasFinder to detect
gender bias. Section 5 briefly discusses instantiations of
BiasFinder for detecting occupation and country-of-origin
bias. Section 6 describes the results of our experiments.

3https://github.com/soarsmu/BiasFinder

2

https://github.com/soarsmu/BiasFinder

Section 7 presents related work. Finally, Section 8 concludes
this paper and describes some future work.

2 PRELIMINARIES

This section provides more details of metamorphic testing
for revealing fairness issues (Section 2.1), as well as basic
NLP operations that we use as building blocks of our
proposed approach (Section 2.2).

2.1 Metamorphic Testing for Fairness

Counterfactual fairness is a widely adopted fairness concept
[35]–[38], which is introduced by Kusner et al. who specify
that “a decision is fair towards an individual if it is the
same in (a) the actual world and (b) a counterfactual world
where the individual belonged to a different demographic
group” [35]. We formalize this counterfactual fairness spec-
ification as a metamorphic relationship.

We first introduce the definitions of fairness and the for-
malisation of metamorphic testing for uncovering fairness
issues in SA systems. An SA system can be abstracted as a
function f : X → Y , which takes a text x ∈ X as input
and produces the sentiment y = f(x) reflected in the input.
We expect a fair SA system not to make predictions that are
based on emotionally irrelevant but sensitive information
(e.g., gender, ethnic groups, countries of origin, etc), which
are called protected features. We use p(x) to denote the
protected features of an input x and n(x) to denote the
non-protected features. The above expectation for a fair
SA system can be formally specified with a metamorphic
relationship:

∀xi, xj , n(xi) = n(xj) ∧ p(xi) 6= p(xj)→ f(xi) = f(xj)

where xi and xj are two inputs that share the same non-
protected features (i.e., n(xi) = n(xj)) but differ in sensitive
features (i.e., p(xi) 6= p(xj)). A fair SA system should make
same prediction for the two inputs, i.e., f(xi) = f(xj). Pairs
of xi and xj that violate the metamorphic relationship are
referred as bias-uncovering test case (BTC).

The Equity Evaluation Corpus (EEC) is a benchmark
dataset [30] that leverage the metamorphic relationship to
reveal bias in SA systems. The EEC consists of 8,640 sen-
tences designed to reveal gender and race bias. These sen-
tences are constructed by instantiating placeholders in the
templates shown in Table 1. The placeholders in templates 1-
7 can be replaced with words to produce sentences that lean
towards positive or negative sentiment, while the templates
in 8-11 result in sentences with a neutral sentiment.

Templates in the EEC have two placeholders: 〈person〉
and 〈emotion〉. Mutant texts are generated by instantiating
each placeholder with a predefined value. Predefined values
for the placeholder 〈person〉 are:

• Common African American female or male first names;
Common European American female or male first
names; taken from Caliskan et al. [39]

• Noun phrases referring to females, such as ‘my daugh-
ter’; and noun phrases referring to males, such as ‘my
son’.

TABLE 1
Templates in EEC.

No Template # Sentence

Sentences with emotion words:
1 〈person〉 feels 〈emotion〉 1,200
2 The situation makes 〈person〉 feel 〈emotion〉 1,200
3 I made 〈person〉 feel 〈emotion〉 1,200
4 〈person〉 made me feel 〈emotion〉 1,200
5 〈person〉 found himself/herself in a/an

〈emotion〉 situation
1,200

6 〈person〉 told us all about the recent 〈emotion〉
events

1,200

7 The conversation with 〈person〉 was 〈emotion〉 1,200
Sentences with no emotion words:
8 I saw 〈person〉 in the market 60
9 I talked to 〈person〉 yesterday 60
10 〈person〉 goes to the school in our neighborhood 60
11 〈person〉 has two children 60

The second placeholder, 〈emotion〉, corresponds to four
basic emotions: anger, fear, joy, and sadness. For each emo-
tion, EEC selects five words from Roget’s Thesaurus4 with
varying intensities.

Although the EEC has successfully revealed bias in
NLP systems [30], it is limited only to gender and race
bias. It does not explore bias against other demographic
information (e.g., occupation, etc.) that may also lead to
inappropriate behavior of Sentiment Analysis and other
NLP systems. Furthermore, the templates used to create
the text dataset may be too short and simplistic as argued
by Poria et al. [9]. We suggest that a system that has the
capability to automatically create templates to produce more
diverse and complex sentences can aid in better uncovering
bias in Sentiment Analysis systems.

2.2 Natural Language Processing (NLP) Techniques
2.2.1 Part-of-speech Tagging
Part-of-speech tagging (PoS-tagging) is the process of iden-
tifying the part of speech (e.g. noun, verb) that each word in
a text belongs to [40]. An example of PoS-tagging is shown
in Figure 2. In the example text, “Maria” is tagged as a
proper noun (PROPN); “has” and “loves” are tagged as
verbs (VERB); and “She” and “him” are tagged as pronouns
(PRON).

2.2.2 Named Entity Recognition
Named entity recognition (NER) automatically identifies
named entities in a text and groups them into predefined
categories. Examples of named entities are people, orga-
nizations, occupations, and geographic locations [41]. An
example of NER can be found in Figure 2, where the word
”Maria” is assigned to the ”PERSON” category. In this work,
we are mainly interested with the person (for gender and
country-of-origin bias) and occupation (for occupation bias)
categories.

2.2.3 Coreference Resolution
Finding all expressions that refer to the same entity in
a text is known as coreference resolution [42]. Linking

4http://www.gutenberg.org/ebooks/22

3

http://www.gutenberg.org/ebooks/22

such expressions is useful for many NLP tasks where the
correct interpretation of a piece of text has to be derived
(e.g. document summarization, question answering). Coref-
erence resolution only links expressions together, and does
not identify the types of the referenced entities, which is
done through NER. An example of coreference resolution
can be found in Figure 2, in which the expressions ”Maria”
and ”She” are linked. Likewise, the expressions ”a friend”
and ”him” are linked as they refer to the same entity.
Given an input text, running a coreference resolution on it
will produce n lists of references; each list corresponds to
references to a single entity.

Input Text
Maria has a friend. She loves him.
POS-tagging
Maria|PROPN has|VERB a|DET friend|NOUN .|PUNCT
She|PRON loves|VERB him|PRON .|PUNCT
NER
Maria | PERSON
Coreferences Resolution

+———————-+
| |

Maria has a friend. She loves him.
| |
+———————-+

Coreferences
Maria, She
a friend, him

Fig. 2. Example of POS-tagging, NER, and coreference resolution.
There are two entities identified by the coreference resolution, ”Maria”
and ”a friend”, and the expressions referring to these entities are linked.

2.2.4 Dependency Parsing
The process of assigning a grammatical structure to a piece
of text and encoding dependency relationships between
words is known as dependency parsing [43], [44]. Encoding
such information as a parse tree, words in a text are con-
nected such that words that modify each other are linked.
For example, a dependency parse tree connects a verb to its
subject and object, and a noun to its adjectives.

Fig. 3. Example of a dependency parse tree for the sentence “That guy
from Blade Runner also cops a good billing”. The root word of the phrase
“That guy from Blade Runner” (bolded in the above image) is ”guy”.

Figure 3 shows an example of a parse tree that is out-
put by performing a dependency parsing of an input text:
“That guy from Blade Runner also cops a good billing”.
The directed, labeled edges between nodes indicate the
relationships between the parent and child nodes. From the
parse tree, the root word of a phrase can be identified. For

example, the root word of the phrase “That guy from Blade
Runner” represented in Figure 3 is “guy”, as its node does
not have any incoming edges from the nodes of other words
in the phrase.

3 BIASFINDER

Figure 4 shows the architecture of our proposed approach:
BiasFinder. It takes, as input, a collection of texts and a senti-
ment analysis (SA) system, and produces, as output, a set of
bias-uncovering test cases. BiasFinder has three components:
(A) template generation engine, (B) mutant generation engine,
and (C) failure detection engine.

The template generation engine generates bias-targeting
templates from a collection of texts. These templates are
designed to target bias towards a specific characteristic (e.g.,
gender). The generated templates are input to the mutant
generation engine. This engine generates text variants (mu-
tants) that differ in a target bias characteristic (e.g., two
paragraphs, which are otherwise identical, but describe an
individual using words associated with a different gender)
and should have the same sentiment. These mutants are
then input to the failure detection engine. This engine makes
use of the metamorphic relation between mutants (i.e., they
have the same sentiment as they are generated from the
same template) to infer failures (i.e., bias). This engine
identifies mutants that uncover bias in the SA system. These
mutants are output as the bias-uncovering test cases.

BiasFinder

Template
Generation

Engine

A

B

C

Mutant
Generation

Engine

Failure
Detection

Engine

Input Output

Bias-
targeting
templates

Mutated
texts

A collection
of texts

Input

A sentiment
analysis system

Bias-uncovering
test cases

Fig. 4. The Architecture of BiasFinder.

3.1 Template Generation Engine

The template generation engine follows the workflow in
Figure 5. It takes a collection of texts as the input and
produces bias-targeting templates. Each template is a text unit
(e.g., a paragraph) that contains one or more placeholders;
the placeholders can be substituted with concrete values to
generate different pieces of text that should have the same
sentiment.

4

Extract
Linguistic
Features

Identify
Placeholder
Candidates

 Template Generation
 Engine

Create
Placeholders

1

2

3

A collection
of texts

Bias-
targeting
templates

Fig. 5. The Workflow of Template Generation Engine.

This engine generates templates for detecting bias in a
target characteristic (e.g., gender, occupation, etc.). It ex-
tracts linguistic features such as named entities, corefer-
ences, and part-of-speech (Step 1). Using these features, it
identifies entities related to the characteristic of the targeted
bias (Step 2). If such entities exist in the texts, BiasFinder
replaces references to these entities with placeholders. Es-
sentially, the texts are converted to templates which will be
used to generate mutant texts for uncovering the targeted
bias (Step 3).

3.2 Mutant Generation Engine

To generate mutant texts from a bias-targeting template, this
engine replaces template placeholders with concrete values
taken from pre-determined lists of possible values. These
lists differ based on the target bias under consideration.
The engine substitutes the placeholders with concrete values
while ensuring that the generated mutants are valid. A
mutant is valid if and only if the values that are assigned
to the placeholders are in agreement with each other. For
example, we do not want to generate the following text:
“The man speaks to herself”. The engine ensures this does
not occur by picking only values from a single class (e.g.,
male-related words) to substitute related placeholders to
generate a mutant. Each generated mutant is thus associ-
ated to a class; and BiasFinder’s goal is to check if an SA
discriminates against one of the classes (e.g., male or female)
associated with a target characteristic (e.g. gender).

3.3 Failure Detection Engine

The failure detection engine takes as input a set of mutant
texts along with their class labels, and produces a set of bias-
uncovering test cases. Then, it feeds the mutants one-by-one
to the SA system, which outputs a sentiment label for each
mutant. Mutants of differing classes that are produced from
the same template are expected to have the same sentiment.
Therefore, if the SA predicts that two mutants of different
classes to have different sentiments, they are an evidence
of a biased prediction. Such pairs of mutants are output as
bias-uncovering test cases.

Algorithm 1: Generating a Template for Detecting
Gender Bias

Input: s: a text, gn: gender nouns
Output: t : a template or null

1 t = s;
2 corefs = getCoreferences(s);
3 names = getPersonNamedEntities(s);
4 coref = filter(corefs, names, gn);
5 if coref 6= null then
6 for r ∈ coref do
7 if isPersonName(r, names) then
8 t = createPlaceholder(t, s, r, names);
9 end

10 else if isGenderPronoun(r) then
11 t = createPlaceholder(t, s, r);
12 end
13 else if hasGenderNoun(r, gn) then
14 t = createPlaceholder(t, s, r, gn);
15 end
16 end
17 end
18 return t == s?null : t

3.4 Instantiating BiasFinder to Different Biases

BiasFinder can be instantiated in various ways to uncover
different kinds of biases. In this work, we investigate 3
instances of BiasFinder that can uncover gender, occupa-
tion, and country-of-origin biases of a sentiment analysis
(SA) system. To instantiate BiasFinder to a particular target
characteristic, we need to customize its three components:
template generation engine, mutant generation engine, and
failure detection engine. We elaborate on how we create
GenderBiasFinder, an instance of BiasFinder targeting gen-
der bias in Section 4, and briefly describe the two other
instances of BiasFinder in Section 5.

4 GENDERBIASFINDER

An SA system exhibits gender bias if it behaves differ-
ently for texts that only differ in words that reflect gender.
GenderBiasFinder generates mutants by changing words
associated with the gender of a person, and uncovers gender
bias when the SA system predicts differing sentiments for a
pair of mutants of different gender classes. In this work,
we focus on binary genders: male and female; but our
approach can be extended and generalized for non-binary
genders. To uncover gender bias, we customize the three
main engines of BiasFinder: Template Generation Engine,
Mutant Generation Engine, and Failure Detection Engine.

4.1 Template Generation Engine

Algorithm 1 shows the process for generating templates
for uncovering gender bias. Given an input text, Gender-
BiasFinder extracts linguistic features in the form of parts-
of-speech, named entities referring to person names, and
coreferences. GenderBiasFinder uses coreference resolution
(see Section 2.2.3) to find references of entities in the text
(Line 2). References to a unique entity are grouped together
in a list. The output of the coreference resolution is n lists
where n is the total number of entities mentioned in the
text, which we refer to as corefs . We also run named entity

5

recognition (see Section 2.2.2) to identify person named
entities (e.g., person names) in the text (Line 3).

Next, we filter coreference lists in corefs by performing
two checks embedded inside function filter (Line 4):

1) There is only one list in corefs that refers to a person.
In this work, we consider any of the following as a
reference to a person: (i) a person name, (ii) a gender
pronoun (i.e. he, she), or (iii) a phrase containing a
gender noun (e.g., “that guy from Blade Runner”).

2) All references in the list identified above must be a
reference to a person.

If both conditions are met, filter returns a coreference
list coref satisfying the condition; otherwise, it returns null.
These checks are done to avoid the generation of unsound
templates due to coreference resolution’s limitations, e.g.,
detecting a set of references to the same entity as two disjoint
lists. If there is a coref returned, GenderBiasFinder iterates
all its references and creates placeholders depending on the
type of each reference r (Lines 7-15). At the end of the
iteration, we output a template t generated from the input
text s (Line 18). For each iteration, we have three cases
depending on the type of each r:

Case 1: The Reference is a Person Name (Line 7-9)
At line 7, GenderBiasFinder checks whether the refer-

ence r is a person’s name in the list of names names
extracted using named entity recognition (see Section 2.2.2).
If this is the case, GenderBiasFinder generates a template
by replacing the person’s name with the 〈name〉 place-
holder (Line 8). In the example shown in Figure 6, “Drew
Barrymore” is a person’s name and is replaced with this
placeholder.

Text
’Never Been Kissed’ is a real feel good film. If you haven’t
seen it yet, then rent it out. I am going to buy it when its
released because I loved it. Drew Barrymore is excellent
again, she plays her part well. I felt I could relate to this
film because of the school days I had were just as bad.
Coreferences
Drew Barrymore, she, her
Person Named Entity
Drew Barrymore
Generated Template
’Never Been Kissed’ is a real feel good film. If you haven’t
seen it yet, then rent it out. I am going to buy it when
its released because I loved it. 〈name〉 is excellent again,
〈pro-spp〉 plays 〈pro-pp〉 part well. I felt I could relate to
this film because of the school days I had were just as bad.

Fig. 6. An illustrative example for Case 1 and 2 of GenderBiasFinder.

Case 2: The Reference is a Gender Pronoun (Lines 10-12)
GenderBiasFinder checks if the reference r is a gender

pronoun (Line 10). If so, GenderBiasFinder converts the
gender pronoun into 〈pro-id〉 (Line 11), where id can take
several values according to the type of the gender pronoun
that the placeholder replaces: (1) spp for subjective personal
pronoun (i.e., he and she), (2) opp for objective personal
pronoun (i.e., him and her), (3) pp for possesive pronoun
(i.e., his and her), and (4) rp for reflexive pronoun (i.e.,

TABLE 2
Examples of names from GenderComputer.

Name Gender Country-of-origin

Felipe Male Brazil
Abhishek Male India
Barbora Female Czech
Zeynep Female Turkey

himself and herself). In the example shown in Figure 6,
”she“ is converted to 〈pro-spp〉 placeholder, while “her” is
converted to 〈pro-pp〉 placeholder.

Case 3: The Reference has a Gender Noun (Lines 13-15)
GenderBiasFinder checks if the root word of the reference

r is a gender noun (Line 13). GenderBiasFinder utilizes
dependency parsing (see Section 2.2.4) to find the root word
and performs POS-tagging (see Section 2.2.1) to confirm that
the root word is a noun. Next, it checks that the word exists
in gn , a collection of gender-related nouns, and if it does,
converts the root word to 〈gaw〉 placeholder (Line 14). In
the example shown in Figure 7, the reference is “That guy
from “Blade Runner””. By performing dependency parsing
and POS-tagging, “guy” is identified as the root word and
is a noun. GenderBiasFinder checks whether “guy” exists in
gn . As it does, GenderBiasFinder replaces “guy” to a 〈gaw〉
placeholder. Some examples of gender nouns are shown in
Table 3. In total, we use 22 gender nouns.

Text
Even the manic loony who hangs out with the bad guys
in ”Mad Max” is there. That guy from ”Blade Runner”
also cops a good billing, although he only turns up at the
beginning and the end of the movie.
Coreferences
That guy from ”Blade Runner”, he
Dependency Parsing of The Reference

POS-tagging of The Reference
That|DET guy|NOUN from|ADP ”|PUNCT Blade|PROPN
Runner|PROPN ”|PUNCT
Generated Template
Even the manic loony who hangs out with the bad guys in
”Mad Max” is there. That 〈gaw〉 from ”Blade Runner” also
cops a good billing, although 〈pro-spp〉 only turns up at
the beginning and the end of the movie.

Fig. 7. An illustrative example for case 3 of GenderBiasFinder.

4.2 Mutant Generation Engine

For each generated template, the mutant generation engine
produces multiple mutants by replacing placeholders with
concrete values. As our objective in GenderBiasFinder is to
create test cases related to gender, each mutant is associated

6

TABLE 3
Examples of nouns reflecting gender information.

Male Female

boy, brother, father, dad, . . . girl, sister, mother, mom, ...

with a gender class (i.e., male or female) and the mutant
generation engine is restricted to values associated with the
given gender class when filling in all placeholders for one
mutant. The engine iterates over all possible combinations
of the values. Each placeholder can be substituted by a value
from a set. We describe the values that each placeholder can
be substituted with below:

〈name〉 Placeholder: Values to be substituted for this
placeholder are taken from the set of names from Gender-
Computer5. GenderComputer provides a database of male
and female names from several countries. Each name in
the GenderComputer provides information about its gender
and its country-of-origin. Examples of names from Gen-
derComputer are shown in Table 2. It is possible that a
name may be used by both genders in the same or different
countries. Thus, we filter the names to make sure that the
selected names are only used for one gender globally. To
avoid the results being affected by other types of bias, we
only pick person names originating from a single country,
i.e. the USA. To do so, we only choose the person names
from the USA category in the GenderComputer database.
The USA names from GenderComputer are accompanied by
frequency information (a number indicating how frequently
a name is used). We select N male names and N female
names of the highest frequency. By default, N is set to 30.

〈pro-id〉 Placeholder: Values to be substituted for this
placeholder depend on the gender class of the mutant and
the id . For male mutant, the values are he for id -spp, him
for id -opp, his for id -pp, and himself for id -rp. For female
mutant, the values are she for id -spp, her for id -opp, her for
id -pp, and herself for id -rp.

〈gaw〉 Placeholder: Values to be substituted for this place-
holder are the set of gender nouns taken from several
English resources678 Examples of these gender nouns are
shown in Table 3.

4.3 Failure Detection Engine
The Failure Detection Engine runs the SA system, using
the generated mutants as inputs. It receives, from the SA
system, a label for each mutant indicating the predicted
sentiment of the mutant. Mutants generated from the same
template are expected to have the same predicted senti-
ment and are grouped together. Each group of mutants is
further divided into two classes, depending on the gender
associated with the mutant. Mutants of from these two
classes that have different sentiments are paired. In other
words, the engine find pairs of mutants generated from

5https://github.com/tue-mdse/genderComputer
6https://7esl.com/gender-of-nouns/
7http://www.primaryresources.co.uk/english/PC gen.htm
8https://ielts.com.au/articles/grammar-101-feminine-and-

masculine-words-in-english/

Algorithm 2: Generating a Template for Detecting
Occupation Bias

Input: s: a text
Output: t : a template or null

1 t = s;
2 occs = getOccNamedEntities(s);
3 for occ ∈ occs do
4 if isNoun(occ) then
5 if hasAdjective(t, occ) then
6 t = removeAdjective(t, occ);
7 end
8 t = createPlaceholders(t, occ);
9 occCorefs = getCoreferencesOf(s, occ);

10 for r ∈ occCorefs do
11 if isRefContainsOcc(r, occ) then
12 if hasAdjective(t, r) then
13 t = removeAdjective(t, r);
14 end
15 t = createPlaceholders(t, r);
16 end
17 end
18 return t;
19 end
20 end
21 return null

the same template that differ in both the gender class they
are associated with, and the sentiment predicted by the SA
system. These pairs of mutants are the bias-uncovering test
cases and are the output of GenderBiasFinder.

5 OTHER INSTANCES OF BIASFINDER

In this section, we describe how BiasFinder can be instanti-
ated for occupation and country-of-origin biases.

5.1 Occupation Bias
Occupation bias occurs when an SA system favors an honest
(i.e., non-criminal) occupation over another. It can be de-
tected when the SA system produces differing sentiment for
a pair of mutants that differ only on the occupation referred
in the text. We perform these customizations to uncover
occupation bias:

Template Generation Engine: BiasFinder generates occu-
pation templates by following Algorithm 2. BiasFinder first
extracts the list of occupations occs mentioned in the input
text s using named entity recognition (Line 2). BiasFinder
then iterates each occupation occ from occs (Line 3). We
then confirm that occ is a noun and check whether occ has
adjectives (Lines 4-5). For example, the adjective of “driver”
in the “race car driver” noun phrase is “race car”. If the
noun phrase containing the occupation has an adjective, we
remove the adjective to ensure that the generated mutant
text is semantically correct (Line 6). Leaving the adjective
intact may produce a text that describes a non-existent
occupation such as “race car secretary”. We then convert
occ to 〈occupation〉 placeholder (Line 8). We also convert
determiner “a” or “an” in front of occ (if it exists) to 〈det〉
placeholder to ensure the produced mutant template is
grammatically correct. Next, we extract occCorefs (Line 9);
occCorefs is the list of references in s that refer to the same
entity that occ refers to. We then iterate each reference r

7

https://github.com/tue-mdse/genderComputer
https://7esl.com/gender-of-nouns/
http://www.primaryresources.co.uk/english/PC_gen.htm
https://ielts.com.au/articles/grammar-101-feminine-and-

from occRefs (Line 10). We check whether r is a mention of
occ (Line 11). For such r , we again create 〈occupation〉 and
〈det〉 placeholders (if necessary), after removing adjectives
(if necessary) (Lines 12-15). At the end of this process, we
output a template t generated from the input text s (Line
18).

In the example shown in Figure 8, we detect “doctor”
and “journalist” as occupations. We only use the first oc-
cupation to form a template. As “doctor” is a noun, and
it is not preceded by any adjective, we replace it directly
to 〈occupation〉 placeholder. We then replace its determiner
with 〈det〉 placeholder. In this case, there are no coreferences
of “doctor”, so the template generation process ends.

Text
The beautiful Jennifer Jones looks the part and gives a
wonderful, Oscar nominated performance as a doctor of
mixed breed during the advent of Communism in main-
land China. William Holden never looked better playing a
romantic lead as a journalist covering war torn regions in
the world.
Occupation Named Entity
doctor
Generated Template
The beautiful Jennifer Jones looks the part and
gives a wonderful, Oscar nominated performance as
〈det〉 〈occupation〉 of mixed breed during the advent of
Communism in mainland China. William Holden never
looked better playing a romantic lead as a journalist cov-
ering war torn regions in the world.

Fig. 8. An illustrative example for OccupationBiasFinder.

Mutant Generation Engine: To generate occupation mu-
tants, the engine substitutes the 〈occupation〉 placeholder
with a value from a set of 79 honest (i.e., non-criminal)
and gender-neutral occupation names that are taken from
[45]–[47]. The value of 〈det〉 is linked with the value of
〈occupation〉 placeholder. For example, the values of 〈det〉
for “teacher” and “engineer” occupations are “a” and “an”,
respectively.

Failure Detection Engine: The engine inputs the generated
mutants to the SA system. The SA system labels each mutant
with a predicted sentiment. Mutants from the same template
are grouped together and mutants in the same group that
have a different sentiment are paired. By doing so, the
engine finds pairs of mutants that differ both in the occu-
pation they mentioned and the sentiment predicted by the
SA system. These pairs of mutants are the bias-uncovering
test cases for occupation bias.

5.2 Country-of-Origin Bias

Country-of-origin bias occurs when the SA system favors a
person who originates from one country over a person orig-
inating from another country. This bias is detected when the
SA system produces different sentiments for texts differing
only in country-of-origin of the person referred in the text.
To uncover country-of-origin bias, we customize BiasFinder
as follows:

Algorithm 3: Generating a Template for Detecting
Country-of-Origin Bias

Input: s: a text
Output: t : a template or null

1 t = s; corefs = getCoreferences(s);
2 names = getPersonNamedEntities(s);
3 coref = filter(corefs, names);
4 if coref 6= null then
5 g = inferGender(coref);
6 if g ∈ {Male, Female} then
7 for r ∈ coref do
8 if isPersonName(r, names) then
9 t = createPlaceholder(t, s, r, g);

10 end
11 end
12 return t
13 end
14 end
15 return null

Template Generation Engine: For generating country-of-
origin templates, BiasFinder follows Algorithm 3. Bias-
Finder first runs coreference resolution to find corefs , which
contains references of persons mentioned in the input text
s (Line 1). BiasFinder also runs named entity recognition
to extract the list of person names mentioned in s (Line 2),
which we refer to as names .

Next, we filter coreference lists in corefs by using the
same filter function described in Algorithm 1 in Section 4.
This is done to avoid the generation of unsound templates
due to coreference resolution’s limitations. The filter function
returns either a coreference list coref or null. We stop the
template generation process if null is returned.

Otherwise, if the references in coref refer to a consistent
gender g (Line 6) – i.e., by checking that there is a gender
pronoun in coref and all gender pronouns in it are of the
same gender (e.g., he, him, his, himself for male gender)
– we iterate each reference r in coref (Lines 7-11). If r is
the person name in names , we replace r with a placeholder
representing the gender that was detected (Lines 8-10). A
〈male〉 or 〈female〉 placeholder is created if a male or a
female gender was detected, respectively.

In the example shown in Figure 9, “Lauren Holly” is
detected as a person name and the coreferences consistently
refer to female gender. Thus, we replace “Lauren Holly”
with 〈female〉 placeholder.

Text
I loved this movie, it was cute and funny! Lauren Holly
was wonderful, she’s funny and very believable in her role.
Coreferences
Lauren Holly, she, her
Person Named Entity
Lauren Holly
Generated Template
I loved this movie, it was cute and funny! 〈female〉 was
wonderful, she’s funny and very believable in her role.

Fig. 9. An illustrative example for CountryBiasFinder.

Mutant Generation Engine: To generate country-of-origin

8

mutants, the engine substitutes 〈male〉 and 〈female〉 place-
holders with values from a set of people names taken from
GenderComputer9. GenderComputer provides the country-
of-origin and the gender of each name. Since the same
name may occur in different country-of-origin and gender,
we take only names that are unique in both country-of-
origin and gender. We pick only a male name and a female
name from each country. In total, we have 52 names taken
from 26 countries of origin. The placeholder values are then
filled based on the gender associated with the name. Male
and female names are used to fill 〈male〉 and 〈female〉
placeholders, respectively.

Failure Detection Engine: The engine accepts the generated
mutants as input and feed them to the SA system, which
gives a sentiment label for each mutant. Mutants from the
same template that have a different sentiment are then
paired. Here, the engine finds pairs of mutants that differ
both in the country-of-origin of the person they mentioned
and the sentiment predicted by the SA system. These pairs
of mutants are the bias-uncovering test cases for country-of-
origin bias.

6 EXPERIMENTS

In this section, we describe our dataset, experimental set-
tings, evaluation metric, and our research questions. Next,
we answer the research questions, and mention threats to
validity.

6.1 Dataset and Experimental Settings

We focus on a binary sentiment analysis task, i.e., a task
of classifying whether a text conveys a positive or a nega-
tive sentiment. A popular dataset to evaluate a sentiment
analysis system’s performance is the IMDB dataset of 50,000
movie reviews [48]. It contains a set of 50,000 movie reviews;
each review is labelled as either having an overall positive
or negative sentiment. Some of these movie reviews contain
text that are not natural language, e.g., HTML tags. We
remove these text from the movie reviews. Then, we split
the 50,000 movie reviews evenly to train and test sets.
In addition to the IMDB dataset, we also use the Twitter
Sentiment140 dataset [49]–[51], which contains 1.6 million
texts associated with either positive or negative sentiments.
We randomly pick 400,000 texts as the train set and 100,000
texts as the test set. The selected train set and the test set are
mutually exclusive.

We use fine-tuned 5 Transformer-based models to ob-
tain the SA systems in our experiments. Transformer-
based models have achieved state-of-the-art performances
on many NLP tasks (including sentiment analysis) in recent
years [26], [52], [53]. In this work, we use the implemen-
tations available in HuggingFace10 to fine-tune a number
of recently proposed Transformer models (including Google
BERT [54], Facebook RoBERTa [55], Google ALBERT [56],
Google ELECTRA [57], and Facebook Muppet [58]) on the
IMDB and Twitter datasets to obtain SA models. We report
the accuracy of our SA models on the test set of each dataset

9https://github.com/tue-mdse/genderComputer
10https://huggingface.co/

TABLE 4
The performance of SA models on the datasets.

Accuracy
Model IMDB Twitter S140

BERT-base-cased 89.12% 83.54%
RoBERTa-base 92.84% 86.24%
ALBERT-base-v2 89.45% 82.96%
Muppet-RoBERTa-base 95.29% 85.69%
ELECTRA-base 91.20% 84.39%

in Table 4. The models’ performance on the IMDB dataset
is high and comparable to the accuracy reported in a recent
work that also fine-tunes BERT for sentiment analysis [27].
The performance of our models on randomly sampled data
from the Twitter dataset is higher than the performance
reported in the recent models presented by Tay et al. [49].

We performed our experiments on a computer run-
ning Ubuntu 18.04 with Intel(R) Core(TM) i7-9700K CPU
@ 3.60GHz processor, 64GB RAM, and NVIDIA GeForce
RTX 2080. For coreference resolution, we use NeuralCoref11.
We use both SpaCy12 and Stanford CoreNLP13 for Part-of-
Speech (PoS) Tagging and Named Entity Recognition (NER).
The models used for these NLP tasks can be leveraged
directly without any further fine-tuning.

In our experiment, we compare BiasFinder with two
baselines: EEC [30] that uses static templates and MT-NLP
[31] that is a recent fair testing tools for SA systems. Our
objective in the study is to produce test cases that reveal
bias. As defined in Section 2.1, a bias-uncovering test case
(BTC) is a pair of texts that only differ in protected features
(e.g., gender), but are predicted as different sentiments by an
SA system. The authors of MT-NLP [31] used the number of
fairness violations found as a metric to evaluate the ability of
a fairness testing tool in uncovering bias in an SA model.
The fairness violation concept is equivalent to BTC in this
paper.

We also perform an annotation study to evaluate
whether the mutants generated by BiasFinder and MT-NLP
are fluent since an SA system may change its prediction
because a text mutant is not fluent rather than because of
actual bias. Fluency is one of the gold-standard human eval-
uation metrics to evaluate the linguistic quality of generated
texts [59]. Fluency is defined as the quality of individual
sentences. A fluent sentence should have no formatting
problems, capitalization errors or obvious grammatical is-
sues that make the text difficult to read [60]. We consider a
mutant to be fluent if the changed parts from the sentences:
(1) look natural, i.e., no formatting problems, capitalization
errors or obvious grammatical issues, (2) are consistent with
each other and the other words, and (3) do not introduce
redundant words.

6.2 Research Questions

RQ1. How many BTCs can BiasFinder generate? How does it
compare with EEC and MT-NLP?

11https://github.com/huggingface/neuralcoref
12https://spacy.io/
13https://stanfordnlp.github.io/CoreNLP/

9

https://github.com/tue-mdse/genderComputer
https://huggingface.co/
https://github.com/huggingface/neuralcoref
https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/

TABLE 5
The number of templates and mutants generated by BiasFinder, EEC

and MT-NLP on the IMDB and Twitter datasets.

IMDB Twitter
Type Tool template mutant template mutant

BiasFinder 3,015 153,866 1,769 63,104
Gender MT-NLP 95,219 285,976 15,150 59,462

EEC 140 8,400 140 8,400
Country BiasFinder 2,828 70,700 959 23,975
Occupation BiasFinder 14,319 1,131,201 202 15,958

BiasFinder is the first approach to automatically generate
templates and text mutants to uncover multiple types of
bias. We report the number of BTCs produced by the 3
instances of BiasFinder for each SA system. Since EEC and
MT-NLP only target gender bias, we only compare them
with GenderBiasFinder to make the comparison fair. We
also report the performance of the other two instances of
BiasFinder (for occupation and country-of-origin biases).

RQ2. How fluent are the generated mutants?

We evaluate the fluency of the generated mutants via an
annotation study. The annotation study involves two partici-
pants, both of whom are native English speakers and are not
authors of this paper. The participants were asked to rate the
fluency of each mutant using a Likert scale of 1 to 3. Score 1
indicates a non-fluent text (a mutated part looks absurd or
inconsistent), 2 indicates a somewhat fluent text (a mutated
part looks natural but it is not fully consistent with the text
or contains some redundant terms), and 3 indicates a fluent
text (all mutated parts look natural, are consistent with each
other and the remaining text, and do not contain redundant
terms). We consider that the fluency of the mutants to be
passable if the average ratings given to the mutants are at
least in the middle of the Likert scale (i.e., 1.5).

The participants were asked to label randomly sampled
mutants generated by BiasFinder (for gender, country-of-
origin and occupation bias) and MT-NLP (for gender bias).
The participants do not know which tools generated which
mutants. BiasFinder generates 216,970, 1,147,159, and 94,675
mutants for gender, occupation and country-of-origin bias,
respectively. MT-NLP generates 345,438 mutants for gender
bias. We want to analyze statistically representative samples
of those mutants to investigate their quality. To pick a
suitable sample size, we use a popular online sample size
calculator that have been used in a number of prior SE
works, e.g., [61]–[63]. We specify 95% confidence level and
5% confidence interval, which are the same or a stricter
setting than those used in the prior works [61]–[63]; this
setting gives our findings a confidence level of 95% with
a margin of error of 5%. Running the online sample size
calculator on each of the 4 mutant populations returns us
either 383 or 384. To standardize, we sample 384 mutants
from each mutant population. Thus, each of our annotation
study participants need to rate 384 × 4 mutants = 1,536
mutants. To determine the level of agreement between the
two participants in the annotation study, we computed
Cohen’s Kappa [45] and obtained a value of 0.55 – usually
interpreted as moderate agreement [46], [47].

TABLE 6
The number of BTCs uncovered for gender bias.

BTC
Model Tool IMDB Twitter

BiasFinder 7,723 14,373
BERT-base-cased MT-NLP 1,447 793

EEC 5,674 238
BiasFinder 8,051 29,167

RoBERTa-base MT-NLP 779 886
EEC 4,560 186
BiasFinder 14,966 15,735

AlBERT-base-v2 MT-NLP 993 705
EEC 2,678 420
BiasFinder 5,747 51,569

Muppet-RoBERTa-base MT-NLP 834 861
EEC 4,694 360
BiasFinder 5,862 13,573

ELECTRA-base MT-NLP 477 783
EEC 5,336 906
BiasFinder 42,349 124,417

Total MT-NLP 4,530 4,028
EEC 22,942 2,110

6.3 Results

RQ1. How many BTCs can BiasFinder generate?
Table 6 shows the numbers of gender BTCs found by

BiasFinder, EEC, and MT-NLP for the 5 SA models inves-
tigated in our experiments. On the IMDB dataset, Bias-
Finder reveals the highest number of gender BTCs for all
SA models (42,349 in total), while EEC and MT-NLP can
only uncover 22,942 and 4,530 gender BTCs. On the Twitter
dataset, BiasFinder also reveals the highest number of BTCs
for each SA model (124,417 in total). On the other hand, EEC
and MT-NLP only find 4,028 and 2,110 BTCs, both of which
are two orders of magnitude lower than the numbers of
gender BTCs found by BiasFinder. The comparison results
on the two datasets highlight the superior capability of
BiasFinder in exposing gender bias.

Table 7 shows the numbers of country-of-origin BTCs
found by BiasFinder on the IMDB and Twitter datasets.
In total, BiasFinder finds 16,816 country-of-origin BTCs on
the IMDB dataset and 25,832 country-of-origin BTCs on
the Twitter dataset. Table 8 shows the numbers of occupa-
tion BTCs found by BiasFinder on the IMDB and Twitter
datasets. We can observe that the total number of occupation
BTCs found on the IMDB dataset is 723,416 and the total
number found on the Twitter dataset is 95,106.

TABLE 7
The number of BTCs found by BiasFinder for country-of-origin bias.

BTC
Model IMDB Twitter

BERT-base-cased 4,794 4,380
RoBERTa-base 2,620 6,810
AlBERT-base-v2 3,566 4,096
Muppet-RoBERTa-base 2,832 5,554
ELECTRA-base 3,004 4,992

Total 16,816 25,832

Figure 10, 11 and 12 show examples of BTCs for gender,
occupation, and country-of-origin, respectively.

10

TABLE 8
The number of BTCs found by BiasFinder for occupation bias.

BTC
Model IMDB Twitter

BERT-base-cased 200,400 16,938
RoBERTa-base 134,926 25,656
AlBERT-base-v2 184,496 16,956
Muppet-RoBERTa-base 85,256 20,098
ELECTRA-base 118,338 15,458

Total 723,416 95,106

Mutated Text - using a uniquely male name
What is he supposed to be? He was a kid in the past, ...
and the future? This movie had a lot of problems. Is he a
ghost, or just a strong kid. Man, ... what a piece of crap.
I’m still confused. Also, is he supposed to be an abortion?
Strange. Very strange. This movie will mess with your
mind, ... and it’s not very scary, ... just confusing. Why
was he , ... Where did, ... What was the, ... oh, who cares,
... Benedetto isn’t worth it, ... My score: 10

Mutated Text - using a uniquely female name
What is she supposed to be? She was a kid in the past, ...
and the future? This movie had a lot of problems. Is she a
ghost, or just a strong kid. Man, ... what a piece of crap.
I’m still confused. Also, is she supposed to be an abortion?
Strange. Very strange. This movie will mess with your
mind, ... and it’s not very scary, ... just confusing. Why
was she , ... Where did, ... What was the, ... oh, who cares,
... Elaisha isn’t worth it, ... My score: 10

Fig. 10. An example of BTC for uncovering gender bias.

Mutated Text - Housekeeper
Great underrated movie great action good actors and
a wonderful story line. Wesley is verry good and the
housekeeper the bad guy is wonderful The girl plays a
nice role and the comedy mixed with blakness!

Mutated Text - Programmer
Great underrated movie great action good actors and
a wonderful story line. Wesley is verry good and the
programmer the bad guy is wonderful The girl plays a
nice role and the comedy mixed with blakness!

Fig. 11. An example of BTC for uncovering occupation bias.

RQ2. How fluent are the generated mutants?
Table 9 shows the result of the annotation study. We find
that the average fluency ratings of mutants range from 1.77
to 3. For gender bias, the average fluency ratings of mutants
generated by BiasFinder (2.61 out of 3) is 28.57%14 higher
than those generated by MT-NLP (2.03 out of 3), which
highlights the better linguistic quality of the BiasFinder
mutants. For country-of-origin bias, both participants gave
the maximum fluency rating (3 out of 3) for all mutants. For
occupation bias, the average fluency rating of the mutants

14(2.61− 2.03)/2.03× 100%

Mutated Text - using a male name from Somalia
I consider this movie as one of the most interesting and
funny movies of all time (...) Several universities in
Germany and throughout Europe have made studies on
Waabberi’s way of seeing things. By the way, Waabberi is
a very intelligent and sensitive person and on of the Jazz
musicians in Germany
Mutated Text - using a male name from Iran
I consider this movie as one of the most interesting
and funny movies of all time (...) Several universities
in Germany and throughout Europe have made stud-
ies on Keyghobad’s way of seeing things. By the way,
Keyghobad is a very intelligent and sensitive person and
on of the Jazz musicians in Germany

Fig. 12. An example of BTC for uncovering country-of-origin bias. (...) is
a truncated piece of the original text.

TABLE 9
User-annotated fluency scores of mutants generated by BiasFinder and

MT-NLP [31]. Mutants with higher scores are more fluent.

Fluency
Type Tool Participant 1 Participant 2 All

Gender BiasFinder 2.32 2.89 2.61
MT-NLP 1.78 2.28 2.03

Country BiasFinder 3 3 3
Occupation BiasFinder 1.46 2.08 1.77

is 1.77. This is still higher than the halfway of the Likert
scale (1.5) and thus we consider it to be passable. Still,
the generated occupation mutants are not as fluent as the
mutants generated for the other biases.

We investigated the non-fluent mutants produced by
BiasFinder for occupation bias and we show an example
in Figure 13. For that example, although BiasFinder suc-
cessfully identified the word “driver” as an occupation and
can generate a placeholder for it, replacing it with another
occupation results in a non-fluent text. The usage of the
word “driver” is specific to the context described in the
text, and it cannot be replaced with many other occupations
without losing fluency.

Original Text
Boris Leskin as Alex’s grandfather and driver of the tour
car makes a valuable contribution to the film, as well as
Laryssa Lauret, who is seen in the last part of the movie.
Mutated Text
Boris Leskin as Alex’s grandfather and secretary of the
tour car makes a valuable contribution to the film, as well
as Laryssa Lauret, who is seen in the last part of the movie.

Fig. 13. An example of a non-fluent mutant. The usage of the “driver”
word is context specific, and cannot be replaced with another occupation
(i.e., “secretary”).

6.4 Threats to Validity
We have only experimented with SA models fine-tuned
on 5 Transformer-based models and generated templates
on the IMDB and Twitter datasets. The results may not
be generalize to other SA systems and datasets. However,

11

Transformer-based models are among the top performing
models for text classification in recent years [26], [52]–[54].
The IMDB and Twitter datasets are commonly used datasets
for studying sentiment analysis [28], [64], [65]. Another
threat to validity is that some of the found BTCs may be
caused by actual errors instead of bias, especially when the
SA models under investigation have poor performance. To
minimize this threat, we evaluate BiasFinder and baselines
on SA models constructed by fine-tuning state-of-the-art
Transformers-based models. Table 4 shows that they all have
high prediction accuracies on SA tasks.

The names used by BiasFinder are gathered from the
GenderComputer database. Although it is claimed in its
documentation that GenderComputer provides lists of male
and female first names for different countries, some last
names are found in their database. These last names are
gender independent and may affect BiasFinder’s ability to
identify BTCs if last names are used to generate mutants.
To mitigate this threat, we manually check the selected
names (30 male names and 30 female males) used in our
experiments to ensure they are all first names.

6.5 Potential Usage
In this paper, BiasFinder mainly serves as a fairness testing
tool for SA systems. We believe that the mutants generated
by BiasFinder can be utilized in other parts of the SA
systems life cycle, including model training, deployment,
and repair. When training an SA model, BiasFinder can be
used to augment the training set with texts of diverse gen-
der information to mitigate bias. At the deployment stage,
the BiasFinder’s idea can be transferred to detect biased
predictions at runtime. Since BiasFinder can dynamically
find templates for any input text, a biased prediction can
be detected at runtime by comparing the prediction from the
input text with the predictions from mutated input texts. Af-
ter detecting biased predictions, one can heal unfairness by
leveraging prediction results for these mutants (e.g., using
the majority predictions for the mutants as the final result).
We have recently demonstrated the usage of BiasFinder in
two downstream tasks: runtime verification of bias [66] and
automatic healing of bias [67].

Besides, BiasFinder can also be potentially used in a
wider range of applications beyond sentiment analysis. In
general, sentiment analysis can be viewed as a specialized
text classification with class labels corresponding to the
sentiment polarities of the text. Conceptually, BiasFinder can
be potentially applicable to detect fairness issues in other
text classification tasks. There are many text classification
tasks where the main difference with sentiment analysis is in
the class labels e.g., spam vs. non-spam, fraudulent claim vs.
legitimate claim, fake news vs. real news, etc. Moreover, for
many of these tasks, fairness issues are also highly relevant.
Text classification is also a building block of many other
NLP solutions, e.g., chatbot.

7 RELATED WORK

In this section, we first describe related work on understand-
ing and detecting bias in AI systems (Section 7.1). Next,
we describe some of the related work testing AI systems
(Section 7.2).

7.1 Bias in AI Systems

The importance of studying bias in AI systems has been
described by many researchers [1], [2], [30], [68], [69].
An AI system may perpetuate human biases and perform
differently for some demographic groups than others [1],
[32], [68], [69]. As such, many existing studies on uncov-
ering bias [1]–[3], [5], [30] focus on finding differences in
the system’s behavior given a change in a demographic
characteristic (aka. attribute). Our approach has the same
high-level objective of uncovering differences in behavior
when demographic characteristic is modified, however, our
approach differs in several ways, which will be described in
the following paragraphs.

Themis [1], Aeqitas [2], and FairTest [3] are approaches
aiming to generate test cases that detect discrimination in
software. Fairway [4] mitigates bias through several strate-
gies, including identifying and removing ethical bias from
a model’s training data. Unlike our approach, these strate-
gies do not target NLP systems but focus on systems that
take numerical values or images as input, while BiasFinder
targets Sentiment Analysis systems which take natural lan-
guage text as input.

Specific to NLP applications, CheckList [5] has been
proposed for creating test cases to evaluate systems on their
capabilities beyond their accuracies on test datasets. Fair-
ness is among the capabilities that CheckList tests for, and
CheckList relies on a small number of predefined templates
for producing test sentences. Our work is complementary to
this approach as it can be used to produce test cases without
the restriction of predefined templates.

For Sentiment Analysis systems, Diaz et al. [32] manu-
ally identify and replace words that explicitly or implicitly
encode age information in input texts to uncover age-related
bias. The EEC [30] has been proposed to uncover bias by
detecting differences in predictions of text differing in a
single word associated with gender or race. However, as
described earlier in Section 2, other researchers [9] have
pointed out that the EEC [30] relies on predefined templates
that may be too simplistic. We address this limitation as
our approach dynamically generates many templates to
produce sentences that are varied and realistic. Moreover,
our approach uncovers bias through mutating words in text
associated with characteristics other than gender and race.

Compared to these prior works, our work is “wider” in
two aspects: First, many of them require extensive manual
steps (e.g., creating limited numbers of templates manually)
while our work is fully automated. Second, many of them
focus on only one kind of fairness issue (e.g., gender bias
only), while we have shown that our approach can be
generalized across multiple fairness issues (i.e., gender bias,
county-of-origin bias, occupation bias).

7.2 AI Testing

In recent years, many researchers have proposed techniques
for testing AI systems. There are too many of them to men-
tion here. Still, we would like to highlight a few, especially
those that are closer to our work. For a comprehensive
treatment on the topic of AI testing, please refer to the
survey by Zhang et al. [70].

12

Existing studies have applied metamorphic testing to AI
systems [71]–[74]. Many of these systems focus on finding
bugs, for example, in machine translation [71], [74] or au-
tonomous driving systems [72], [73]. Our work is related
to these studies as BiasFinder is based on metamorphic
testing, but differs in that we focus on finding fairness
bugs (gender, occupation, and country-of-origin bias) in
Sentiment Analysis systems.

In the NLP domain, some research efforts have devel-
oped methods for generating adversarial examples [75],
[76], while other researchers have proposed techniques to
test robustness to typos and other forms of noise [77], or
changes in the names of people mentioned in text [78]. Our
work differs from these studies as it focuses on uncovering
bias rather than testing the correctness of an NLP system.

8 CONCLUSION AND FUTURE WORK

There is growing use of Artificial Intelligence in software
systems, and fairness is an important requirement in Arti-
ficial Intelligence systems. Testing is one way to uncover
unintended biases [4], [70]. Our research contributes to
the body of work on fairness testing and motivates future
research to build automatic fairness testing methods for var-
ious machine learning tasks, including sentiment analysis
(that we consider in this work).

We propose BiasFinder, a metamorphic testing frame-
work for creating test cases to uncover demographic bi-
ases in Sentiment Analysis (SA) systems. BiasFinder can
be instantiated for different demographic characteristics,
such as gender or occupation. Given a target character-
istic, BiasFinder curates suitable texts from a corpus to
create bias-uncovering templates. From these templates, Bi-
asFinder then produces mutated texts (mutants) that differ
only in words associated with different classes (e.g., male
vs. female) of the target characteristic (e.g., gender). These
mutants are then used to tease out unintended bias in
an SA system and identify bias-uncovering test cases. By
analyzing a realistic and diverse corpus, BiasFinder can
produce realistic and diverse bias-uncovering test cases.

Existing work either manually creates limited number of
templates [30] or focuses on a single type of bias (e.g., gen-
der bias only) [31], while BiasFinder generates templates of
test cases involving other characteristics, including gender,
occupation and country-of-origin. Together, the template
and mutation generation produces test cases that cover a
wider range of scenarios.

We empirically evaluated BiasFinder against two prior
works. For gender bias, BiasFinder can uncover more BTCs
than both EEC and MT-NLP on all SA models under in-
vestigation. BiasFinder can also find additional BTCs for
occupation and country-of-origin bias. Through a manual
annotation study, we show that human annotators consis-
tently consider mutants generated by BiasFinder are more
fluent than mutants generated by MT-NLP.

In the future, we plan to instantiate BiasFinder on more
biases and expand the experiments (e.g., by considering
other text corpora). Moreover, we will evaluate BiasFinder
to determine if it generalizes to tasks beyond sentiment
analysis, for example, testing general text classifiers.

REFERENCES

[1] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing
software for discrimination,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 498–510.

[2] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed
fairness testing,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 98–108.

[3] F. Tramer, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux,
M. Humbert, A. Juels, and H. Lin, “Fairtest: Discovering un-
warranted associations in data-driven applications,” in 2017 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2017, pp. 401–416.

[4] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies, “Fairway: a
way to build fair ml software,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 654–665.

[5] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond accuracy:
Behavioral testing of nlp models with checklist,” Association for
Computational Linguistics (ACL 2020, 2020.

[6] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? sentiment
classification using machine learning techniques,” in Proceedings
of the ACL-02 Conference on Empirical Methods in Natural Language
Processing - Volume 10, ser. EMNLP ’02. USA: Association for
Computational Linguistics, 2002, p. 79–86. [Online]. Available:
https://doi.org/10.3115/1118693.1118704

[7] P. D. Turney, “Thumbs up or thumbs down? semantic
orientation applied to unsupervised classification of reviews,”
in Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ser. ACL ’02. USA: Association for
Computational Linguistics, 2002, p. 417–424. [Online]. Available:
https://doi.org/10.3115/1073083.1073153

[8] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis
algorithms and applications: A survey,” Ain Shams engineering
journal, vol. 5, no. 4, pp. 1093–1113, 2014.

[9] S. Poria, D. Hazarika, N. Majumder, and R. Mihalcea,
“Beneath the tip of the iceberg: Current challenges and
new directions in sentiment analysis research,” IEEE Transac-
tions on Affective Computing, 2020, accepted (early access at:
https://ieeexplore.ieee.org/document/9260964).

[10] M. Haselmayer and M. Jenny, “Sentiment analysis of political com-
munication: combining a dictionary approach with crowdcoding,”
Quality & Quantity, vol. 51, pp. 2623 – 2646, 2017.

[11] J. A. Caetano, H. S. Lima, M. F. Santos, and H. T. Marques-
Neto, “Using sentiment analysis to define twitter political users’
classes and their homophily during the 2016 american presidential
election,” Journal of Internet Services and Applications, vol. 9, pp. 1–
15, 2018.

[12] S. Krishnamoorthy, “Sentiment analysis of financial news
articles using performance indicators,” Knowl. Inf. Syst.,
vol. 56, no. 2, p. 373–394, Aug. 2018. [Online]. Available:
https://doi.org/10.1007/s10115-017-1134-1

[13] T. Renault, “Sentiment analysis and machine learning in finance:
a comparison of methods and models on one million messages,”
Digital Finance, 09 2019.

[14] M. Day and C. Lee, “Deep learning for financial sentiment analy-
sis on finance news providers,” in 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM), 2016, pp. 1127–1134.

[15] S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, “Big
data: Deep learning for financial sentiment analysis,” Journal of Big
Data, vol. 5, pp. 1–25, 2017.

[16] M. Rambocas, “Marketing research: The role of sentiment analy-
sis,” FEP WORKING PAPER SERIES, 04 2013.

[17] S. Rani and P. Kumar, “A sentiment analysis system to improve
teaching and learning,” Computer, vol. 50, no. 05, pp. 36–43, may
2017.

[18] N. Altrabsheh, M. Gaber, and E. Haig, “Sa-e: Sentiment analysis
for education,” in Frontiers in Artificial Intelligence and Applications,
vol. 255, 06 2013.

[19] F. S. Dolianiti, D. Iakovakis, S. B. Dias, S. Hadjileontiadou, J. A.
Diniz, and L. Hadjileontiadis, “Sentiment analysis techniques and
applications in education: A survey,” in Technology and Innovation
in Learning, Teaching and Education, M. Tsitouridou, J. A. Diniz, and
T. A. Mikropoulos, Eds. Cham: Springer International Publishing,
2019, pp. 412–427.

13

https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1073083.1073153
https://doi.org/10.1007/s10115-017-1134-1

[20] V. S. Gupta and S. Kohli, “Twitter sentiment analysis in health-
care using hadoop and r,” in 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom), 2016,
pp. 3766–3772.

[21] O. Oyebode, F. Alqahtani, and R. Orji, “Using machine learning
and thematic analysis methods to evaluate mental health apps
based on user reviews,” IEEE Access, vol. 8, pp. 111 141–111 158,
2020.

[22] S. Yadav, A. Ekbal, S. Saha, and P. Bhattacharyya, “Medical
sentiment analysis using social media: Towards building
a patient assisted system,” in Proceedings of the Eleventh
International Conference on Language Resources and Evaluation
(LREC 2018). Miyazaki, Japan: European Language Resources
Association (ELRA), May 2018. [Online]. Available: https:
//www.aclweb.org/anthology/L18-1442

[23] M. Chen, “Efficient vector representation for documents through
corruption,” arXiv preprint arXiv:1707.02377, 2017.

[24] Y. Zhang, Q. Liu, and L. Song, “Sentence-state lstm for text
representation,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2018, pp. 317–327.

[25] J. Gong, X. Qiu, S. Wang, and X. Huang, “Information aggrega-
tion via dynamic routing for sequence encoding,” arXiv preprint
arXiv:1806.01501, 2018.

[26] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for lan-
guage understanding,” in Advances in neural information processing
systems, 2019, pp. 5753–5763.

[27] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert
for text classification?” in China National Conference on Chinese
Computational Linguistics. Springer, 2019, pp. 194–206.

[28] J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2018, pp. 328–339.

[29] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, “Sentiment
analysis is a big suitcase,” IEEE Intelligent Systems, vol. 32, no. 6,
pp. 74–80, 2017.

[30] S. Kiritchenko and S. Mohammad, “Examining gender and race
bias in two hundred sentiment analysis systems,” in Proceedings of
the Seventh Joint Conference on Lexical and Computational Semantics,
2018, pp. 43–53.

[31] P. Ma, S. Wang, and J. Liu, “Metamorphic testing and
certified mitigation of fairness violations in nlp models,” in
Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, C. Bessiere, Ed. International
Joint Conferences on Artificial Intelligence Organization, 7
2020, pp. 458–465, main track. [Online]. Available: https:
//doi.org/10.24963/ijcai.2020/64

[32] M. Dı́az, I. Johnson, A. Lazar, A. M. Piper, and D. Gergle, “Ad-
dressing age-related bias in sentiment analysis,” in Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems,
2018, pp. 1–14.

[33] J. Bhaskaran and I. Bhallamudi, “Good secretaries, bad
truck drivers? occupational gender stereotypes in sentiment
analysis,” in Proceedings of the First Workshop on Gender Bias
in Natural Language Processing. Florence, Italy: Association
for Computational Linguistics, Aug. 2019, pp. 62–68. [Online].
Available: https://aclanthology.org/W19-3809

[34] E. Soremekun, S. Udeshi, and S. Chattopadhyay, “Astraea:
Grammar-based fairness testing,” 2020.

[35] M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual
fairness,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/
paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

[36] Y. Wu, L. Zhang, and X. Wu, “Counterfactual fairness:
Unidentification, bound and algorithm,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 1438–1444. [Online].
Available: https://doi.org/10.24963/ijcai.2019/199

[37] S. Chiappa, “Path-specific counterfactual fairness,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, pp. 7801–7808, Jul. 2019. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/4777

[38] S. Garg, V. Perot, N. Limtiaco, A. Taly, E. H. Chi, and A. Beutel,
“Counterfactual fairness in text classification through robustness,”
in Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, 2019, pp. 219–226.

[39] A. Caliskan, J. Bryson, and A. Narayanan, “Semantics derived
automatically from language corpora contain human-like biases,”
Science, vol. 356, pp. 183–186, 04 2017.

[40] E. Brill, “Transformation-based error-driven learning and natural
language processing: A case study in part-of-speech tagging,”
Comput. Linguist., vol. 21, no. 4, p. 543–565, Dec. 1995.

[41] D. Nadeau and S. Sekine, “A survey of named entity recognition
and classification,” Lingvisticae Investigationes, vol. 30, pp. 3–26,
2007.

[42] W. M. Soon, H. T. Ng, and D. C. Y. Lim, “A machine
learning approach to coreference resolution of noun phrases,”
Computational Linguistics, vol. 27, no. 4, pp. 521–544, 2001. [Online].
Available: https://www.aclweb.org/anthology/J01-4004

[43] J. Nivre and S. Kübler, “Dependency parsing,” Synthesis Lectures
on Human Language Technologies, vol. 2, 01 2009.

[44] D. Chen and C. Manning, “A fast and accurate dependency parser
using neural networks,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct.
2014, pp. 740–750. [Online]. Available: https://www.aclweb.org/
anthology/D14-1082

[45] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai,
“Man is to computer programmer as woman is to homemaker? de-
biasing word embeddings,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, ser. NIPS’16.
Red Hook, NY, USA: Curran Associates Inc., 2016, p. 4356–4364.

[46] A. Caliskan-Islam, J. Bryson, and A. Narayanan, “Semantics de-
rived automatically from language corpora necessarily contain
human biases,” Science, vol. 356, 08 2016.

[47] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K.-W.
Chang, “Gender bias in coreference resolution: Evaluation and
debiasing methods,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short
Papers). New Orleans, Louisiana: Association for Computational
Linguistics, Jun. 2018, pp. 15–20. [Online]. Available: https:
//www.aclweb.org/anthology/N18-2003

[48] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings
of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, June 2011, pp. 142–150.
[Online]. Available: http://www.aclweb.org/anthology/P11-1015

[49] Y. Tay, M. Dehghani, J. P. Gupta, V. K. Aribandi, D. Bahri, Z. Qin,
and D. Metzler, “Are pretrained convolutions better than pre-
trained transformers?” in ACL 2021, 2021.

[50] A. Abbasi, A. Hassan, and M. Dhar, “Benchmarking Twitter
sentiment analysis tools,” in Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14).
Reykjavik, Iceland: European Language Resources Association
(ELRA), May 2014, pp. 823–829. [Online]. Available: http:
//www.lrec-conf.org/proceedings/lrec2014/pdf/483 Paper.pdf

[51] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment
classification using distant supervision,” pp. 1–12, 2009. [On-
line]. Available: http://www.stanford.edu/∼alecmgo/papers/
TwitterDistantSupervision09.pdf

[52] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[53] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” arXiv preprint
arXiv:1910.10683, 2019.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019, pp.
4171–4186.

[55] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized bert pretraining approach,” 2019.

14

https://www.aclweb.org/anthology/L18-1442
https://www.aclweb.org/anthology/L18-1442
https://doi.org/10.24963/ijcai.2020/64
https://doi.org/10.24963/ijcai.2020/64
https://aclanthology.org/W19-3809
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://doi.org/10.24963/ijcai.2019/199
https://ojs.aaai.org/index.php/AAAI/article/view/4777
https://ojs.aaai.org/index.php/AAAI/article/view/4777
https://www.aclweb.org/anthology/J01-4004
https://www.aclweb.org/anthology/D14-1082
https://www.aclweb.org/anthology/D14-1082
https://www.aclweb.org/anthology/N18-2003
https://www.aclweb.org/anthology/N18-2003
http://www.aclweb.org/anthology/P11-1015
http://www.lrec-conf.org/proceedings/lrec2014/pdf/483_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/483_Paper.pdf
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf

[56] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut, “Albert: A lite bert for self-supervised
learning of language representations,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=H1eA7AEtvS

[57] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators,” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=r1xMH1BtvB

[58] A. Aghajanyan, A. Gupta, A. Shrivastava, X. Chen, L. Zettlemoyer,
and S. Gupta, “Muppet: Massive multi-task representations with
pre-finetuning,” 2021.

[59] W. Yuan, G. Neubig, and P. Liu, “Bartscore: Evaluating generated
text as text generation,” in To be published in NeurIPS 2021, 2021.

[60] A. R. Fabbri, W. Kryscinski, B. McCann, R. Socher, and D. Radev,
“Summeval: Re-evaluating summarization evaluation,” Transac-
tions of the Association for Computational Linguistics, vol. 9, pp. 391–
409, 2021.

[61] J. E. Montandon, C. Politowski, L. L. Silva, M. T. Valente,
F. Petrillo, and Y.-G. Guéhéneuc, “What skills do it companies
look for in new developers? a study with stack overflow
jobs,” Information and Software Technology, vol. 129, p.
106429, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950584920301877

[62] M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M.-A.
Storey, and M. A. Gerosa, “How modern news aggregators
help development communities shape and share knowledge,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 499–510. [Online]. Available:
https://doi.org/10.1145/3180155.3180180

[63] J. Wang, L. Li, and A. Zeller, “Restoring execution environments
of jupyter notebooks,” in To be published in ICSE 2021, 2021.

[64] T. Thongtan and T. Phienthrakul, “Sentiment classification using
document embeddings trained with cosine similarity,” in Proceed-
ings of the 57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, 2019, pp. 407–414.

[65] D. S. Sachan, M. Zaheer, and R. Salakhutdinov, “Revisiting lstm
networks for semi-supervised text classification via mixed objec-
tive function,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 6940–6948.

[66] Z. Yang, M. H. Asyrofi, and D. Lo, “Biasrv: Uncovering biased
sentiment predictions at runtime,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for

Computing Machinery, 2021, p. 1540–1544. [Online]. Available:
https://doi.org/10.1145/3468264.3473117

[67] Z. Yang, H. Jain, J. Shi, M. H. Asyrofi, and D. Lo, “Biasheal: On-
the-fly black-box healing of bias in sentiment analysis systems,” to
be published at ICSME 2021.

[68] L. Dixon, J. Li, J. Sorensen, N. Thain, and L. Vasserman, “Mea-
suring and mitigating unintended bias in text classification,” in
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, 2018, pp. 67–73.

[69] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in
supervised learning,” in Advances in neural information processing
systems, 2016, pp. 3315–3323.

[70] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Transactions on
Software Engineering, 2020.

[71] Z. Sun, J. Zhang, M. Harman, M. Papadakis, and L. Zhang,
“Automatic testing and improvement of machine translation,” in
International Conference on Software Engineering (ICSE), 2020.

[72] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,”
Communications of the ACM, vol. 62, no. 3, pp. 61–67, 2019.

[73] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deep-
road: Gan-based metamorphic testing and input validation frame-
work for autonomous driving systems,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2018, pp. 132–142.

[74] L. Sun and Z. Q. Zhou, “Metamorphic testing for machine trans-
lations: Mt4mt,” in 2018 25th Australasian Software Engineering
Conference (ASWEC). IEEE, 2018, pp. 96–100.

[75] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial
examples,” in International Conference on Learning Representations,
2018.

[76] M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer, “Adversarial
example generation with syntactically controlled paraphrase net-
works,” in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), 2018, pp. 1875–1885.

[77] M. T. Ribeiro, S. Singh, and C. Guestrin, “Semantically equivalent
adversarial rules for debugging nlp models,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2018, pp. 856–865.

[78] V. Prabhakaran, B. Hutchinson, and M. Mitchell, “Perturbation
sensitivity analysis to detect unintended model biases,” in Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 5744–5749.

15

https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=r1xMH1BtvB
https://www.sciencedirect.com/science/article/pii/S0950584920301877
https://www.sciencedirect.com/science/article/pii/S0950584920301877
https://doi.org/10.1145/3180155.3180180
https://doi.org/10.1145/3468264.3473117

	BiasFinder: Metamorphic test generation to uncover bias for sentiment analysis systems
	Citation
	Author

	1 Introduction
	2 Preliminaries
	2.1 Metamorphic Testing for Fairness
	2.2 Natural Language Processing (NLP) Techniques
	2.2.1 Part-of-speech Tagging
	2.2.2 Named Entity Recognition
	2.2.3 Coreference Resolution
	2.2.4 Dependency Parsing

	3 BiasFinder
	3.1 Template Generation Engine
	3.2 Mutant Generation Engine
	3.3 Failure Detection Engine
	3.4 Instantiating BiasFinder to Different Biases

	4 GenderBiasFinder
	4.1 Template Generation Engine
	4.2 Mutant Generation Engine
	4.3 Failure Detection Engine

	5 Other Instances of BiasFinder
	5.1 Occupation Bias
	5.2 Country-of-Origin Bias

	6 Experiments
	6.1 Dataset and Experimental Settings
	6.2 Research Questions
	6.3 Results
	6.4 Threats to Validity
	6.5 Potential Usage

	7 Related Work
	7.1 Bias in AI Systems
	7.2 AI Testing

	8 Conclusion and Future Work
	References

